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Discretionary Aggregation

Abstract

Consider the following problem: a �rm's manager has many sources of private in-

formation about the �rm's value, and wishes to maximize the �rm's share price on a

market characterized by rational expectations. Everyone knows that the manager is

informed, but the manager alone knows how many signals he has received. If the man-

ager discloses anything, it must contain the truthful net impact of all his private sources

of information. But he can reveal more, by partitioning the set of private signals and

disclosing subtotals. What will the manager disclose? We show that he will disclose

(a su�cient statistic for) all his information if and only if the news is su�ciently bad.

Otherwise, he will disclose only the net result of his signals. That is, discretionary ag-

gregation creates incentive to provide detailed information in bad states, and to provide

only summary information in good states.

Keywords: Aggregation; Disclosure; Reporting Discretion; Sender-Receiver Games;

Strategic Communication; Persuasion; Conservatism



I Introduction

The purpose of this paper is to study the consequences of discretionary aggregation in �-

nancial reporting. We address the following question: do �rms' managers, whose sole goal is

to maximize their company's share price, use discretion in aggregation to hide information

from the market? The answer, as we demonstrate below, is only if the news is su�ciently

good, i.e., only if the news makes the �rm's market value su�ciently high. Otherwise, the

manager optimally discloses everything.

We illustrate this point using an analytical model, in which we study a voluntary disclo-

sure game between a risk neutral manager, who wants to maximize his �rm's share price,

and a risk neutral market, which prices the �rm's share using rational expectations. The

manager receives a collection of signals that are informative about the value of the �rm's

sole project. Only he knows how many signals he has received; ex ante, he can receive any

positive �nite number of signals.

He can choose to disclose, at zero cost, a report that aggregates his signals. Additionally,

the manager can choose the granularity of the aggregation. He does so by partitioning the

set of signals any way he likes, then sending a costless message giving the subtotal of the

signals on each partition set. Our interest is in how much detail the manager optimally

provides, and, if the manager chooses a nontrivial partition, how he chooses to group the

signals.

By construction, the only way we enable a manager to hide information is through ag-

gregation. The manager cannot lie or disclose half-truths. He cannot double-count, alter,

or omit any signals. In this sense, if the manager provides any information, then he must

tell the truth, the whole truth, and nothing but the truth. The whole truth is, however, less

complete than it may sound. It must contain the net e�ect of his information, but still may

not be fully disaggregate.

To illustrate, imagine the manager receives three signals from support {−1, 1}. Suppose

two realized signals equal 1 and one equals −1. If the manager reports anything, he must
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reveal that his signals sum to 1; this precludes him from saying, �I received two signals, each

equal to 1,� without mentioning the negative signal. If he aggregates all three signals into

one report, he declares, �The signals sum to 1,� but the market cannot infer that the manager

has received three signals. For all the market knows, the manager may have received a single

signal, equal to 1. If instead the manager reports one subtotal equal to 2 and another equal

to −1, the market still infers that the sum of the signals is 1, but it can also learn that

at least three signals arrived. By providing subtotals, the manager raises the �oor on the

number of signals that could have arrived, without reducing the ceiling. This is similar in

spirit to Shin (1994), though the driving force is di�erent.

We �nd that the manager always discloses something, i.e., that silence is never optimal.

The reasons are fairly standard, similar to those in Grossman and Hart (1980), Grossman

(1981), Milgrom (1981), and Milgrom and Roberts (1986), although the fact that the market

cannot bound the number of signals he receives makes the argument require some technical

subtleties (see Dye and Finn, 2007). But the unraveling does not extend beyond the aggregate

signal.

Whether the manager discloses more than the aggregate total hinges on the value of the

�rm, given the manager's private information. It is the manager's posterior distribution of

the �rm value that matters, and not the market's prior beliefs. To understand why, return to

the previous example, where the manager has received three signals: (1, 1,−1) from support

{−1, 1}, but only the manager knows he has received three signals. Suppose the manager's

posterior probability that the �rm's sole project succeeds is above 1/2. If, instead of reporting

(1, 1,−1), the manager reports (1), then he conceals two o�setting signals. This pushes the

posterior probability of the �rm's success away from 1/2, thereby increasing �rm's expected

value. On the other hand, if the posterior probability of the �rm's success is below 1/2,

then the manager prefers to reveal as many o�setting signals as possible. Doing so makes

the posterior probability of success as close to 1/2 as possible, thereby increasing the �rm's

expected value.
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The issue our game addresses, aggregation, is of primary importance in accounting. A

�rm's manager has tremendous latitude on which line items to include in an annual report,

and which to aggregate into a summary account. Investors reviewing a balance sheet are

in no position to assess how many transactions are collapsed into a reported line item, but

instead must form conjectures (see the discussion in Arya et al., 2000).

One way that �rms can provide disaggregate information is through segment reporting.

Under US GAAP (ASC 280) and under International Financial Reporting Standards (IFRS

8), �rms providing segment-level reports must base their subtotals on information used in

their internal management structure. A �rm discloses the items that it does not allocate,

and then assigns the remaining items to the reporting segments. Segment disclosures can be

quite coarse. For example, as of 2013, Amazon operates in many jurisdictions, but reports

two segments: North American and International operations.1

The reason that there is room for nondisclosure of the details is that the market, though

aware of the net results, cannot directly observe how many signals the manager received.

A reader of Amazon's 2013 annual report knows that Amazon uses at least two segments

for internal reporting. Otherwise, the number of internal segments is completely opaque to

the reader. As in Dye (1985) and Jung and Kwon (1988), the manager's ability to plead

ignorance creates room for the manager not to disclose a su�cient statistic for the amount

of information used to construct the aggregate report.2

The emphasis on a su�cient statistic is crucial. The case of Amazon is typical: few �rms

report more than three segments, re�ecting only a modest increase in the granularity of

reporting�on average, roughly half a segment�since the adoption of the current standards

in 1997 in the US and in 2006 under IFRS (see Nichols and Street, 1999, Herrmann and

Thomas, 2000, Street et al., 2000, Berger and Hann, 2003, Ettredge et al., 2006). What

matters is not the number of segments, but the informativeness of the segments, and there

is evidence that segment disclosures, under the current standards, reveal more information

than under the previous standards of segmentation simply based on geography or industry;
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see Behn et al. (2002) and Ettredge et al. (2005).

The driving force of our results is that aggregation hides o�setting signals, obscuring

neutral news. A �rm's manager bene�ts from revealing neutral news if and only if, on

balance, the information about a �rm is bad. Revealing good news in this case raises the

market's assessed probability of good news. We spell out the details of this argument in the

remaining sections, with proofs in the appendix.

II The Model

Set up

There are two players, a �rm's risk neutral manager, whose objective is to maximize the �rm's

share price, and a risk neutral market, which prices the �rm using rational expectations.

Intuitively, the market can be thought of as minimizing the squared di�erence between the

�rm's value and the share price, so that investors price the shares at their mean value

conditional on all public information. The market is purely a secondary market, not used to

generate new �nancing for the �rm. This assumption allows us to focus on the share price

without delving into corporate �nance issues.

The �rm's value is determined by a single Bernoulli draw with unknown success proba-

bility π̃. As we describe below, the manager privately receives an unknown and unbounded

number of signals about π̃, though it is common knowledge that he will receive at least one

signal. Upon receiving the signals, the manager may issue his disclosure to the market, which

values the �rm at E[π̃| disclosure]. See Figure 1.

Nature draws π̃
and the man-
ager's signals

Manager issues
disclosure

Market prices
�rm at E[π̃|
disclosure]

Figure 1: Sequence of events.
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Information

The success probability π̃ has a commonly known Beta(α, β) prior, which is the standard

conjugate prior for the Bernoulli distribution. If α = β = 1, the prior of π̃ is uniform. Given

α, β, the expectation of π̃ is E[π̃] = α/(α + β). Upon observing σ successes and φ failures,

the posterior given a Beta(α, β) prior is Beta(α + σ, β + φ).

For readers unfamiliar with the Beta distribution, we review some of its properties. If we

restrict α and β to positive integers (harmless for our purposes), the Beta pdf is

fΠ(π) =
1

B(α, β)
πα−1(1− π)β−1 =

(α + β − 1)!

(α− 1)!(β − 1)!
πα−1(1− π)β−1

= (α + β − 1)

(
α + β − 2

α− 1

)
πα−1(1− π)β−1

Here B(α, β) is Euler's Beta function, which for positive integers α, β is equal to (α−1)!(β−

1)!)/((α+ β− 1)!). Other than the �rst term, the Beta distribution is exactly the likelihood

function of π̃, given that we have observed α− 1 successes and β− 1 failures. Because π̃ is a

Bernoulli success probability, the Beta prior assumption is equivalent to assuming that prior

information came from observing the outcomes of (α + β − 2) prior Bernoulli trials. The

normalizing coe�cient, (α+ β − 1), makes the density integrate to 1. This coe�cient is the

number of possible outcomes that could have been observed: given (α+β−2) prior Bernoulli

trials, the number of possible successes could have been any number in {0, . . . , α + β − 2},

giving α + β − 1 possibilities.

No one ever observes the realized success probability π. However, the manager receives

Ñ signals that are informative about π̃. Both the signals and Ñ are the manager's pri-

vate information, though it is common knowledge that Ñ comes from a Poisson(λ) prior

(conditional on at least one signal arriving):

(∀N ∈ Z++) Pr(Ñ = N) =
λN

N !(eλ − 1)
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The manager's signals, denoted ỹ := (ỹ1, . . . , ỹN), are independent signed Bernoulli draws

with success probability π (similar to the coding of information in Arya et al., 2000): after

Nature chooses the realizations (π,N), she chooses N independent Bernoulli draws, coding

failures as −1, and gives each draw to the manager:

Given (N, π), (∀i ∈ {1, . . . , N})

ỹi
iid∼ 2 · Bernoulli(π)− 1 =

 1, with probability π

−1, with probability 1− π

Disclosure

After observing (y1, . . . , yN), the manger chooses whether to disclose, and if so, in how much

detail. If the manager discloses, his report must convey the net number of positive signals.

We denote a fully aggregate report by m1(y):

m1(y) :=
N∑
i=1

yi

We have an initial observation on the fully aggregate report:

Proposition 1. If the market receives report m1(y), along with enough information to infer

N correctly, then the market e�ectively has full information. That is, 〈N ;m1(y)〉 jointly

convey all of the manager's economically relevant information.

If the manager chooses to disclose more than the fully aggregate report, he is required

to do so as follows: �rst, after receiving N signals, the manager partitions {1, . . . , N} into v
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nonempty, mutually disjoint, exhaustive subsets, which we denote S1, . . . , Sv:

(∀j ∈ {1, . . . , v}) Sj 6= ∅

(∀i, j ∈ {1, . . . , v}) i 6= j ⇒ Si
⋂

Sj = ∅
v⋃
j=1

Sj = {1, . . . , N}

Next, given the manager's private partition, he discloses the net successes on each partition

set. The manager's report, denoted mv(y), is then a v-tuple:

mv(y) :=

(∑
j∈Si

yj

)v

i=1

For example, suppose that N = 5 and y = (1, 1, 1,−1,−1), indicating that the manager

has received �ve signals, with three successes and two failures. If the manager issues a fully

aggregate report, then m1(y) = 1, indicating that the �rm has had one net positive signal.

A fully disaggregate report, m5(y) = y, reports each signal separately.

By disclosing m5(y), the manager shows the market that N ≥ 5. The manager can

convey the same information by splitting the signals as (S1 = {1, 2, 3}, S2 = {4, 5}), then

reporting m2(y) = (3,−2). An alternative partitioning into two subtotals would convey less

information: if the manager were to split the signals as (S1 = {1}, S2 = {2, 3, 4, 5}), then the

report m2(y) = (1, 0) would indicate that N ≥ 3, because of the requirement that S2 6= ∅.

As a last example, if the manager were to choose (S1 = {1}, S2 = {2}, S3 = {3, 4, 5}), then

the report m3(y) = (1, 1,−1) would indicate that N ≥ 3 and would not reveal that any

subtotal contained more than one signal.
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III Results

Background and Mathematical Results

For this subsection only, assume the manager always issues the aggregate report m1(y).

Below, we investigate the market's inferences given that the manager is strategic in his

aggregation and disclosure decisions, in contrast to the analysis of the market's inferences

here, when the manager acts purely mechanically.

By Proposition 1, given N and m1(y), the number of positive signals is (N +m1(y))/2,

and the number of negative signals is (N − m1(y))/2. Also, because the manager always

receives at least one signal, and because o�setting signals come in pairs, N ≥ max(|m1(y|), 1)

and, for some h ∈ Z+, N = |m1(y)| + 2h. This also means that it is always the case that

N + |m1(y)| is even: given the information system, an odd (even) net number of successes

can only derive from an odd (even) number of signals.

We have the following result:

Lemma 1. Let α = β = 1, so that π̃ ∼ U [0, 1]. Then, given a sample of N independent

signed Bernoulli trials and given m ∈ {−N,−N + 2, . . . , N}, the probability of observing m

successes is 1/(N+1).

More generally, if π̃ ∼ Beta(α, β), then given a sample of N independent signed Bernoulli

trials with success probability π̃, the probability of m net successes is a scaling constant times

the hypergeometric distribution:

Pr (m net successes |N trials, N + |m| even) =
[

α + β − 1

α + β +N − 1

] (α+β−2
α−1

)(
N

N+m
2

)(α+β+N−2

α+N+m
2
−1

)
=

[
Prior #(total successes possibilities)

Posterior #(total successes possibilities)

]
· Hypergeometric probability mass

We use Lemma 1 to derive the market's posterior distribution about N given the report

m1(y). The next step in this direction is �nding the joint probability of m1 (ỹ) and Ñ . We
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suppress the conditions that N ≥ max(1, |m1(y)|) and that N + |m1(y)| is even from here

onward unless confusion can arise.

Lemma 2. Given that the number of independent signals Ñ ∼ Poisson(λ)|Ñ ≥ 1 and that

the success probability π̃ ∼ Beta(α, β), the joint probability of receiving N signals with m net

successes is

Pr(m ∧N) =

[
(α + β − 1)

(
α+β−2
α−1

)
(eλ − 1)

]
·

[
λN

(α + β +N − 1)
(
N+m

2

)
!
(
N−m

2

)
!

]

/

(
α + β +N − 2

α + N+m
2
− 1

)

In the special case of a uniform prior (i.e., α = β = 1), this becomes

Pr(m ∧N) =

(
1

eλ − 1

)
·
[

λN

(N + 1)!

]

That is, the joint distribution of (N,m) has a closed-form solution, which decomposes into

three parts: a scaling factor that is independent of (N,m), λN , coming from the Poisson prior,

and a combinatorial expression in m and N , coming from the hypergeometric distribution in

Lemma 1.

The marginal distribution of the net number of successes is directly obtained by summing

Pr(m|N)Pr(N) over feasible values of N . This allows us to derive the posterior distribution

of N given the net successes m:

Proposition 2. Given that the number of net successes is m, the posterior distribution of

the number of draws has the following closed-form solution:

Pr(N |m) =

[
λN
(
α + N+m

2
− 1
)
!
(
β + N−m

2
− 1
)
!(

N+m
2

)
!
(
N−m

2

)
!(α + β +N − 1)!

]

/
∑

k≥max(|m|,1)
k+|m| even

[
λk
(
α + k+m

2
− 1
)
!
(
β + k−m

2
− 1
)
!(

k+m
2

)
!
(
k−m

2

)
!(α + β + k − 1)!

]
(1)
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In the special case of a uniform prior, this becomes

Pr(N |m,α = β = 1) =

[
λN

(N + 1)!

]
/

 ∑
k≥max(|m|,1)
k+|m| even

λk

(k + 1)!

 (2)

The numerator consists of λN , coming from the Poisson prior, times a ratio of combi-

natorial expressions: the number of ways to order the posterior number of successes and the

posterior number of failures, divided by the number of ways to order the success and failures

from the sample and the number of ways to order the total number of draws (plus a degrees of

freedom correction). The denominator is the analogous expression, summed over all possible

numbers of draws given the net successes (requiring N ≥ 1).

In the special case of a uniform prior, Equation (2) has an especially simple form and

good asymptotic properties. If we multiply the numerator and denominator by λ, we can

rewrite Equation (2) with the denominator as a power series:

Pr(N |m;α = β = 1) =

[
λN+1

(N + 1)!

]
/

 ∑
k≥max(|m|,1)
k+|m| even

λk+1

(k + 1)!

 (3)

The denominator of (3) is

λ|m|+1

(|m|+ 1)!
+

λ|m|+3

(|m|+ 3)!
+ . . .

If the number m of net successes is odd, this sum is the tail of the series

∞∑
k=0

λ2k

(2k)!
= coshλ
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If instead m is even, the sum in the denominator is the tail of the series

∞∑
k=0

λ2k+1

(2k + 1)!
= sinhλ

Note that coshλ = (eλ + e−λ)/2 and sinhλ = (eλ − e−λ)/2. As λ increases, the value of e−λ

becomes small compared with eλ, and both coshλ and sinhλ ≈ eλ/2. For example, if λ = 4,

then eλ ≈ 54.60 and e−λ < 0.02, making the ratio (cosh 4)/(sinh 4) ≈ 1.0007. We therefore

have the following:

Proposition 3. Let Ñ ∼ Poisson(λ)|N ≥ 1. Let m be the net number of successes on Ñ

signed Bernoulli draws, with an unknown success probability coming from a uniform prior,

i.e., α = β = 1. Then the posterior distribution Pr(N |m) is approximated by a scaled

Poisson. Speci�cally, for N ≥ max(|m|, 1) satisfying |m|+N even,

1. If m = 0, then

Pr(N |m = 0, α = β = 1) ≈ 2
λN+1e−λ

(N + 1)!

2. If m > 0 and m is even, then

Pr(N |m,α = β = 1) ≥
(
2(|m|/2)!
λ|m|/2

)(
λN+1e−λ

(N + 1)!

)

3. If m is odd, then

Pr(N |m,α = β = 1) ≥
(
2((|m|+ 1)/2)!

λ(|m|+1)/2

)(
λN+1e−λ

(N + 1)!

)

In case 1, the posterior converges in λ to the shown approximation. In cases 2 and 3, the

posterior either converges in λ to the shown approximation, or it di�ers only in the scaling

factor. In all cases, the posterior converges in λ to a scaled Poisson.

The approximations in Proposition 3 provide a convenient way to estimate E[Ñ |m,α =
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β = 1]. For example, if m = 0, then

E[Ñ |α = β = 1,m] =
∞∑
N=2

2N
λN+1e−λ

(N + 1)!
= 2e−λ (λ coshλ− sinhλ)

Because coshλ ≈ sinhλ ≈ eλ/2 for large enough λ, this value is approximated by

E[Ñ |α = β = 1,m] ≈ 2e−λ(λ− 1)eλ/2 = λ− 1

Other approximations are similar.

Summing up, a nonstrategic, fully aggregate report produces a closed-form, analytically

tractable posterior distributions of the number of signals received, which is approximately

Poisson in the special case of a uniform prior.

Strategic Disclosure

We now focus on the manager's strategic aggregation decisions. In particular, we show that

the manager always chooses to disclose at least the aggregate report. Whether the manager

discloses more than this depends on whether his posterior E[π̃|y] > 1/2.

To make the de�nitions of disclosure strategies and of equilibrium precise, we intro-

duce some notation. For arbitrary sets A,B, write BA for the collection of functions from

A - B. For n ∈ Z++, let

Y :=
∞⋃
n=1

{−1, 1}n

The set Y represents the possible collections of signals the manager might receive. We

de�ne the set of possible disclosures, denoted Z, as

Z =

(
∞⋃
n=1

n⋃
v=1

{
z∈{−n+ v − 1, . . . , n− v + 1}v

∣∣∣∣∣
v∑
j=1

zj∈{−n,−n+ 2, . . . , n}

})⋃
{∅}

That is, if we �x n ∈ Z++, then the disclosure, if made, can have anywhere from 1 to n
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subtotals. If the disclosure has v subtotals, then each subtotal can be based on at most

n− v+1 signals. This means that each subtotal cannot be larger than n− v+1 in absolute

value. Moreover, the sum of the subtotals cannot be larger than n in absolute value, and can

only di�er from n in absolute value by an even number. This is because any such di�erence

must be driven by the number of signals that cancel, i.e., pairs (yi, yj) with yi = −yj.

Non-disclosure is also feasible.

For x ∈ Y ∪ Z, let `(x) be the length of x. We can now precisely de�ne a strategy for

the manager:

De�nition 1. A disclosure strategy is a function m ∈ ZY such that, for all y ∈ Y , let-

ting v(y) = (` ◦ m)(y), there exists a partition of the coordinate positions, S1, . . . , Sv(y) ⊂

{1, . . . , `(y)}, satisfying truthful aggregation. That is:

1. (∀j ∈ {1, . . . , v(y)}) Sj 6= ∅ (nondegeneracy)

2. (∀j, j′ ∈ {1, . . . , v(y)}) Sj ∩ Sj′ = ∅ (no double counting)

3.
⋃v(y)
j=1 Sj = {1, . . . , `(y)} (no omissions)

4. (∀j ∈ {1, . . . , v(y)}) mj(y) =
∑

i∈Sj yi (truthful aggregation)

Intuitively, m aggregates y ∈ Y into a comprehensive collection of distinct subtotals, where

the composition and number of subtotals is part of the strategy.

The market's strategy is simply to price the �rm at its expected value, given all informa-

tion and beliefs about manager's reporting strategy. To rule out degenerate equilibria, we

impose rational expectations. The de�nition of equilibrium is as follows:

De�nition 2. A Perfect Bayesian Equilibrium is a disclosure strategy m∗ ∈ ZY , a pricing

rule p∗, and a rule for updating beliefs about π̃ conditional upon m∗(y) such that

1. Given the report m∗, the price satis�es p∗ = E[π̃|m∗].
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2. Given the market's rule for updating beliefs,

m∗ ∈ argmax
m∈ZY

E[π̃|m]

3. The market's beliefs are rational, with updating consistent with Bayes' rule, given m∗,

and

4. If possible, the market's beliefs are consistent with Bayes' rule o� the equilibrium path.

Our �rst result is that the manager always discloses at least the aggregate report:

Proposition 4. In every Perfect Bayesian Equilibrium, a su�cient statistic for the number

of net successes is disclosed. That is,

(∀y ∈ Y ) (` ◦m∗)(y) > 0,

which, by conditions 2�4 of De�nition 1, fully reveals
∑`(y)

i=1 yi.

Although Proposition 4 shows that the manager always discloses the aggregate total, our

main result is that the manager does not generically disclose a su�cient statistic for N . The

aggregate is a su�cient statistic for whether E[π̃|y] > 1/2. If it is, the manager prefers to

keep the market's beliefs about N as low as possible. On the other hand, if E[π̃|y] < 1/2, the

manager discloses a su�cient statistic for N , in order to signal the largest possible number

of o�setting pairs. The driving force of this result is that, given the number of net successes,

the larger N is, the closer the posterior is to 1/2.

Theorem 1. Let π̃ ∼ Beta(α, β). Let s = #{i|yi = 1} be the realized number of successes,

and let N be the realized number of signals. In an essentially unique Perfect Bayesian

Equilibrium, the manager fully reveals his information only if the posterior mean of π̃ given

his private information is at most 1/2, i.e., if and only if

E[π̃|y] = α + s

α + β +N
≤ 1

2
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In this case, the market in equilibrium believes the disclosure is complete.

If the posterior mean of π̃ is no less than 1/2, it is optimal for the manager to disclose

the net number of successes m1(y) and no further information. In this case, the market

calculates E[π̃|m1(y)] using the conditional distribution in Proposition 2. The boundary case

of E[π̃|y] = 1/2 is consistent with both aggregate disclosure and full revelation.

Full disclosure, in the equilibrium of Theorem 1, can be achieved with as few as two

segments, provided E[π̃|y] ≤ 1/2. Let

S1 = {i ∈ {1, . . . , `(y)}|yi = 1}

S2 = {i ∈ {1, . . . , `(y)}|yi = −1}

In other words, put all the successes into one subtotal and all the failures into another. If

the market believes that the manager has adopted this strategy, then its posterior belief

conditional upon the disclosure is

E[π̃|m2(y)] =
α +#(S1)

α + β +#(S1) + #(S2)

provided this posterior mean is at most 1/2. If the manager were to deviate and put some

failures into subtotal m2
1(y) or some successes into subtotal m2

2(y), then the market would

believe that there were fewer successes and failures, with each dropping by an equal number.

This would drop from the posterior some signals that would have moved it closer to 1/2.

Because the posterior is below 1/2, the e�ect would be to lower the posterior.

Conversely, if the posterior mean is above 1/2, then if the manager can successfully

conceal two o�setting signals by putting them in the same subtotal, he will bene�t by doing

so. Each pair of o�setting signals that the market observes pushes the posterior mean closer

to 1/2, which is undesirable when the posterior mean is higher. It therefore is optimal for

the manager to conceal as many o�setting signals as possible, and this is achieved by putting

all the signals into a single total.

15



In fact, even a single aggregate disclosure, m1(y), is consistent with full revelation in

equilibrium, given E[π̃|y] ≤ 1/2. If y1 = . . . = yN , then the manager sums all the signals

(whether positive or negative) into one total. The market knows that it is not in the man-

ager's interest to conceal o�setting signals when the posterior mean of π̃ is below 1/2, and

correctly infers that the reason the manager does not segment is that every signal had the

same value. This means that the market attaches a di�erent interpretation to an aggregate

report, depending on the posterior mean. If the posterior mean is above 1/2, the market

attaches positive probability to some o�setting signals being present. If the posterior mean

is below 1/2, it does not.3

Figure 2 illustrates the intuition of Theorem 1 under the assumption of a uniform prior,

i.e., α = β = 1, and two di�erent realizations of y which result in a net number of successes of

1 and −1, respectively. Panel (a) shows the market's posterior mean of π̃, conditional upon

the aggregate report m1(y) and its conjecture of N . Given the uniform prior, a net positive

aggregate signal makes the posterior mean of π̃ > 1/2. However, the higher the market's

conjecture of N , the closer the posterior moves downward toward 1/2. For a net negative

aggregate signal, the opposite is true. Panel (b) shows the market's posterior mean of π̃

conditional upon m1(y) and its average beliefs using (2). Observe that disaggregation drops

low values of N from the set of feasible numbers of signals �rst. This causes disaggregation

to lower the posterior mean of π̃ when m1(y) = 1 and to increase the posterior mean when

m1(y) = −1.

[FIGURE 2 AROUND HERE]

IV Discussion and Conclusion

The main insight of this paper is that �rms with low expected values can credibly reveal

information by making granular disclosures about their aggregate performance. Firms with

high expected values cannot, and optimally choose to report coarser, more aggregate infor-
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mation than low expected value �rms choose. The reasons are purely value maximization,

and are unrelated to the usual suspects of risk attitudes, veri�cation, or an asymmetric mar-

ket response to good or bad news such as with debt �nance. We study a manager who is risk

neutral, does not lie, and is concerned solely with maximizing the value of the company's

share price in a market with rational expectations.

The driving force of this result is that aggregation cancels o�setting signals. If a �rm's

value is low, then the more neutral news revealed, the better. If a �rm's value is high, the

more neutral news concealed, the better. The intuition is as follows: suppose you draw a

random sample of size N from your favorite distribution with a �nite mean, and sum the

realizations. If the mean of the distribution is µ, then the mean of this sum is N ·µ. Imagine

that you want to convince us that µ is as high as possible, and that we can observe N ·µ but

not N or µ directly. If N · µ is negative, it is in your interest to show us the records of your

individual draws. If N ·µ is positive, then the smaller you can convince us that N might be,

the better o� you are. With news that is good in aggregate, the �rm's manager, like you in

this toy example, would state the result and then be silent. The same manager, faced with

bad news, has very strong incentive to put the bad news into a broader context, showing as

much neutral news as possible.

This result is similar in spirit to earlier results by Penno (1996), Einhorn (2005), and

Dziuda (2011). Penno studies a �rm whose manager strategically chooses the precision of

its disclosure. For �rms with good news, low precision is desirable, while �rms with bad

news prefer higher precision. Einhorn studies an aggregation decision with two signals,

di�ering in their precisions. She �nds that the manager reports the disaggregate signal if

and only if the more precise signal is good news for the �rm. In our context, disaggregating

reveals more precise information, and this is desirable if and only if revealing the number of

o�setting signals is good news. Dziuda studies a possibly biased sales representative. Unlike

our manager, her sales representative can withhold information, but, as in our setting, her

representative cannot lie. Dziuda �nds a bene�t to revealing information about the number
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of received signals, even if doing so requires disclosing unfavorable information. Although

our context and our notion of good news is very di�erent from Dziuda's, Einhorn's, and

Penno's, the results are clearly related.

There is a close connection between our main result and the literature on accounting

conservatism. Gigler et al. (2009) demonstrate that, because conservative reporting makes

it more di�cult to report good news than bad news, a conservative regime leads to reported

good news being more informative than reported bad news. Whether this property is desir-

able depends on the relative importance of Type I versus Type II errors. Our main result

shows that discretionary aggregation has the opposite e�ect: reported good news is less in-

formative than reported bad news, due to the manager's incentive to provide an explanation

for bad news and not to provide any information that would lead the market to question

good news. A potential issue for future work is the whether the optimal level of accounting

conservatism depends on the degree of discretion in aggregation.

From an empirical viewpoint, the forces described here provide one reason that markets

may react asymmetrically to bad news compared with good news. A bad news disclosure

includes any information that would dampen the e�ect of the news, showing that the news is

as close as possible to neutral. A good news disclosure may have omitted attenuating details.

The market then rationally is muted in its reaction to good news, but has no corresponding

reason to mute its response to bad news.

Our setting focuses on risk neutrality, but has natural extensions to di�erent risk atti-

tudes. A manager who is given incentive compensation designed to induce risk taking faces

a trade-o� in aggregation decisions. If the �rm has a low expected value, the manager's ben-

e�ts from revealing disaggregate information are partially o�set by a reduction in volatility

coming from more draws being revealed. A risk averse manager faces the opposite trade-o�,

and may reveal disaggregate information for a highly valued �rm in order to reduce volatility.

These forces change nothing essential in our argument, but may shift the manager's cuto�

from 1/2 to a di�erent critical value.
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The framework of our model may be of independent interest from a purely technical

perspective. Our Poisson-Signed Bernoulli-Beta (PSBB) setting has many convenient fea-

tures. Some advantages of the individual components of our setting are as follow: �rst, for

studying sender-receiver games where the sender of a message has received an unknown and

unbounded number of private signals, it does not get any easier than a Poisson. Second, a

central feature of aggregation, and how it can hide information, arises from having o�set-

ting signals summed. Signed Bernoulli draws are the simplest environment in which this

feature of aggregation arises. Third, the Beta distribution is the most natural one for an

unknown probability of success on a (signed or unsigned) Bernoulli trial. It has the uniform

as a special case, and in many important respects, it is simply the likelihood function of the

binomial distribution in disguise. In addition to these important features, the PSBB setting

has convenient properties arising from combining these distributions. Given the number of

trials, the posterior distribution of the number of net successes is (other than a scaling fac-

tor) the standard hypergeometric distribution. Conversely, in the special case of a uniform

prior, given the number of net successes, the posterior distribution of the number of trials is

a scaled Poisson. These features make the PSBB setting extremely convenient: everything is

closed-form, and almost everything can be expressed as a familiar distribution or something

very close to it.

We end with an illustrative anecdote. In its 2009 annual report, Citigroup announced

a change in its reporting segments, as part of the aftermath of the Great Recession. Their

new reporting format included two segments, Citicorp and Citi Holdings. The annual report

(iii) reads in part as follows: �Into Citicorp, we placed the businesses that are core to our

strategy and that o�er shareholders the greatest earnings potential within appropriate risk

parameters.. . . In Citi Holdings, we assembled assets and businesses that are not central

to our strategy.. . .Many are economically sensitive." In terms of our setting, Citicorp �rst

observed their overall news, and for any �nancial services company, the news in 2009 was

bad overall. In response, Citicorp chose to aggregate its positive news into one segment and
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its negative news into another. This is exactly what our model predicts, and was a credible

way, given the economic conditions of the time, of informing the market of the company's

overall �nancial condition.

Proofs

Proof of Proposition 1. Given 〈N ;m1(y)〉, the market can infer

#{i|yi = 1} = N +m1(y)

2
and #{i|yi = −1} =

N −m1(y)

2

Given y, the posterior distribution on π̃ is

π̃|y ∼ Beta(α+#{i|yi = 1}, β +#{i|yi = −1})

That is, 〈N ;m1(y)〉 conveys all the manager's information on π̃.
The market has rational expectations, and the �rm's value is distributed Bernoulli(π̃). Therefore,

the only economically relevant information for the market is news that a�ects its posterior beliefs
about π̃.

Proof of Lemma 1. The uniform case is a special case of the Beta(α, β) case, obtained immediately
from setting α = β = 1. So it su�ces to consider the general Beta(α, β) setting.

The probability of observing m net successes is

Pr (m |N,N + |m| even) =
1∫

0

(
N

N+m
2

)
π
N+m

2 (1− π)
N−m

2 fπ̃(π)dπ

= (α+ β − 1)

(
α+ β − 2

α− 1

)(
N

N+m
2

) 1∫
0

πα+N+m
2
−1(1− π)β+N−m

2
−1dπ

=

[
α+ β − 1

α+ β +N − 1

] (α+β−2
α−1

)( N
N+m

2

)
(α+β+N−2

α+N+m
2
−1

)
·

1∫
0

1

B
(
α+ N+m

2 , β + N−m
2

)πα+N+m
2
−1(1− π)β+N−m

2
−1dπ

=

[
α+ β − 1

α+ β +N − 1

] (α+β−2
α−1

)( N
N+m

2

)
(α+β+N−2

α+N+m
2
−1

)
=

[
Prior #(total successes possibilities)

Posterior #(total successes possibilities)

]
· Hypergeometric
probability mass
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Proof of Lemma 2. Using Lemma 1, we expand Pr(m ∧N) = Pr(m|N)Pr(N) as

Pr(m ∧N) =

[
λN

N ! (eλ − 1)

] [
α+ β − 1

α+ β +N − 1

] (α+β−2
α−1

)( N
N+m

2

)
(α+β+N−2

α+N+m
2
−1

)
=

[
α+ β − 1

(eλ − 1)

]
·

[
λN

(α+ β +N − 1)
(
N+m

2

)
!
(
N−m

2

)
!

] (
α+β−2
α−1

)(α+β+N−2

α+N+m
2
−1

)
=

[
(α+ β − 1)

(
α+β−2
α−1

)
(eλ − 1)

]
·

[
λN

(α+ β +N − 1)
(
N+m

2

)
!
(
N−m

2

)
!

]

/

(
α+ β +N − 2

α+ N+m
2 − 1

)
That is, the N ! terms cancel, and we can factor the terms that do not depend on N .
The special case of a uniform follows from direct substitution.

Proof of Proposition 2. We begin by solving for the marginal distribution of the number of net
successes. From Lemma 2,

Pr(m) =
∑

k≥max(|m|,1)
k+|m| even

Pr
(
m ∧ Ñ = k

)

=

[
(α+ β − 1)

(
α+β−2
α−1

)
(eλ − 1)

] ∑
k≥max(|m|,1)
k+|m| even

[
λk
(
α+ k+m

2 − 1
)
!
(
β + k−m

2 − 1
)
!(

k+m
2

)
!
(
k−m

2

)
!(α+ β + k − 1)!

]

Using the fact that Pr(N |m) = Pr(m ∧N)/Pr(m), we obtain the posterior distribution of N :

Pr(N |m) =
Pr(m ∧N)

Pr(m)

=

[
λN
(
α+ N+m

2 − 1
)
!
(
β + N−m

2 − 1
)
!(

N+m
2

)
!
(
N−m

2

)
!(α+ β +N − 1)!

]

/
∑

k≥max(|m|,1)
k+|m| even

[
λk
(
α+ k+m

2 − 1
)
!
(
β + k−m

2 − 1
)
!(

k+m
2

)
!
(
k−m

2

)
!(α+ β + k − 1)!

]

The uniform special case comes from directly substituting α = β = 1.
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Proof of Proposition 3. We have from (2)

Pr(N |m,α = β = 1) =

[
λN+1

(N + 1)!

]
/

 ∑
k≥max(|m|,1)
k+|m| even

λk+1

(k + 1)!



=



[
λN+1

(N+1)!

]
/

[∑∞
k=
|m|
2

λ2k+1

(2k+1)!

]
, if |m| > 0, even

[
λN+1

(N+1)!

]
/
[∑∞

k=1
λ2k+1

(2k+1)!

]
, if m = 0

[
λN+1

(N+1)!

]
/

[∑∞
k=
|m|+1

2

λ2k

(2k)!

]
, if |m| odd

In the special case where m = 0, the sum in the denominator includes all except the �rst term
in the Taylor series expansion of sinhλ around 0. That means the denominator becomes

sinhλ− λ

and hence that

Pr(N |m = 0, α = β = 1) =
λN+1

(N + 1)!(sinhλ− λ)

=
λN+1

(N + 1)!
(
eλ−e−λ

2 − λ
)

↘ 2
λN+1e−λ

(N + 1)!

The other cases make use of the Taylor Approximation theorem (which is in standard calculus
texts):

Theorem (Taylor Approximation Theorem). Assume f ∈ CN+1[a, b]. Fix x0, x ∈ [a, b]. Let PN (x)
be the N th-order Taylor approximation of f(x) around x0:

PN (x) :=
N∑
k=0

f (k)(x0)

k!
(x− x0)

k

The remainder term, RN (x) := f(x)− PN (x), has the form

RN (x) =
f (N+1)(c)

(N + 1)!
(x− x0)

N+1

where c ∈ [x0, x].

Using the Taylor Approximation Theorem, the fact that sinh and cosh are monotone on [0,∞),
and the fact that d(coshλ)/dλ = sinhλ and d(sinhλ)/dλ = coshλ, we obtain
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Pr(N |m,α = β = 1) =


[
λN+1

(N+1)!

]
/

[∑∞
k=
|m|
2

λ2k+1

(2k+1)!

]
, if |m| > 0, even[

λN+1

(N+1)!

]
/

[∑∞
k=
|m|+1

2

λ2k

(2k)!

]
, if |m| odd

≥



λN+1−|m|/2(|m|/2)!
(N+1)! sinhλ , |m| > 0, even, |m|/2 even

λN+1−|m|/2(|m|/2)!
(N+1)! coshλ , |m| > 0, even, |m|/2 odd

λN+1−(|m|+1)/2((|m|+1)/2)!
(N+1)! coshλ , |m| odd, (|m|+ 1)/2 even

λN+1−(|m|+1)/2((|m|+1)/2)!
(N+1)! sinhλ , |m| odd, (|m|+ 1)/2 odd

→


[

2(|m|/2)!

λ|m|/2

] [
λN+1e−λ

(N+1)!

]
, |m| > 0, even, |m|/2 even[

2((|m|+1)/2)!

λ(|m|+1)/2

] [
λN+1e−λ

(N+1)!

]
, |m| odd

The inequality arises from using the upper bound on the remainder from the Taylor approximation
in the denominator. By the Taylor Approximation theorem, the exact value of the remainder may
have a di�erent coe�cient on the sinh or cosh terms, but otherwise would be unchanged. Hence,
other than the �rst term, the result would be unchanged, and the posterior in all cases converges
to a scaled Poisson.

Proof of Proposition 4. Let p̂ be the manager's conjecture of the market's belief E[π̃| nondisclosure].
Recall that α, β ∈ Z++, and that `(y) < ∞. This means that, for any signal y ∈ Y , rational
expectations require that the market's updated belief satisfy 0 < E[π̃| nondisclosure] < 1. By the
Archimedean property, there is some n ∈ Z++ such that, for all N ≥ n,

α+N

α+ β +N
> p̂ (4)

Let m > n, so that (4) holds. Suppose the manager reports m1(y) = m. By Proposition 1,

Pr(Ñ = m|m1(ỹ) = m)

Pr(Ñ = m+ 2|m1(ỹ) = m)
=
λm(α+m− 1)!(β − 1)!

m!(α+ β +m− 1)!
· (m+ 2)!(α+ β +m+ 1)!

λm+2(α+m+ 1)!(β + 1)!

=
(m+ 2)(m+ 1)(α+ β +m+ 1)(α+ β +m)

λ2(α+m+ 1)(α+m)(β + 1)β
(5)

The numerator of (5) is on the order of m4, while the denominator is on the order of m2. Thus,
the ratio (5) grows arbitrarily large as m increases. Since Pr(Ñ = m|m1(ỹ) = m) is bounded
above, it must be the case that the denominator asymptotically approaches 0 for large enough m.
A similar argument shows that Pr(Ñ = m + 2|m1(ỹ) = m)/Pr(Ñ = m + 4|m1(ỹ) = m) → ∞
as m increases. By a straightforward inductive argument, it follows that, for large enough m,
Pr(Ñ = m|m1(ỹ) = m) gets arbitrarily close to 1. In particular, if m is su�ciently large, then
rational expectations imply

E[π̃|m] ≈ α+m

α+ β +m
> p̂
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This means that, for some value m∗, if m1(y) ≥ m∗, the manager prefers disclosing m1(y) to
non-disclosure.

Accordingly, a necessary condition for non-disclosure is

E[π̃|m1(y)] ≤ E[π̃| no disclosure] = p̂

Let m∗ satisfy
E[π̃|m1(y) = m∗ − 1] ≤ p̂ < E[π̃|m1(y) = m∗]

The manager would then not disclose if and only if m1(y) ≤ m∗− 1. Since E[π̃|m1(y)] is monotone
in the aggregate disclosure, and aggregate disclosures below m∗− 1 occur with positive probability,
rational expectations require E[π̃| no disclosure] < p̂. This is a contradiction, implying there can
be no cuto� p̂ > 0 below which the �rm does not release the aggregate disclosure.

Proof of Theorem 1. First, we consider the case where E[π̃|y] < 1/2. If the manager discloses
m1(y), the market's beliefs are that this is a su�cient statistic for full revelation, i.e., all yi have the
same sign, and m1(y) = N , provided m1(y) 6= 0. Similarly, if the manager reports mv(y) for v > 1,
the market can assume full revelation, with all the successes divided among the subtotals that are
positive, and all the failures divided among the subtotals that are negative, provided none of the
subtotals is equal to 0. To show that full disclosure is a Perfect Bayesian Equilibrium, it su�ces for
us to consider a case where the market treats any subtotal of 0 as containing exactly two signals,
one success and one failure. The idea behind this belief is that the market treats the manager as
playing the equilibrium if possible, and if not, the market treats the manager as playing the closest
strategy to the equilibrium that is consistent with the disclosure.

On the equilibrium path, it su�ces to consider the case where the manager discloses at most
two subtotals, m2(y), putting all the successes into one subtotal and all the failures into the other.
Let

S1 = {i ∈ {1, . . . , n}|yi = 1} S2 = {i ∈ {1, . . . , n}|yi = −1}

s =
∑
i∈S1

yi = #(S1) f = N − s =
∑
i∈S2

|yi| = #(S2)

If s = 0, the market's updated belief is

E[π̃|m1(y) = −f ] = α

α+ β + f

and any other disclosure, given the market's belief, would lead to the same posterior mean. Similarly,
if f = 0, any disclosure is fully revealing, giving the market a (correct) posterior of

E[π̃|m1(y) = s] =
α+ s

α+ β + s

If min(s, f) > 0, the manager's strategy

E[π̃|m2(y)] =
α+ s

α+ β + s+ f
<

1

2

where the inequality is by hypothesis.
The argument is by induction. De�ne a 1-deviation as a report 〈s− 1,−(f − 1)〉, generated as
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follows: for some i ∈ S1 or some j ∈ S2, let

S′1 = S1\{i} and S′2 = S2 ∪ {i} or let S′1 = S1 ∪ {j} and S′2 = S2\{j}

Either way, let

s′ =
∑
i∈A′1

yi and f ′ = −
∑
i∈A′2

yi

If the investors believe that the report was truthful, then the aggregate signal would be interpreted
as s − 1 + f − 1 = s − f , so there is no change in the aggregate report. However, the number of
informative signals would appear to be s − 1 + f − 1 = s + f − 2. Thus, a 1-deviation is a report
that hides a pair of opposed informative signals {−1, 1}.

The market's posterior belief, upon obtaining a message with a 1-deviation, is

E[π̃|m2(y) = (s′,−f ′)] = α+ s− 1

α+ β + s+ f − 2

The 1-deviation is therefore unpro�table if and only if

α+ s− 1

α+ β + s+ f − 2
≤ α+ s

α+ β + s+ f

⇔ α+ s

α+ β + s+ f
≤ 1

2
(6)

By hypothesis, the posterior mean given y is below 1/2. Therefore, the manager is worse o� by
making a 1-deviation than by reporting truthfully.

De�ne an h-deviation as a 1-deviation from an (h − 1)-deviation. Assume the posterior upon
receiving an (h− 1)-deviation is at most 1/2. Then, by an analogous argument, the posterior upon
receiving an h-deviation and believing it to be fully revealing is weakly below the posterior upon
receiving an (h− 1)-deviation. Hence, if the posterior upon receiving a fully revealing disclosure is
at most 1/2, then for any h, no h-deviation is pro�table.

To �nish the case where E[π̃|y] < 1/2, suppose that the manager discloses a subtotal that equals
0. That is, for some v ∈ Z++, the manager's disclosure mv(y) contains at least one entry (which,
without loss of generality, we can take to be mv

1(y)) that equals 0. The market can infer that
there must be at least two signals in subtotal mv

1(y), and that these are o�setting. If the manager
includes exactly two o�setting signals into this subtotal, then his report is equivalent to including
the positive signal in a di�erent subtotal with a positive sum, and including the negative signal
in a di�erent subtotal with a negative sum. This means that a zero subtotal containing exactly
two o�setting signals cannot add any bene�t over separating the positive and negative signals. On
the other hand, if mv

1(y) contains more than two signals, then it is equivalent, for some h, to an
h−deviation, making the manager strictly worse o�.

Suppose now instead that the posterior mean of π̃ upon receiving a fully revealing disclosure is
above 1/2. This case is symmetric: by (6), the manager is always better o� making a 1-deviation in a
report, if believed at face value, than in reporting truthfully. By an analogous inductive argument,
it is clear that, for every h ∈ Z++, an h-deviation is pro�table over an (h − 1)-deviation. This
establishes that fully-revealing disclosure cannot be optimal when E[π̃] > 1/2, and in fact that the
manager's best response to a market that takes a report at face value would be to report a fully
aggregate disclosure. Equivalently, the manager could disclose multiple subtotals, provided they all
have the same sign.

If instead the manager always reports m1(y) when the posterior mean is above 1/2, then the
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market estimates

E[π̃|m1(y)] = E

 α+ m1(y)+Ñ
2

α+ β + Ñ

∣∣∣∣∣∣m1(y)


=

∑
N≥max(|m1(y)|,1)
N+|m1(y)| even

Pr(N |m1(y)) ·
α+ m1(y)+N

2

α+ β +N
(7)

by Proposition 1, calculating the posterior probability in (7) using (1). O�-equilibrium, if the
manager's disclosure reveals a su�cient statistic implying N > |m1(y)|, suppose the market believes
that there were a large number of o�setting signals. For example, the market may believe that
the manager is more likely to mistakenly reveal an o�setting pair of signals when the number of
such pairs is su�ciently large. For a large enough number of presumed o�setting signals, (7) gets
arbitrarily close to 1/2, and therefore eventually lower than E[π̃|m1(y)].

Finally, note that investors learn from the aggregated report, whether the posterior is above or
below 1/2:

E[π̃|y] = α+ s

α+ s+ β + f
≥ 1

2

⇔ s− f ≥ β − α (8)

s− f is the aggregate report and β − α is common knowledge.
If condition (8) holds, investors interpret a two-dimensional message as 〈s,−f〉. This means that

the market can always determine which side of 1/2 the posterior is on. Therefore, full disclosure
when E[π̃|y] < 1/2 and full aggregation when E[π̃|y] > 1/2 is a Perfect Bayesian Equilibrium.

Essential uniqueness also follows from the fact that the market can always determine from the
aggregate report whether the posterior is above or below 1/2. This implies that full aggregation
cannot be optimal given that E[π̃|y] < 1/2 unless the market believes N = ∞, an event with
prior probability 0. Therefore, rational expectations and Bayes' rule imply the suboptimality of
full aggregation in this case, and the same inductive argument as above implies that the manager's
optimal strategy must fully reveal N . The case where E[π̃|y] > 1/2 is analogous.
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Notes

1Crawford et al. (2012, 12) study IFRS 8 after 2009, the year in which it came into
e�ect. In interviews with users and preparers of �nancial statements, they �nd that one of
the main concerns raised was the choice of aggregation in constructing reporting segments.
Additionally, they �nd an increase in the number of reporting segments in 2009, even for
geographical information, despite the fact that geographical disclosure requirements became
less restrictive under IFRS 8 than under the previous standard, IAS 14R. Given the drop in
the market at the time�the Financial Times 100 and the Financial Times 250 indices fell
16.2% and 12.1%, respectively, from the start of 2008 to the end of 2009�the increase in
the reporting granularity supports our results.

2For more on conditions when nondisclosure is feasible in equilibrium, see Verrecchia
(1983), Dye (2001), Verrecchia (2001), and Beyer et al. (2010).

3As an extension, one might also consider a setting where the manager precommits to
a disclosure policy, that is, restricts his choice of m ∈ ZY such that, for all y, y′ ∈ Y , if
`(y) = `(y′) then (1) v(y) = v(y′), and (2) the partition S1, . . . , Sv(y), de�ned in De�nition 1,
is the same for y and y′. It turns out that the results are entirely analogous to Theorem 1:
the manager gives a fully aggregate disclosure whenever the prior mean, E[π̃] < 1/2 and a
fully disaggregate disclosure whenever the prior mean is below 1/2. One di�erence is that the
number of subtotals required for a fully revealing disclosure is larger under precommitment.
To guarantee that a disclosure reveals everything, the manager would need to have at most
two signals in each subtotal, and hence would need at least the ceiling of N/2 subtotals. This
change is in the spirit of Sunder (1997, 89). Aside from the minimal message space size and
the need to base the decision on ex ante information, the result is entirely as in Theorem 1.
For related work on ex ante optimal aggregation rules, see Venezia (1978).
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Figure 2: Illustration of rational beliefs for E[π̃|m(y)] above and below 1/2
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