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Abstract

In this paper we study the pricing and hedging of typical life insurance li-
abilities for an insurance portfolio with dependent mortality risk by means
of the well-known risk-minimization approach. As the insurance portfolio
consists of individuals of different age cohorts, in order to capture the cross-
generational dependency structure of the portfolio, we introduce affine mod-
els for the mortality intensities based on Gaussian random fields that deliver
analytically tractable results. We also provide specific examples consistent
with historical mortality data and correlation structures. Main novelties of
this work are the explicit computations of risk-minimizing strategies for life
insurance liabilities written on an insurance portfolio composed of primary
financial assets (a risky asset and a money market account) and a family of
longevity bonds, and the simultaneous consideration of different age cohorts.
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1 Introduction
A large number of life insurance and pension products have mortality and longevity
as primary sources of risk. Mortality risk can essentially be split into systematic
risk represented by the mortality intensity, and idiosyncratic or unsystematic risk,
i.e., mortality risk related to individual mortality rates. As, on a global basis,
there is inadequate reinsurance capacity to effectively address the different types
of mortality risks and as systematic mortality risk cannot be diversified away by
pooling, securitization has emerged as a new form of risk transfer and led to the
creation of a new life market (see, e.g., Blake et al. [11]). In this context, pricing
and modeling of life insurance products has been studied extensively in the liter-
ature (see, e.g., Cairns et al. [14]).
Systematic mortality risk may be hedged by investing in longevity bonds (see, e.g.,
Cairns et al. [14]) that pay out the conditional survival probability at maturity and
are based on so-called longevity or survivor indices. Survivor indices, provided by
various investment banks, consist of publicly available mortality data aggregated
by population, and are thus widely accepted as good proxies for the systematic
component of the mortality risk. One of the main features of our approach is to
allow for hedging of the risk inherent in the life insurance liabilities by investing
not only in a risky asset (e.g., a stock index) and a money market account, but
also in a family of longevity bonds, accounting for the systematic mortality risk.
In practice, one typically considers homogeneous classes of policyholders and then
aggregates market valuations of liabilities at the portfolio level without taking
dependencies between cohort classes into account. To the best of our knowledge,
there are only few studies concerned with quantifying and modeling inter-age de-
pendencies in stochastic mortality models. Based on a multivariate time series
study of yearly mortality rates, Loisel and Serrant [34] propose a discrete-time
multi-dimensional extension of the well-known Lee-Carter model, that takes inter-
age correlations into account. Jevtic et al. [28] propose affine continuous-time
factor models for the mortality surface, allowing for correlation across different
generations. Biffis and Millossovich [10] model the mortality intensity surface as
a random field and, with a view on the insurer’s future business, consider market
valuations of pure endowment contracts with deterministic survival benefit. Ran-
dom fields have been employed in mathematical finance when modeling the term
structure of interest rates (see, e.g., Goldstein [24] and Kennedy [30]) and have
proven to be useful in our context as well. Similarly as Biffis and Millossovich
[10], we model the mortality surface as a random field parameterized in time and
age at inception of the contract. In a complex setting, with a portfolio consisting
of different age cohorts, we study risk-minimization at an aggregate level for a
general class of life insurance contracts based on the three building blocks, term
insurance, annuity and pure endowment contract. By modeling the mortality in-
tensities as a random surface we are able to look simultaneously in both the time
and age direction. This is important, because there is statistical evidence that
typical downward mortality improvement trends are not homogeneous across age
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cohorts (see, e.g., Andreev [2] and Forfar and Smith [22]). Besides that, this ap-
proach enables us to establish a mortality model consistent with historical data
that takes inter-age correlations into account in a natural and elegant way. As the
mortality intensity of every age cohort is an affine process, the model is analytically
tractable, allowing us to compute hedging strategies for life insurance liabilities in
an immediate and parsimonious way. Affine models have become very popular in
many areas of applied financial mathematics, such as exotic option pricing, or in-
terest rate and credit risk modeling. An overview of the theory of affine processes
can be found in Duffie et al. [20], as well as in Filipović and Mayerhofer [21] for
the case of affine diffusions.
When modeling life insurance liabilities, we make use of the similarities between
mortality and credit risk and follow the intensity-based or hazard rate approach of
reduced-form modeling, see, e.g., Bielecki and Rutkowski [8]. As it is impossible to
completely hedge the financial and mortality risk inherent in the liabilities of the
insurance company, the market is incomplete and it is thus necessary to select one
of the techniques for pricing and hedging in incomplete markets. Here we make
use of the popular risk-minimization method first introduced by Föllmer and Son-
dermann [23]. The idea of this technique is to allow for a wide class of admissible
strategies, that in general might not necessarily be self-financing, and to find an
optimal hedging strategy with “minimal risk” within this class of strategies that
perfectly replicates the given claim. For a survey on risk-minimization and other
quadratic hedging methods we refer to Schweizer [42].
Several studies focus on applications of the risk-minimization approach in the con-
text of mortality modeling, see, e.g., Barbarin [3], Biagini et al. [4, 5, 6], Møller et
al. [16, 17, 36, 37] and Riesner [40]. However, some authors such as Møller [36, 37]
and Riesner [40] assume independence between the financial market and the in-
surance model. Here, we work in a more general setting, i.e., we allow for mutual
dependence between the times of death and the financial market. Besides that,
as in Biagini et al. [4, 5, 6] and Dahl et al. [17], we allow for hedging by investing
not only in the primary financial market, but also in hedging instruments related
to the systematic mortality risk of the insurance liabilities.
Hence, in this paper, we extend earlier work on risk-minimization for insurance
products in several directions. First, we provide explicit computations of risk-
minimizing strategies for life insurance liabilities written on an insurance portfolio
in a complex setting, incorporating different age cohorts simultaneously. Second,
we take into account and explicitly model the dependency structure of the insur-
ance portfolio by introducing analytically tractable affine models for the mortality
intensities, consistent with historical mortality data, based on Gaussian random
fields. Finally, we allow for hedging by investing in a family of longevity bonds
representing the systematic mortality risk and we do not require certain technical
assumptions such as the independence of the financial market and the insurance
model.
The remainder of this paper is organized as follows: Section 2 introduces the
general setup, including the structure of the insurance portfolio and the financial
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market. In Section 3, we propose two illustrative examples of intensity field models
consistent with characteristics of typical mortality data. In Section 4, we compute
risk-minimizing strategies of the life insurance liabilities at an aggregate portfolio
level. Section 5 then provides numerical examples including illustrative plots for
the case of a Gaussian intensity field. Finally, Section 6 follows with concluding
remarks.

2 The setting
Let T > 0 be a fixed finite time horizon and (Ω,G,P) a probability space equipped
with a filtration G = (Gt)t∈[0,T ] which contains all available information. We define
Gt = Ft ∨Ht, and put G = GT , where H = (Ht)t∈[0,T ] is generated by the death
counting processes of the insurance portfolio (see Subsection 2.1). The background
filtration F = (Ft)t∈[0,T ] contains all information available, except the information
regarding the individual survival times. Here we define F = FX ∨ Fµ, where FX
is the filtration containing information regarding a risky asset, e.g., a stock (see
Subsection 2.2), Fµ is the filtration containing information regarding the mortality
intensities (see Subsection 2.1) and we assume that FX and Fµ are independent.
In the subsequent sections, we introduce the three components of the model: the
insurance portfolio, the financial market and the combined model.

2.1 Insurance portfolio and mortality intensities

We consider an insurance portfolio consisting of n individuals belonging to a set
of age cohorts B = {x1, . . . , xm} ⊆ I, where the interval I = [x, x] is assumed
to be a given range of possible ages of individuals at time 0, with natural lower
and upper bounds x, x > 0. Also note that m ≤ n, in particular if m = 1
all individuals belong to the same age cohort, whereas if m = n all individuals
belong to different age cohorts. As in Biffis and Millossovich [10], we define a
function n· : B → N, such that the quantity nx represents the number of insureds
belonging to the age cohort x, i.e.,

∑m
i=1 n

xi = n. For x ∈ B and j = 1, . . . , nx, we
model the residual lifetime of the j-th insured person within the age cohort x as
a G-stopping time τx,j : Ω → [0, T ] ∪ {∞} and assume that P(τx,j = 0) = 0 and
P(τx,j > t) > 0 for t ∈ [0, T ]. Because the time horizon T is usually fixed as the
maturity of the life insurance liabilities, in order to ensure that P(τx,j > T ) > 0
for x ∈ B and j = 1, . . . , nx (the remaining lifetimes are not necessarily bounded
by T ), it is necessary to allow τx,j to take values larger than T . The convention
that τx,j can assume the value infinity is adopted for that purpose. We define
Ht = ∨x∈BHx

t with Hx
t = H

x,1
t ∨ · · · ∨H

x,nx

t , where H
x,j
t = σ{Hx,j

s : 0 ≤ s ≤ t}
and Hx,j

t = 1{τx,j≤t} for t ∈ [0, T ], x ∈ B and j = 1, . . . , nx. Furthermore, we
consider a finite measure ζ on (B,P(B)), where P(B) denotes the power set of B,
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allowing us to weight the subsets of B differently. Then∫
B
nx ζ(dx) =

m∑
i=1

nxiζ(xi)

represents the weighted dimension of the portfolio B. The weights ζ(xi), i =
1, . . . ,m, can be interpreted as rating factors for risk classification. In a more
general setting, they may depend on several factors.
The death counting process associated with the age cohort x ∈ B is given by

Nx
t =

nx∑
j=1

1{τx,j≤t}, t ∈ [0, T ], x ∈ B.

Then the weighted random number of insureds alive at time t in the portfolio is∫
B

(nx −Nx
t ) ζ(dx) =

m∑
i=1

nxi∑
j=1

1{τxi,j>t}ζ(xi), t ∈ [0, T ].

For x ∈ B and j = 1, . . . , nx, we assume that the times of death τx,j are totally
inaccessible G-stopping times. An important role is then played by the conditional
distribution function of τx,j , given by

F x,jt = P(τx,j ≤ t |Ft), t ∈ [0, T ],

and we assume F x,jt < 1 for all t ∈ [0, T ]. Then, the hazard process Γx,j of τx,j

Γx,jt = − ln(1− F x,jt ) = − lnE[1{τx,j>t} |Ft], t ∈ [0, T ],

is well-defined for every t ∈ [0, T ]. For x ∈ B, we define Γx := Γx,j for j =
1, . . . , nx, i.e., all individuals of the same age cohort have the same hazard process.
Moreover, we assume that Γx admits a mortality intensity µx, i.e.

Γxt =
∫ t

0
µxs ds, t ∈ [0, T ], (2.1)

where µ = (µt,x)(t,x)∈[0,T ]×I , is a random field generated by a Brownian sheet
W = (Wt,x)(t,x)∈[0,T ]×I (see, e.g., Adler [1] for an overview of the theory of random
fields). Note that, for t ∈ [0, T ] and x ∈ I, we write µt,x instead of µxt to emphasize
that for fixed x ∈ I we are integrating in the t-direction (see, e.g., Lemma 3.1).
For t ∈ [0, T ] and x ∈ I, the natural filtration of the Brownian sheet W is given
by F

µ
t,x := σ{Ws,v : 0 ≤ s ≤ t, x ≤ v ≤ x}, and we define Fµ = (Fµt )t∈[0,T ],

where F
µ
t := {Fµt,x : x ≤ x ≤ x} = ∨x∈IFµt,x. For fixed x ∈ I, we assume that

the process (µxt )t∈[0,T ] is an affine diffusion process (see also Section 3), which
facilitates the related computations in Section 4. The process µx represents the
mortality intensity of the age cohort x ∈ I and can be derived by means of publicly
available data of the survivor index

Sµ
x

t = exp
(
−
∫ t

0
µxs ds

)
, t ∈ [0, T ], x ∈ I. (2.2)
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The need for standardization in the life markets has led to the creation of such
indices aggregated for different age cohorts and populations by investment banks.
According to Cairns et al. [14], survivor indices can be seen as basic building
blocks for many mortality-linked securities, see also the definition of a longevity
bond for age cohort x ∈ I in Subsection 2.2. This modeling approach enables us
to not only capture the dependency structure in the t-direction, but also in the
x-direction and additionally takes into account the cross-generational correlation
of the insurance portfolio. In Section 3, we provide explicit specifications for µ
that are consistent with typical characteristics of historical mortality data (see,
e.g., Andreev [2]) in the sense that e.g., for fixed x ∈ I, (µt,x)t∈[0,T ] is decreasing
in t (downward mortality trend) and for fixed t ∈ [0, T ], (µt,x)x∈I is increasing in
x.
For x, y ∈ B and i = 1, . . . , nx, j = 1, . . . , ny with (x, i) 6= (y, j), we also assume

E[1{τx,i>t}1{τy,j>s} |FT ] = E[1{τx,i>t} |FT ]E[1{τy,j>s} |FT ], 0 ≤ s, t ≤ T, (2.3)

i.e., we assume conditional independence for individuals in different age cohorts
as well as for individuals within the same age cohort. This assumption is well-
known in the literature on credit risk modeling, see, e.g., Chapter 9 of Bielecki
and Rutkowski [8]. All individuals within the insurance portfolio are subject to
idiosyncratic risk factors, as well as common risk factors, given by the information
within the background filtration F. Intuitively, the assumption of conditional
independence means that if the evolution of all common risk factors is known, the
idiosyncratic risk factors become independent of each other.

2.2 The financial market

We consider a financial market defined on (Ω,G,G,P) consisting of a bank account
or numéraire B with constant short rate r > 0, i.e.

Bt = exp{rt}, t ∈ [0, T ], (2.4)

as well as a risky asset, e.g., a stock, with asset price S and a family of longevity
bonds (P x), x ∈ I. We assume that S follows the P-dynamics

dSt = St
(
rdt+ σ(t, St) dWX

t

)
, t ∈ [0, T ], (2.5)

for a Brownian motionWX = (WX
t )t∈[0,T ] with S0 = s, and that σ satisfies certain

regularity conditions that ensure the existence and uniqueness of a solution to
(2.5). We denote by X = S/B the discounted asset price, i.e., the dynamics of X
are given by

dXt = d
(
St
Bt

)
= σ(t, St)Xt dWX

t , t ∈ [0, T ], (2.6)

and define FX =
(
FXt

)
t∈[0,T ]

, with FXt := σ{WX
s : 0 ≤ s ≤ t}. Following Cairns

et al. [14], for x ∈ I, we introduce the longevity bond P x with maturity T in order
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to hedge the systematic mortality risk inherent in the life insurance contracts for
the age cohort x, i.e., P x is defined as a zero-coupon bond that pays out the
value of the survivor or longevity index as defined in (2.2) at T . This means the
discounted value process Y x = P x/B is given by

Y x
t = E

[
Sµ

x

T

BT

∣∣∣∣∣Gt
]
, t ∈ [0, T ], x ∈ I. (2.7)

Thus, the discounted asset prices X, (Y x)x∈I are (local) (P,F)-martingales, i.e.,
the financial market is arbitrage-free and the physical measure P belongs to the
set of equivalent local martingale measures.

2.3 The combined model

We consider the extended market G = F ∨ H = FX ∨ Fµ ∨ H, such that the
information available at time t ∈ [0, T ] is assumed to be Gt = Ft∨Ht = FXt ∨F

µ
t ∨

Ht. All filtrations are assumed to satisfy the usual hypotheses of completeness
and right-continuity. We postulate that all F-local martingales are also G-local
martingales, and in the sequel, we refer to this hypothesis as Hypothesis (H).
This hypothesis is well-known in the literature on enlargements of filtrations, see
Blanchet-Scalliet and Jeanblanc [12] and Bielecki and Rutkowski [8, Chapter 6]. In
this setting, we study unit-linked life insurance liabilities in the form of insurance
payment streams as introduced by Møller [37]. It is now widely acknowledged (see,
e.g., Barbarin [3], Biffis [9] and Møller [36]) that most payment streams of practical
relevance are covered by the three building blocks consisting of term insurance,
annuity and pure endowment contracts. Following Barbarin [3] and Møller [36],
the term insurance contract is defined by the following portfolio payoff structure∫

B

nx∑
j=1

f(Sτx,j )1{τx,j≤T}ζ(dx) =
m∑
i=1

nxi∑
j=1

f(Sτxi,j )1{τxi,j≤T}ζ(xi), (2.8)

where f is a non-negative function fulfilling certain regularity conditions, i.e., the
amount f(Sτxi,j ) weighted by the measure ζ is payed at the time of death τxi,j

to policyholder j within the age cohort xi, i = 1, . . . ,m, j = 1, . . . , nxi . The
annuity contract consists of multiple payoffs as functions of the asset price, which
the insurer has to pay as long as the policyholders are alive, i.e.∫

B

(∫ T

0
(nx −Nx

s ) f(Ss) ds
)
ζ(dx) =

m∑
i=1

nxi∑
j=1

∫ T

0
1{τxi,j>s}f(Ss) ds ζ(xi), (2.9)

where weighting of the different age cohorts is again enabled through the measure
ζ. The pure endowment contract consists of the following portfolio payoff∫

B

nx∑
j=1

f(ST )1{τx,j>T}ζ(dx) =
m∑
i=1

nxi∑
j=1

f(ST )1{τxi,j>T}ζ(xi) (2.10)
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at time T , i.e., the insurer pays the aggregate amount f(ST ) to every policyholder
in the portfolio B who has survived until T , weighted by the measure ζ. As the
payoff functions in (2.8), (2.9) and (2.10) are homogeneous with respect to the
amounts insured for every age cohort, the weighting measure ζ allows for payouts
that differ between different age cohorts. We would also like to refer to Section 5
for specific choices of ζ. In the following section, we specify examples for the in-
tensity field model introduced in (2.1), consistent with characteristics of historical
mortality data.

3 Intensity field model
It is now widely acknowledged (see, e.g., Andreev [2] and Forfar and Smith [22])
that downward mortality trends are not uniform across ages. In this context,
modeling mortality intensities by means of random fields appears as a natural
modeling choice. This approach enables us to look simultaneously at the evolution
of death probabilities over time for a given age, death probabilities across all ages
at a given time and death probabilities over time for people born in the same
year. This section provides two specific examples of affine intensity field models
for µ defined in (2.1), a Gaussian random field (see Subsection 3.1) with nice
analytical properties and intuitive interpretation, as well as a χ2-random field (see
Subsection 3.2) that has the advantage of restraining the mortality intensities to
non-negative values.

3.1 Gaussian intensity field

Define
µt,x = µ̄(t, x) +Ot,x, t ∈ [0, T ], x ∈ I, (3.1)

where µ̄ is a deterministic function, differentiable in x and t, and O is a space-time
changed Brownian sheet, i.e.,

Ot,x = σ√
2θα

e−θte−αxWν1(t),ν2(x), t ∈ [0, T ], x ∈ I, (3.2)

with
ν1(t) = e2θt, ν2(x) = e2αx, t ∈ [0, T ], x ∈ I, (3.3)

for α, θ > 0. In particular, we assume that ν1 : [0, T ]→ [1, e2θT ] and ν2 : [x, x]→
[e2αx, e2αx]. Intuitively, µt,x fluctuates around the deterministic mortality level µ̄.
We would like to obtain a model for µ that is consistent with typical characteristics
of historical mortality data, i.e., for fixed x, (µt,x)t∈[0,T ] is decreasing in t and for
fixed t, (µt,x)x∈I is increasing in x. These properties can be directly imposed
on the deterministic function µ̄(t, x). For example, µ̄(t, x) could be given by the
well-known Lee-Carter model (see, e.g., Lee and Carter [33] and Lee [32])

µ̄(t, x) = exp (a(x) + b(x)k(t)) , t ∈ [0, T ], x ∈ I. (3.4)
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For further extensions of the Lee-Carter model, we refer to Renshaw and Haber-
man [39], Brouhns et al. [13] and Denuit and Dhaene [18]. Note that, in (3.4),
a is a negative increasing function such that ea(x) represents the general shape
of the mortality curve at age x, k is a real-valued decreasing function represent-
ing the downward trend in time of the logarithm of the force of mortality. The
non-negative function b represents the sensitivity of the logarithm of the force of
mortality at age x to variations in k and allows us to model this trend heteroge-
neously over cohorts (see, e.g., Andreev [2]). For example, if b is decreasing for
high values of x, it implies that mortality improvements are lower for older ages,
as suggested by Forfar and Smith [22]. Note that, for t ∈ [0, T ], x ∈ I,

E[µt,x] = µ̄(t, x), t ∈ [0, T ], x ∈ I,

and as the covariance function of a Brownian sheet W = (Wt)t∈RN
+

is given by

c(s, t) =
N∏
i=1

(si ∧ ti) , t = (t1, . . . , tN ), s = (s1, . . . , sN ) ∈ RN+ , (3.5)

we obtain

Cov(µt,x, µs,y) = σ2

2αθe
−θ(t+s)e−α(x+y)Cov

(
Wν1(t),ν2(x),Wν1(s),ν2(y)

)
= σ2

2αθe
−θ(t+s)e2θ(t∧s)e−α(x+y)e2α(x∧y)

= σ2

2αθe
−θ|t−s|e−α|x−y|, s, t ∈ [0, T ], x, y ∈ I, (3.6)

as well as

Corr(µt,x, µs,y) = e−θ|t−s|e−α|x−y|, s, t ∈ [0, T ], x, y ∈ I, (3.7)

i.e., correlation is positive, symmetric and exponentially declining. The next
lemma provides a stochastic representation of µ in the t-direction.

Lemma 3.1. For µ as defined in (3.1) and fixed x ∈ I, we have that

µxt = µ̄(t, x) + e−θt(µx0 − µ̄(0, x)) + σ√
α

∫ t

0
e−θ(t−s)dW̃ ν2(x)

s , t ∈ [0, T ],

where
W̃

ν2(x)
t :=

Wt,ν2(x)√
ν2(x)

, t ∈ [0, T ], (3.8)

is a standard Brownian motion. The set (µx)x∈I is a family of affine diffusion
processes, i.e., for fixed x ∈ I, the dynamics of (µxt )t∈[0,T ] are given by

dµxt = θ

[(
µ̄(t, x) + ∂tµ̄(t, x)

θ

)
− µxt

]
dt+ σ√

α
dW̃ ν2(x)

t , t ∈ [0, T ], (3.9)
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Proof. Fix x ∈ I and define

Oxt = Ot,x = σ√
2θα

e−θtW̃
ν2(x)
ν1(t) , t ∈ [0, T ].

Here, as for the random field µ introduced in (2.1), for t ∈ [0, T ] and x ∈ I,
we write Ot,x interchangeably with Oxt , to emphasize that, for fixed x ∈ I, we
are integrating in the t-direction. Then, E [Oxt ] = 0 and, from (3.6), we have
Cov(Oxt , Oxs ) = σ2

2θαe
−θ|t−s|. We now show that Ox is a stationary Ornstein-

Uhlenbeck (OU) process with dynamics

dOxt = −θOxt dt+ σ√
α

dW̃ ν2(x)
t , t ∈ [0, T ], (3.10)

and Ox0 ∼ N(0, σ2

2θα). To this end, consider a process Ōx that solves the stochastic
differential equation (3.10) such that Ōx0 ∼ N(0, σ2

2θα). It is easily seen (see, e.g.,
Example 6.8 in Chapter 5 of Karatzas and Shreve [29]), that Ōx is given by

Ōxt = e−θtŌx0 + σ√
α

∫ t

0
e−θ(t−s)dW̃ ν2(x)

s , t ∈ [0, T ],

i.e., E[Ōxt ] = 0 and

Cov(Ōxt , Ōxs ) = e−θ(t+s)
(
σ2

2θα
(
e2θ(t∧s) − 1

)
+ Var(Ōx0 )

)
= σ2

2θαe
−θ|t−s|

for s, t ∈ [0, T ]. As Ox and Ōx are Gaussian processes with the same covariance
structure, it follows that Ox solves (3.10) and

Oxt = e−θtOx0 + σ√
α

∫ t

0
e−θ(t−s)dW̃ ν2(x)

s , t ∈ [0, T ],

with Ox0 ∼ N(0, σ2

2αθ ). Then, by (3.1), it follows that

µxt = µ̄(t, x) + e−θt(µx0 − µ̄(0, x)) + σ√
α

∫ t

0
e−θ(s−t)dW̃ ν2(x)

s , t ∈ [0, T ],

and, by (3.1), (3.10), and Itô’s lemma we get the following dynamics for µx:

dµxt = ∂tµ̄(t, x)dt+ dOxt

= θ

[(
µ̄(t, x) + ∂tµ̄(t, x)

θ

)
− µxt

]
dt+ σ√

α
dW̃ ν2(x)

t , t ∈ [0, T ].

In the next lemma we compute the sharp bracket or quadratic covariation process
of µx and µy for x, y ∈ I.
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Lemma 3.2. Let µ be given by the Gaussian intensity field model introduced in
(3.1). Then, for fixed x, y ∈ I, the sharp bracket process of µx = (µxt )t∈[0,T ] and
µy = (µyt )t∈[0,T ] is

〈µx, µy〉t = σ2

α
e−α|x−y|t, t ∈ [0, T ].

Proof. Fix x, y ∈ I and let ν2(·) be given as in (3.3). For 0 ≤ s ≤ t ≤ T , we have

E
[
W

ν2(x)
t W

ν2(y)
t

∣∣∣Fµs ] = E
[ (
W

ν2(x)
t −W ν2(x)

s

) (
W

ν2(y)
t −W ν2(y)

s

) ∣∣∣Fµs ]
+ E

[ (
W

ν2(x)
t −W ν2(x)

s

)
W ν2(y)
s +W ν2(x)

s

(
W

ν2(y)
t −W ν2(y)

s

) ∣∣∣Fµs ]
+ E

[
W ν2(x)
s W ν2(y)

s

∣∣∣Fµs ]
= E

[(
W

ν2(x)
t −W ν2(x)

s

) (
W

ν2(y)
t −W ν2(y)

s

)]
+W ν2(x)

s W ν2(y)
s (3.11)

= t(ν2(x) ∧ ν2(y))− s(ν2(x) ∧ ν2(y)) +W ν2(x)
s W ν2(y)

s , (3.12)

where in (3.11), we used the fact that, for fixed z ∈ I, W ν2(z)
s is Fµs -measurable

and W
ν2(z)
t − W

ν2(z)
s is independent of Fµs , and (3.12) is a consequence of the

covariance structure of the Brownian sheet, see also equation (3.5). Here again,
for t ∈ [0, T ] and x ∈ I, we write Wt,x interchangeably with W x

t . It follows that

E
[
W

ν2(x)
t W

ν2(y)
t − t (ν2(x) ∧ ν2(y))

∣∣∣Fµs ] = W ν2(x)
s W ν2(y)

s − s (ν2(x) ∧ ν2(y)) ,

i.e., for the two martingales W̃ ν2(x) and W̃ ν2(y) introduced in (3.8), we have that

E
[
W̃

ν2(x)
t W̃

ν2(y)
t − ν2(x) ∧ ν2(y)√

ν2(x)ν2(y)
t

∣∣∣∣∣Fµs
]

= W̃ ν2(x)
s W̃ ν2(y)

s − ν2(x) ∧ ν2(y)√
ν2(x)ν2(y)

s.

Hence, by Theorem 4.2 in Section 4 of Jacod and Shiryaev [27, Chapter I], we
have 〈

W̃ ν2(x), W̃ ν2(y)
〉
t

= ν2(x) ∧ ν2(y)√
ν2(x)ν2(y)

t = e−α|x−y|t, (3.13)

and, by (3.9), for fixed x, y ∈ I, we obtain that

〈µx, µy〉t = σ2

α

〈
W̃ ν2(x), W̃ ν2(y)

〉
t

= σ2

α
e−α|x−y|t.

We would like to conclude this subsection with a short remark on a drawback
of the Gaussian framework. Mortality intensities are (by definition) non-negative
processes. Unfortunately, the Gaussian intensity model, although very convenient
due to its simplicity, analytical tractability and intuitive interpretation, allows for
negative values with positive probability. However, although one cannot exclude
negative mortality rates, the probability of negative values tends to be very small

11



for some choices of parameters (see Section 5). A detailed discussion on this issue
is in Luciano and Vigna [35], where a statistical study shows that, in practical
applications, the probability of negative values turns out to be negligible when
using calibrated parameters. In the next section, we introduce a χ2-intensity field
model that overcomes this drawback by restricting the mortality intensities to
non-negative values.

3.2 χ2-field

Recall that a χ2-field Y = (Yt)t∈J , J ⊆ RN+ , with parameter d ∈ N, is generated
by Gaussian random fields by means of a positive transformation:

Yt := (Z1
t )2 + · · ·+ (Zdt )2, t ∈ J,

where Z1, . . . , Zd are independent, stationary centered Gaussian random fields
with common covariance function c(h), h ∈ J , and variance c(0) = σ2, σ > 0 (see,
e.g., Adler [1]). For each t ∈ J , the random variable Yt has χ2-distribution with d
degrees of freedom. It is easily seen that

E [Yt] = dσ2, t ∈ J. (3.14)

The covariance structure of Y is given by

Cov(Ys, Yt) = 2dc2(s, t) and Var(Yt) = 2dσ4, (3.15)

for s, t ∈ J , where c(s, t) is the covariance function of the Gaussian fields Zi,
i = 1, . . . , d (see, e.g., Adler [1]). In order to overcome the drawback of negative
mortality intensities, this subsection models the mortality intensities as a non-
negative χ2-random field, by defining

µt,x = (c(t, x)Ot,x)2 , t ∈ [0, T ], x ∈ I, (3.16)

where c(t, x) is a continuously differentiable function in both t and x and O is
defined in (3.2), t ∈ [0, T ], x ∈ I. From (3.14) and (3.15), we have that

E [µt,x] = c2(t, x)Cov(Ot,x, Ot,x) = c2(t, x) σ
2

2θα,

for t ∈ [0, T ] and x ∈ I and

Cov(µt,x, µs,y) = 2c2(t, x)c2(s, y)Cov(Ot,x, Os,y)2

= σ4

2θ2α2 c
2(t, x)c2(s, y)e−2θ|t−s|e−2α|x−y|,

i.e.,
Corr(µt,x, µs,y) = e−2θ|t−s|e−2α|x−y|,

for s, t ∈ [0, T ] and x, y ∈ I. In particular, the correlation function of the χ2-field
is the square of the correlation function of the Gaussian field, thus featuring the
same properties as discussed in Subsection 3.1.

12



Lemma 3.3. For µ as defined in (3.16), the set (µx)x∈I is a family of affine
diffusion processes, i.e., for fixed x ∈ I the dynamics of (µxt )t∈[0,T ] are given by

dµxt = 2
(
θ − ∂tc(t, x)

c(t, x)

)(
σ2

2αc̄(t, x)− µxt

)
dt+

√
4
α
σ2c2(t, x)µxt dW̃ ν2(x)

t , (3.17)

for t ∈ [0, T ], where c̄(t, x) = c3(t,x)
(θc(t,x)−∂tc(t,x)) .

Proof. Fix x ∈ I. By Itô’s formula and (3.10), we have that

d(c(t, x)Oxt ) = Oxt (∂tc(t, x)− θc(t, x)) dt+ σ√
α
c(t, x)dW̃ ν2(x)

t , t ∈ [0, T ],

and by (3.16) it follows that

dµxt = d (c(t, x)Oxt )2 = 2c(t, x)Oxt d(c(t, x)Oxt ) + σ2

α
c2(t, x)dt

=
(

2c2(t, x) (Oxt )2
(
∂tc(t, x)
c(t, x) − θ

)
+ σ2

α
c2(t, x)

)
dt

+ 2 σ√
α
c2(t, x)Oxt dW̃ ν2(x)

t , t ∈ [0, T ].

The assertion follows by rearranging the terms.

Lemma 3.4. Let µ be given by the χ2-intensity field model introduced in (3.16).
Then, for fixed x, y ∈ I, the sharp bracket process of µx = (µxt )t∈[0,T ] and µy =
(µyt )t∈[0,T ] is given by

〈µx, µy〉t = 4σ2

α
e−α|x−y|

∫ t

0
µxsµ

y
sc(s, x)c(s, y) ds, t ∈ [0, T ].

Proof. Fix x, y ∈ I. By (3.13) and (3.17), we immediately obtain

d 〈µx, µy〉t = 4σ2

α
c(t, x)c(t, y)µxt µ

y
t d
〈
W̃ ν2(x), W̃ ν2(y)

〉
t

= 4σ2

α
µxt µ

y
t c(t, x)c(t, y)e−α|x−y|dt, t ∈ [0, T ].

The function c needs to be specified such that µ, as defined in (3.16), is consistent
with typical characteristics of historical mortality data, e.g., we define

c(t, x) = exp
(1

2[a(x)− kb(x)t]
) √2θα

σ
, t ∈ [0, T ], x ∈ I, (3.18)

where a and b are given in (3.4) and k > 0. Then

E[µxt ] = exp(a(x)− kb(x)t)

13



and for the mean reversion level we have

σ2

2αc̄(t, x) = θ exp(a(x)− kb(x)t)
θ + kb(x)

2
,

for the mean reversion speed

2
(
θ − ∂tc(t, x)

c(t, x)

)
= 2

(
θ + kb(x)

2

)
and for the volatility√

4
α
σ2c2(t, x)µxt =

√
8θ exp(a(x)− kb(x)t)µxt ,

for t ∈ [0, T ], x ∈ I.

3.3 Model comparison

With the notation of Subsections 3.1 and 3.2, in Table 1 we compare the Gaus-
sian and the χ2-intensity field models specified in (3.1), (3.16) and (3.18). When
comparing (3.10) with (3.17), we observe that, while in the Gaussian model we
have an age- and time dependent mean reversion level with constant mean rever-
sion speed and volatility, in the χ2-intensity field model all three parameters are
age- and time dependent. Both models are affine (see also Example 4.1), thus
facilitating the computation of conditional survival probabilities, and allow us to
model an inhomogeneous downward mortality trend, while taking into account a
realistic dependency structure. In spite of allowing for negative values with pos-
itive probability, the Gaussian intensity model is attractive due to its simplicity
and intuitive interpretation.

criteria Gaussian intensity field χ2-intensity field
affine yes yes
closed form solution yes no
mean reverting yes yes
mean µ̄(t, x) exp(a(x)− kb(x)t)
mean reversion level µ̄(t, x) + ∂tµ̄(t, x)/θ θ exp(a(x)− kb(x)t)/(θ + kb(x)/2)
mean reversion speed θ 2(θ + kb(x)/2)
volatility σ/

√
α

√
8θ exp(a(x)− kb(x)t)µxt

correlation e−θ|t−s|e−α|x−y| e−2θ|t−s|e−2α|x−y|

non-negative no yes

Table 1: Comparison between the intensity field models
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4 Risk-minimization for life insurance liabilities
Recall that the financial market defined in Subsection 2.2 is arbitrage-free, how-
ever, the market is not complete because the times of death occur as surprises to
the market and hence represent a kind of “orthogonal” risk. Therefore, in this
section, in order to find a price and hedging strategy for the insurance payment
processes, we make use of a quadratic hedging method for incomplete markets,
the well-known risk-minimization approach, first introduced by Föllmer and Son-
dermann [23] for European type contingent claims and later extended to payment
processes by Møller [37], Schweizer [43] and Barbarin [3, Chapter 4]. For more
information on (local) risk-minimization and other quadratic hedging approaches,
we refer the reader to the survey paper of Schweizer [42]. We now start with some
preliminary results.

4.1 Preliminary results

Recall that for fixed x ∈ I, µx = (µxt )t∈[0,T ] is assumed to be an affine diffusion
process (see, e.g., Duffie et al. [20] or Filipović and Mayerhofer [21]), i.e., µx follows
the dynamics

dµxt = δ(t, µxt )dt+ σ(t, µxt )d W̃ ν2(x)
t , t ∈ [0, T ], (4.1)

with δ(t, r) = d0(t) + d1(t)r and σ2(t, r) = v0(t) + v1(t)r =: (σxt )2.

Example 4.1. Note that, for fixed x ∈ I, both the Gaussian and the χ2-field
models are affine. In particular, for the Gaussian intensity model defined in (3.1)
by (3.9), we have that

d0(t) = θµ̄(t, x) + ∂tµ̄(t, x), d1(t) = −θ,

v0(t) = σ2

α
, v1(t) = 0.

for t ∈ [0, T ], x ∈ I. For the χ2-intensity model defined in (3.16) by (3.17), we
have

d0(t) = σ2

α
c2(t, x), d1(t) = 2

(
∂tc(t, x)
c(t, x) − θ

)
,

v0(t) = 0, v1(t) = 4
α
σ2c2(t, x),

for t ∈ [0, T ], x ∈ I.

Lemma 4.2. Fix u ∈ [0, T ] and x ∈ I. If µx is an affine diffusion satisfying
(4.1), then under the hypothesis of Section 2, the process

Zx,ut = E[exp(−Γxu) |Ft] = E
[
exp

(
−
∫ u

0
µxs ds

) ∣∣∣Fµt ] ,
15



t ∈ [0, u], has the following dynamics

Zx,ut = Zx,u0 +
∫ t

0
Zx,us σxsβ

x,u(s)dW̃ ν2(x)
s , t ∈ [0, u], (4.2)

where βx,u is given by the following differential equation

∂tβ
x,u(t) = 1− d1(t)βx,u(t)− 1

2v1(t) (βx,u(t))2 , βx,u(u) = 0. (4.3)

Proof. Fix u ∈ [0, T ] and x ∈ I. As µx is affine, we immediately obtain that

Z̃x,ut := E
[
e−
∫ u

t
µx

s ds
∣∣∣∣Ft] = E

[
e−
∫ u

t
µx

s ds
∣∣∣∣Fµt ] = eα

x,u(t)+βx,u(t)µx
t , (4.4)

for t ∈ [0, u] (see Duffie et al. [19]), where the functions αx,u and βx,u are given by

∂tβ
x,u(t) = 1− d1(t)βx,u(t)− 1

2v1(t) (βx,u(t))2 , βx,u(u) = 0,

∂tα
x,u(t) = −d0(t)βx,u(t)− 1

2v0(t) (βx,u(t))2 , αx,u(u) = 0. (4.5)

Then, by Itô’s formula, we have that

dZ̃x,ut = Z̃x,ut (∂tαx,u(t) + ∂tβ
x,u(t)µxt ) dt+ Z̃x,ut βx,u(t)dµxt

+ 1
2 Z̃

x,u
t (βx,u(t))2 d 〈µx〉t

= Z̃x,ut

(
µxt dt+ βx,u(t)σxt dW̃ ν2(x)

t

)
, (4.6)

as well as

dZx,ut = e−Γx
t dZ̃x,ut − e−Γx

t Z̃x,ut µxt dt

= Zx,ut βx,u(t)σxt dW̃ ν2(x)
t , t ∈ [0, u].

The result follows.

Lemma 4.3. Fix u ∈ [0, T ] and x ∈ I. If µx is an affine diffusion satisfying
(4.1), then under the hypothesis of Section 2, the process

Z̄x,ut := E
[
exp

(
−
∫ u

0
µxs ds

)
µxu

∣∣∣Fµt ] , t ∈ [0, u],

has the following dynamics

Z̄x,ut = Z̄x,u0 +
∫ t

0
Zx,us σxs

[
βx,u(s)Ẑx,us + β̂x,u(s)

]
dW̃ ν2(x)

s , t ∈ [0, u], (4.7)

where Ẑx,u is given by

Ẑx,ut = α̂x,u(t) + β̂x,u(t)µxt , t ∈ [0, u], (4.8)
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and α̂x,u and β̂x,u are given by the following differential equations

∂tβ̂
x,u(t) = −d1(t)β̂x,u(t)− βx,u(t)β̂x,u(t)v1(t), β̂x,u(u) = 1, (4.9)

∂tα̂
x,u(t) = −d0(t)β̂x,u(t)− βx,u(t)β̂x,u(t)v0(t), α̂x,u(u) = 0,

and Zx,u and βx,u are given by (4.2) and (4.3).

Proof. Fix u ∈ [0, T ] and x ∈ I. As µx is affine, as in the proof of Lemma 4.2 and
following Duffie et al. [19], we obtain that

E
[
e−
∫ u

t
µx

s dsµxu

∣∣∣Ft] = Z̃x,ut Ẑx,ut , t ∈ [0, u],

where Z̃x,ut is given in (4.4) and

Ẑx,ut = α̂x,u(t) + β̂x,u(t)µxt , t ∈ [0, u],

with

∂tβ̂
x,u(t) = −d1(t)β̂x,u(t)− βx,u(t)β̂x,u(t)v1(t), β̂x,u(u) = 1,

∂tα̂
x,u(t) = −d0(t)β̂x,u(t)− βx,u(t)β̂x,u(t)v0(t), α̂x,u(u) = 0.

Then, again by an application of Itô’s formula, we obtain

dẐx,ut =
(
∂tα̂

x,u(t) + ∂tβ̂
x,u(t)µxt

)
dt+ β̂x,u(t)dµxt

= β̂x,u(t)σxt
(
−βx,u(t)σxt dt+ dW̃ ν2(x)

t

)
, (4.10)

and by (4.6) and (4.10), we have

d(Z̃x,ut Ẑx,ut ) = Z̃x,ut dẐx,ut + Ẑx,ut dZ̃x,ut + d
〈
Z̃x,u, Ẑx,ut

〉
t

= Z̃x,ut β̂x,u(t)σxt
(
−βx,u(t)σxt dt+ dW̃ ν2(x)

t

)
+ Ẑx,ut Z̃x,ut

(
µxt dt+ βx,u(t)σxt dW̃ ν2(x)

t

)
+ Z̃x,ut (σxt )2 βx,u(t)β̂x,u(t)dt

= Z̃x,ut

(
Ẑx,ut µxt dt+ σxt

(
Ẑx,ut βx,u(t) + β̂x,u(t)

)
dW̃ ν2(x)

t

)
.

Hence,

dZ̄x,ut = e−Γx
t d(Z̃x,ut Ẑx,ut )− e−Γx

t Z̃x,ut Ẑx,ut µxt dt

= Zx,ut σxt

(
Ẑx,ut βx,u(t) + β̂x,u(t)

)
dW̃ ν2(x)

t , t ∈ [0, u],

and the result follows.
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Remark 4.4. For the Gaussian field model specified in (3.1) and (3.9), for fixed
u ∈ [0, T ] and x ∈ I, we can easily compute the functions αx,u, βx,u, α̂x,u and β̂x,u
analytically. The closed forms for αx,u and βx,u are given by

βx,u(t) = e−θ(u−t) − 1
θ

, (4.11)

αx,u(t) =
∫ u

t
βx,u(s)

(
θµ̄(s, x) + ∂sµ̄(s, x) + σ

2
√
α
βx,u(s)

)
ds, (4.12)

for t ∈ [0, u], as can be verified by substitution in (4.3) and (4.5). The closed
forms for α̂x,u and β̂x,u are given by

β̂x,u(t) = e−θ(u−t),

α̂x,u(t) =
∫ u

t
β̂x,u(s)

(
θµ̄(s, x) + ∂sµ̄(s, x) + σ√

α
βx,u(s)

)
ds.

for t ∈ [0, u]. For the χ2-field model in (3.16), if c is a function of age only, i.e.,
c(t, x) ≡ c(x), we obtain the well-known time-homogeneous Cox-Ingersoll-Ross
model for µx for any given fixed x, and αx,u, βx,u, α̂x,u and β̂x,u are explicitly
computable (see Cox et al. [15]). In general, if the model has time-dependent
parameters, closed form solutions are not available (see Heath et al. [25] and Hull
and White [26]) and the differential equations determining αx,u, βx,u, α̂x,u and
β̂x,u have to be solved by numerical methods.

In the following, we calculate the prices and hedging strategies of the insurance
payment streams introduced in (2.8) - (2.10), by means of the risk-minimization
approach. An important role is played by the G-(local) martingales

Mxi,j
t = Hxi,j

t − Γxi

t∧τxi,j and Mxi
t :=

nxi∑
j=1

Mxi,j
t , (4.13)

as well as

Lxi,j
t = 1{τxi,j>t}e

Γxi
t = 1−

∫
]0,t]

Lxi,j
s− dMxi,j

s = 1−
∫

]0,t]
eΓxi

s dMxi,j
s , (4.14)

for t ∈ [0, T ], i = 1, . . . ,m, j = 1, . . . , nxi (see, e.g., Chapter 5 and Chapter 9
of Bielecki and Rutkowski [8]). Recall that we consider unit-linked life insurance
products, i.e., the insurance liabilities defined in (2.8) - (2.10) are given in terms
of a non-negative Borel measurable function f(St) of the asset price St, t ∈ [0, T ].
Then, following Møller [36], for fixed u ∈ [0, T ], the arbitrage-free price process

F u(t, St) = E
[
exp (−r (u− t)) f(Su)|FXt

]
, t ∈ [0, u], (4.15)

associated with the payoff f(Su) at time u can be characterized by the partial
differential equation

− rF u(t, s) + F ut (t, s) + rsF us (t, s) + 1
2σ(t, s)2s2F uss(t, s) = 0, (4.16)
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with boundary value F u(u, s) = f(s), where F ut (t, s), F us (t, s) and F uss(t, s) are
the partial first and second order derivatives of F u with respect to t and s. Also
recall that we assume that trading in the (discounted) risky asset X introduced in
(2.6), as well as in the family of (discounted) longevity bonds Y x, x ∈ I, defined
in (2.7) is possible (see Subsection 2.2). However, the insurance portfolio intro-
duced in Subsection 2.1 only consists of individuals belonging to the age cohorts
{x1, . . . , xm} ⊂ I. Therefore, the risk-minimizing strategies will be given in terms
of investments inX as well as the portfolio of longevity bonds Y := (Y x1 , . . . , Y xm)
corresponding to the age cohorts x1, . . . , xm of the insurance portfolio, see, e.g.,
(4.33) and (4.34). In the following, let

∫ t
0 ξs dYs :=

∑m
i=1

∫ t
0 ξ

i
s dY xi

s , for any m-
dimensional G-predictable process ξ = (ξ1, . . . , ξm), and ξ · Y :=

∑m
i=1 ξ

i Y xi .

4.2 Term insurance contract

For the term insurance contract introduced in (2.8), define the payment process

Atit =
m∑
i=1

ζ(xi)
nxi∑
j=1

f(Sτxi,j )
Bτxi,j

1{τxi,j≤t}, t ∈ [0, T ], (4.17)

where f : R+ → R+ is a Borel measurable function such that

E
[

sup
t∈[0,T ]

f(St)2
]
<∞. (4.18)

Proposition 4.5. In the setting of Section 2, the payment process Ati introduced
in (4.17) admits a risk-minimizing strategy ϕ = (ξ, ξ0) = (ξX , ξY , ξ0) with di-
scounted value process

V ti
t (ϕ) = E[AtiT |G0] +

∫ t

0
ξXs dXs +

∫ t

0
ξYs dYs + Ltit −Atit , (4.19)

and
ξ0
t = V ti

t (ϕ)− ξXt Xt − ξYt · Yt
for t ∈ [0, T ], where the investment in the (discounted) risky asset X is given by

ξXt =
m∑
i=1

ζ(xi)(nxi −Nxi
t )eΓxi

t

∫ T

t
Z̄xi,u
t F us (t, St) du,

and the investment in the family of (discounted) longevity bonds Y = (Y x1 , . . . , Y xm)
is given by ξYt = (ξY x1

t , . . . , ξY
xm

t ), with

ξY
xi

t = ζ(xi)(nxi−Nxi
t ) eΓxi

t er(T−t)

Zxi,T
t βxi,T (t)

∫ T

t
F u(t, St)Zxi,u

t (βxi,u(t)Ẑxi,u
t +β̂xi,u(t)) du,

and

Ltit =
m∑
i=1

ζ(xi)
∫

]0,t]

(
f(Ss)
Bs

− E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u dΓxi
u

∣∣∣Fs
])

dMxi
s ,
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t ∈ [0, T ], where F u(t, St), F us (t, St), βxi,u(t), β̂xi,u(t), Zxi,u
t , Z̄xi,u

t , Ẑxi,u
t and Mxi

t

are defined in (4.2) - (4.3), (4.7) - (4.9), (4.13) and (4.15) - (4.16). The optimal
cost and risk processes are given by

Ctit (ϕ) = E[AtiT |G0] + Ltit ,

Rtit (ϕ) = E[(LtiT − Ltit )2 |Gt],

for t ∈ [0, T ].

Proof. Let t ∈ [0, T ]. Then,

E[AtiT |Gt] =
m∑
i=1

ζ(xi)
nxi∑
j=1

J ijt ,

where
J ijt = E

[
f(Sτxi,j )
Bτxi,j

1{τxi,j≤T}

∣∣∣Gt] , (4.20)

t ∈ [0, T ], i = 1, . . . ,m, j = 1, . . . , nxi . Then, by Proposition 4.11 and 5.12 of
Barbarin [3, Chapter 3], as well as Corollary 5.1.3 of Bielecki and Rutkowski [8]
and (2.3), we have

J ijt = Uxi,ti
0 +

∫ t

0
Lxi,j
s dUxi,ti

s

+
∫

]0,t]

(
f(Ss)
Bs

− E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u dΓxi
u

∣∣∣Fs
])

︸ ︷︷ ︸
=:ψs

dMxi,j
s , (4.21)

where Mxi,j
t and Lxi,j

t are defined in (4.13) and (4.14). Furthermore

Uxi,ti
t := E

[∫ T

0

f(Su)
Bu

e−Γxi
u dΓxi

u

∣∣∣Ft
]

=
∫ T

0
E
[
f(Su)
Bu

∣∣∣FXt ]E [e−Γxi
u µxi

u

∣∣∣Fµt ] du,

for t ∈ [0, T ] and i = 1, . . . ,m, j = 1, . . . , nxi , where we have used Fubini’s theorem
and the independence of the underlying driving processes. By (2.5) - (2.6), (4.15)
- (4.16) and Itô’s formula, the discounted arbitrage-free price process Fu(t,St)

Bt
,

0 ≤ u ≤ T , follows the dynamics

d
(
F u(t, St)

Bt

)
= F us (t, St)σ(t, St)Xt dWX

t = F us (t, St) dXt, t ∈ [0, u],

and

E
[
f(Su)
Bu

∣∣∣FXt ] = F u(0, S0) +
∫ t

0
F us (s, Ss)σ(s, Ss)Xs1{s≤u} dWX

s
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for 0 ≤ t, u ≤ T, where F u(u, Su) = f(Su). Furthermore, by (4.7), we have

Z̄xi,u
t = E

[
e−Γxi

u µxi
u

∣∣∣Fµt ]
= Z̄xi,u

0 +
∫ t

0
Zxi,u
s σxi

s

[
βxi,u(s)Ẑxi,u

s + β̂xi,u(s)
]
1{s≤u}dW̃ ν2(xi)

s ,

for 0 ≤ t, u ≤ T and i = 1, . . . ,m, where βxi,u, β̂xi,u, Zxi,u and Ẑxi,u are given in
(4.2), (4.3) and (4.8) - (4.9). Then, for u ∈ [0, T ], integration by parts gives

F u(t, St)
Bt

Z̄xi,u
t = F u(0, S0)Z̄xi,u

0 +
∫ t

0
Z̄xi,u
s F us (s, Ss)σ(s, Ss)Xs1{s≤u} dWX

s

+
∫ t

0

F u(s, Ss)
Bs

Zxi,u
s σxi

s

(
βxi,u(s)Ẑxi,u

s + β̂xi,u(s)
)
1{s≤u} dW̃ ν2(xi)

s , t ∈ [0, T ].

By Lemma 4.2, for each x ∈ I, the dynamics of the (discounted) longevity bond
with maturity T associated to the age cohort x defined in (2.7) are

dY x
t = Zx,Tt

BT
σxt β

x,T (t)dW̃ ν2(x)
t , t ∈ [0, T ]. (4.22)

As all integrands are continuous (see Theorem 15 in Chapter IV of Protter [38]),
by the stochastic Fubini theorem (see, e.g., Theorem 65 in Chapter IV of Protter
[38]) and integration by parts, we obtain

Uxi,ti
t =

∫ T

0
F u(0, S0)Z̄xi,u

0 du+
∫ t

0
σ(s, Ss)Xs

∫ T

s
F us (s, Ss)Z̄xi,u

s dudWX
s

+
∫ t

0

σxi
s

Bs

∫ T

s
F u(s, Ss)Zxi,u

s (βxi,u(s)Ẑxi,u
s + β̂xi,u(s)) dudW̃ ν2(xi)

s (4.23)

=
∫ T

0
F u(0, S0)Z̄xi,u

0 du+
∫ t

0

∫ T

s
F us (s, Ss)Z̄xi,u

s dudXs

+
∫ t

0

er(T−s)

Zxi,T
s βxi,T (s)

∫ T

s
F u(s, Ss)Zxi,u

s (βxi,u(s)Ẑxi,u
s + β̂xi,u(s)) dudY xi

s ,

t ∈ [0, T ], where in the second equation, we used (2.6) and (4.22). Finally,

E[AtiT |Gt] = E[AtiT |G0] +
∫ t

0
ξXs dXs +

∫ t

0
ξYs dYs + Ltit , (4.24)

for t ∈ [0, T ], where the investment in the (discounted) risky asset X is given by

ξXt =
m∑
i=1

ζ(xi)(nxi −Nxi
t )eΓxi

t

∫ T

t
Z̄xi,u
t F us (t, St) du,

and the investment in the family of (discounted) longevity bonds Y = (Y x1 , . . . , Y xm)
is given by ξYt = (ξY x1

t , . . . , ξY
xm

t ), with

ξY
xi

t = ζ(xi)(nxi−Nxi
t ) eΓxi

t er(T−t)

Zxi,T
t βxi,T (t)

∫ T

t
F u(t, St)Zxi,u

t (βxi,u(t)Ẑxi,u
t +β̂xi,u(t)) du,
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and

Ltit =
m∑
i=1

ζ(xi)
∫

]0,t]

(
f(Ss)
Bs

− E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u dΓxi
u

∣∣∣Fs
])

dMxi
s ,

t ∈ [0, T ]. It remains to prove that (4.24) is indeed the GKW decomposition of
E[AtiT |Gt], t ∈ [0, T ]. To this end, define S = (X,Y ) = (X,Y x1 , . . . , Y xm) and
ξ =

(
ξX , ξY

)
. As E

[
supt∈[0,T ] f(St)2

]
< ∞, for i = 1, . . . ,m and j = 1, . . . , nxi ,

we have that J ij introduced in (4.20) is a square integrable martingale, hence
E[[J ij ]T ] <∞, and from (4.21) it follows that

E
[∫ T

0
(Lxi,j

s )2 d[Uxi,ti]s

]
, E

[∫ T

0
ψ2
s d[Mxi,j ]s

]
<∞, (4.25)

because d[Uxi,ti,Mxi,j ]t ≡ 0, t ∈ [0, T ], i = 1, . . . ,m and j = 1, . . . , nxi . As
for i = 1, . . . ,m, d[WX , W̃ ν2(xi)]t ≡ 0, t ∈ [0, T ], because WX and W̃ ν2(xi) are
independent, by (4.23), (4.24) and (4.25) and by the Kunita-Watanabe Inequality
(see, e.g., Theorem 25 in Chapter II.6 of Protter [38]), we obtain that

E
[∫ T

0
ξ′sd[S]sξs

]
<∞ and E[[Lti]T ] <∞,

i.e., Lti is a square integrable martingale and ξ ∈ L2(S), where

L2(S) :=

ξ
∣∣∣∣∣ ξ G-predictable,

(
E
[∫ T

0
ξ′s d[S, S]s ξs

])1/2

<∞

 .
As Lti is strongly orthogonal to all continuous F-local martingales, it follows that(∫ t

0
ξ̃sdSs

)
· Ltit , t ∈ [0, T ],

is a (uniformly integrable) martingale for any ξ̃ ∈ L2(S), i.e., (4.24) is the GKW
decomposition of E[AtiT |Gt], t ∈ [0, T ] (see, e.g., Møller [37] or Schweizer [42]).

4.3 Annuity contract

For the annuity contract introduced in (2.9), we define the payment process

Aat =
m∑
i=1

ζ(xi)
nxi∑
j=1

∫ t

0
1{τxi,j>s}

f(Ss)
Bs

ds, t ∈ [0, T ], (4.26)

where f : R+ → R+ is a Borel measurable function such that

E
[

sup
t∈[0,T ]

f(St)2
]
<∞. (4.27)
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Proposition 4.6. In the setting of Section 2, the payment process Aa introduced in
(4.26) admits a risk-minimizing strategy ϕ = (ξ, ξ0) = (ξX , ξY , ξ0) with discounted
value process

V a
t (ϕ) = E[AaT |G0] +

∫ t

0
ξXs dXs +

∫ t

0
ξYs dYs + Lat −Aat , (4.28)

and
ξ0
t = V a

t (ϕ)− ξXt Xt − ξYt · Yt
for t ∈ [0, T ], where the investment in the (discounted) risky asset X is given by

ξXt =
m∑
i=1

ζ(xi)(nxi −Nxi
t )eΓxi

t

∫ T

t
Zxi,u
t F us (t, St) du,

and the investment in the family of (discounted) longevity bonds Y = (Y x1 , . . . , Y xm)
is given by ξYt = (ξY x1

t , . . . , ξY
xm

t ), with

ξY
xi

t = ζ(xi)(nxi −Nxi
t ) eΓxi

t er(T−t)

Zxi,T
t βxi,T (t)

∫ T

t
F u(t, St)Zxi,u

t βxi,u(t) du,

and

Lat = −
m∑
i=1

ζ(xi)
∫

]0,t]
E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u du
∣∣∣Fs

]
dMxi

s ,

t ∈ [0, T ], where F u(t, St), F us (t, St), βxi,u(t), Zxi,u
t and Mxi

t are defined in (4.2)
- (4.3), (4.13) and (4.15) - (4.16). The optimal cost and risk processes are

Cat (ϕ) = E[AaT |G0] + Lat ,

Rat (ϕ) = E[(LaT − Lat )2 |Gt],

for t ∈ [0, T ].

Proof. Let t ∈ [0, T ]. Then, we have that

E[AaT |Gt] =
m∑
i=1

ζ(xi)
nxi∑
j=1

E
[∫ T

0
1{τxi,j>s}

f(Ss)
Bs

ds
∣∣∣Gt
]
,

and by Proposition 4.12 and 5.13 of Barbarin [3, Chapter 3], as well as Proposition
5.1.2 of Bielecki and Rutkowski [8] and (2.3), we have

E
[∫ T

0
1{τxi,j>s}

f(Ss)
Bs

ds
∣∣∣Gt
]

= Uxi,a
0 +

∫ t

0
Lxi,j
s dUxi,a

s

−
∫

]0,t]
E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u du
∣∣∣Fs

]
dMxi,j

s ,
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and

Uxi,a
t := E

[∫ T

0

f(Su)
Bu

e−Γxi
u du

∣∣∣Ft
]

=
∫ T

0
E
[
f(Su)
Bu

∣∣∣FXt ]E [e−Γxi
u

∣∣∣Fµt ] du,

for t ∈ [0, T ] and i = 1, . . . ,m, j = 1, . . . , nxi , where we have used Fubini’s theorem
and the independence of the underlying driving processes. We proceed as in the
proof of Proposition 4.5. By (4.2), we have that

Zxi,u
t = E

[
e−Γxi

u

∣∣∣Fµt ] = Zxi,u
0 +

∫ t

0
Zxi,u
s σxi

s β
xi,u(s)1{s≤u}dW̃ ν2(xi)

s ,

for 0 ≤ t, u ≤ T and i = 1, . . . ,m, where βxi,u, is given in (4.3). Then, by the
stochastic Fubini theorem (see, e.g., Theorem 65 in Chapter IV of Protter [38])
and integration by parts, we obtain

Uxi,a
t =

∫ T

0
F u(0, S0)Zxi,u

0 du+
∫ t

0
σ(s, Ss)Xs

∫ T

s
F us (s, Ss)Zxi,u

s dudWX
s

+
∫ t

0

σxi
s

Bs

∫ T

s
F u(s, Ss)Zxi,u

s βxi,u(s) dudW̃ ν2(xi)
s

=
∫ T

0
F u(0, S0)Zxi,u

0 du+
∫ t

0

∫ T

s
F us (s, Ss)Zxi,u

s dudXs

+
∫ t

0

er(T−s)

Zxi,T
s βxi,T (s)

∫ T

s
F u(s, Ss)Zxi,u

s βxi,u(s) dudY xi
s ,

where in the second equation, we used (2.6) and (4.22). Finally,

E[AaT |Gt] = E[AaT |G0] +
∫ t

0
ξXs dXs +

∫ t

0
ξYs dYs + Lat , (4.29)

for t ∈ [0, T ], where the investment in the (discounted) risky asset X is given by

ξXt =
m∑
i=1

ζ(xi)(nxi −Nxi
t )eΓxi

t

∫ T

t
Zxi,u
t F us (t, St) du,

and the investment in the family of (discounted) longevity bonds Y = (Y x1 , . . . , Y xm)
is given by ξYt = (ξY x1

t , . . . , ξY
xm

t ), with

ξY
xi

t = ζ(xi)(nxi −Nxi
t ) eΓxi

t er(T−t)

Zxi,T
t βxi,T (t)

∫ T

t
F u(t, St)Zxi,u

t βxi,u(t) du,

and

Lat = −
m∑
i=1

ζ(xi)
∫

]0,t]
E
[∫ T

s

f(Su)
Bu

eΓxi
s −Γxi

u du
∣∣∣Fs

]
dMxi

s ,

t ∈ [0, T ]. By the same arguments as in the proofs of Propositions 4.7 and 4.5,
the terms in (4.29) are square integrable and strongly orthogonal, hence (4.29) is
indeed the GKW decomposition of E[AaT |Gt], t ∈ [0, T ].
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Note that Proposition 5.1.2 and Corollary 5.1.3 of Bielecki and Rutkowski [8]
require the process f(St), t ∈ [0, T ], to be bounded. However, it can be seen that
this result also holds if E[supt∈[0,T ] f(St)2] <∞ and we may therefore apply it in
our setting.

4.4 Pure endowment contract

For the pure endowment contract introduced in (2.10), we define the payment
process

Apet = f(St)
Bt

m∑
i=1

ζ(xi)
nxi∑
j=1

1{τxi,j>t}1{t=T}, t ∈ [0, T ], (4.30)

where f : R+ → R+ is a Borel measurable function such that

E
[
f(ST )2

]
<∞. (4.31)

Proposition 4.7. In the setting of Section 2, the payment process Ape intro-
duced in (4.30) admits a risk-minimizing strategy ϕ = (ξ, ξ0) = (ξX , ξY , ξ0) with
discounted value process

V pe
t (ϕ) = E[ApeT |G0] +

∫ t

0
ξXs dXs +

∫ t

0
ξYs dYs + Lpet −A

pe
t , (4.32)

and
ξ0
t = V pe

t (ϕ)− ξXt Xt − ξYt · Yt
for t ∈ [0, T ], where the investment in the (discounted) risky asset X is given by

ξXt = F Ts (t, St)
m∑
i=1

ζ(xi)(nxi −Nxi
t )eΓxi

t Zxi,T
t , (4.33)

and the investment in the family of (discounted) longevity bonds Y = (Y x1 , . . . , Y xm)
is given by ξYt = (ξY x1

t , . . . , ξY
xm

t ), with

ξY
xi

t = F T (t, St)er(T−t)ζ(xi)(nxi −Nxi
t )eΓxi

t , (4.34)

and
Lpet = −

m∑
i=1

ζ(xi)
∫

]0,t]

F T (s, Ss)
Bs

eΓxi
s Zxi,T

s dMxi
s ,

t ∈ [0, T ], where F T (t, St), F Ts (t, St), Zxi,T
t and Mxi

t are defined in (4.2), (4.13),
(4.15) and (4.16). The optimal cost and risk processes are given by

Cpet (ϕ) = E[ApeT |G0] + Lpet ,

Rpet (ϕ) = E[(LpeT − L
pe
t )2 |Gt], (4.35)

for t ∈ [0, T ].
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Proof. For the proof, we refer to Proposition 4.4.5 of Schreiber [41].

Remark 4.8. If the function f satisfies additional regularity conditions, then
decomposition (4.32) can be obtained from decompositions (4.19) and (4.28) for
the term insurance and the annuity contract by using Itô’s formula, as we show in
the following. However our method is more general as it only requires assumption
(4.31). W.l.o.g. suppose n = m = 1, B = x and ζ(x) = 1. Furthermore let
f ∈ C2(R). We define τ := τx and Ht := 1{τ≤t}, t ∈ [0, T ]. Then by Itô’s formula
we have that

ApeT = f(ST )
BT

1{τ>T} =
∫ T

0

f(Ss)
Bs

d(1−Hs) +
∫ T

0
(1−Hs) d

(
f(Ss)
Bs

)
= −f(Sτ )

Bτ
1{τ≤T} +

∫ T

0
1{τ>s}f

′(Ss) dXs

+
∫ T

0
1{τ>s}

1
Bs

(
rSsf

′(Ss)− rf(Ss) + σ2(s, Ss)
2 S2

sf
′′(Ss)

)
︸ ︷︷ ︸

=:ηs

ds, (4.36)

i.e. the pure endowment contract can be seen as the sum of a term insurance con-
tract, an investment in the discounted asset price and an annuity contract. If now
f and η satisfy respectively (4.18) and (4.27), and E[(

∫ T
0 f ′(St)dXt)2] < ∞, then

the risk-minimizing strategy can be computed via decomposition (4.36) by using
the results of Propositions 4.5 and 4.6.

5 Simulation study
In this section, we perform a simulation study for the case of the pure endow-
ment contract introduced in (2.10) and m = n = 2, i.e., we have two individuals
belonging to two different cohort classes x1 and x2, and we set x1 = 25 and
x2 = 40. Based on numerical simulations, we compute the paths of the opti-
mal risk-minimizing strategies. We work with the Gaussian intensity field model
introduced in Subsection 3.1, where µ̄ as in (3.4) is generated by the standard
forecasting method of the Lee-Carter model (see Lee and Carter [33] and Lee [32])
based on historical data. The dataset is comprised of historical death rates for
the US population from 1933 to 2010, with one-year age groups from the Human
Mortality Database. Following Luciano and Vigna [35], for the parameters in (3.2)
we choose σ = 0.001 and α = θ = 0.05. Then, as µxt is normally distributed for
x ∈ [x, x] and t ∈ [0, T ], we have that

P(µxt < 0) = Φ
(
− E[µxt ]√

Var(µxt )

)
= Φ

(
− µ̄(t, x)

√
2αθ

σ

)
≈ 0.02, (5.1)

See www.mortality.org.
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where µ̄(t, x) ≈ 0.03, based on historical data. With this parametrization, we
obtain a realistic correlation structure between different age cohorts, as shown
by Table 2. At the same time, we obtain a non-trivial random distortion of the

|t− s|
|x− y| 0 1 2 3 4 5 10 20 30

0 1.00 0.95 0.90 0.86 0.82 0.78 0.61 0.37 0.22
1 0.95 0.90 0.86 0.82 0.78 0.74 0.58 0.35 0.21
2 0.90 0.86 0.82 0.78 0.74 0.70 0.55 0.33 0.20
3 0.86 0.82 0.78 0.74 0.70 0.67 0.52 0.32 0.19
4 0.82 0.78 0.74 0.70 0.67 0.64 0.50 0.30 0.18
5 0.78 0.74 0.70 0.67 0.64 0.61 0.47 0.29 0.17
10 0.61 0.58 0.55 0.52 0.50 0.47 0.37 0.22 0.14
20 0.37 0.35 0.33 0.32 0.30 0.29 0.22 0.14 0.08
30 0.22 0.21 0.20 0.19 0.18 0.17 0.14 0.08 0.05

Table 2: Correlation structure for Corr(µt,x, µs,y) = e−θ|t−s|e−α|x−y|, for s, t ∈
[0, T ], x, y ∈ I, as introduced in (3.7) with α = θ = 0.05.

deterministic driving part of equation (3.1). Following Kroese and Botev [31],
we use the circulant embedding method for Toeplitz covariance matrices, in order
to efficiently simulate the space-time changed Brownian sheet. Figure 1 depicts
µ̄(t, x) introduced in (3.4) for x ∈ [25, 40], t ∈ [0, 50], as well as an exemplary
realization of Ot,x and µt,x defined in (3.1) and (3.2). We set

ζ(xi) = xi∑m
i=1 xi

for i = 1, 2, i.e., the weighting function is increasing in age. For the asset price S,
we assume σ(t, St) ≡ 0.3, t ∈ [0, T ], and S0 = 100 in (2.5). Furthermore, f(x) = x,
x ∈ R+, hence for the payment process in (4.30), we obtain

Apet = Xt

2∑
i=1

ζ(xi)1{τxi>t}1{t=T}, t ∈ [0, T ],

where τxi := τxi,1 for i = 1, 2. Condition (4.31) is then automatically satisfied for
this choice of S and f . From (4.33), the investment in the (discounted) risky asset
X is given by

ξXt =
2∑
i=1

1{τxi>t}ζ(xi)eΓxi
t Zxi,T

t , (5.2)

and, by (4.34), the investment in the family of (discounted) longevity bonds Y =
(Y x1 , Y x2) is determined by

ξYt = (ξY x1
t , ξY

x2
t ) with ξY

xi

t = Ste
r(T−t)

1{τxi>t}ζ(xi)eΓxi
t , (5.3)
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for t ∈ [0, T ], i = 1, 2, where Γxi
t and Zxi,T

t are given in (2.1) and (4.2). The
simulation of Zxi,T uses (4.2), where βx,T is determined by (4.3) and (4.11). The
stopping times τx1 and τx2 are generated by the canonical construction method
following Bielecki and Rutkowski [8, Chapter 8]. Figure 2 shows exemplary paths
of the hedging strategies. Note that we can observe jumps in the strategies at the
time, when an insured person has died. In particular, we can observe up to two
jumps in the investment in the risky asset, because it depends on the hazard pro-
cess of both insured individuals and up to one jump in the investments in the two
longevity bonds. One can also see that positions are automatically closed when
the respective risk no longer exists, i.e., in case of a death before the maturity of
the contract. Investments in the longevity bonds also appear more irregular than
the investment in asset S, due to the influence of the asset price’s volatility on
the strategies in (5.3). More details and further examples can be found in Biagini
et al. [7].

6 Conclusion
The main contribution of this work is to provide a first step in the modeling of
cross-generational dependencies in an insurance portfolio consisting of different age
cohorts by using Gaussian and χ2-random fields. This approach provides a flex-
ible framework, where analytical results can be derived and easily implemented.
Unfortunately, the Gaussian intensity model, although very convenient due to its
simplicity, analytical tractability and intuitive interpretation, allows for negative
values with positive probability. However, although one cannot exclude negative
mortality rates, within our simulation study, we demonstrate that in applications
the probability of negative values turns out to be very small, when using cali-
brated parameters. In this setting, we computed risk-minimizing strategies for
typical building blocks of life insurance liabilities, thereby taking into account the
dependency structure between different age cohorts. We deliberately kept model
complexity low in order to obtain explicit results that can be implemented, cali-
brated and backtested on data. From the point of view of controling model risk,
our setting presents the advantages of providing a clear correlation structure, low
complexity and high applicability. Implementation and calibration can be easily
performed, so that the model can be tested and possible deficiences detected. Af-
ter this initial, nevertheless technically non-trivial analysis, additional empirical
studies must follow to validate the model. This will provide an indication on the
goodness of fit of our approach and on possible extensions and improvements.
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Figure 1: This plot depicts µ̄(t, x), Ot,x and µt,x as defined in (3.1), (3.2) and (3.4)
for x ∈ [25, 40], t ∈ [0, 50] and with parametrization σ = 0.001, α = θ = 0.05.
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Figure 2: Exemplary paths of the optimal risk-minimizing hedging strategy ξ =
(ξX , ξY 25

, ξY
40) for t ∈ [0, 50] and with parametrization σ = 0.001, α = θ = 0.05.
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