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Abstract

We present a flexible premium determination method for insurance products, in particular for
unemployment insurance products. The price is determined with the real-world pricing formula and
under the assumption that the employment-unemployment progress of an insured person follows an
F-doubly stochastic Markov chain. The stochastic intensity processes are estimated for the German
labor market, using Cox’s proportional hazards model with time-dependent covariates on a sample
of integrated labor market biographies. The estimation procedure is based on a counting process
framework with stochastic compensators, which we show to be naturally connected to the class
of F-doubly stochastic Markov chains. Based on the statistical analysis, the prices are computed
using Monte Carlo simulations.
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1. Introduction

The debt crisis in the Euro zone with Cyprus, Greece, Ireland, Portugal and Spain having applied
for financial assistance of the European Stability Mechanism (ESM) or the European Financial
Stability Facility (EFSF), respectively, constitutes an immense challenge for Europe and the rest of
the world. One of the core structural problems of the affected countries is a troubled labor market
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with unemployment rates around 25%. Beside the financial drawbacks for the unemployed people,
these high levels of unemployment rates burden the public unemployment insurance systems as
well as the private insurance sector, which has started to introduce special products against unem-
ployment. The demand on modern, well elaborated and tested mathematical models for premium
determination and risk mitigation for these kind of insurance products, but also other insurance
products in general, is high and an ongoing field in actuarial research, see e.g. Bacinello et al.
(2009), Biagini and Schreiber (2012), Biagini and Widenmann (2012, 2013) or Møller (1998). In
times, where all sectors of an economy are closely connected, one main issue in this context is to con-
sider the insurance market as part of a hybrid market, consisting among others of stocks, equities,
commodities, fixed income and insurance products, all influenced by micro- and macro-economic
factors. Hence, the correlations and dependencies of models for (unemployment) insurance products
and other sources of randomness in hybrid markets need to be investigated thoroughly.
In this context, the present paper aims to introduce a flexible premium determination framework for
unemployment insurance products, particularly for so called payment protection insurances (PPIs):
given some underlying payment obligation of the insured person, e.g. a loan, the insurance company
will take over the instalments during an unemployment period. In this way, the financial challenges
for the insured persons and the credit default risk for the creditor are both reduced at the same
time.
Our pricing model is generally based on a two-state switching process with state space {1, 2} (1 =̂
employed, 2 =̂ unemployed), generated by two stochastic intensity processes. Generally speak-
ing, the intensity of a transition from employment to unemployment at time t characterizes the
conditional instantaneous probability at time t for an employee to become unemployed, given the
currently available information. The intensity of a transition from unemployment to employment
is interpreted analogously. In regard to the aforementioned dependencies of the model in hybrid
markets, we assume the intensity processes to be driven by individual-related as well as macro- and
micro-economic covariate processes, see Equation (1) in Section 2.
An adequate class for the two-state switching process, which allows for stochastic intensity processes
is the class of F-doubly stochastic Markov chains, introduced by Jakubowski and Niewęgłowski
(2010). It extends the notion of classical Markov chains.
As general pricing rule we adopt the real-world pricing formula, see Platen and Heath (2007). A
first model, using F-doubly stochastic Markov chains and the benchmark approach for pricing PPIs,
is proposed by Biagini and Widenmann (2012). However, the intensities there are assumed to be
random, but not varying over time. In the present paper we extend this approach in order to address
the more realistic case of stochastic intensity processes. However, in this case it is generally not
possible to obtain an analytical expression for the insurance premium which will be here computed
by using Monte Carlo simulations.
In order to calibrate the price for the unemployment insurance products to real data, we esti-
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mate the intensity processes using Cox’s proportional hazards model, see Cox (1972, 1975) and
Andersen et al. (1993). Our data set is provided by the “Institut für Arbeitsmarkt- und Berufs-
forschung” (IAB) and contains a sample of integrated labor market biographies, including the
duration of employment and unemployment periods between 1975-2008 of more than 1.5 million
German individuals as well as several useful socio-demographic covariates, such as age, nationality,
educational level, regional details, etc. In order to reflect additional dependencies of the intensity
processes of macro-economic factors, we also incorporate further covariates such as time series for
MSCI-world returns and German unemployment rates.
An advantage of using Cox’s proportional hazards model is the availability of adequate implemen-
tations, see for example the R-packages corresponding to de Wreede et al. (2010), Jackson (2011)
or Aalen et al. (2004); a Bayesian approach is proposed by Kneib and Hennerfeind (2008) and im-
plemented in the software BayesX. Here, a major difficulty is to adequately operationalize the data
set with regard to the software packages.
Technically, the implemented estimators are based on the theory on multivariate counting processes
and their compensators, where the counting process is assumed to count subsequent jumps of the
same kind of an underlying multi-state switching process. Given the martingale property of the
compensated counting process, estimators for the compensators can be derived. In the present
paper we extend the existing theory for (classical) Markov chains3 and show that the class of F-
doubly stochastic Markov chains is the natural candidate for the underlying multi-state switching
processes corresponding to the multivariate counting processes with stochastic compensators of the
form given by Cox’s proportional hazards model. This relation can easily be extended to general
multiplicative hazard models as given in Andersen et al. (1993).
In order to test the obtained estimation results, we apply conventional goodness-of-fit methods.
The results generally show adequate performance of the estimated model parameters. Moreover,
we introduce a further, non-standard method for testing the applicability of the obtained parameters
with respect to prediction, by comparing actual and simulated jump times for selected paths from
the data set. The results here show good predictive power, which implicates robustness of the Monte
Carlo simulations to compute the premiums. A sensitivity analysis of the insurance premiums also
confirms these findings.
Our approach, therefore, represents a flexible premium determination tool for unemployment in-
surance products since it takes into account various risk factors. Moreover, it can be easily adapted
to model and estimate stochastic intensities and dependence structures in many other different
applications of financial and actuarial practice as well as from other fields.
The rest of the paper is structured as follows. In Section 2 we introduce the form of the considered

3The classical time-inhomogeneous Markov chains generally have deterministic matrix-valued intensity functions
of time. The corresponding counting processes also have deterministic compensators.
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unemployment insurance products and derive the pricing formula. The connection between the
multivariate counting processes of Cox’s proportional hazards model and the class of F-doubly
stochastic Markov chains is established in Section 3. Additionally, the data set is described and
estimation results for the intensity processes are presented. The Monte Carlo simulation procedure
is explained in detail in Section 4 followed by a sensitivity analysis of the insurance premiums.

2. Unemployment insurance contracts

We now give a brief overview about the characteristics of unemployment insurance contracts. The
product’s basic idea is that the insurance company compensates to some extend the financial de-
ficiencies, which an unemployed insured person is exposed to. We only consider contracts with
deterministic, a priori fixed claim payments ci which possibly take place at predefined payment
dates Ti, i = 1, ..., N . Hence, the randomness of the claims is only due to their occurrence and not
to their amount. As a practical example, one could think of PPI products against unemployment,
which are linked to some payment obligation of an obligor to its creditor. The claim amount here
is defined by the (a priori known) instalments, which are paid at predefined payment dates.
In order to conclude the insurance contract, the insured person must be employed at least for a
certain period before the beginning of the contract. We therefore assume that all insured persons
are employed at t = 0 almost surely. The contract’s exclusion clauses define three time periods,
specifying whether the insured person is entitled to receive a claim payment or not:

- The waiting period starts with the beginning of the contract. If an insured person becomes
unemployed at any time of this period, she is not entitled to receive any claim payments
during this unemployment period.

- The deferment period starts with the first day of unemployment. An unemployed insured
person is not entitled to receive claim payments until the end of this period.

- The third period is comparable with the waiting period and is called the requalification period.
The requalification period starts, if the insured person is re-employed after a stage of unem-
ployment during the contract’s duration. If the insured person becomes unemployed (again)
at any time of the requalification period, she is not entitled to receive any claim payment
during the whole unemployment period.

For existing unemployment insurance contracts, the waiting, deferment and requalification periods
currently vary from three to twelve months.
We now provide the quantitative framework for determining the premium of unemployment insur-
ance contracts. Note that on the market, there exist several modifications of the described insurance
contract. Moreover, on both financial and insurance markets there exist similar products that can
be investigated analogously. In these cases, it may be necessary to modify the following framework
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accordingly. As the described procedure is based on Monte Carlo simulations, this can be done
easily by adjusting the respective code segments from case to case.
Let (Ω, G, G, P) be a complete, filtered probability space, where the filtration G = (Gt)t∈[0,T ] is
assumed to fulfill the usual conditions of completeness and right-continuity, see Protter (2003), with
some arbitrary time horizon T > 0. Moreover, let X = (X(t))t∈[0,T ] be a right-continuous stochastic
process with state space {1, 2}. Here, the state “1” shall express that an insured person is employed
and the state “2” that she is unemployed. Hence, X represents the employment-unemployment
progress of a person in time. We denote by FX the natural filtration generated by X, i.e. FX

t =
σ(X(u) : u ≤ t) for all t ∈ [0, T ], and assume G = FX ∨ FZ . Here, Z =

(
(Z1(t), ..., Zp(t))

)ᵀ
t∈[0,T ] is

a p-variate predictable process of covariates, representing both individual-related and micro- as well
as macro-economic risk factors, influencing the model as we will see more accurately in Section 3.
We then assume X to follow an FZ-doubly stochastic Markov chain4 with matrix valued intensity
process ΨΨΨ = (Ψt)t∈[0,T ], whose entries αj,k(t), j, k ∈ {1, 2}, j 6= k, at time t admit the representation

αj,k(t) = αjk(Z1(t), ..., Zp(t)), (1)

for measurable functions αjk : (Rp, B(Rp)) → (R+, B(R+)). We define the jump times of X from
one state to the other as

• τ0 := 0

• τn := inf{τn−1 < t ≤ T : X(t) 6= X(t−)} n ≥ 1 ,

where X(t−) := lims↗t X(s). Moreover, we use W, D, R to express the length of the waiting,
deferment and requalification period, respectively. We think of t = 0 as the beginning of the
contract and therefore set X(0) = 1 P-a.s.
We now describe the payoff of the contract. The insurance company has to pay the claim to the
amount of ci at time Ti if the following conditions are satisfied:

• W < τ1 ≤ Ti − D

The first jump τ1 to unemployment of the insured person must occur after the waiting period
W . Moreover, at least the deferment period D must lie between τ1 and the payment date Ti,
i.e. Ti − τ1 ≥ D.
and

• Ti < τ2

The insured person must not have jumped back to employment before the payment date Ti.

OR for j ≥ 2

4For the definition and properties of FZ -doubly stochastic Markov chains, we refer to AppendixA.
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• τ2j−1 − τ2j−2 > R

At least the requalification period R must lie in between a jump τ2j−2 to employment and
the next jump τ2j−1 back to unemployment.
and

• W < τ2j−1 ≤ Ti − D

Any jump to unemployment τ2j−1 must occur after the waiting period W . Moreover, at least
the deferment period D must lie between τ2j−1 and the payment date Ti, i.e. Ti − τ2j−1 ≥ D.
and

• τ2j > Ti

Before the payment date Ti the insured person must not have jumped back to employment.

Based on this, the random insurance claim Ci at the payment date Ti is modeled as

Ci(ω) := ci1
{W <τ1≤Ti−D,τ2>Ti}∪

∞⋃
j=2

{τ2j−1−τ2j−2>R,W <τ2j−1≤Ti−D,τ2j>Ti}
(ω) .

Note that due to the definition of the jump times the events {W < τ2j−1 ≤ Ti − D} ∩ {τ2j > Ti},
j ≥ 1, are disjoint. Therefore, we can rewrite the random insurance claim as

Ci(ω) := ci1{W <τ1≤Ti−D,τ2>Ti} +
∞∑

j=2

1{τ2j−1−τ2j−2>R,W <τ2j−1≤Ti−D,τ2j>Ti}(ω) .

In order to determine the premium for this kind of insurance contracts, we apply the real-world
pricing formula5 as described in Biagini and Widenmann (2012). For a motivation of the use of
this approach for pricing in hybrid markets, we refer to Remark AppendixB.4 of AppendixB. With
the real-world pricing formula (B.2), the price Pt(Ci) of Ci at time t ∈ [0, Ti] is hence given as

Pt(Ci) = Sδ∗

t ci

(
E

[
1

Sδ∗
Ti

1{W <τ1≤Ti−D,τ2>Ti}

∣∣∣Gt

]

+
∞∑

j=2

E

[
1

Sδ∗
Ti

1{τ2j−1−τ2j−2>R,W <τ2j−1≤Ti−D,τ2j>Ti}

∣∣∣Gt

])
,

where Sδ∗ represents the P-numéraire portfolio6, used as benchmark for the market and as dis-
counting factor.
Now we can sum up over all payment dates Ti to receive the (overall) insurance premium Pt at

5We introduce and motivate the real-world pricing formula in AppendixB.
6For the definition of the P-numéraire portfolio, we refer again to AppendixB.

6



time t ∈ [Tk−1, Tk), k ≥ 1,7 given by

Pt =
N∑

i=k

Sδ∗

t ci

(
E

[
1

Sδ∗
Ti

1{W <τ1≤Ti−D,τ2>Ti}

∣∣∣Gt

]

+
∞∑

j=2

E

[
1

Sδ∗
Ti

1{τ2j−1−τ2j−2>R,W <τ2j−1≤Ti−D,τ2j>Ti}

∣∣∣Gt

])
.

An insurance company is mainly interested in the insurance premium P0 at time t = 0. Hence, for
our further calculations, we only consider

P0 =
N∑

i=1

ci

(
E

[
1

Sδ∗
Ti

1{W <τ1≤Ti−D,τ2>Ti}

]

+
∞∑

j=2

E

[
1

Sδ∗
Ti

1{τ2j−1−τ2j−2>R,W <τ2j−1≤Ti−D,τ2j>Ti}

])
. (2)

In order to determine (2), it is necessary to investigate the joint distributions of Sδ∗

Ti
, i = 1, ..., N ,

and the sojourn-times τj − τj−1, j ≥ 1. Note that a major advantage of the pricing formula (2) is
that these joint distributions can be directly investigated under the real-world probability measure.
A first model in this context is given in Biagini and Widenmann (2012), where the underlying jump
process X is considered to follow a special type of F-doubly stochastic Markov chain with random
but not time-varying intensity matrix. Here we extend this approach in order to address the more
realistic case of stochastic intensity processes. Since in this setting it is in general not possible to ob-
tain an analytical expression for P0 as in Biagini and Widenmann (2012), we compute the insurance
premium (2) by using Monte Carlo approximations and solve the problem of describing dependen-
cies among P-numéraire portfolio and sojourn-times as follows. By Bielecki and Rutkowski (2004)
and by considering the insured person to be employed at the contract’s beginning, the jump times
(τj)j∈N are defined in terms of the intensities as

• τ0 = 0 ,

• τj = inf{τj−1 ≤ t ≤ T : e
−
∫ t

τj−1
α1+((j+1) mod 2),2−((j+1) mod 2)(s)ds

≤ Uj} , j ≥ 1 , (3)

where (Uj)j≥1 is a sequence of mutually independent uniformly distributed random variables on
[0, 1], which are also chosen to be independent of the intensity processes. Since under our model
assumption (1) the covariate processes drive the randomness of the intensities, they hence also
determine the sequence (τj)j∈N of the jump times. In particular, if the P-numéraire portfolio Sδ∗

or its monthly returns, respectively, are considered as one of the covariate processes, we intrinsically

7We set T0 := 0 here.
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obtain the required dependency structure between Sδ∗ and the sequence of jump times. The other
covariates can be any risk factors of interest such as individual related characteristics like sex,
educational level, job sector, etc. or other external risk factors like monthly unemployment rates. In
this way, we obtain a highly flexible premium determination framework for unemployment insurance
products, which can be adjusted according to various characteristics of the insured person and to
external micro- and macro-economic risk factors.
This method can also be applied to capture the dependency structures affecting intensity processes
in other kinds of applications.
In the following section we apply the well-known and elaborated Cox’s proportional hazards model
to estimate the intensity processes on a real data set provided by the IAB.

3. Estimation method of the intensity processes

The development of suitable statistical models for general multi-state switching processes with ap-
plications e.g. in biomedicine or econometrics, in which time-to-event variables are analyzed, has
been an important task in statistics for a long time. Recently, there have been great efforts also
on the implementational side, see Aalen et al. (2004), Kneib and Hennerfeind (2008), Simon et al.
(2011), Jackson (2011) and de Wreede et al. (2010). The underlying estimators, implemented in
these software packages, are based on the theory of multivariate counting processes and their com-
pensators, see Andersen et al. (1993). This is due to the fact that any multi-state switching process
generates a multivariate counting process by counting successively the jumps of the same type over
time. An important question in this context is how the properties of the multi-state switching
process and the counting process relate to each other. It is well known for a classical Markov chain
that the compensator of the corresponding counting process is determined by the Markov chain’s
matrix-valued (deterministic) intensity function, see e.g. Andersen et al. (1993). Any estimator
for the deterministic compensator is therefore implicitly an estimator for the intensity function of
the Markov chain. The derivation of suitable estimators for a counting process’ compensator is
based on a (partial) likelihood function, which can be derived very generally for any compensator
of a multivariate counting process. Hence, it is natural to extend this method to elaborate sta-
tistical models for general multivariate counting processes with stochastic compensators of various
forms, see Andersen et al. (1993) or Therneau and Grambsch (2000). The remaining question is
then whether it is still possible to characterize properties of the underlying multi-state switching
processes appropriately and derive e.g. estimators for their intensities. Although estimators for
stochastic compensators are used frequently and are often claimed to provide stochastic intensity
processes for some underlying multi-state switching process, a thorough investigation on the rela-
tions between these processes is, to the best of our knowledge, missing in the statistical literature
so far.
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We now fill in this gap and show in Section 3.1 how stochastic compensators of the form given in
Cox’s proportional hazards model are naturally linked to a sub-class of F-doubly stochastic Markov
chains and their intensities by using the results of Theorem AppendixA.5. Therefore, the estimators,
which are implemented in the above mentioned software packages, also represent suitable estimators
for the matrix-valued stochastic intensity processes of the underlying F-doubly stochastic Markov
chains.

3.1. Counting processes for F-doubly stochastic Markov chains

The most frequently used model in survival analysis which is able to incorporate covariates belongs
to the class of multiple hazard models and is known as the Cox model, see Cox (1972, 1975),
implemented in the R-function coxph from the R-package survival, see Therneau (2012). The
function fits a Cox proportional hazards regression model including time dependent covariates, time
dependent strata, and multiple events per subject. The survival package uses the estimators as
derived in Andersen et al. (1993), which are based on the general theory of multivariate counting
processes and their compensators or, more precisely, on the compensators’ densities with respect
to Lebesgue’s measure in the absolutely continuous case.
We now describe Cox’s proportional hazards model as given in Andersen et al. (1993, Section VII.2.)
for the special case when successive jumps of n individuals are counted over time and any individual
can perform two types of jump: from employment to unemployment and vice versa.
On the probability space (Ω, G, P), we consider a 2n-variate counting process

N = (N(t))t∈[0,T ] =
(
N12

1 (t), N21
1 (t), ..., N12

n (t), N21
n (t)

)ᵀ
t∈[0,T ] ,

where, N jk
i (t), i ∈ {1, ..., n}, j, k ∈ {1, 2}, j 6= k, is supposed to count the respective jumps of the

i-th observed person from employment to unemployment, denoted by the superscript “12”, or from
unemployment to employment, denoted by the superscript “21”, respectively, up to time t. The
2n-variate process

ΛΛΛ(θθθ) = (ΛΛΛ(t, θθθ))t∈[0,T ] =
(
Λ12

1 (t, θθθ), Λ21
1 (t, θθθ), ..., Λ12

n (t, θθθ), Λ21
n (t, θθθ)

)ᵀ
t∈[0,T ]

is assumed to be the compensator of N with respect to the filtration Ĝ = (Ĝt)t∈[0,T ], with Ĝt =
FN

t ∨
∨n

i=1 Ii ∨ A. Here, FN
t = σ(N(u) : u ≤ t) is the σ-algebra, generated by N up to time t, Ii is

a σ-algebra related to individual i, and A some arbitrary σ-algebra. The filtration Ĝ, interpreted
as the level of information at any time t ∈ [0, T ], is hence determined by the information FN

t ,
generated by the observations of N up to and including time t, by additional i-specific information
Ii of all individuals i ∈ {1, ..., n}, which is not changing over time, and by some other information
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A, neither changing from individual to individual nor over time8. Note that the compensator is
also supposed to depend on a parameter vector θθθ.
A desirable feature for statistical models is then that for every person i ∈ {1, ..., n}, the i-th
component of ΛΛΛ(θθθ), i.e. the 2-variate process ΛΛΛi(θθθ) = (Λ12

i (t, θθθ), Λ21
i (t, θθθ))ᵀt∈[0,T ], is given by the

compensator of the counting processes Ni = (N12
i (t), N21

i (t))ᵀt∈[0,T ] with respect to the reduced
filtration Ĝi = (Ĝi

t)t∈[0,T ] with Ĝi
t = FNi

t ∨ Ii ∨ A. A sufficient condition for this to hold is that for
every t ∈ [0, T ], the family

(
FNi

t ∨ Ii
)

i=1,...,n
is conditionally independent given A. This yields a

particular robustness of the statistical model since in this case the estimation of the compensator
is independent of the number of observed individuals.
For every i ∈ {1, ..., n}, j, k ∈ {1, 2}, j 6= k, t ∈ [0, T ], we assume the component Λjk

i (t, θθθ) of ΛΛΛ(θθθ)
to have a density, i.e. a non-negative Ĝ-predictable process (λi(t, θθθ))t∈[0,T ], such that

Λjk
i (t, θθθ) =

∫ t

0
λjk

i (s,θθθ)ds , t ∈ [0, T ] .

Moreover we assume the densities to be of Cox’s multiplicative form

λjk
i (t, θθθ) = Y jk

i (t)αjk
0 (t, φ)e(βββjk)ᵀZi(t) , (4)

where for j, k ∈ {1, 2}, j 6= k, Y jk
i indicates, whether individual i is at risk for a jump jk

just before time t; αjk
0 is the baseline-hazard function, unique for all individuals i ∈ {1, ..., n};

βββjk =
(

βjk
1 , ..., βjk

p

)ᵀ
is a parameter vector; θθθᵀ = (φ, (βββ12)ᵀ, (βββ21)ᵀ) is the vector collecting all un-

known parameters, where φ is considered to be some nuisance parameter and Zi = (Zi(t))t∈[0,T ] =(
Z1

i (t), ..., Zp
i (t)

)ᵀ
t∈[0,T ] is the p-dimensional, predictable process of i-specific covariate processes as

introduced in Section 2. Note that by (4) the densities depend only on θθθjk := (φ, (βββjk)ᵀ), j, k ∈
{1, 2}, j 6= k, and consequently we can write Λjk

i (t, θθθjk) instead of Λjk
i (t, θθθ).

We now assume A = FZ
T , where Z(t) = [Zl

i(t)]i∈{1,...,n},l∈{1,...,p} is the n × p-(design) matrix valued
stochastic process of all i-specific covariates Zi, i ∈ {1, . . . , n}.
Now we provide the connection of this counting process setting with the class of F-doubly stochastic
Markov chains. As for every individual i ∈ {1, ..., n} the consecutive jumps N jk

i , j, k ∈ {1, 2}, j 6= k,
from unemployment to employment and vice versa are counted, one implicitly observes over time
the associated employment-unemployment progress of the i-th person, given by the right-continuous

8The authors in Andersen et al. (1993) usually consider σ-algebras FN
t and A = F0, where F0 is supposed to

contain information known at time t = 0. For the descriptions in this section, however, this setting needed to be
extended. This further generalization has no consequence on the estimation results.
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{1, 2}-valued stochastic process Xi = (Xi(t))t∈[0,T ]. If we put Hj
i (t) := 1{Xi(t)=j}, we have

N jk
i (t) =

∫ t

0
Hj

i (u−)dHk
i (u) , j, k ∈ {1, 2}, j 6= k,

and FXi
t = σ(Xi(0)) ∨ FNi

t for all t ∈ [0, T ].
An immediate consequence of Theorem AppendixA.5 is then that every Xi follows an FZ-doubly
stochastic Markov chain with 2 × 2-matrix valued intensity process ΨΨΨi with entries

αi
j,k(t, θθθ) = αjk

0 (t, φ)e(βββjk)ᵀZi(t) , (5)

if and only if the compensators’ densities of the counting processes N jk
i are given as in (4) with

Y jk
i (t) = Hj

i (t−) for j, k ∈ {1, 2}, j 6= k.
Moreover, since FXi

t = σ(Xi(0)) ∨ FNi
t , we have that for every t ∈ [0, T ] the family (FXi

t )i=1,...,n

is conditionally independent given FZ
T , if and only if the family (FNi

t ∨ Ii)i=1,...,n is conditionally
independent given FZ

T , where Ii = σ(Xi(0)).
Hence, the estimation schemes for the individual counting processes Ni and their compensators
ΛΛΛi(θθθ), described in Section 3.2, also provide estimators for the intensity matrix ΨΨΨi of the underlying
2-state switching processes Xi if and only if for every individual i ∈ {1, ..., n}, the underlying
employment-unemployment progress Xi is an FZ-doubly stochastic Markov chain and the family
(Xi)i=1,...,n is conditionally independent given FZ

T .

3.2. Estimation for Cox’s proportional hazards model

In the following we explain the estimation procedure for the regression parameters βββ12 and βββ21, as
well as the underlying cumulative hazard functions in Cox’s proportional hazard model. Following
Andersen et al. (1993), we do not suppose any specific form for the underlying baseline hazard
functions αjk

0 (t, φ), j, k ∈ {1, 2}, j 6= k, appearing in (4). In particular, we assume no dependence
of αjk

0 on a parameter φ and hence, we write αjk
0 (t) instead of αjk

0 (t, φ).
According to Andersen et al. (1993), for j 6= k ∈ {1, 2} and for fixed βββjk, maximum likelihood
estimates of the integrated underlying baseline hazard functions

Ajk
0 (t) =

∫ t

0
αjk

0 (u)du (6)

are obtained as the so-called Nelson-Aalen estimators

Âjk
0 (t,βββjk) =

∫ t

0

Jjk(u)
Sjk

0 (βββjk, u)
dN jk

• (u),

where Sjk
0 (βββjk, t) :=

∑n
i=1 exp

{
(βββjk)ᵀZi(t)

}
Hj

i (t−) and Jjk(t) = 1{Y jk
• (t)>0} with Y jk

• (t) =
∑n

i=1 Y jk
i (t)

and N jk
• (t) =

∑n
i=1 N jk

i (t). Note that Jjk(t) indicates if at least one individual is in the risk of a
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transition of type “jk” at time t. Otherwise, the function Sjk
0 (βββjk, t) would be zero. Then the log

Cox partial likelihood

log L(βββjk) =
n∑

i=1

∫ T

0
(βββjk)ᵀZi(t)dN jk

i (t) −
∫ T

0
log Sjk

0 (βββjk, t)dN jk
• (t),

is maximized with respect to βββjk, yielding β̂ββ
jk

. The Breslow estimator for (6) is finally given by
Âjk

0 (t, β̂ββ
jk

).

3.3. Description of the data set

The sample of integrated labor market biographies (Stichprobe der integrierten Arbeitsmarktbi-
ographien - SIAB) is a 2% sample of the population of the integrated employment biographies
(IEB) of the IAB. We got access to the regional SIAB (Version 1975-2008), which is a file for sci-
entific use in factual anonymous form that covers the employment and unemployment histories of
1,515,463 individuals in a total of 34,862,777 lines of data. The IEB comprises all individuals who
showed one of the following statuses at least once during the observation period:

• employment subject to social security (recorded from 1975 onwards),

• marginal part-time employment (recorded from 1999 onwards),

• receipt of benefits in accordance with Social Code Book III (recorded from 1975 onwards) or
Social Code Book II (recorded from 2005 onwards),

• registered with the Federal Employment Agency as a jobseeker (recorded from 2000 onwards),

• planned or actual participation in an employment or training measure (recorded from 2000
onwards).

Note that all statuses are depicted exact to the day. In general, the data have the following structure:
each row represents an observation of a certain individual for a certain time interval, revealing some
information about the working status of the individual together with several additional covariates
concerning its educational level, sex, age, etc. An overview and a short description of all variables
contained in the data is presented in Table 1, for more details see Dorner et al. (2011). The
information regarding the working status allows a unique classification (in accordance with the
German labor law) for each observation, whether an individual is employed or unemployed during
the corresponding time interval.

7The variables occup and eco are not known during periods of unemployment. Hence, both variables are not
considered in the intensity process for the transition from unemployment to employment.

10The 18 levels include the 16 German federal states themselves. Individuals with no information and individuals
working in more than one federal state at the same time, are summarized in category rest.
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Variable Description
id Identification number of individual
Tstart Starting point of the time interval (in days)
Tstop Endpoint of the time interval (in days)
work Dummy variable for employment status (1=unemployed, 0=employed)
status Dummy variable indicating whether a transition occurred or not;

in the latter case, the observation is censored (1=yes, 0=no)
trans Binary variable indicating for which transition an observation is at risk

(1=employed to unemployed, 2=unemployed to employed)
sex Dummy variable for gender (1=female, 0=male)
birth Year of birth
natio Nationality (1=German, 0=not German)
occup9 Occupational status and working hours (categorical, 8 levels)
eco9 Economic activity (categorical, 13 levels)
state Federal state, where the individual is working (categorical, 18 levels10)
educ Educational level summarizing school education, school-leaving qualification

and vocational training (categorical, 9 levels)
wage Daily wage (in Euro; if more than one source at a time the average is used)
com Dummy variable for commuter status (1=commuter, 0=no commuter)
msci Monthly returns of the MSCI World Index (in %)
urate Annual/monthly (federal state-specific) unemployment rate (in %)

Table 1: Description of the variables of the integrated German labor market data for 1975-2008.

In order to be able to apply the R-routine coxph on the SIAB data, several preparations are required
that we describe in the following remark.

Remark 3.1. 1. Since the data come from several records of different sources and are merged in
the SIAB, the time intervals of observations belonging to one individual often overlap. Hence,
in a first step we break down overlapping time intervals into disjoint intervals.

2. Information coming from different contemporaneous records of one individual are updated ac-
cording to the most actual or crucial information. For example, if at least one of several
contemporaneous records (coming from different sources) classifies an individual as a com-
muter, the individual is classified as a commuter for the corresponding time interval.

3. The metric variable wage is averaged over contemporaneous records; categorical variables with
similar levels, coming from contemporaneous records, such as e.g. educational level (educ),
economic activity (eco) or occupational status and working hours (occup), are merged.

4. As some of the variables are categorical with many factor levels, we have to aggregate some
of them. For example for the variables economic activity (eco) and occupational status and
working hours (occup) only factor levels with at least 1,000,000 members are considered; factor
levels with fewer members are summarized in the category rest

5. After aggregation of factor levels, still 29,778,075 lines of data, with no overlapping time
intervals within individuals, remain.

6. In addition to individual-related factors, two macro-economic variables are considered, the
monthly returns of the MSCI World Index11 and the annual/monthly unemployment rate12

11Source: webpage MSCI - A clear view of risk and return; MSCI index performance world
12Source: webpage Bundesagentur für Arbeit, time series for unemployment since 1950 by structural features. Up

to 1991, the annual unemployment rates for the federal states of West Germany are given, from 1991 onwards the
unemployment rates of all federal states of Germany are given on a monthly basis.
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id Tstart Tstop status trans sex state . . . msci urate
25 7763 7793 0 1 0 Sachsen . . . 0.027 18.3
25 7793 7854 0 1 0 Sachsen . . . 0.027 18.6
25 7854 7874 1 1 0 Sachsen . . . 0.080 18.3
25 7874 7935 0 2 0 Sachsen . . . 0.018 17.7
25 7967 7998 0 2 0 Sachsen . . . -0.086 17.8
25 8003 8044 1 2 0 Sachsen . . . -0.067 17.8
25 8044 8073 0 1 0 Sachsen . . . 0.072 20.4
25 8073 8078 0 1 0 Sachsen . . . 0.033 20.4
37 5829 5844 0 1 1 Bayern . . . 0.019 5.7
37 5844 5875 0 1 1 Bayern . . . 0.034 5.1
37 5875 5903 0 1 1 Bayern . . . 0.091 4.7
...

...
...

...
...

...
...

...
...

...

Table 2: Structure of the SIAB data, exemplarily for a fictitious extraction.

(separately for the German federal states) for the period from 1975 to 2008. Since in the fitting
procedure for the estimation of (5) all covariates have to be constant during each time interval,
it has to be checked for every observation, if one of the two external variables has changed.
In this case, the time interval has to be split into smaller ones where the external covariates
are constant. Although both external variables only change monthly, still, this increases the
data set to contain more than 200,000,000 lines. Hence, we restrained to a data sample with
the maximum size that can be handled by the R-routine, ending up with 150,000 individuals.

To illustrate the structure of the data, a short fictitious extraction is presented in Table 2.

3.4. Estimation results for the intensity processes

In the following we fit two independent Cox models for both transitions, including all covariates
from Table 1. As the influence of the three metric covariates birth, wage and urate may be non-
linear, we model their effect via cubic polynomials. For the metric regressor msci some special
treatment becomes necessary. As the splitting procedure for msci creates almost exclusively time
intervals, within which the variable msci is equal for all observations, singularities are found in
the design matrix, with the consequence that the coxph function reports an error message. One
possible solution to this problem is to include an interaction effect between the variables state and
msci. Note that we do not face this problem for the variable urate as the time series are available
separately for the German federal states. In the framework of the coxph package, the fit of the
models can then be obtained by the following R-command, exemplarily for transition “12”:

R> cox.obj <- coxph(Surv(Tstart, Tstop, status) ~ as.factor(sex) + birth
+ I(birth^2) + I(birth^3) + as.factor(natio)
+ as.factor(occup) + as.factor(eco) + as.factor(educ)
+ wage + I(wage^2) + I(wage^3) + as.factor(com)
+ as.factor(state) + as.factor(state):msci
+ urate + I(urate^2) + I(urate^3),
data = sample, method = "breslow")
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variable β̂12

sex:woman -0.290
natio:german -0.345
natio:non-german -0.483
occup:skilled worker -0.509
occup:untrained employee -0.547
occup:employee -0.930
occup:rest -1.250
occup:part-time employee (insured) -1.167
occup:trainee -1.807
occup:part-time employee (not insured) -1.889
...

...

Table 3: Estimated linear effects, exemplarily for transition “12” (employment to unemployment).
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Figure 1: Estimated non-linear effects of birth, wage and urate exemplarily for transition “12” (employment to
unemployment).

In Table 3, we present a selection of the estimated parameters β̂ββ
12

, exemplarily for transition “12”
(employment to unemployment). All other estimated linear effects for both transitions are presented
in AppendixC. The estimated cubic effects of the metric covariates birth, wage and urate, again
exemplarily for transition “12”, are illustrated in Figure 1. Especially for the variable birth, the effect
is clearly non-linear. We find that for increasing date of birth the hazard rate from (5) has a cubic
form: first it slightly decreases for older individuals, then increases for younger individuals before
it decreases again for very young individuals. In addition, higher wages substantially reduce the
hazard rate. Furthermore, as expected, an increasing unemployment rate in the federal state, where
an individual is employed, increases its instantaneous probability of a transition into unemployment.

In the two upper plots of Figure 2 we illustrate the cumulative hazards for transition “12” (left) and
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Figure 2: Cumulative hazards (top) and the survival probabilities (bottom) for transition “12” (employment to
unemployment, left) and for transition “21” (unemployment to employment, right) for a “mean observation” based
on the Nelson-Aalen estimates.

for transition “21” (right) for an average individual, based on the Nelson-Aalen estimates. Here,
a “mean observation” represents an observation with constant covariate realizations obtained as
the covariates averages over the used sample. We can see that as jumps from employment into
unemployment occur much less often than vice versa and since individuals remain in employment
usually much longer than in unemployment, the cumulative hazard for transition “21” (right) is
much steeper than the one for transition “12” (left). The opposite effect is also observed for the
survival functions, which are shown in the two lower plots of Figure 2.

3.5. Goodness-of-fit analysis

The estimation results and their graphical illustrations indicate that the model is reasonable
and that the results coincide with intuitive anticipations. Nevertheless, statistically well-founded
goodness-of-fit criteria are desirable. In this context, we first check the overall adequacy of the es-
timated model based on the Cox-Snell residuals, see Cox and Snell (1968). The Cox-Snell residual
plots are shown in Figure 3 for both transitions. It is seen that the validity of the model is more
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Figure 3: Cox-Snell residuals for transition “12” (left) and “21” (right).

disputable for transition “21” (unemployment to employment), since the estimated cumulative haz-
ard of these residuals diverges from the bisecting line. One major reason might be that the two
covariates occup and eco are not available for this transition and also the realizations of other vari-
ables, such as state, wage or com, are less reliable for individuals in the state “2” (unemployment),
as they are predominantly extrapolated from the preceding employment period.
A test on the validity of the proportional hazards assumption versus the alternative of time-varying
coefficients is provided by Grambsch and Therneau (1994). We show exemplarily the test results
for the categorical covariate state and for transition “21” in Table 4. For some categories, e.g.
for Bayern and Berlin, the test results indicate significant non-proportionality. This can also be
graphically illustrated by plots of the scaled Schoenfeld residuals, see Schoenfeld (1982), versus a
smoothed coefficient estimate, see Figure 4. Note that the left-continuous version of the Kaplan-
Meier survival curve (without covariates) is used to scale the survival times. In general, we found
violations of the proportional hazards assumption for several covariates and for both transitions.
This indicates that several effects may vary over time and hence, models with predictors of a more
complex structure could be worth of consideration. On the other hand, with regard to the large
quantity of covariates it is not surprising that not all of them are consistent with the proportional
hazards assumption. However, in our setting we decided to first ignore time-dependent effects, since
our main objective to obtain a good prediction of the underlying jump times is achieved in a very
satisfactory way in our statistical analysis, as explained below.
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rho chisq p
state:Baden-Wuerttemberg -0.0047 2.4387 0.1184
state:Bayern -0.0089 9.1932 0.0024
state:Berlin 0.0087 8.4570 0.0036
state:Brandenburg 0.0057 3.5889 0.0582
state:Bremen 0.0043 2.0088 0.1564
state:Hamburg 0.0083 7.7138 0.0055
state:Hessen -0.0025 0.7137 0.3982
state:Mecklenburg-Vorpommern 0.0062 4.2591 0.0390
state:Niedersachsen 0.0053 3.3315 0.0680
state:Nordrhein-Westfalen 0.0048 2.8329 0.0924
state:Rheinland-Pfalz 0.0006 0.0424 0.8368
state:Saarland 0.0015 0.2595 0.6105
state:Sachsen 0.0059 3.9180 0.0478
state:Sachsen-Anhalt 0.0068 5.1429 0.0233
state:Schleswig-Holstein 0.0042 2.0377 0.1534
state:Thueringen 0.0053 3.1070 0.0780
state:sonst 0.0004 0.0134 0.9080

Table 4: Test results for testing the proportional hazards assumption
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Figure 4: Smoothed time-varying coefficients for the state categories Bayern (left) and Berlin (right) together with
scaled Schoenfeld residuals, exemplarily for transition “21”.
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Figure 5: Approximate changes of the coefficient vector if single observations were dropped, exemplarily for the
coefficients of the variable natio and transition “12”.

Next, we investigate the robustness of the models. Due to the large size of our sample, the coefficient
estimates are highly robust against slight changes in the data (critical limit is given by the range
[−0.1, 0.1]). The approximate changes of the coefficient vector if single observations were dropped
are illustrated in Figure 5, exemplarily for the coefficients of the variable natio and transition “12”.
In general, we found similar results for all other covariates and both transitions.
Finally we want to check the performance of our model in predicting transititon times by comparing
true observed jump times with those estimated by the model. This is achieved by using a new
goodness-of-fit method as follows.
Based on two different specifications for the estimated intensity processes, we can simulate realiza-
tions of a series of jump times for several individuals from our sample, by applying the simulation
schemes for the jump times as given in (3). Compare also Bielecki and Rutkowski (2004, Section
11.3.1) or Jakubowski and Niewęgłowski (2010). The first specification uses the time-varying es-
timates of the baseline intensity functions as obtained from the R-routine. For individual i and
j, k ∈ {1, 2}, j 6= k, we have

α̂i
j,k(t) = α̂jk

0 (t) exp((β̂ββ
jk

)ᵀZi(t)). (Technique (a))

However, the extrapolation of the time-varying estimated baseline hazards, as it would be necessary
for Technique (a), is generally a delicate task. Hence we consider a second specification based on
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Figure 6: Goodness-of-fit results: predicted durations in the states “1” (employment, left) and “2” (unemployment,
right) for 20 individuals, both for Technique (a) and (b) and each based on 1, 000 simulation runs, together with true
durations.

constant baseline intensity estimates ˆ̄αjk
0 , which are computed as the weighted mean of the time-

varying baseline intensity estimates. For j, k ∈ {1, 2}, j 6= k, we obtain

α̂i
j,k(t) = ˆ̄αjk

0 exp((β̂ββ
jk

)ᵀZi(t)). (Technique (b))

Technique (b) hence provides a more natural and simple way to predict jump times. Figure 6 shows
the estimated and true durations in the states “1” (employment, left) and “2” (unemployment,
right) for 20 individuals, both for Technique (a) and (b). It is seen that for both techniques the
predicted jump times are reasonable and quite close to the true ones. We recognize that except for
extraordinary long durations in the two states, Technique (b) with ˆ̄α12

0 = .00076 and ˆ̄α21
0 = .00417,

performs quite well and is therefore used for the simulations in Section 4.
Since the goodness-of-fit tests have shown the robustness of our analysis and the good predictive
power of the model for jump times, we postpone further investigations of the proportional hazards
assumption and possible extensions of the model to further works.

4. Premium determination for unemployment insurance contracts

Taking advantage of the statistical analysis of Section 3, we are now able to compute the premium
for the unemployment insurance contracts as introduced in Section 2. In order to approximate the
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Figure 7: Simulated paths of the P-numéraire portfolio over a time horizon of T = 50 years.

unemployment insurance premium (2) through Monte Carlo simulations, we need to simulate the
underlying F-doubly stochastic Markov chain with its corresponding jump times and the discounting
factor, given by the P-numéraire portfolio.
For the P-numéraire portfolio we use a simulation scheme, described in detail in Ignatieva and Platen
(2012) and Platen and Rendek (2011). The underlying assumption is that the market follows the
structure of a minimal market model as introduced in Platen and Heath (2007). In this setting, the
P-numéraire portfolio, discounted with ert, is a squared Bessel process of dimension four and can be
expressed as the sum of four independent time-transformed Wiener processes, see Platen and Heath
(2007). Given the estimators for the model parameters in Ignatieva and Platen (2012), we simulate
N = 10000 paths of the P-numéraire portfolio and choose r = 2%. Five exemplary paths of the
P-numéraire portfolio are shown in Figure 7.
In order to obtain realizations of the F-doubly stochastic Markov chain X, we first simulate the in-
tensity processes α̂1,2 and α̂2,1 of the Markov chain’s corresponding intensity matrix by assuming the
concrete multiplicative structure α̂1,2(t) = ˆ̄α12

0 exp
(

(β̂ββ
12

)ᵀZ(t)
)

and α̂2,1(t) = ˆ̄α21
0 exp

(
(β̂ββ

21
)ᵀZ(t)

)
,

introduced as Technique (b) in Section 3, with ˆ̄α12
0 = 0.0007611199 and ˆ̄α21

0 = 0.004170514 the mean
values of the estimated baseline hazards. Here, β̂ββ

12
and β̂ββ

21
are the estimated parameter vectors

and Z is the vector of investigated covariates of Section 3.
For the sake of simplicity, we choose most of those covariates, which may vary over time, like wage,
urate or state, as being constant over time, although they could also be simulated according to
some stochastic transition process. The only time-varying factor included in our simulations is the
process of the monthly returns of our simulated paths of the P-numéraire portfolio. In this setting
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Figure 8: Simulated insurance premiums for different maturities from T = 3 to T = 43 years (left) and for different
levels of deferment, waiting and requalfication periods (right), verying from 0 to 15 months.

we also assume for the simulations that the covariates Z1, ..., Zp are independent. Note that this
hypothesis is not required to perform the statistical analysis in Section 3.
Based on the resulting intensity processes we then simulate realizations of the series of jump times,
underlying an F-doubly stochastic Markov chain, as given in (3).
We then obtain realizations of an unemployment insurance contract’s claim payments by testing if
the insured person fulfills the criteria of receiving a claim payment at the respective payment dates.
For the Monte Carlo approximations we perform this scheme of simulating the claim payments
N = 10, 000 times.
In the following we present several plots where we tested the simulated insurance premium against
variation of its defining factors. To be more precise, the insurance premium (2) depends among
others on

(i) contractual specifications, i.e. the maturity T , the deferment period D, the waiting period W

and the requalification period R,

(ii) on the categorial characteristics of the insured person, i.e. the covariate categories sex, natio,
occup, eco, state, educ and commuter,

(iii) on the characteristics of the metric covariates birth, wage, urate and msci, i.e. the monthly
returns of the simulated P-numéraire portfolio, for which the MSCI can be taken as a proxy.

In order to test the sensitivity of the premium against the variation of one of these factors, we fix
all other factors at the mean levels of the sample, and let only the factor of interest vary.
Figure 8 shows the simulated insurance premiums for different maturities from T = 3 to T = 43
years and for different levels of the deferment, waiting and requalification periods from 0 to 15
months, respectively. Both plots are coherent with the intuitive anticipations, for example that the
insurance premium has to decline if the claim-excluding time periods increase. Note, however, that
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Figure 9: Simulated insurance premium for the different categories of sex (left) and of the nationality natio (right).

Figure 10: Simulated insurance premiums for different levels of wage (left) of a (time-constant) urate (right).

the effects of the deferment and waiting period are stronger than the effects of the requalification
period.
Figure 9 shows the insurance premiums for the different levels of the covariates sex and natio. Based
on our estimation results, the insurance premium for women and foreign employees are lower than
for men or German employees.
Figure 10 shows the simulated insurance premiums for different levels of the covariates wage and
urate.
All other simulation results can be found in AppendixC.

5. Conclusion

Here we establish an innovative and flexible premium determination framework for unemployment
insurance products which incorporates both static and stochastic covariate processes in an effective
way. This allows us to adjust the insurance premiums according to individual characteristics of the
insured person as well as to micro- and macro-economic risk factors.
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Within the framework of Cox’s proportional hazards model the intensities are estimated on a
data set provided by the IAB. We show that the class of F-doubly stochastic Markov chains pro-
vides appropriate multi-state switching processes, underlying the counting process framework of
the estimation procedure. Several goodness-of-fit methods indicate the adequateness of the model
assumptions and the estimated results. In particular, with a new goodness-of-fit method we show
the good predictive power of the results for the jump times of the underlying multi-state switching
process. Further improvements of the model could be to consider other (time-dependent) covariates
and a direct parametrization of the likelihood function. We then model dependencies directly in
the structure of the stochastic intensity processes and calculate the fair insurance premiums with
Monte Carlo arguments. This evaluation method, based on the real-world pricing formula and on
stochastic intensities can be easily adapted to other financial and insurance products traded on the
market. Furthermore, our approach for estimating stochastic intensities and the dependence struc-
ture of jump times can be used for a wide spectrum of applications. Therefore, we are confident to
have provided a flexible and widely employable framework which can be applied beyond the scopes
of this paper.
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AppendixA. F-doubly stochastic Markov chains

We introduce here the concepts and basic properties of F-doubly stochastic Markov chains, as given
in Jakubowski and Niewęgłowski (2010). As seen in the paper, these kind of stochastic processes
are very adequate for modeling time-dependent random covariate effects since they provide matrix-
valued stochastic intensity processes.
Let (Ω, G, G, P) be a complete, filtered probability space, where the filtration G = (Gt)t∈[0,T ] is
assumed to fulfill the usual conditions of completeness and right-continuity, see Protter (2003),
with some arbitrary time horizon T > 0. Moreover, let X = (X(t))t∈[0,T ] be a right-continuous
stochastic process with state space {1, 2}. We denote by FX the natural filtration generated by X,
i.e. FX

t = σ(X(u) : u ≤ t) for all t ∈ [0, T ], and consider the filtration G to be the enlargement of
FX through some reference filtration F, i.e. we assume Gt = FX

t ∨Ft for all t ∈ [0, T ]. Furthermore,
we set G̃t = FX

t ∨ FT , t ∈ [0, T ].

Definition AppendixA.1. A process X is called an F-doubly stochastic Markov chain with state
space {1, 2}, if there exists a family of stochastic 2 × 2-matrices P(s, t) = [pj,k(s, t)]j,k∈{1,2} for
0 ≤ s ≤ t ≤ T such that

(1) the matrix P(s, t) is Ft-measurable, and P(s, .) is progressively measurable for any given
s ∈ [0, t],

(2) for every j, k ∈ {1, 2} we have

1{X(s)=j}P(X(t) = k | G̃s) = 1{X(s)=j}pj,k(s, t) .

The process P is called the conditional transition probability process of X.

Note that Definition AppendixA.1 generalizes the notion of a classical continuous time Markov
chain which itself is an F-doubly stochastic Markov chain with Ft = {∅, Ω} for all t ∈ [0, T ]. Other
examples for F-doubly stochastic Markov chains are compound Poisson processes or Cox processes,
see Jakubowski and Niewęgłowski (2010). Since the reference filtration F is not specified, an F-
doubly stochastic Markov chain is not necessarily a Markov process according to the usual definition.
Another property, which makes the class of F-doubly stochastic Markov chains interesting for
applications, is that they have matrix-valued stochastic intensity processes in the following sense.

Definition AppendixA.2. An F-doubly stochastic Markov chain X with state space {1, 2} is
said to have an intensity, if there exists an F-adapted 2 × 2-matrix-valued stochastic process ΨΨΨ =
(ΨΨΨ(t))t∈[0,T ] =

(
[αj,k(t)]j,k∈{1,2}

)
t∈[0,T ] such that

1) ΨΨΨ is integrable, i.e. ∫ T

0

∑
j∈{1,2}

|αj,j(s)|ds < ∞ . (A.1)
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2) ΨΨΨ satisfies the following conditions:

αj,k(t) = −αj,j(t) ≥ 0 ∀j, k ∈ {1, 2}, j 6= k, t ∈ [0, T ] (A.2)

P(v, t) − I =
∫ t

v

ΨΨΨ(u)P(u, t)du ∀0 ≤ v ≤ t ≤ T (Kolmogorov backward equation)

P(v, t) − I =
∫ t

v

P(v, u)ΨΨΨ(u)du ∀0 ≤ v ≤ t ≤ T (Kolmogorov forward equation)

A process ΨΨΨ, satisfying the above conditions, is called an intensity of the F-doubly stochastic Markov
chain X.

Not every F-doubly stochastic Markov chain has an intensity, but there are sufficient conditions for
the existence.

Theorem AppendixA.3. Let X be an F-doubly stochastic Markov chain with conditional transi-
tion probability process P. Assume that

1) P as a matrix-valued mapping

P : ([0, T ]2 × Ω, B([0, T ]2) ⊗ G) → ([0, 1]2×2, B([0, 1]2×2)

is measurable.

2) there exists a version of P, which is continuous in s and in t.

3) for every t ∈ [0, T ], the following limit exists almost surely

ΨΨΨ(t) := lim
h↘0

P(t, t + h) − I

h
,

and is integrable.

Then ΨΨΨ is the intensity of X.

Proof. See Jakubowski and Niewęgłowski (2010, Theorem 3.12).

The following theorem gives a useful result for applications, namely that for every given 2 × 2-
matrix-valued stochastic process Ψ̃ΨΨ with a particular structure, there exists an F-doubly stochastic
Markov chain X, having intensity Ψ̃ΨΨ.

Theorem AppendixA.4. Let (Ψ̃ΨΨ(t))t∈[0,T ] be an F-adapted 2×2 matrix-valued stochastic process,
satisfying conditions (A.1) and (A.2). Then there exists an F-doubly stochastic Markov chain X

with intensity (Ψ̃ΨΨ(t))t∈[0,T ].

Proof. See Jakubowski and Niewęgłowski (2010, Theorem 4.8).

For j ∈ {1, 2} let

Hj(t) := 1{X(t)=j}
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be the indicator function for X, being in state j at time t, and denote by H(t) = (H1(t), H2(t))ᵀ

the corresponding 2-variate vector. Moreover, for j, k ∈ {1, 2}, j 6= k, let N jk = (N jk(t))t∈[0,T ] with

N jk(t) :=
∫ t

0
H(u−)jdHk(u) ,

define the counting processes of the jumps of X from state j to k, denoted by the superscript “jk”
up to time t.
The following theorem provides a martingale characterization of F-doubly stochastic Markov chains
that is the core connection between F-doubly stochastic Markov chains and counting processes,
underlying the estimation procedure, given in Section 3.

Theorem AppendixA.5. Let X = (X(t))t∈[0,T ] be a stochastic process with state space {1, 2}
and ΨΨΨ = (ΨΨΨ(t))t∈[0,T ] be a 2 × 2-matrix-valued process, satisfying (A.1) and (A.2). The following
conditions are equivalent:

i) X is an F-doubly stochastic Markov chain.

ii) For j ∈ {1, 2}, the processes M j = (M j(t))t∈[0,T ] with

M j(t) := Hj(t) −
∫

]0,t]
αX(u),j(u)du

are G̃-local martingales.

iii) For j, k ∈ {1, 2}, j 6= k, the processes M jk = (M jk(t))t∈[0,T ] with

M jk(t) := N jk(t) −
∫

]0,t]
Hj(u)αj,k(u)du

are G̃-local martingales.

iv) The vector-valued process L = (L(t))t∈[0,T ], defined by

L(t) := Q(0, t)ᵀH(t) ,

where Q(0, t) is the unique solution to the random integral equation

dQ(0, t) = −ΨΨΨ(t)Q(0, t)dt, Q(0, 0) = I,

is a G̃-local martingale.

Proof. See Jakubowski and Niewęgłowski (2010, Theorem 4.1).

AppendixB. Real-world pricing

Here we summarize the main concepts of the theory of real-world pricing. All fundamental results
concerning the benchmark approach can be found in Platen and Heath (2007) for jump diffusion
and Itô process driven markets and in Platen (2004) for a general semimartingale market.
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We consider a frictionless market model in continuous time, which is set up on the complete, filtered
probability space (Ω, G, G, P), with arbitrary time horizon T > 0 and d + 1 non-negative adapted
tradable (primary) security account processes, denoted by Sj = (Sj(t))t∈[0,T ], j ∈ {0, 1, ..., d},
d ≥ 1. The security account process S0 is often taken as a riskless bank account in the domestic
currency. We write S = (S(t))t∈[0,T ] = (S0(t), S1(t), ..., Sd(t))ᵀt∈[0,T ] for the (d + 1)-dimensional
random vector process, consisting of the d+1 assets, and assume that S is a càdlàg semimartingale.
Let L(S) denote the space of Rd+1-valued predictable strategies δδδ = (δδδ(t))t∈[0,T ] for which the

corresponding gains and losses, respectively, from trading in the assets, i.e.
t∫

0
δδδᵀ(u) · dS(u), exist

for all t ∈ [0, T ]. The portfolio value Sδ(t) at time t ∈ [0, T ] is then given by

Sδ(t) = δδδᵀ(t)S(t) =
d∑

j=0
δj(t)Sj(t) .

A strategy δδδ ∈ L(S) is called self-financing, if changes in the portfolio value are only due to changes
in the assets and not due to in- or outflow of money, i.e. if

dSδ(t) = δδδᵀ(t)dS(t) .

We write V+
x (Vx) for the set of all strictly positive (non-negative) and self-financing portfolios Sδ

with initial capital Sδ(0) = x. We now introduce the notion of the P-numéraire portfolio.

Definition AppendixB.1. A portfolio Sδ∗ ∈ V+
1 is called P-numéraire portfolio if every non-

negative portfolio Sδ ∈ Vx, discounted (or benchmarked) with Sδ∗ , forms a (G, P)-supermartingale
for every x ≥ 0. In particular, we have

E

[
Sδ(σ)
Sδ∗(σ)

∣∣∣Gτ

]
≤ Sδ(τ)

Sδ∗(τ)
a.s. (B.1)

for all stopping times 0 ≤ τ ≤ σ ≤ T .

If a P-numéraire portfolio exists, it is unique, as can be easily seen with the help of the super-
martingale property and Jensen’s inequality, see Becherer (2001).
We now assume the existence of the P-numéraire portfolio Sδ∗ ∈ V+

1 in our market model. This
obviously depends on the model specifications of the market. However, it is a rather weak hypoth-
esis, since existence has been proven for most settings of nowadays practical interest, see Becherer
(2001), Karatzas and Kardaras (2007) or Platen and Heath (2007). Regarding estimation and cali-
bration of the P-numéraire portfolio, it is shown in Platen and Heath (2007) that every sufficiently
diversified market portfolio yields a good proxy for it, which is why we choose time series of the
MSCI in our estimation procedure in Section 3.
With the existence of the P-numéraire portfolio and the corresponding supermartingale property
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(B.1), (strong) arbitrage opportunities13 are excluded, see Platen (2004).
In this setting derivative pricing can be performed under the probability P by using the fundamental
property (B.1) of the P-numéraire portfolio as follows.

Definition AppendixB.2. A portfolio process Sδ = (Sδ(t))t∈[0,T ] is called fair, if its benchmarked
value process, i.e. its portfolio, discounted with the P-numéraire portfolio, Ŝδ(t) := Sδ(t)

Sδ∗ (t) , t ∈ [0, T ]
forms a (G, P)-martingale.

A T -contingent claim C is given as a GT -measurable random variable with E
[

|C|
Sδ∗ (T )

]
< ∞. Ac-

cording to Definition AppendixB.2, it is natural to define the so called real-world pricing formula
for a T -contingent claim C as follows:

Definition AppendixB.3. For a T -contingent claim C the fair price Pt(C) of C at time t ∈ [0, T ]
is given by

Pt(C) := Sδ∗
(t)E

[
C

Sδ∗(T )

∣∣∣Gt

]
. (B.2)

Due to Definition AppendixB.1, (B.2) represents the minimal price for C.

Remark AppendixB.4. Since price determination occurs under the real-world measure and the
P-numéraire portfolio represents an intrinsic benchmark indicator of financial and economic con-
ditions, the real-world pricing method appears to be most natural to be applied to the evaluation of
hybrid financial insurance products. More reasons to apply real-world pricing are the following:

1. there is a natural connection with classical premium determination via (B.2);
2. there is no need of introducing a risk neutral measure that may be not defined for hybrid

markets;
3. real-world pricing is consistent with (asymptotic) utility indifference pricing in a very general

setting;
4. the real-world pricing formula (B.2) for t = 0 also represents the minimal price for initiating

several optimal hedging schemes like (local) risk-minimizing strategies in incomplete markets.

For further details, we refer to the discussions in Biagini (2011) and Biagini and Widenmann
(2012).

13A non-negative, self-financing portfolio Sδ ∈ Vx permits (strong) arbitrage, if

P(Sδ(τ) = 0) = 1 and P(Sδ(σ) > 0 | Gτ ) > 0

for some stopping times 0 ≤ τ ≤ σ ≤ T and some initial capital x. A given market model is said to be arbitrage-free,
if there exists no non-negative portfolio Sδ ∈ Vx of the above kind.
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AppendixC. Estimation and simulation results

variable β̂12 β̂21
sex:woman -0.290 0.083
natio:german -0.345 -0.208
natio:non-german -0.483 -0.291
occup:skilled worker -0.509 -
occup:untrained employee -0.547 -
occup:employee -0.930 -
occup:part-time employee (insured) -1.167 -
occup:trainee -1.807 -
occup:part-time employee (not insured) -1.889 -
occup:rest -1.250 -
birth 0.073 0.564
I(birth2) 0.000 -0.003
I(birth3) -0.014 0.047
eco:retail -0.169 -
eco:transport and communications -0.370 -
eco:business oriented services -0.171 -
eco:household oriented services -0.021 -
eco:educational, social and health facility -0.138 -
eco:public administration, social insurance -0.182 -
eco:basic material and good production -0.146 -
eco:structural steel, light-metal and machine engineering -0.504 -
eco:steel forming, vehicle- and equipment engineering -0.396 -
eco:consumer goods industry -0.172 -
eco:main construction trades 0.597 -
eco:rest -0.011 -
educ:abitur 0.878 2.460
educ:abitur and job training 0.679 0.828
educ:job training 1.365 1.860
educ:senior technical college (Fachhochschule) 0.869 1.051
educ:college/university 0.617 0.827
educ:elementary or secondary modern school, secondary school leaving certificate or similar 0.778 2.679
educ:elementary or secondary modern school, secondary school leyving certificate or similar with job training 0.582 2.787
educ:no education 2.853 2.495
wage -0.854 1.380
I(wage2) -0.064 -0.148
I(wage3) 0.052 -0.083
com:commuter 0.333 0.144
com:no commuter 0.090 0.147
state:Baden-Wuerttemberg -1.362 -0.168
state:Bayern -0.994 0.023
state:Berlin -1.451 -0.077
state:Brandenburg -1.533 0.002
state:Bremen -1.354 -0.074
state:Hamburg -1.410 -0.153
state:Hessen -1.259 -0.157
state:Mecklenburg-Vorpommern -1.454 0.009
state:Niedersachsen -1.108 -0.018
state:Nordrhein-Westfalen -1.382 -0.207
state:Rheinland-Pfalz -1.201 -0.064
state:Saarland -1.459 -0.236
state:Sachsen -1.541 0.066
state:Sachsen-Anhalt -1.582 0.017
state:Schleswig-Holstein -1.096 0.034
state:Thueringen -1.536 0.132
state:rest -1.531 -0.407
urate 0.057 -0.022
I(urate2) 0.002 -0.001
I(urate3) -0.000 0.000

Note that for the federal state, we have to adjust not only the covariate state but also urate and
msci. For the unemployment rates, we take the contemporary valid unemployment rate and for
msci the monthly returns of the simulated paths of the P-numéraire portfolio.
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variable β̂12 β̂21
state:no info:msci 0.346 -1.317
state:Baden-Wuerttemberg:msci -1.342 -0.489
state:Bayern:msci 0.214 0.416
state:Berlin:msci 1.102 -0.532
state:Brandenburg:msci -0.090 -0.113
state:Bremen:msci -1.860 -0.785
state:Hamburg:msci -0.650 -0.865
state:Hessen:msci -0.699 -0.960
state:Mecklenburg-Vorpommern:msci -0.829 0.113
state:Niedersachsen:msci 0.046 -0.365
state:Nordrhein-Westfalen:msci -0.957 -1.019
state:Rheinland-Pfalz:msci -0.235 -1.277
state:Saarland:msci -1.138 -1.370
state:Sachsen:msci -0.285 -0.535
state:Sachsen-Anhalt:msci -0.041 -0.294
state:Schleswig-Holstein:msci -0.682 -0.077
state:Thueringen:msci NA NA
state:rest NA NA

Table C.5: Estimated linear effects.

Figure C.11: Simulated insurance premiums for the different levels of commuter (left) and of educ (right), with
(1) Sample mean, (2) No information, (3) Abitur, (4) Abitur and job training, (5) Job training, (6) Senior technical
college (Fachhochschule), (7) College/University, (8) Elementary or secondary modern school, secondary school
leaving certificate or similar, (9) Elementary or secondary modern school, secondary school leyving certificate or
similar with job training, (10) No Education.

Figure C.12: Simulated insurance premiums for the different levels of occup (left) with (1) Sample mean, (2) No
information, ( 3) In education, (4) Un-/semi-skilled worker, (5) Skilled worker, (6) Employee, (7) Part-time employee
without unemployment insurance, (8) Part-time employee with unemployment insurance, (9) Others, and of eco
(right) with (1) Sample mean, (2) No information, (3) Retail, (4) Transport and communications, (5) Business ori-
ented services, (6) Household oriented services, (7) Educational, social and health facility, (8) Public administration,
social insurance, (9) Basic material and good production, (10) Structural steel, light-metal and machine engineer-
ing, (11) Steel forming, vehicle- and equipment engineering, (12) Consumer goods industry, (13) Main construction
trades, (14) Others.
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Figure C.13: Simulated insurance premiums for the different levels of state with (1) Sample mean, (2) No informa-
tion, (3) Baden-Württemberg, (4) Bayern, (5) Berlin, (6) Brandenburg, (7) Bremen, (8) Hamburg, (9) Hessen, (10)
Mecklenburg-Vorpommern (11) Niedersachsen, (12) Nordrhein-Westfalen, (13) Rheinland-Pfalz, (14) Saarland, (15)
Sachsen, (16) Sachsen-Anhalt, (17) Schleswig-Holstein, (18) Thüringen, (19) Others.
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