A BAYES FORMULA FOR NON-LINEAR FILTERING WITH
GAUSSIAN AND COX NOISE
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ABSTRACT. A Bayes type formula is derived for the non-linear filter where the obser-
vation contains both general Gaussian noise as well as Cox noise whose jump intensity
depends on the signal. This formula extends the well know Kallianpur-Striebel formula
in the classical non-linear filter setting. We also discuss Zakai type equations for both
the unnormalized conditional distribution as well as unnormalized conditional density in
case the signal is a Markovian jump diffusion.

1. INTRODUCTION

The general filtering setting can be described as follows. Assume a partially observable
process (X,Y) = (X, Yi)o<i<r € R? defined on a probability space (€, F,P). The real
valued process X; stands for the unobservable component, referred to as the signal process
or system process, whereas Y; is the observable part, called observation process. Thus
information about X; can only be obtained by extracting the information about X that
is contained in the observation Y; in a best possible way. In filter theory this is done by
determining the conditional distribution of X; given the information o-field 7} generated
by Ys,0 < s <t. Or stated in an equivalent way, the objective is to compute the optimal
filter as the conditional expectation

Eplf(X:)|F)]

for a rich enough class of functions f.

In the classical non-linear filter setting, the dynamics of the observation process Y; is
supposed to follow the following It6 process

dY; = h(t, X;) dt + dW;

where W; is a Brownian motion independent of X. Under certain conditions on the
drift h(t, X:) (see [KS], [K]), Kallianpur and Striebel derived a Bayes type formula for
the conditional distribution expressed in terms of the so called unnormalized conditional
distribution. In the special case when the dynamics of the signal follows an It6 diffusion

dX; = b(t, Xt) dt + U(t, Xt)dBt ,

for a second Brownian motion By, Zakai ([Z]) showed under certain conditions that the
unnormalized conditional density is the solution of an associated stochastic partial differ-
ential equation, the so called Zakai equation.
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In this paper we extend the classical filter model to the following more general setting.
For a general signal process X we suppose the observation model is given as

t
(1.1) Y, — 5(t,X)+Gt—|—// ¢ N (dt, d<),
0 Ro

where

e (4 is a general Gaussian process with zero mean and continuous covariance function
R(s,t),0 < s,t <T, that is independent of the signal process X.

e Let FY (respectively F;¥) denote the o-algebra generated by {Y;,0 < s < t}
(respectively {X5,0 < s < t}) augmented by the null-sets. Define the filtration
(Ft)o<t<r through F; := .7:7)1( v FY. Then we assume that the process

t
Lt::// ¢ Nyx(dt, ds)
0 JRg

is a pure jump JFi-semimartingale determined through the integer valued random
measure NV that has an Fi-predictable compensator of the form

N(dta dga w) = )‘(ta Xa g)dty(dg)

for a Lévy measure v and a functional \(¢, X (w),<). In particular, G; and L; are
independent.

e The function 3 : [0,7] x ROT! — R is such that B(t,-) is F~X-measurable and
B(-, X (w)) is in H(R) for almost all w, where H(R) denotes the Hilbert space
generated by R(s,t) (see Section 2).

The observation dynamics consists thus of an information drift of the signal disturbed by
some Gaussian noise plus a pure jump part whose jump intensity depends on the signal.
Note that a jump process of the form given above is also referred to as Cox process.

The objective of the paper is in a first step to extend the Kallianpur-Striebel Bayes type
formula to the generalized filter setting from above. When there are no jumps present in
the observation dynamics (1.1) the corresponding formula has been developed in ([MM]).
We will extend their way of reasoning to the situation including Cox noise.

In a second step we then derive a Zakai type measure valued stochastic differential
equations for the unnormalized conditional distribution of the filter. For this purpose we
assume the signal process X to be a Markov process with generator Oy := L; + B; given
as

Lof(@) = b{t2)f(2) + 50 (1,7) Oue f (2)

Btf(x> = R {f(.%' + ’Y(ta 95)@ - f(x) - Bxf(x)*y(t, .%')§} U(d§),
0
with the coefficients b(t, z), (¢, z), andy(t,z) and f(x) being in C3(R) for every t. Here,
Cg(R) is the space of continuous functions with compact support and bounded derivatives
up to order 2. Further, we develop a Zakai type stochastic parabolic integro partial
differential equation for the unnormalized conditional density, given it exists. In the
case the dynamics of X does not contain any jumps and the Gaussian noise G; in the
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observation is Brownian motion, the corresponding Zakai equation was also studied in
([MP]). We further refer to [Po] where non-linear filtering for jump diffusions is considered.
For further information on Zakai equations in a semimartingale setting we refer to ([G1])
and ([G2]).

The remaining part of the paper is organized as follows. in Section 2 we briefly recall
some theory of reproducing kernel Hilbert spaces. In Section 3 we obtain the Kallianpur-
Striebel formula, before we discuss the Zakai type equations in Section 4.

2. REPRODUCING KERNEL HILBERT SPACE AND STOCHASTIC PROCESSES

A Hilbert space H consisting of real valued functions on some set T is said to be a
reproducing kernel Hilbert space (RKHS), if there exists a function K on T x T with the
following two properties: for every ¢ in T and ¢ in H,

(i) K(t) € H,
(ii) (g(+),K(-,t)) = g(t). (The reproducing property)
K is called the reproducing kernel of H. The following basic properties can be found in
[A].
(1) If a reproducing kernel exists, then it is unique.
(2) If K is the reproducing kernel of a Hilbert space H, then {K(-,t),t € T} spans H.
(3) If K is the reproducing kernel of a Hilbert space H, then it is nonnegative definite
in the sense that for all ¢1,...,¢, in T and ay,...,a, € R

n
> K(ti,tj)aa; > 0.
ij=1
The converse of (3), stated in Theorem 2.1 below, is fundamental towards understanding
the RKHS representation of Gaussian processes. A proof of the theorem can be found in

[A].

Theorem 2.1 (E. H. Moore). A symmetric nonnegative definite function K on T x T
generates a unique Hilbert space, which we denote by H(K) or sometimes by H(K,T), of
which K is the reproducing kernel.

Now suppose K (s,t), s,t € T, is a nonnegative definite function. Then, by Theorem 2.1,
there is a RKHS, H(K,T), with K as its reproducing kernel. If we restrict K to T/ x T
where T C T, then K is still a nonnegative definite function. Hence K restricted to
T/ x T' will also correspond to a reproducing kernel Hilbert space H (K, T’) of functions
defined on T’. The following result from ([A]; pp. 351) explains the relationship between
these two.

Theorem 2.2. Suppose K, defined on T x T, is the reproducing kernel of the Hilbert
space H(Kr) with the norm ||-||. Let T/ C T, and K1 be the restriction of Ko on T/ xT’.
Then H(Ky:) consists of all f in H(Kt) restricted to T'. Further, for such a restriction
f' € H(Kx) the norm || f'|| ir(x.py s the minimum of || fll gy for all f € H(KT) whose
restriction to T/ is f'.

If K(s,t) is the covariance function for some zero mean process Z;,t € T, then, by
Theorem 2.1, there exists a unique RKHS, H(K, T), for which K is the reproducing kernel.
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It is also easy to see (e.g., see Theorem 3D, [P1]) that there exists a congruence (linear,
one-to-one, inner product preserving map) between H (K) and @LQ {Z;,t € T} which takes
K(-,t) to Z;. Let us denote by (Z, h) € Sp=*{Z;,t € T}, the image of h € H(K, T) under
the congruence.

We conclude the section with an important special case.

2.1. A useful example. Suppose the stochastic process Z; is a Gaussian process given
by

t
Z, :/ F(t,u)dW,, 0<t<T,
0

where fot F2(t,u)du < oo for all 0 < t < T and W, is Brownian motion. Then the
covariance function

tAs
(2.1) K(s,t) = E(ZsZy) = / F(t,u)F(s,u)du,
0
and the corresponding RKHS is given by
t
(2.2) H(K) = {g  g(t) —/ Pt u)g* (w)du, 0 < t < T}
0
for some (necessarily unique) g* € sp=° {F(t, )l0,q(-),0 <t < T}, with the inner product
T
(o0 = [ giCwgs)du,
where

S
a(s) = [ Flugidn and gu(s / F(s, u)g3(u)du.
0
For 0 <t < T, by taking K(-,%)* to be F'(t,)1p4(-), we see, from (2.1) and (2.2), that

K(-,t) € H(K). To check the reproducing property suppose h(t fo (t,u)h*(u)du €
H(K). Then
T t
(0 KGO = [ W @K du= [ (@)F(t0) du = h(t)
0 0

Also, in this case, it is very easy to check (cf. [P2], Theorem 4D) that the congruence
between H(K) and 5p°{Z;,t € T} is given by

T
(2.3) (Z,g) — /0 g (W) dW,.

3. THE FILTER SETTING AND A BAYES FORMULA

Assume a partially observable process (X,Y) = (X, Yz)o<i<r € R? defined on a proba-
bility space (€2, F,P). The real valued process X; stands for the unobservable component,
referred to as the signal process, whereas Y; is the observable part, called observation pro-
cess. In particular, we assume that the dynamics of the observation process is given as
follows:

t
(3.1) Y, = ﬂ(t,X)+Gt+//RgNA(dt,dg),
0 0



where

e (G; is a Gaussian process with zero mean and continuous covariance function
R(s,t),0 < s,t < T, that is independent of the signal process X.

e The function 3 : [0,7] x RITI — R is such that B(t,-) is FX-measurable and
B(-, X (w)) is in H(R) for almost all w, where H(R) denotes the Hilbert space
generated by R(s,t) (see Section 2).

e Let FY (respectively F;¥) denote the o-algebra generated by {Y;,0 < s < t}
(respectively {X5,0 < s < t}) augmented by the null-sets. Define the filtration
(Ft)o<t<r through F; := .7:%( v FY. Then we assume that the process

t
L; ::// ¢ Nyx(dt, ds)
0 JRo

is a pure jump JFi-semimartingale determined through the integer valued random
measure Ny that has an F;-predictable compensator of the form

p(dt, ds,w) = A(t, X, s)dtv(ds)

for a Lévy measure v and a functional A(t, X (w),¢).
e The functional A(¢, X, ) is assumed to be strictly positive and such that

T
(3.2) /0 /R log? (A(s, X,<)) u(ds,ds) < oo a.s.

/T/ log? (A(s, X,<)) dsv(ds) < 0o as.
0 Jrg

and

3.3) A = exp{/ot/RO log <A(81X<)> Ny(ds, ds)

+/ot . (1o ()~ 3 + 1) o0

is a well defined F;-martingale. Here N A(ds, ds) stands for the compensated jump
measure

Ni(ds, d) := Ny(ds, d<) — p(dt, ds).

Remark 3.1. Note that the specific from of the predictable compensator pu(dt,ds,w)
implies that L; is a process with conditionally independent increments with respect to the
o-algebra ]—':,)f , Le.

Bplf(Le — Ls)1a|F7) = Bp[f (L — Ls)|F7' ] E[1alF7],
for all bounded measurable functions f, A € Fg, and 0 < s <t < T (see for example Th.

6.6 in [JS]). Also, it follows that the processes G is independent from the random measure
Nx(ds, dc).

Given a Borel measurable function f, our non-linear filtering problem then comes down
to determine the least square estimate of f(X;), given the observations up to time ¢. In
other words, the problem consists in evaluating the optimal filter

(3.4) Eplf(X0) |7 ]
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In this section we want to derive a Bayes formula for the optimal filter (3.4) by an extension
of the reference measure method presented in [MM] for the purely Gaussian case. For this
purpose, define for each 0 < ¢ < T with 5(-) = 8(-, X)

1
= exp { ~(G. B - 191}
Then the main tool is the following extension of Theorem 3.1 in [MM]

Lemma 3.2. Define

dQ = AN} dP.
Then Qq is a probability measure, and under Q; we have that
}/;‘, = ét + Lt7

where és = B(s,X)+Gs, 0 < s <t,is a Gaussian process with zero mean and covariance
function R, Ls, 0 < s <'t, is a pure jump Lévy process with Lévy measure v, and the
process X, 0 < s < T has the same distribution as under P. Further, the processes G, L
and X are independent under Q.

Proof. Fix 0 < t < T. First note that since §(-) € H(R) almost surely, we have by
Theorem 2.2 that 3o, € H(R;t) almost surely. Further, by the independence of the
Gaussian process G from X and from the random measure Ny (ds, ds) it follows that

Ep[A¢A)] = Ep[Ep[Ae| F7¥ | Ep[Aj|F7 ).

Since for f € H(R;t) the random variable (G, f): is Gaussian with zero mean and variance
| £|I7, it follows again by the independence of G from X and the martingale property of
A; that Ep[A4A}] = 1, and Q; is a probability measure.

Now take 0 < s1,...,8m < ¢, 0 < 71,...,mp < ¢, 0 < tq,...,t, < T and real numbers
ALy ooy Ay Y1y ooey Vps Q15 -, Oy, and consider the joint characteristic function

EQt [ei Z;';l 0 Xy, +i St NG+ 30y Ye(Lry — Ly )}
— Ep [ei Sy o Xy i30Ty NG, i 300 v (L, _L”ﬂ—l)AtA;}

— B [eizg;lajxtj Ep[eizy;lAiésiAH]_—%(] EP[eiZizl’Yk(er—er_l)At ,]_-7{(]] ‘

Here, for computational convenience, the part of the characteristic function that concerns
L is formulated in terms of increments of L (where we set 79 = 0). Now, as in Theorem
3.1 in [MM], we get by the independence of G from X that

Ep [ei Yo XiGs, AH]:%(] — e 2ii=1 >\i/\zR(8i,Sl),

which is the characteristic function of a Gaussian process with mean zero and covariance
function R.

Further, by the conditional independent increments of L we get like in the proof of Th.
6.6 in [JS] that

EP efru fRo 5(5,X,5) JVA(ds,dg) ‘f%( _ 6fTu f]RO (eé(s,X,c)—l—é(s,X,g)) wu(dt,ds)



for 0 <r <u <T. So that for one increment one obtains

B [ewu—mAt 7]

[ i) s
w0, (e (5 c>> Toxg o 7]
S A AR P
[, (srion (5 ) ~ g ) o} 172
— B» [exp{/Tu /RO (J““Og(usfm) _ A(;}(g)) A, X, ¢)dtv(d )} |}"X]
— exp {(u ) /R (75— 1) V(dg)} .

The generalization to the sum of increments is straightforward and one obtains the charac-
teristic function of the finite dimensional distribution of a Lévy process (of finite variation):

(e — 1) V(dg)} .

p

Ep[ei Zz:l%(LT’“_LT’“”)AHFIX] = exp {Z(Tk — Th—1) /

k=1 Ro
All together we end up with

Eqg [ei 2oy X i3t NiGs;+i Y0, ’Yk(LTk:_LTk:—I):|

t

— Ep [eizyzlajxtj} e~ L=t NN R(si 1) _ezﬁzl(rk—rk,l)jRO(eiw—l)u(dc)

which completes the proof. O

Remark 3.3. Note that in case G is Brownian motion Lemma 3.2 is just the usual
Girsanov theorem for Brownian motion and random measures. In this case, it follows
from Cameron-Martin’s result and the fact that X is independent of G that A4Aj is a
martingale and dQ is a probability measure.

Now, the inverse Radon-Nikodym derivative

dP /\—1
dg, = (07

is Q¢-a.s. by condition (3.2) and an argument like in ([MM], p. 857) given through

(At = exp{/ /Ro log (A(s, X, <)) N(ds, d)
+/0 /Ro (log (A(s, X,¢)) — A(s, X,¢) +1)ds y(d()}
a7 = e { (G 50l |
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Here
N(ds, ds) := Nyx(ds,ds) — dtv(ds)
is now a compensated Poisson random measure under Q;. Then we have by the Bayes
formula for conditional expectation for any ]:7)1( -measurable integrable function (7', X)
Eg, [¢(T, X)(A) =1 (A) 1A ]
Eq, [(A)~H(ADF]
From Lemma 3.2 we know that the processes <és> (L5)0§s§t7 and (XS)ogng are

0<s<t’
independent under Q; and that the distribution of X is the same under Q; as under P.

Ep [9(T, X)|F] =

Hence conditional expectations of the form Eg, [(Z)(X G, L)|FY } can be computed as
B, [9(X.G.1) |17} () = [ 9(X(@), Glw), L(w)) Q:(dd)
= [ 0(X(@).G(w), L) P(d2) = F [¢<X<w>,é<w>,L<w>>} .

where (w,w) € 2 xQ and the index P denotes integration with respect to . Consequently,

we get the following Bayes formula for the optimal filter

Theorem 3.4. Under the above specified conditions, for any f%(—measumble integrable
function g(T, X)

Ep [g(T. X)|F] =

where

o (w, @) = exp{/t/RO1og(A(s,X(w),g))N(w,ds,dc)
//R (log (A(s, X (&), ))—A<S,X(a),q)+1)dsy(d<)}
alfnd) = e { (@), 860 - 5180 |

4. ZAKAI TYPE EQUATIONS

Using the Bayes formula from above we now want to proceed further in deriving a Zakai
type equations for the unnormalized filter. This equation is basic in order to obtain the
filter recursively. To this end we have to impose certain restrictions on both the signal
process and the Gaussian part of the observation process.

Regarding the signal process X, we assume its dynamics to be Markov. More precisely,
we consider the parabolic integro-differential operator O; := L; + By, where

Lof(@) = b(t2)f () + 50 (1,) Ouu f (2)



Bif(z) = {f (@ +(t2)) = f(2) = 0uf(2)y(t, )<} v(ds),

Ro

for f € C2(R). Here, CZ(R) is the space of continuous functions with compact support
and bounded derivatives up to order 2. Further, we suppose that b(¢,-), o(t,-), and 7(t,-)
are in CZ(R) for every ¢ and that v(ds) is a Lévy measure with second moment. The
signal process X, 0 <t < T, is then assumed to be a solution of the martingale problem
corresponding to O, i.e.

F(X,) - /0 (Ouf)(X,) du

is a F7-martingale with respect to P for every f € C2(R).
Further, we restrict the Gaussian process G of the observation process in (3.1) to belong
to the special case presented in Section 2.1, i.e.

t
G = / F(t,s)dW,,
0

where W, is Brownian motion and F'(¢, s) is a deterministic function such that fg F2(t,s)ds,
0 <t < T. Note that this type of processes both includes Ornstein-Uhlenbeck processes
as well as fractional Brownian motion. Then 5(¢, X') will be of the form

t
Bt X) = / F(t, $)h(s, X.) ds.
0
Further, with
__ t
Wt = / h(S,XS> ds + Wt
0

we get (G, B); = fot h(s, Xs) dW, and 1817 = fg h%(s, X,) ds, and o/(w,®) in Theorem 3.4

becomes
t __ 1 t
o (w, ) :exp{/ h(s, Xs(&)) dW,(w) — 2/ h2(s,Xs(w))ds}.
0 0
Note that in this case Ws, 0 < s <t, is a Brownian motion under Q;.
For f € C3(R) we now define the unnormalized filter V;(f) = Vi(f)(w) by
Vi(f)(w) := Af(Xt(@))at(w@)ai(w,@) P(di) = Ep [f(Xe(@))ou(w, @)t (w, )] -

Then this unnormalized filter obeys the following dynamics

Theorem 4.1. (Zakai equation I) Under the above specified assumptions, the unnormal-
ized filter Vi(f) satisfies the equation

(A1) AVi(FO)w) = Ve(Ouf()) (@) dt + Vi(h(t,)F() () dWilw)
(4.2) +/R Vi (At6) = 1) 1)) () N, it de).
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Proof. Set
T
0(@) == F(Xr(@)) - / (0. F)(X(@)) ds.
t

Then, by our assumptions on the coefficients b, o, 7 and on the Lévy measure v(ds), w
have |g;| < C for some constant C. Since f(X}) fo O f(Xs) ds is a martingale we obtaln

(4.3) By ool 7 @] = f(x0),  0<i<T.

If we denote
Py (@) = (w0, @) (w, &),
then, because I't(w, @) is }“tX(w)
Vi(f) = Ep[f(Xe(@)Te(w, @)]
= B [Fs [0@)Tufw,0) 15|
= Ep (@) (w, w)]

-measurable for each w, equation (4.3) implies that

By definition of g,
dge(@) = (O f)(Xe(w)) dt.
Also, T'y = T'y(w, w) is the Doléans-Dade solution of the following linear SDE

dTy = h(t, X, (&)Ty dW;(w) + /RO (A(t, X4 (@),<) — 1) Ty N(w, dt, ds).
So we get
Bala@)l) = Belon@l)+ By | [ (©.D(X@)T. ]
+E; Uth(sX() &) dW(w }
+E; U /RO (s, Xo( )—1)gs(w)rsﬁ(w,ds,dg)].

The first term on the right hand side equals f(Xy), and for the second one we can invoke
Fubini’s theorem to get

B[ [oneaer.as] = [ Eonoerd a= [i(00)w s

For the third term we employ the stochastic Fubini theorem for Brownian motion (see for
example 5.14 in [LS]) in order to get

B | [ b Xl @0 d(0)]

X, ()95(@)Ts] W (w)
X,

S,

/Ot Eg [h(
/Ot E; [h(s,

&)T.Bp [9:(@) IFE @) dWaw)
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_ /0 By [h(s, Xo(@)Ts f(X,(@))] dWs(w)

= [ V(s 110)) @) . ),

0
Further, one easily sees that the analogue stochastic Fubini theorem for compensated
Poisson random measures holds, and we get analogously for the last term

By [ /0 t /R M5, X,(@).5) = Dan(o)T N(w,ds,dc)]
-/ t /| V(626 1) £0) @) N ds. ),

which completes the proof. O

If one further assumes that the filter has a so called unnormalized conditional density
u(t,xz) then we can derive a stochastic integro-PDE determining u(¢, ) which for the
Brownian motion case was first established in [Z] and usually is referred to as Zakai
equation.

Definition 4.2. We say that a process u(t,x) = u(w,t,x) is the unnormalized conditional
density of the filter if

(4.4) Vi(f)(w) = / f(@)ulw, t,z) de

for all bounded continuous functions f : R — R.

From now on we restrict the intergo part B; of the operator O; to be the one of a pure
jump Lévy process, i.e. 7 = 1, and we assume the initial value Xy(w) of the signal process
to posses a density denoted by &(x). Then the following holds

Theorem 4.3. (Zakai equation II) Suppose the unnormalized conditional density u(t,x)
of our filter exists. Then, provided a solution ezists, u(t,x) solves the following stochastic
tegro-PDE

(4.5) du(t,z) = Ofu(t,z)dt + h(t, z)u(t, z)dW;(w)

+ / At 2,<) — Dult, 2)N(w, dt, de)
Ro

u(0,z) = &(x).
Here Of := L} + B} is the adjoint operator of O given through
N 1
Lif(z) = =05 (bt 2)f(2)) + ;0m (o?(t, ) f(2))

Bif(x) = A {f(@ =<) = f(2) + 0o f(2)s} v(ds),

for f € C2(R).

For sufficient conditions on the coefficients under which there exists a classical solution
of (4.5) see for example [MP]; in [M] the existence of solutions in a generalized sense of
stochastic distributions is treated.
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Proof. By (4.1) and (4.4) we have for all f € C§°(R)

/Rf(x)U(t’ /f dg;+// 5,2)0, f(z) dzds
+ /0 /R u(s, 2)h(s, 2) f (&) ded W, ()
v/ t / 0 [ us,2) (s.,.9) = 1) £ () oV .5,

Now, using integration by parts, we get

(4.6) /Ru(s,x)ﬁsf(fv) dx:/Rf(a:)E:u(s,x) dx.

Further it holds again integration by parts and by substitution that

(@.7) / u(s,2)B.f () dz = / F@)Bou(s, ) da.
R
Fubini together with (4.6) and (4.7) then yields

/R F@)ut, ) / F@)e(e) da + /}R (@) ( /0 " Oru(s, x) ds) da
+ / (@) < / (s, 2)h(s,2) dﬁ(w)) da
/f <//Ro u(s,z) (A(s,z,¢) — 1) (wdsdg))d

Since this holds for all f € C§°(R) we get (4.5). O
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