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Abstract

In this paper we study the pricing and hedging of a very general class of life
insurance liabilities by means of the risk-minimization approach. We find
the price and risk-minimizing strategy in two cases, first in the case when
the financial market consists only of one risky asset, e.g. a stock, and a bank
account, and second in an extended financial market, allowing for investments
in two additional traded assets, representing the systematic and unsystematic
mortality risk. We also provide an application in the case of a unit-linked
term insurance contract in a jump-diffusion model for the stock price and
affine stochastic mortality intensity. Main novelties of this work are that we
allow for hedging of the risk inherent in the insurance liabilities by investing
not only in the stock and money market account, but also in a longevity bond,
representing the systematic mortality risk and a pure endowment contract,
accounting for the unsystematic mortality risk. Besides that we consider a
very general setting regarding the underlying asset price and the structure
of the insurance payment process studied, i.e. we work outside the Brownian
setting, in particular the asset price may have jumps. Finally we are able
to relax certain technical assumptions such as the existence of the mortality
intensity and we do not require the independence of the underlying processes.
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1 Introduction

In this paper we study the problem of pricing and hedging life insurance liabilities
in a very general setting by means of the well-known risk-minimization approach.
First we consider a financial market model with one risky primary asset, e.g. a
stock, and the riskless money market account. In this setting we compute the price
and hedging strategy for an insurance payment process whose value may depend
on the primary assets as well as on the time of death of a single individual, such
as a unit-linked life insurance contract. In a second step we extend the financial
market by introducing two mortality-linked securities, a longevity bond, incorpo-
rating the systematic longevity risk, and a pure endowment contract, representing
the unsystematic mortality risk. The main idea then is to hedge the financial and
(systematic and unsystematic) mortality risk by investing in both the stock and
the bank account, as well as in the two mortality-linked securities.

Mortality or longevity is a primary source of risk for many insurance and pension
products. For example, annuity providers face the risk that the mortality rates of
pensioners might fall at a faster rate than expected, whereas life insurers are ex-
posed to the risk of unexpected increases in mortality. The traditional method of
dealing with mortality risk is through suitable insurance or reinsurance contracts.
However, reinsurers are often reluctant to take on the aggregated bulk risk typical
of these transactions, thus leading to securitization as a new form of risk transfer
and consequently to the creation of a new life market, see, e.g., Blake et al. [10]. In
this context pricing and modeling of mortality-linked securities has been studied
extensively in the literature, for an overview on the valuation and securitization
of mortality risk we refer to Cairns et al. [12].

The mortality risk incorporated in life insurance liabilities can essentially be split
into systematic risk, i.e. the risk that the mortality rate of an age cohort differs
from the one expected at inception, and idiosyncratic or unsystematic risk, i.e. the
risk that the mortality rate of the individual is different from that of its age cohort.
The first kind of risk may be hedged by investing in a longevity bond representing
the systematic mortality risk, see, e.g., Cairns et al. [I2]. This bond pays out the
conditional survival probability at maturity as a function of the hazard rate or
mortality intensity, which is given by a so-called survivor index. Survivor indices,
provided by various investment banks, consist of publicly available mortality data
aggregated by population, hence providing a good proxy for the systematic compo-
nent of the mortality risk. The unsystematic risk however, can only be eliminated
by trading in products that depend directly on the time of death, such as a pure
endowment contract, i.e. a financial contract that pays 1 at maturity if the indi-
vidual survived. One of the novelties in our approach is to allow for hedging of
the risk inherent in the life insurance liabilities by investing not only in the stock
and money market account, but also in the longevity bond, accounting for the
systematic mortality risk, and in the pure endowment contract, representing the
idiosyncratic mortality risk. We would like to emphasize, that hedging with these
two mortality-linked securities is intrinsic in our modeling context, in a sense that



it does not depend on the specific form of the insurance payment process. One may
argue, that in the case where large portfolios with independent risks are pooled by
insurance companies, the unsystematic risk might be eliminated by law of large
number arguments. However, in many cases portfolios with a smaller number of
insured lives are of interest. Furthermore in some situations, for instance in the
case of catastrophic mortality events, it is not realistic to assume independence
between members of the portfolio. Hence hedging of both the systematic and un-
systematic mortality risk and thus completely eliminating the cost term may be
of great value in many practical applications.

When modeling life insurance liabilities, it is feasible to make use of the similar-
ities between mortality and credit risk, as the time of death can be treated in a
very similar way as the default-time of a company. Here we follow the intensity-
based or hazard rate approach of reduced-form modeling, see, e.g., Bielecki and
Rutkowski [7]. Since the time of death, represented by a totally inaccessible stop-
ping time 7, occurs as a surprise for the market participants, it is impossible to
hedge it by using a portfolio consisting only of the primary assets. Hence the pri-
mary market extended with the insurance payment process is incomplete and it
is thus necessary to select one of the techniques for pricing and hedging in incom-
plete markets. Here we make use of the popular risk-minimization method first
introduced by Follmer and Sondermann [20]. The idea of this technique is to find
a replicating strategy for a given claim, that in general might not necessarily be
self-financing, but instead may have a cost. The aim is then to find the replicating
strategy with minimal cost in a sense that we discuss in Section [3] This hedging
technique has been applied in various areas within financial modeling of incom-
plete markets, such as for pricing credit derivatives and insurance products that
are influenced by an orthogonal source of randomness like mortality and catas-
trophic risks. There exist a number of studies that focus on applications of the
risk-minimization approach in the context of mortality modeling, see, e.g., Biagini
et al. [6], Dahl and Mgller [16], Dahl et al. [I7] and Mgller [24] 25]. These authors
study quadratic hedging for very specific insurance products in a Brownian setting,
whereas we allow for more general assumptions regarding the given filtrations and
the structure of the insurance liabilities. Also some authors such as Mgller [24] 25]
assume independence between the financial market and the insurance model. In
the context of credit risk modeling Biagini and Cretarola [3, 4, [5] study local risk-
minimization for defaultable claims, again in a Brownian setting. Here we allow
for mutual dependence between the time of death and the asset prices behavior
as in Biagini and Cretarola [4, 5] and Biagini et al. [6], however we extend their
results since we allow for a more general structure of the insurance payment pro-
cess and we do not require the existence of the mortality intensity. Besides that,
similarly as in Barbarin [2], we work outside the Brownian setting, in particular
we allow for jumps in the asset price. Hence in this paper we extend earlier work
on risk-minimization for insurance products in several directions: we allow for a
very general setting regarding the underlying asset price and the structure of the
payment process studied, we are able to relax certain technical assumptions such



as the existence of the mortality intensity and we do not require the independence
of the underlying processes. We also allow for hedging by investing in the primary
assets as well as in two further mortality-linked securities.

The remainder of this paper is organized as follows: Section [2] introduces the
general setup and Section [3 briefly reviews the risk-minimization approach in our
context. In Section [ we provide our main result by computing the Galtchouk-
Kunita-Watanabe decomposition and finding the price and risk-minimizing stra-
tegy of the life insurance liabilities. The financial market is extended by two
tradable mortality-linked securities representing the systematic and unsystematic
mortality risk in Section [5 thus completing the market and eliminating the cost
process. Section [6] then concludes this paper with a specific example where we
consider a unit-linked term insurance contract in a jump-diffusion model for the
asset price with affine stochastic mortality intensity.

2 The setting

For a fixed time horizon T' > 0 we consider a simple financial market model defined
on a given probability space (£, G, P) consisting of one risky asset with discounted
asset price X and discounted bank account X°, i.e. X = 1, ¢ € [0,7]. On this
probability space we assume given a filtration F = (?t)t€[07T], such that X is a
local (P, F)-martingale, i.e. the financial market given by X is arbitrage-free.

We now introduce the time of death of an individual, given by a strictly positive
random variable 7 : Q — [0, 7] U {oc}, defined on the probability space (2, G, P)
with P(7 = 0) = 0 and P(r > t) > 0 for each t € [0,7]. Note that since the
time horizon T is usually fixed as the maturity of the life insurance contract, in
order to ensure that P(7 > T') > 0 (the remaining lifetime 7 is not necessarily
bounded by T') it is necessary to allow 7 to take values larger than T, indicated
here by the convention that 7 can assume the value infinity. We define the death
process Hy = 11«4, and denote by H = (3¢),c(o,7) the filtration generated by this
process.

In this setting we consider the extended market G = FV H, such that the informa-
tion available to all agents in the market at time ¢ is assumed to be §; = F; V H;
and we put § = Gp. It is clear that 7 is an H-stopping time, as well as a G-
stopping time, but not necessarily an F-stopping time. In fact here we assume
that the random time 7 avoids every F-stopping time 7, i.e. P(7r = 7) = 0, and
under this hypothesis we have that 7 is a totally inaccessible G-stopping time and
AU; = 0 for any F-adapted cadlag process U (see, e.g., Coculescu et al. [I3] or
Blanchet-Scalliet and Jeanblanc [I1]). All filtrations are assumed to satisfy the
usual hypotheses of completeness and right-continuity. We postulate that all F-
local martingales are also G-local martingales, and in the sequel we refer to this
hypothesis as Hypothesis (H). This hypothesis is well-known in the literature of
reduced form approaches for valuating defaultable claims, for a discussion of this



hypothesis we refer to Blanchet-Scalliet and Jeanblanc [I1]. In this setting we
follow the hazard rate or intensity-based approach, well-known from reduced-form
modeling of credit derivatives (see, e.g., Bielecki and Rutkowski [7]), which means
that as opposed to the structural approach the default time occurs as a surprise
for the market participants, since the time of death 7 is a totally inaccessible stop-
ping time. Therefore it is not possible to predict 7, and an important role is then
played by the conditional distribution function of 7, given by

Ft = P(T S t|3’~t),
and we assume F; < 1 for all £ € [0, T]. Then the hazard process I' of 7 under P
Ft = —ln(l - Ft) = —lnE[]l{7_>t} | fft]

is well-defined for every ¢t € [0,T]. In particular under the above conditions the
hazard process I' is continuous and increasing (see, e.g., Coculescu et al. [13])
and we additionally assume that I'r is bounded. Note that this rather strong
assumption is not always required in concrete examples, since it may be possible
to directly check the necessary integrability conditions (see also Section @ The
process

et =P(r>t|F), telo,T],

is often called a survivor index and according to Cairns et al. [I2] can be seen as
the basic building block for many other mortality-linked securities. The need for
standardization in the life markets has led to the creation of various such indices
by investment banks comprising publicly available mortality data for various age
cohorts across populations of many different countries. Therefore many market-
traded securities have payments linked to a survivor index, e.g. they pay out
the survivor index or a function of the survivor index at maturity 7. Hence a
fundamental role is played by the F-martingale

Ele™' " [G] =Ele™' " |Fy] = E[lirory |F], ¢ €[0,T], (21)

since it represents the information on the mortality risk contained in the filtration
F, i.e. it describes the systematic mortality risk as we will see in Section [4] and
Note that in the first equation of we have used that Hypothesis (H) is
equivalent to the fact that conditioning on G; can be replaced by conditioning on
F; for Fp-measurable random variables (see, e.g., Bielecki and Rutkowski [7]).

Commonly the hazard rate process I' is represented as an integral over the mortal-
ity intensity, which itself is given by a diffusion. Here we work in a more general
setting, since we do not require the existence of the mortality intensity. Instead
we describe the systematic mortality risk component E[1i o7y |J], t € [0,T], as
driven by a local F-martingale Y strongly orthogona]] to X, see in Section

We recall that two local martingales X, Y are said to be strongly orthogonal if the product
(X¢Yi)iepo,m) is a local martingale.



and also in Section |§|, where Y is given by a Brownian motion. In general,
financial markets may be affected by consistent or sudden variations of the mortal-
ity rate, hence we a priori do not consider X and Y to be independent. However,
we suppose that they are strongly orthogonal, since mortality is external to the
financial markets, and not hedgeable by investing only in the primary assets.
By Proposition 5.1.3 of Bielecki and Rutkowski [7] we obtain that the compensated
process M given by

M, = Hy —Tipnr, t€][0,T], (2.2)
follows a G-martingale. Since M is a finite variation process and X has no jump

in 7, by Proposition 4.52 of Jacod and Shiryaev [2I, Chapter I| for the square
bracket process we have

(X, M]; = (X, M%)+ Y AXAM,
0<s<t
= Y AX,AM, = XoM =0,
0<s<t

t € [0,T], where X ¢ and MY denote the continuous martingale parts of X and
M. Hence by Proposition 4.50 of Jacod and Shiryaev [21, Chapter I], XM is a
local martingale, i.e. X and M are strongly orthogonal. Note that by the same
arguments M is in fact strongly orthogonal to any F-adapted local martingale.
In this setting we now introduce a square integrable (discounted) life insurance
payment process A:

Ay = Ly Ar + Ly Loy A, (2.3)
where A = (At)te[o,T} is an F-predictable process, such that E {Supte[o’ﬂ flﬂ < 00
and A is a Gr-measurable random variable, such that E[A?] < oo.

Remark 2.1. We would like to comment on the structure of A as defined in ([2.3)).
The first part

]]'{TST}AT

consists of a so-called term insurance contract, i.e. the contract pays out A, at
the random time T in case of death before T'. The second part

L7} A

is a pure endowment contract, i.e. the contract pays out A in case of survival until
T. It is now widely acknowledged (see, e.g. Barbarin [2], Biffis [§] and Mpller
[24]) that most mortality linked securities of practical relevance are of the form
(12.3). For example, consider an annuity contract with accumulated payments up to
the time of death given by C = (Ct);e(o,1), where C is an F-adapted, non-negative
continuous increasing process such that Co = 0. Then the accumulated payoff can
be decomposed as

T
/o 1(55)dCs = Crlir<ry + Crlgrsry,
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i.e. the payoff is given by with Ay = C; and A = Cp. Also note that the
form of A is in fact very general as a consequence of Lemma 4.4 in Chapter
IV.2 of Jeulin [22], where the general form of a G-predictable process in terms of
F-predictable processes is given.

Recall that the primary financial market is arbitrage-free (but not necessarily
complete), and it is a well-known fact that Hypothesis (H) is a sufficient condition
for the market given by the larger filtration G to be arbitrage-free, see, e.g.,
Blanchet-Scalliet and Jeanblanc [IT]. Nevertheless, since it is impossible to hedge
a short position in A by investing in a portfolio consisting only of the primary
assets our extended market model G is incomplete even in the case where the
reduced market generated by X is complete. In order to find a price and hedge
for the life insurance liabilities we therefore make use of a well-known quadratic
hedging method for pricing and hedging in incomplete markets, the (local) risk-
minimization approach that will be briefly discussed in the following section.

Remark 2.2. In this work our focus is on risk-minimization with an application
to life markets in a general setting, i.e. our modeling framework regarding the two
primary assets is generic in a sense that we do not specify the dynamics of the
bank account, but instead directly consider everything in a discounted world. In
fact various choices for the discounting factor are feasible in this context, such as
the so-called P-numéraire portfolid, under which according to Platen and Heath
[26]] the discounted asset prices are local martingales if they are described by con-
tinuous processes or in a wide class of jump-diffusion models.

3 Risk-minimization

The (local) risk-minimization method is a quadratic hedging approach that was
first introduced by Follmer and Sondermann [20] in the case of European type
contingent claims and later extended to the case of payment processes by Mgller
[25] and later Schweizer [29] and Barbarin [2, Chapter 4]. It has since become
a popular method for pricing derivative products in incomplete markets that are
influenced by orthogonal sources of randomness. In this section for the readers
convenience we briefly review all aspects of the theoretical background that are
relevant for our purposes. Note that this borrows extensively from Mgller [25] and
Schweizer [2§].

A strictly positive, finite, self-financing portfolio V* with initial capital 1 is called P-numéraire
portfolio, if every nonnegative, finite, self-financing portfolio V' with initial capital 1, when de-
nominated in units of V*, forms a supermartingale, that is for 0 < s <t < T':

Vi
E
{Vt*

Vs
Ve

?s} <



It is our aim to find a price and hedge of a square integrable American type (di-
scounted) life insurance payment process A = (A)ejo,r) in the financial market
defined in Section [2| by means of the risk-minimization method. Recall that since
the discounted asset price X is a local P-martingale the market is arbitrage-free,
in particular the measure P itself belongs to the set of equivalent local martingale
measures. However, the market given by X might not be complete, and in parti-
cular the extended financial market defined by G = F V H is not complete, since
the time of death 7 occurs as a surprise to the market and hence represents a kind
of “orthogonal” risk. Therefore any structured product relying on information
of the time of death cannot be completely hedged by investing in X. Since the
market is incomplete, it is in general not possible to find a self-financing hedging
strategy that perfectly replicates the insurance payment process. The idea of risk-
minimization is to relax the self-financing assumption, allowing for a wider class
of admissible strategies (that may not necessarily be self-financing), and to find an
optimal hedging strategy with “minimal risk” within this class of strategies that
perfectly replicates the life insurance payment process. In the following we now
explain how to find the risk-minimizing strategy and explain in what sense this
strategy is optimal. We begin with some definitions.

Definition 3.1. An L%-strategy is a pair ¢ = (£,£°), such that € is a G-predictable
process belonging to L?(X), with

T 1/2
LA (X) := {’fG—predictable, E [/ £2 d[X]s] <,
0

and &9 is a G-adapted process such that the discounted value process
‘/t(QD) :tht+§1(€)7 te [OvT]’
is right-continuous and square integrable.

Note that both the investment in the risky asset £ as well as the investment in the
bank account ¢ are both allowed to be G-adapted, i.e. we assume that all agents
invest according to information incorporating both the asset price and the time
of death. For an L2-strategy the (cumulative) cost process C(yp) is defined by

Ct(SO) = %(S@) - 0.4 58 dXS + At7 le [O’T]v

describing the accumulated costs of the trading strategy ¢ during [0, ¢] including
the payments A;. Note that V;(¢) should therefore be interpreted as the discounted
value of the portfolio ¢; held at time ¢ after the payments A; have been made.
In particular, Vp(¢) is the value of the portfolio upon settlement of all liabilities,
and a natural condition is then to restrict to 0-admissible strategies satisfying

Vr(p) =0 P-as.



The risk process of ¢ is given by the conditional expected value of the squared
future costs

Ri(¢) =E[(Cr(p) = Ce(¢))?[G),  t€[0.T], (3.1)

and is taken as a measure of the hedger’s remaining risk. We would like to find a
trading strategy that minimizes the risk in a sense we define now.

Definition 3.2. An L2-strategy ¢ = (&,£°) is called risk-minimizing, if for any
L2-strategy ¢ = (&,£0) such that Vi (p) = Vr(p) = 0 P-a.s., we have

Ri(p) < Ri(p), te€l[0,T],
i.e. @ pointwise minimizes the risk process introduced in (3.1)).

The key to finding the strategy with minimal risk is the well-known Galtchouk-
Kunita-Watanabe (GKW) decomposition, see Ansel and Stricker [I]. Since A is
square integrable, the expected accumulated total payments may be decomposed
by use of the GKW decomposition as

E[Ar|Si] = E[Ar | So] + /]O JEAX L teloT) (3.2)

where ¢4 € L?(X) and L is a square integrable martingale null at 0 that is
strongly orthogonal to the space of stochastic integrals with respect to X

#(x) = { [ wax|v e 120},

i.e. for ¢ € L*(X), L{ [T dX, t €[0,T7], is a (uniformly integrable) martingale.

Theorem 3.3. There exists a unique 0-admissible risk-minimizing L?-strategy
v = (&¢°), given by

gt = 6247
& = Vi) — &X,

with discounted value process
Vi(¢) = E[Ar| S — A, = E[Ar | S0 + /]0 G0+ L= A

discounted optimal cost process
Culp) = B[Ar| o] + L = Co(p) + L,
and minimal risk process
Ri(p) =E[(L7 — L{)?| S,

t € [0,T), where €4 and L? are given by (3.2).



Proof. See Schweizer [28] for the single payoff case or Mgller [25] and Schweizer
[29] for the extension to the case of payment streams. O

Note that the preceding approach relies heavily on the fact that the discounted
asset prices are local martingales under the original measure P. In a more general
setting, when the discounted asset price is merely required to be a semimartingale
under P, one finds the price by following the local risk-minimization technique,
see Schweizer [29] or Barbarin [2, Chapter 4]. For more information on (local)
risk-minimization and other quadratic hedging approaches we would like to refer
the interested reader to the survey paper of Schweizer [2§].

4 Risk-minimization for life insurance liabilities

Under the hypotheses of Section [2] we now compute the price and hedging strategy
for the life insurance payment process A as introduced in by applying the
results of Section In order to find a hedging strategy with optimal cost, we
compute the GKW decomposition of

E[AT ‘ 915] = E[ﬂ{rgT}AT | 9t] +E[]]'{T>T}A~ | 9t]7 te [07 T}' (4‘1)
a) b)

We now separately compute the terms a) and b) in (4.1). We start with a).

Lemma 4.1. Let A = (At)te[O,T] be given as in (2.3). Then for a) in (4.1) we

have the following decomposition:
E[1i<7yAr | Ge] = mo +/] ]1{T>S}6FS din +/} }(As — U dM,, te(o,T],
- 0,t - 0,t

where

t_
Ut = mt - / Ase_rs dFS (42)
0

and

T _
mt =K [/ ASG_FS dFS fft‘| . (43)
0

Proof. First note that since I' is continuous and increasing and M is stopped in
7, by Proposition 5.1.3 of Bielecki and Rutkowski [7] we have that

Lii=1lgope"=1- | Lo dM,=1 —/ el dM,, te[0,T]. (4.4)
10,¢] 10,¢]

Then by Corollary 5.1.3 of Bielecki and Rutkowski [7] for ¢ € [0, 7] we have

E[Llr<ryAr | G = LirciyAr + LU,

10



where U is given by (4.2]) and m is given by (4.3). By (4.4) and an application of
1t6’s formula we get

LUy = mo + Ls_dUs + Us—dL,
10,1] 10,1]

t _
= mo + / Li;sgpe dims — / LissAsdls — / elsU, dM,
10,t] - 0 - 10,t]
since U has no jumps in 7. Hence for t € [0,7] we obtain that
_ _ t _
E[]]'{TST}A’T ’ gt] = HiA; +mo + ‘/]0 q ]]-{Tzs}ers dms — /0 I]-{TZS}AS dl's
— / et Uy dM;
0,¢]
— g + / 1irsspe™ difns + / (A, — U,y dM,
10,t] - 10,t]

and the result follows. O

Note that Corollary 5.1.3 of Bielecki and Rutkowski [7] requires A to be bounded.
However, it can be easily seen that this result also holds if E[sup;¢o 1] A?] < 0
and we may therefore apply it in our setting. For the second term b) of we
have the following result.

Lemma 4.2. Let A € L?(Gp,P). Then for b) in (&1) we have the following
decomposition:

E[l{~73 A S :m0+/ Lisqe dms—/ elemgdM;, t€[0,T),
10,t] - 10,t]

where

my = E[]l{r>T}xZ1 ’ Cﬂ]- (4.5)
Proof. By Corollary 5.1.1 of Bielecki and Rutkowski [7] we have
E[lrsryA|Si] = Loy, t€[0,T),

where m is given by (4.5). By the same arguments as in the proof of Lemma
we get

Ly = 1 + / Ly ding + / s dLg
10,¢] 10,¢]
= 1My +/ Lsge s dimg — / elsimg dM,
o4 T 10,1]

hence the result follows. O

The next theorem states the most important result of this work, providing the
risk-minimizing strategy of the insurance payment process as defined in (2.3)).

11



Theorem 4.3. In the market model outlined in Section [, every insurance pay-
ment process admits a risk-minimizing strategy ¢ = (£,€%) given by

gt = ]]-{th}ertg;ﬁma

& =Vi—&Xi = Vi — Lpoye g Xy,
with discounted value process
Vi(p) = E[A7 | G] — A
=mo + /]O,t] Lirsspe 5 dX, + /}o,t} Lrsspe' *nltdY,

+/ ]]'{7'>S}€FS dC;n +/ ¢£/l dMs — Ay (4'6)

10,t] - 10,t]

and optimal cost process

Cilg)=mo+ | Lpsgel il d¥er [ Bgmgetacr+ [ plan, @)
10,t] - 10,t] - 10,¢]

for t € [0,T], where the processes M, m, oM em o p™ and C™ are introduced
respectively in (2.2)) and (4.9) - (4.11]).
Proof. By Lemma [4.1| and Lemma (4.2 for ¢ € [0,7] we have that

VA =E[Ar |G = mo +/ Lisspe s dmyg +/ P dM, (4.8)
10,t] - 10,¢]
with
T _ -
my = mt + ﬁlt =K [/ ASG_FS dFs 35;| + E[:H.{T>T}A | Sjt] (49)
0
and -
M = A, — (U, + my), (4.10)

where m, m, and U are defined in (4.2)), (4.3)) and (4.5).

We now compute the martingale representation for the process m as defined in
(4.9) in terms of the underlying driving process X and Y, as introduced in Section
By Lemma 2.1 of Schweizer [28] for all £, n F-predictable processes satisfying

E [/Ongd[X]s] E l/oTngd[Y]S] < o0,

we have that the integral processes [&;dX;, [nsdY; are square integrable F-
martingales. Furthermore, since X and Y are strongly orthogonal, by Proposition
4.50 of Jacod and Shiryaev [21, Chapter I] the bracket process [X,Y] is a local
martingale, hence

[ax., nsdn]tzjotgsnsd[x,lf], te (0,7,

12



is a local martingale, e.g. by Jacod and Shiryaev [21, Chapter I, 3.23], and since
by the Kunita-Watanabe inequality we have

T 1/2 T 1/2
/ ggd[X]S] El/ n?d[Y]S] < 0,
0 0

it is in fact a (uniformly integrable) martingale, and therefore (again by Proposi-
tion 4.50 of Jacod and Shiryaev [2I, Chapter I]) the product

t
E [ sup ‘/ Esms d[X, Y
te[0,7] "' /0

<E

t t
/fsdxs-/ nedYs, te[0,T],
0 0

is a (uniformly integrable) martingale, i.e. the two processes are strongly orthog-
onal. Since by (12.3) and Jensen’s inequality for any ¢ € [0, 7] we have

([ )

E[m;] < E[A?] < oo,

<E| sup A?

te[0,7)

< 00,

as well as

the process m as given in (4.9)) is a square integrable F-martingale as a sum of
square integrable martingales. Hence, e.g. by Protter [27, Chapter IV.3], m admits
a decomposition

mt:mo—l—/ 5;”dXS+/ WY, 4O, e [0,T), (411
10,¢] 10,¢]

where ™, ™ are F-predictable processes satisfying
4 2 4 2
E [ | dms] E [ | .

and C™ is a square integrable martingale strongly orthogonal to [&*dX, and
[ nlrdYs, ie. [EMdXs-C™, [ dY; - C™ are (uniformly integrable) martingales.
Therefore we have that

VA = E[Ar| G = mo + /]0 ! oy A, + /]O ! (o AY,

< 00,

+/ 1{T>S}efsdc;”+/ YpMdM,, te0,T]. (4.12)
10,t] - 10,t]

We now prove that (4.12)) is indeed the GKW decomposition of E[Ar|G:]. To
this end we need to show that the integral with respect to X in (4.12)) is square
integrable, and that the process

L= [ dgegetnrdves [ Lpsgelacr+ [ pMan,,
10,¢] - 10,¢] - 10,¢]

13



t € [0,T], is square integrable and strongly orthogonal to the space J%(X) of
stochastic integrals with respect to X. First note that by (2.3|) we have

E[(V;")?] < E[A7] < o0, te[0,T],
hence V4 is a square integrable martingale and E[[V4]7] < oo (see, e.g. Corollary

3 of Theorem 27 in Chapter II of Protter [27]). Since

T
E[[VA]T]:EVO Ly 2 dims | +E

where we have used (4.8]) and the fact that m has no jumps in 7, i.e.
[m, M]y = > Am,AM; =0, te[0,7],

0<s<t
we have that

< 0.

E [ [ wirana,

Besides that since I' is increasing and I'7 is bounded, we have that

E [ [ @y dms] <o, (4.13)

and analogously for the second and third term in (4.12)) we have that

E [ / Loy dms] < o0, (4.14)

as well as

< 0.

T
E [ | @2 diem,

Hence all integrals in (4.12) are square integrable martingales by Lemma 2.1 of
Schweizer [28], and L# is square integrable as the sum of square integrable mar-
tingales. Furthermore for a G-predictable process ¢ € L?(X), i.e.

E [/()Twid[X]s

< 00, (4.15)

we have that
t
qusdxs,/n{@}efsngldy;] :/0 Lisqge v dX,Y], te[0,T],
t

is a local martingale, e.g. by Jacod and Shiryaev [21], Chapter I, 3.23], and in view
of (4.14)) and (4.15)) and again by the Kunita-Watanabe inequality we have

t
E [ sup ‘ / Lirsape’ *osnl d[X, Y]y
te[o,7]"' /0

| <

14



i.e. the bracket process is in fact a (uniformly integrable) martingale, and therefore
by Proposition 4.50 of Jacod and Shiryaev [21, Chapter I] the product

t t
/ s d X / Tsgyel i dYs, te (0,7,
0 0 -

is a (uniformly integrable) martingale. With the same arguments it can easily be
seen that

t t
/ 1/}5 dXs : / :l]-{7->s}er deena le [OvT]7
0 0 B

is a (uniformly integrable) martingale. Finally

[weax., [l dMs]t

- /t GepM d[X, M), = 0,
0

for t € [0,T] since X and M are strongly orthogonal and X has no jumps in 7,
i.e. the product

t t
/q,z)sts./ oMdM,, telo,T),
0 0

is also a (uniformly integrable) martingale. Putting everything together we have
obtained that

t
/ Yo dX, - LA, tel0,T),
0

is a (uniformly integrable) martingale for ¢» € L?(X), i.e. L* is strongly orthogonal
to J2(X) and thus ([4.12) is the GKW decomposition of E[Ar | G;]. By the results
of Section [3| it then follows that the risk-minimizing strategy ¢ = (&,¢°) is given
by

St = ]]-{th}ertgtma
& =V — &Xe,

for ¢t € [0,T], with discounted value process V;(¢) = E[Ar|G;] — A; and optimal
cost process Cy(p) = mo + L. O

Note that in (4.6)) every term is stopped in 7, i.e. the value process is constant
after 7. Besides that every integral with respect to the local F-martingales X, Y

and C™ contains the ratio
Lir>g

P(T >t ’ fTrt) ’
i.e. the actual survival event divided by the conditional survival probability on IF.
Also note that the cost process in (4.7)) is essentially made up of three components,
given in terms of orthogonal integrals with respect to the processes Y, C™ and M.
While the component associated to C™ in general cannot be eliminated unless the
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processes X and Y have the predictable representation property (see Corollary
, the other two integrals with respect to Y and M represent the systematic
and unsystematic component of the mortality risk. As we will see in Section
these risks may be eliminated by introducing suitable mortality-linked products
related to Y and M on the financial market.

Corollary 4.4. Assume X andY have the predictable representation property with
respect to the filtration F (see, e.g., Protter [27, Chapter IV.3]). Then C™ = 0
in decomposition (4.11) and the square integrable martingale m defined in
admits a decomposition

mt:mo—l—/ f?dXer/ qrdY,, te0,1), (4.16)
10,t] 10,t]

where €™ and 7™ are F-predictable process satisfying
T T )
B| [ @raxt| | [ arra.
In this case the insurance payment process A as defined in Section [3 admits a
risk-minimizing strategy @ = (£,£°) given by

gt = ]]-{th}ertélna

& =Vi—4Xi =Vi— Lpspe & Xy,

< 00.

with discounted value process
Vi(p) = E[Ar | G¢] — Ay

=m0+/ Lir>spe €l dX,
j0g -

+/ Lirsgpe i dYs+ | ot dMy — A (4.17)
10,¢] - 10,¢]

and optimal cost process
@) =mo+ | gmgeliravi+ [ wan,
}Ovt} N ]O,t]

fort € [0,T], where the processes M, m, M, ém and 7™ are introduced respec-

tively in (2.2), (4.9), (4.10) and (4.16).

The predictable representation property is often associated with the completeness
of the underlying financial market. However, assuming that the predictable rep-
resentation property holds does not necessarily imply that the financial market
is complete and vice versa, since these properties depend largely on the specific
characteristics of the underlying driving price processes as well as the structure of
the filtration (see, e.g., Cont and Tankov [I4, Remark 9.1]).
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Note that in Corollary means that the GKW decomposition of the
square integrable F-martingale m has a special structure, where the orthogonal
part consists only of the integral with respect to Y. In particular we have that
C™ =0 in if (X,Y) have the predictable representation property with
respect to the filtration F. This is the case for example if F is generated by two in-
dependent Brownian motions driving X and Y. However in more general settings
it often may not be possible to decompose m in this way, in fact this is the case
in many jump diffusion models. However we will see in Section [0} that if the life
insurance payment process has a special structure then it might be possible to find
a decomposition of m as in , even if X and Y do not have the predictable
representation property with respect to F (see in Section @

5 Extending the financial market

We now turn to a more detailed analysis of the cost process in (4.7). If we consider
the GKW decomposition as computed in (4.6 for a given payment process, we
can see that the cost is generated by the following orthogonal components:

e Y the driving process of the conditional survival probability,
e M, the compensated jump process of the time of death, and

e (™ the orthogonal part due to the predictable decomposition of the F-
martingale m in (4.9)).

Then a natural question is: Can we introduce mortality-linked products into the
financial market, that can be used to hedge the cost parts due to Y and M? For
illustration purposes in the following we set C™ = 0 and for the short rate we
assume r, = 0, t € [0,7T], i.e. the bank account is constant. Following Cairns
et al. [I2] we now assume there exists another risky asset traded on the market,
a zero-coupon longevity bond with maturity T, (PtT)te[o,T}, with discounted asset
price given by

Pl =E[e 7 |G] =Ele ' |F] =E[lomy| T, €[0T,

i.e. a zero-coupon bond that pays out the survivor index at maturity. As discussed
in Section [2] since it is given by the conditional survival probability, it may be
seen as incorporating the systematic mortality risk. Recall that we have defined
Y as driving the martingale P7 i.e.

pr :POT+/ ¢PL dy,, telo,T), (5.1)
10,1]
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for an F-predictable process ¢. If ¢; # 0 a.s. for all ¢ € [0,T], inserting this in

(4.17)) immediately leads to
Vi(@) = E[Ar|G] —
€ 577?1 T
=my TL/ ]]-{7->s}e fs dX +/ ]]-{7'>s} C dPs
+ wé\/[ dMs - Aty (52)
10,¢]

i.e. we obtain the price of the life insurance payment process in terms of the
investments in X and PT, thereby eliminating the cost part associated to the
systematic mortality risk. We now assume that there exists a third risky asset
actively traded on the market, directly related to the time of death 7. This
will finally enable us to eliminate the cost part due to M. We introduce a pure
endowment contract £ = (Et)t€[07T], i.e. a life insurance contract that pays 1 at
maturity T if the individual survived, with present value

Et = E[]]'{T>T} | St], t e [O, T].

As the following computations show, E, PT and M are closely related to each
other and we may find a representation of M in terms of P” and E. By Lemma
5.1.2 of Bielecki and Rutkowski [7] we have that

E[lirsry | T

By =1 — = Pl ot T
{T>t} ]P)(T >t|9:rt) tL¢ € [07 ]7

where L; = (1 — Hy)e't. By (4.4) and since PT has no jumps in 7, it follows that

LBl = LoPy + /}0 t) La-dPy 10,4] Fr-dLs

:LOPOTJr/ L dPST—/ PT L aM,,
10,t] 10,t]

i.e. for t € [0,T] we have
dE; = L;_dP} — PLetdM
and
; 24 qpT - o
Note that P, el £ 0 for all t € [0, T]. Hence by inserting this in we obtain
V(@) =E[Ar | G¢] -

= mg + /Ot I{TZS}eFSéZ” d X,

ety % / a
1 apT — dE, — A,
" / fr=st ( GPL TP ) * Jjog PEel '

dM; =

s

18



In practice insurance companies often trade mortality-linked contracts similar to
PT | where the payoff at maturity is directly linked to a survivor index. Examples
of such products include e.g. the EIB/BNP and Swiss Re bonds in 2004 or futures
and options on survivor indices (see, e.g., Blake et al. [9]). However, as shown very
clearly by the above computations, by themselves these products are not able to
offer complete protection against mortality risk, since a remaining source of ran-
domness is directly related to the knowledge of 7, i.e. the unsystematic, individual
mortality risk, and requires an additional asset in order to be hedged.

6 Example: unit-linked life insurance

In this section we assume given two independent Brownian motions W = (W4)¢(0,77,
WH = (W{')epo,r) and a compound Poisson process Q = (Qt)sejo,11,

Nt
Qe=> Y, tel0,T],
=1

where N = (Nt)te[O,T] is a Poisson process with intensity A > 0 and Y; are i.i.d.
random variables independent of N with ¥; > —1 a.s., ¢ > 1, such that E[Y;] =
B < oo and E[Y{] < co. We then assume that the filtration F is generated by
these three processes, i.e. F = FW v FW* v F?, where FW, F"" and F? are the
natural filtrations of W, WH# and (). For the discounted asset price process we
assume a jump diffusion model

dXt == O'tXt th + Xt, d@t, XO =, (61)

for t € [0,T], with Q= Q; — BAt and 0 = (0t)tejo,r) is a bounded, F-adapted
process. Then X is a local martingale and the solution to (6.1]) is given by

Ny

t 1/t
X; = xexp{/ osdWs — (B)\t+ f/ afds)} H(Yl +1), te]l0,T].
0 2 Jo i=1
Since o is bounded and by Doob’s maximal inequalities we have
E [ sup Xf} <AE[X%] < erexp{(c — 1)AT} < oo, (6.2)
t€[0,T]

where ¢; € Ry and ¢ = E[(Y; + 1)?], hence X is in fact a (uniformly integrable)
martingale. We assume that the hazard process admits the following representa-
tion:

t
rt:/ usds, telf0,T), (6.3)
0

where the default intensity or mortality rate p is a non-negative F-progressively
measurable process. Stochastic mortality modeling has been studied extensively
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in the literature, see, e.g., Biffis [§], Dahl [15] and Milevsky and Promislow [23]
for different modeling approaches for the spot force of mortality in continuous
time and Cairns et al. [12] for an overview of existing modeling frameworks for
stochastic mortality. Here we follow the affine approach of Dahl [I5] and assume
that p is given by the Cox-Ingersoll-Ross model

dp = (a+bpy) dt + e/ AW, po = 0,

fort € [0,T], b € R and a,c € Ry. Note that the process I' as introduced in
is not bounded, however we will show later, that the results of Section [4] remain
valid in this setting even without this assumption, in particular equations (4.13))
and still hold. Since p is an affine process, e.g. by Filipovié¢ [19] we have
that

Ele 17 |G = e TE[e” ftT ps ds | TV = e Tred®+BMme ¢ ¢ [0, 77,
where the functions a(t) and §(t) satisfy the following equations:
dra(t) = —ap(t), o(T) =0,
Q1) = 1 - bB(1) — SPB(0), BT =0,

t € [0, T]. It is well-known that the explicit solutions are given by

) = 2@1 2’}/6(’7_1))(’11_75)/2
W=\ G nEer I )

2(e¥T=t) — 1)
(v = b) (T — 1) + 27

B(t) = -

t € [0,T], where v := vb?>+2c¢?. Then by Itd’s formula, since the process
e Tita®+BMne € 0,7, is continuous we get

d(e Ttea®+BHney — e—Ft'f‘a(t)""B(t)Ntc\//Ttﬁ(t) dw, (6.4)

hence in this setting the local martingale Y, introduced in Section [2| and
in Section |5| as the driving process of the martingale E[exp{—I'r}|J], is given
by the Brownian motion W*. Note that @ and W, W# are independent (see,
e.g., Chapter 11 of Shreve [30]) and by simple calculations it is easy to see that
W, W# are independent if and only if they are strongly orthogonal. Similarly
one can also show that @W and @W“ are martingales. Hence in this context
we may apply the results of Section [4], since the underlying driving processes are
strongly orthogonal martingales. We now study the case where the insurance
payment process as defined in Section [2] is given by a (discounted) unit-linked
term insurance contract:

AT == :H'{TST}XT?

20



i.e. a life insurance contract that pays out the discounted asset price in the case
of death prior to maturity. Since X has no jumps in 7, we have that

Lir<nXr = Liramy Xo oy

ie. Ay = X;_ fort e [0,7] and A =0 in (2.3) and consequently for m as defined
in (4.9) it follows that

T
my =E [ / X, e Tsdr, ‘ fﬂ]
0

t T
:/ Xe ' dl, +E / X,e tedr, fﬂ], t€[0,T]. (6.5)
0 t
By the independence of W and W, ) we get
T T
E / Xee T dr, | 7| = / E[Xse_rs,us ?t} ds
t t

— /TIE [Xs
t
T
= X;E [/t e*FSus ds ‘ ?XW]
=X, (e —E [T ’ g"), tel0, 1. (6.6)

Then by (6.5 and we have that

TV v fﬂQ} E [efrs,us

51" | ds

my = /0 CXye T dl, 4 Xoe T - XGE e \ 7]
= /Ot e TsdX, — X;E [e—FT ‘?XV“} , teo,T],

and by inserting (6.4) and again by the independence of W and W# we have
d(Xe Tera®)+8Mney — o=TitaO+60m q x, 4 Xiey/meB(t)dW!]

for t € [0,T]. Therefore we obtain

my = x(1 — ea(o)) + e ts(1— ea(s)Jrﬁ(S)us) dXx,
10,4]

t
_ / eiaB(s) Xye Tt B@ms qe te 0, 7). (6.7)
0

We would now like to comment on the integrability conditions as imposed in
Section 4| and how they apply in this context. Note that implies that the
processes £™ and n™ as introduced in are well-defined and in this setting
given by

gr =eTt(1 — 2Oy - e [0, T],
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and
N = —cy/ (1) Xpe T8 0m e [0, 7).

Hence in (4.13)) we have
T r 2
| [ e erra]
T
<E [/ (1 — () FB(s)ns)2 d[X]sl
0

<AE[[X]r] < oE [ sup X?| < oo,

te[0,7

co € Ry, where we have used (6.2)) and the Burkholder-Davis-Gundy inequalities.
Furthermore, in (4.14) we have

T I's, m\2
E [/0 (]1{7'25}6 773) d[Y]S‘|
T
<k|[ (c\//Tsﬁ(S)Xse”(s”ﬁ(s)“S)zd[Y]s]
0

T
< c3E [ sup Xf] E l/ MSdS} < 00,
t€[0,T)] 0

c3 € Ry, since B(-) is bounded on [0,7] and the integral over the square root
process p has finite first moments, see, e.g., Dufresne [I8]. Hence the results of
Section [d] remain valid in the context of this model, even though I" is not bounded.

By (4.2)), (6.5) and for U; we obtain
t W
U, = my 7/ Xee Lo dly = X, (e—Tt ) [e—FT‘fftW ]) t e 0,7,

0

hence for Y™ as defined in ([4.10)) we have
M = A, — " U, = Xy — Xy (1 — e2OFB0rey ¢ e (0,77,
and again, since X has no jump in 7, in (4.6)) we obtain:
Vi = E[L{r<ry X7 |Gt — A
=z(1—e*0) 4+ / Lirsgp(1— eI HBEms ) g X
04 7
t
- /0 L s cy/isB(s) Xoe® TPk s

+ XS an, — A, te[0,T),
10,4]
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or, in the setting of Section |5| with two additional risky assets PT and E,

Vi = a(1— ) +/ Lipsg (1 — @8I
(N

t t 1
I's T o(s)+B(s)us T
—/0 ]].{7.25}6 X dP; —l—/o —ST (]].{TZS}Xse (s)+B(s)p )dPs

1

— 2(1 - e*®) 4 / T(rngy (1 — X000 4,
04 T

— | X,dE,— A, tel0,T).
Jo.1]
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