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Abstract

In this paper we study the formation of financial bubbles in the
valuation of defaultable claims in a reduced form setting. The birth of
a bubble is caused by the impact of trading activity of investors, who
consider the claim to be a safe investment under some circumstances.
We also show how microeconomic interactions may at an aggregate
level determine a shift in the martingale measure. In this way we
establish a connection between our approach and the martingale theory
of bubbles, see [2] and [27]. This is illustrated by a characterization of
the space of equivalent local martingale measures by measure pasting.
Furthermore our model is consistent with the no-arbitrage framework,
as we show in a concrete example.

1 Introduction

The aim of this paper is to propose a mathematical model for bubble for-
mation in the valuation of defaultable claims in a reduced form setting. In
the economic literature, microeconomic theories of bubble formation refer to
investor heterogeneity and limits to arbitrage as possible factors determining
the formation of asset price bubbles. The latter factor can be the result of
short-selling constraints (see e.g. Miller [30]) or shocks to funding liquidity
(see e.g. Schleifer and Vishny [35]). Investor heterogeneity can arise when
agents in the economy may disagree on the value of future dividends (see
e.g.Harrison and Kreps [17]) or may overestimate the importance of certain
signals, i.e. exhibit overconfidence -the tendency of exaggerating the pre-
cision of their knowledge, see Scheinkman and Xiong [34]). Moreover, as
pointed out in Föllmer et al.[15], investors may use different predictors when
forecasting the future prices and this creates in certain time periods hetero-
geneity among their views.
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From the economic point of view, the main challenge consists in explaining
how such bubbles are generated at the microeconomic level by the interac-
tion of market participants; see for instance Harrison and Kreps [17], De-
Long, Shleifer, Summers and Waldmann [12], Föllmer, Horst and Kirman
[15], Abreu and Brunnenmeyer [1], Scheinkman and Xiong [34], Tirole [37]
and the references therein.
From the mathematical point of view asset price bubbles have been mainly
studied by using the local martingale framework, see for instance Loewen-
stein and Willard [29], Cox and Hobson [9], Jarrow [21], Jarrow, Protter et
al. [26], [27], [23], [22], [24] and Biagini, Föllmer and Nedelcu [2]. In these
papers a bubble appears if for some reason there is a shift in the martingale
measure: a non-trivial bubble will be generated if the (discounted) wealth
process is no longer a uniformly integrable martingale with respect to the
underlying pricing measure. For a comprehensive survey of the recent math-
ematical literature on financial bubbles, we refer to Protter [32].
A first attempt to explain in a mathematical model how dynamics at the
microeconomic level of interacting market participants influence asset price
formation is presented in Jarrow, Protter and Roch [25], where bubble gen-
eration is determined by the impact of trading volume on asset prices. In
[25] the asset’s fundamental price process is exogenously given and asset
price bubbles are endogenously determined by the impact of liquidity risk
and studied through a detailed analysis of the liquidity supply curve. In
contrast, the martingale approach in [9] and [27] to modeling price bubbles
assumes that the asset’s market price process is exogenous and the funda-
mental price is given by the expected future cash flows computed under a
martingale measure.
In this paper we propose a constructive model for bubble formation in de-
faultable markets and study its relation to the martingale theory of bubbles.
In a reduced form setting, see Bielecki and Rutkowski [4], we consider a mar-
ket model which includes the possibility of investing in defaultable claims,
i.e. contingent agreements traded over-the-counter between default-prone
parties. For the sake of simplicity, the money market account is supposed to
be constantly equal to one.
Initially a given defaultable claim is evaluated by using the underlying pric-
ing measure, as it is usual in the reduced form setting, see Definition 8.1.2
in [4]. After a certain time the claim starts to be considered safe enough, if
the conditional probability of having a default in the remaining time inter-
val becomes small enough. The trading activity of the investors determines
a deviation from the initially estimated wealth via a factor f , which is a
function of time and of the credibility process introduced in Definition 2.2.
We define a bubble as the difference between the modified wealth process
(called market wealth process) and the risk neutral valuation of the default-
able claim.
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We then study the relation between our model and the martingale theory
of bubbles of [27] and [2]. In particular, we establish a connection between
our approach and the setting of [27] and [2] through the characterization
of the set of equivalent martingale measures for the market wealth process
W of a defaultable claim via measure pasting in Theorem 4.6. For further
details on measure pasting, see Definition 4.2 and Section 6.4 of Föllmer
and Schied [16]. If σ1 denotes the starting moment of the influence of the
credibility process on the contract value, in Theorem 4.6 we prove that all
equivalent martingale measures for W are given by the pasting in σ1 of an
equivalent martingale measure for the initially estimated wealth up to σ1

with an equivalent martingale measure for (W −Wσ1)1{·≥σ1}, on {0 < σ1 <
T}. This result describes rigorously that, since the wealth process changes
its form at σ1, the corresponding martingale measure has to readapt. In this
way we directly connect a shift in the martingale measure to a change in
the dynamics of the market wealth process which is caused by the resulting
trading activity due to the influence of many micro-economic interactions.
An outline of the paper is the following. In Section 2 we describe the setting
of a reduced-form credit risk model and define the credibility process. In
Section 3 we introduce our definition of bubble and compare it with the
classical martingale theory of bubbles introduced in [27]. We provide a set
of conditions when an increase in the market wealth, due to the investors’
trading activity, can lead to an increase in the asset’s fundamental value. In
Section 4 we provide a characterization of the equivalent martingale measures
for W by measure pasting. Section 5 concludes our paper with an example
that illustrates the results of the previous sections.

2 The Setting

For a fixed time horizon T > 0 we consider a market model defined on
the filtered probability space (Ω,G,F, P ), where the filtration F = (Ft)t∈[0,T ]

satisfy the usual conditions of right-continuity and completeness. The market
model contains a defaultable asset with maturity date T and a money market
account constantly equal to 1.
The random time of default is represented by a non-negative G-measurable
random variable τ : Ω → [0,+∞], with P (τ = 0) = 0 and P (τ > t) > 0 for
each t ∈ [0, T ]. The last condition means that the default may not occur on
the interval [0, T ]. The random time τ is not an F-stopping time. For the
default time τ , we introduce the associated default process H = (Ht)t∈[0,T ]

given by Ht = 1{τ≤t}, t ∈ [0, T ], and denote by H = (Ht)0≤t≤T the filtration
generated by the process H, i.e. Ht = σ(Hu;u ≤ t) for any t ∈ [0, T ].
Let G = (Gt)t∈[0,T ] be the filtration obtained by progressively enlarging the
filtration F with the random time τ , i.e. G = F∨H. For the sake of simplicity
we assume G0 = F0 = H0 = {∅,Ω} and G = GT = FT ∨ HT . Note that τ is
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a stopping time with respect to the filtration G.
Consider the (Azéma) F-supermartingale Z = (Zt)t∈[0,T ] defined by

Zt = P (τ > t|Ft), t ∈ [0, T ],

and chosen to be càdlàg. We assume that Zt > 0 for all t ∈ [0, T ]. Then the
hazard process Γ = (Γt)t∈[0,T ] of τ under P given by

Γt = − lnZt = − lnP (τ > t|Ft)

is well defined for every t ∈ [0, T ]. We make the following Assumptions that
hold for the rest of the paper:

Assumption 2.1. We consider that:

i) The immersion property holds under the measure P , i.e. all (F, P )-
martingales are also (G, P )-martingales.

ii) The hazard process Γ admits the representation

Γt =

∫ t

0
µsds, t ∈ [0, T ],

where µ = (µt)t∈[0,T ] is an F-adapted process such that
∫ t

0 µsds < ∞
a.s. for all t ∈ [0, T ].

If the immersion property holds, it follows from Corollary 3.9 of Coculescu
et al.[7] that the Azéma supermartingale Z is a decreasing process. Hence
Γ is increasing, which implies that (µt)t∈[0,T ] is a non-negative process. The
process µ is called the stochastic intensity or hazard rate of τ . The existence
of the intensity implies that τ is a totally inaccessible G-stopping time. Fur-
thermore, since the Azéma supermartingale Z is continuous and decreasing,
it follows from Corollary 3.4 of Coculescu and Nikeghbali [8] that τ avoids
all F-stopping times.
We define the compensated process M̂ = (M̂t)t∈[0,T ] by

M̂t := Ht −
∫ t∧τ

0
µsds = Ht −

∫ t

0
µ̂sds, t ∈ [0, T ].

Notice that for the sake of brevity we put µ̂t := µt1{τ≥t}. It follows from
Proposition 5.1.3 of Bielecki and Rutkowski [4] that M̂ is a G-martingale.

In this setting a defaultable claim is given by a triplet H = (X,R, τ), where:

1. the promised contingent claim X ∈ L1(FT )1 represents the non-negative
payoff received by the owner of the claim at time T , if there was no
default prior to or at time T .

1Note that the payoff X must not be bounded above, otherwise no bubbles are possible,
see Protter [32]. We refer to Remark 3.3 for further details.
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2. the recovery process R represents the recovery payoff at time τ of de-
fault if default occurs prior to or at the maturity date T , and it is
assumed to be a strictly positive, continuous, F-adapted process that
satisfies

EP
[

sup
t∈[0,T ]

Rt

]
<∞. (2.1)

We postulate that the underlying probability measure P is a martingale
measure. Note that this assumption implies that there is no free-lunch with
vanishing risk, see [10]. By following the reduced-form model approach, see
Definition 8.1.2 of Bielecki and Rutkowski [4], the risk-neutral valuation of
the defaultable claim H = (X.R, τ) introduced above is given by

W e
t := EP [X1{τ>T} +Rτ1{τ≤T}|Gt], t ∈ [0, T ].

If we put

Λt := EP [X1{τ>T} +Rτ1{τ≤T}|Gt]1{τ>t}, t ∈ [0, T ]. (2.2)

then
W e
t = Λt +Rτ1{τ≤t}, t ∈ [0, T ].

In the sequel we model the impact of the trading activity of investors, who
consider the defaultable claim as a safe investment if some circumstances
are verified, as we explain more in detail below. To this purpose we first
introduce the following notion of credibility process.

Definition 2.2. For any t ≤ T the credibility process F = (Ft)t∈[0,T ] is
defined as

Ft = P (t < τ ≤ T |Gt),

for all t ∈ [0, T ].

Then we can deduce the following property of the credibility process:

Lemma 2.3. The process F = (Ft)t∈[0,T ] is a (G, P )-supermartingale.

Proof. It is easy to see that F can be written in the form

Ft = EP [1{τ≤T}|Gt]− 1{τ≤t}.

This property is intuitively clear, since the probability that the asset defaults
on the remaining time interval declines in expectation as we approach the
maturity date T .
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3 Bubbles in defaultable claim valuation

Let now
f : [0, T ]× (0, 1]→ [1,∞) (3.1)

be a deterministic function in C1,2([0, T ] × (0, 1]). Fix p ∈ (0, 1) with p <
P (0 < τ ≤ T ). We assume that

i) For all t ∈ [0, T ], f(t, x) = 1 for all x ≥ p and f(t, x) > 1 for x < p,

ii) f is strictly decreasing in both arguments for x < p.

iii) limt→T f(t, x) = 1 for all x ∈ (0, 1].

Definition 3.1. The market wealth process W = (Wt)t∈[0,T ] of the default-
able asset is defined as

Wt = f(t, Ft)Λt +Rτ1{τ≤t}, (3.2)

for all t ∈ [0, T ].

In our model we then assume that the initial value estimation Λ is affected
via the function f by the fluctuations of the credibility process F and by
the length of the remaining time interval [t, T ] to maturity. Here the value
p ∈ (0, 1) acts as a threshold in the sense that, if the conditional probability
of default F goes below the value p, then the asset is perceived as a safe
investment by the traders (i.e. the asset becomes “credible” enough). Fur-
thermore we also take into account the fact that the asset is perceived as
safe at an earlier date impacts the price in a more significant way than at
a later date, i.e. if Ft1 = Ft2 for t1 < t2, then f(t1, Ft1) > f(t2, Ft2). Note
that by Proposition 2.3 the conditional probability of default F decreases in
expectation as we approach maturity.
A possible motivation for our model is that the credibility process F is cap-
turing the views of a very big investor who will buy the claim when the
credibility process goes below the threshold p. Everybody in the market will
then follow the big investor, generating the bubble. Other explanations for
this model are of course possible, see for example Brunnermeyer and Oehmke
[6], Hugonnier [19], Scheinkman [33].

Remark 3.2. The impact of the credibility affects the value of the defaultable
asset only strictly prior to the default time τ . If τ occurs before or at T ,
the recovery payment Rτ will be paid, as established at the beginning in the
contractual agreement underlying the claim. Hence R is not influenced by
the credibility process. Analogously at t = T we have

WT = X1{τ>T} +Rτ1{τ≤T} = W e
T ,

since the payment at time of maturity and at default is determined by the
contractual agreement.
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Remark 3.3. Note that the payoff of the defaultable claim (and the cor-
responding wealth process associated to the claim) must not be not upper
bounded, since the martingale theory of financial bubbles does not allow for
bubbles in the price of bounded asset prices. A possible way of avoiding this
limitation is by introducing the concept of a relative asset price bubble, see
Bilina Falafala, Jarrow, and Protter [5].

In the sequel we denote by σ1 the starting moment of the influence of F on
Λ, i.e.

σ1 := inf{t ∈ [0, T ];Ft < p}. (3.3)

Note that σ1 ≤ τ , see also Proposition 3.9.
Following the approach of [27] we denote by Mloc(W ) the set of prob-

ability measures Q ≈ P defined on (Ω,G) under which the market wealth
process W is a (G, Q)-local martingale. We have that

Mloc(W ) =MUI(W ) ∪MNUI(W ),

where, in the notation of [27],MUI(W ) denotes the class of measures Q ≈ P
such that W is a uniformly integrable martingale under Q, andMNUI(W )
represents the class of measures Q ≈ P such that W is a non-uniformly in-
tegrable martingale. Since we work on a finite time horizon, the two classes
correspond to the class of true martingales and the class of strict local mar-
tingales, respectively. Typically, the classes MUI(W ) and MNUI(W ) will
both be non-empty, see Delbaen and Schachermayer [11] and the examples
in Section 4 and 5 of [2].

Remark 3.4. Note that we have Mloc(W ) ∩Mloc(W
e) = ∅ if P (0 < σ1 <

T ) > 0. Suppose on the contrary that there exists Q ∈Mloc(W )∩Mloc(W
e).

There exists ε > 0 such that P (σ1 + ε < T ) > 0 and Fσ1+ε < p on {σ1 + ε <
T}. Therefore f(σ1 + ε, Fσ1+ε) > 1 on {σ1 + ε < T}, and we obtain the
following contradiction

0 < EQ[W(σ1+ε)∧T −W e
(σ1+ε)∧T ] ≤ EQ[W0 −W e

0 ] = 0,

since W e
0 = W0 and Q is equivalent to P .

Definition 3.5. Let Q ∈Mloc(W ). The process WQ defined by

WQ
t = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt], t ∈ [0, T ],

is called the fundamental wealth process of the defaultable claim perceived
under the measure Q.

In particular, we have that

Wt ≥ EQ[WT |Gt] = EQ[EQ[WT |GT |Gt] = EQ[WQ
T |Gt] = WQ

t
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for any Q ∈Mloc(W ), with strict inequality if W is a strict local martingale
under Q.

We now consider an alternative way of defining a bubble for defaultable
claims.

Definition 3.6. For any t ∈ [0, T ], we define the bubble βo = (βot )t∈[0,T ] by

βot = Wt −W e
t = (f(t, Ft)− 1)Λt1{τ>t}, t ∈ [0, T ]. (3.4)

The bubble represents the difference between the market wealth W and the
risk-neutral valuation of the claim W e, which is generated by the impact of
the credibility process.

Remark 3.7. Note that the model could also be modified by choosing a differ-
ent function f in order to include the appearance of negative bubbles. It may
happen that for some reason a particular asset is seen as extremely dangerous
by a consistent number of investors. In this case the asset could experience
a decrease in the market value that may not be motivated by the underlying
economic and financial conditions.

3.1 Relation with the martingale theory of bubbles

Let Q ∈Mloc(W ). We now examine the relation between our Definition 3.6
of bubble and the concept of Q-bubble, as introduced in [26] and [27]. We
start by recalling the definition of a Q-bubble as in the approach of [27].

Definition 3.8. For any Q ∈ Mloc(W ), the non-negative adapted process
βQ = (βQt )t∈[0,T ] defined by

βQt = Wt −WQ
t ≥ 0,

is called the bubble perceived under the measure Q or Q-bubble.

The existence and the size of the Q-bubble βQ depends on the choice of the
martingale measure. If Q ∈ MUI(W ), then the Q-bubble reduces to the
trivial case βQ = 0. For Q ∈ MNUI(W ) the Q-bubble is a non-negative
local martingale with βQT = 0. Furthermore it is also clear that there is no
bubble at time T , since at time of maturity the asset X must be delivered
according to contractual obligations. Analogously the market wealth process
exhibits no bubbles after default, as stated by the following Proposition.

Proposition 3.9. On the set {t ≥ τ} we have

βQt = Wt −WQ
t = 0,

for any Q ∈Mloc(W ).
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Proof. Let Q ∈Mloc(W ). Then

WQ
t 1{τ≤t} = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt]1{τ≤t}

= EQ[X1{τ>T}|Gt]1{τ≤t} + EQ[Rτ1{τ≤T}|Gt]1{τ≤t}
= EQ[Rτ1{τ≤t}|Gt] = Rτ1{τ≤t} = Wt1{τ≤t}.

(3.5)

By using Definition 3.8, we can rewrite (3.4) as the sum of two components

βot = Wt −W e
t = (Wt −WQ

t ) + (WQ
t −W e

t )

= βQt + (WQ
t −W e

t ) ≥ 0.

In particular if Q ∈ MUI(W ), then βQt = 0. This in turn implies that the
bubble βo is equal to

βot = WQ
t −W e

t = Wt −W e
t ≥ 0, t ∈ [0, T ].

Therefore an increase in the market wealth leads to the creation of bubble
at a time t or to a difference between the initial estimation of the wealth
W e and its current value W . Nevertheless, this may not create a Q-bubble
in the martingale sense, if the new pricing measure Q corresponding to the
wealth process W belongs to the setMUI(W ).
We now investigate when the second component of the bubble is also non-
negative. In the rest of the paper we will use the abbreviated notation:

Z|Gt := E[Z|Gt],

for a random variable Z.

Proposition 3.10. Let Q ∈Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ] i.e Zt = dQ

dP |Gt , t ∈ [0, T ]. If the process W eZ is a P -
submartingale, then

WQ
t ≥W e

t , (3.6)

for all t ∈ [0, T ].

Proof. By applying Bayes’ theorem we obtain

WQ
t −W e

t = EQ[X1{τ>T} +Rτ1{τ≤T}|Gt]− EP [X1{τ>T} +Rτ1{τ≤T}|Gt]

=
1

Zt
EP [(X1{τ>T} +Rτ1{τ≤T})ZT |Gt]

− EP [X1{τ>T} +Rτ1{τ≤T}|Gt]

=
1

Zt
(EP [W e

TZT |Gt]−W e
t Zt).

Therefore it is enough to have that W eZ is a (G, P )-submartingale for (3.6)
to hold.
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4 Characterization of Mloc(W ) by measure pasting

In this section we characteriseMloc(W ), by using the concept of pasting of
measures, see Section 6.4 of Föllmer and Schied [16]. By this method we
establish a deeper connection between the martingale theory of bubbles and
Definition 3.4.
We rewrite the market wealth process W in the following form:

Wt = W σ1
t + (Wt −Wσ1)1{t≥σ1}

= W
(1)
t +W

(2)
t ,

(4.1)

where W (1)
t = W σ1

t and W (2)
t = (Wt −Wσ1)1{t≥σ1} for t ∈ [0, T ]. Note also

that W (1)
t = W σ1

t = W e
t on {σ1 > t}.

Assumption 4.1. i) We have 0 < σ1 < T .

ii) For i = 1, 2,Mloc(W
(i)) 6= ∅.

Assumption 4.1 i) is done for the sake of simplicity and without loss of gen-
erality. In fact, if 0 < P (0 < σ1 < T ) < 1, for Q ∈ Mloc(W ) decomposition
(4.7) will hold on the set {0 < σ1 < T}. Our aim is now to find a charac-
terization ofMloc(W ) that reflects the following facts. The wealth process
W coincides with W e until the starting time σ1 of the bubble. After σ1 the
impact of the credibility induces an alteration of the total wealth process
W , that deviates from W e. Hence an equivalent measure Q ∈ Mloc(W )
must take account of this change after σ1. We can interpret this as a shift
of martingale measures caused by a change in the underlying microeconomic
conditions. This explains in an endogenous way the dynamic in the space of
equivalent martingale measures as in the approach of [2] and [27], where the
bubble is generated by a change in the underlying pricing measure. In this
way we connect a constructive approach, where the bubble originates be-
cause the asset price is distorted by an excessive market confidence, with the
martingale theory of bubbles, where a bubble is generated by a switch in the
chosen pricing measure. In particular we now prove that every Q ∈Mloc(W )
is obtained by the pasting in σ1 of Q1 ∈Mloc(W

(1)) and Q2 ∈Mloc(W
(2)).

To this purpose we first recall and prove some results on measure pasting.
In the sequel let Q1 and Q2 be two equivalent measures on (Ω,GT ) and η be
a G-stopping time with 0 ≤ η ≤ T .

Definition 4.2. The probability measure Q

Q(A) := EQ1 [Q2(A|Gη)], A ∈ GT ,

is called the pasting of Q1 and Q2 in η.

We remind the reader of the following results.
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Lemma 4.3. If Q is the pasting of Q1 and Q2 in η, then for all stopping
times ξ and all GT -measurable random variables Y ≥ 0 it holds that

EQ[Y |Gξ] = EQ1 [EQ2 [Y |Gη∨ξ]|Gξ].

Proof. See Lemma 6.40 in [16].

For i = 1, 2 let Z(i) := (Z
(i)
t )t∈[0,T ] be the corresponding Radon-Nikodym

density process

Z
(i)
t =

dQi
dP
|Gt , t ∈ [0, T ]. (4.2)

We put

Ut =
dQ2

dQ1
|Gt , t ∈ [0, T ]. (4.3)

Lemma 4.4. The pasting Q of Q1 and Q2 in η is equivalent to Q1 and
satisfies

dQ

dQ1
=
UT
Uη

, (4.4)

where U is introduced in (4.3).

Proof. See Lemma 6.39 in [16].

It follows from Lemma 4.4 that

dQ

dQ1
|Gt =

Ut
Ut∧η

, t ∈ [0, T ],

since

EQ1 [
dQ

dQ1
|Gt] = EQ1 [

UT
Uη

1{η≤t}|Gt] + EQ1 [
UT
Uη

1{t<η}|Gt]

=
1

Uη
Ut1{η≤t} + EQ1 [EQ1 [

UT
Uη

1{t<η}|Gη]|Gt]

=
1

Uη
Ut1{η≤t} + EQ1 [1{t<η}|Gt]

=
Ut
Ut∧η

1{η≤t} +
Ut
Ut∧η

1{t<η}

=
Ut
Ut∧η

.

(4.5)

This allows us to obtain the Radon-Nykodim density process Z = (Zt)t∈[0,T ]

of the measure Q obtained through pasting, i.e. Zt = dQ
dP |Gt , t ∈ [0, T ].
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Corollary 4.5. The process Z = (Zt)t∈[0,T ] given by

Zt = Z
(1)
t

Ut
Ut∧η

, t ∈ [0, T ], (4.6)

is a P -martingale with respect to the filtration G and dQ
dP |Gt = Zt, t ∈ [0, T ].

Furthermore

Zt = Z
(1)
t∧η

Z
(2)
t

Z
(2)
t∧η

, t ∈ [0, T ],

where Z(1), Z(2) are given in (4.2).

Proof. The result is a simple consequence of Lemma 4.4. By applying Bayes
formula we obtain

Zt = Z
(1)
t

Ut
Ut∧η

= Z
(1)
t

EP [dQ2

dP |Gt]
EP [dQ1

dP |Gt]
EP [dQ1

dP |Gt∧η]
EP [dQ2

dP |Gt∧η]

= Z
(1)
t

Z
(2)
t

Z
(1)
t

Z
(1)
t∧η

Z
(2)
t∧η

= Z
(1)
t∧η

Z
(2)
t

Z
(2)
t∧η

, t ∈ [0, T ].

We now apply these general results on measure pasting to characterize the
set Mloc(W ). The following result represents the central theorem of this
section.

Theorem 4.6. We assume that Assumption 4.1 holds.

i) Let Qi ∈Mloc(W
i), i = 1, 2, and let Q ≈ P be the measure obtained by

the pasting of Q1 and Q2 in σ1, with Radon-Nikodym density process
Zt = dQ

dP |Gt, t ∈ [0, T ]. Then Q ∈Mloc(W ).
In addition, if Q1 ∈ MNUI(W

(1)) or Q2 ∈ MNUI(W
(2)), then Q ∈

MNUI(W ).

ii) On the other hand, let Q ∈Mloc(W ) with Radon-Nikodym density Z =
(Zt)t∈[0,T ], i.e. Zt = dQ

dP |Gt , t ∈ [0, T ]. There exist Qi ∈ Mloc(W
(i)),

i = 1, 2, with corresponding Radon-Nikodym density processes Z(i)
t =

dQi
dP |Gt given by Z(1)

t = Zt∧σ1 and Z(2)
t = Zt

Zt∧σ1
for all t ∈ [0, T ], such

that Z can be written in the form

Zt = Z
(1)
t Z

(2)
t , t ∈ [0, T ], (4.7)

and Q is the pasting of Q1 and Q2 in σ1.

12



Proof. i) Let (τ in)n≥0 be a localizing sequence such that W (i),τ in is a Qi-
martingale on [0, T ] for i = 1, 2. We define the sequence of stopping times
(τn)n≥0 by τn := τ1

n ∧ τ2
n, n ≥ 0. We show that W τn is a Q-martingale on

[0, T ], where Q is the pasting of Q1 and Q2 in σ1. For any s ≤ t, it follows
from Lemma 4.3 that

EQ[Wt∧τn |Gs] = EQ1 [EQ2 [Wt∧τn |Gs∨σ1 ]|Gs]

= EQ1 [EQ2 [Wt∧τn∧σ1 +W
(2)
t∧τn |Gs∨σ1 ]|Gs]

= EQ1 [Wt∧τn∧σ1 +W
(2)
(t∧τn)∧(s∨σ1)|Gs]

= Ws∧τn∧σ1 + EQ1 [W
(2)
(t∧τn)∧(s∨σ1)|Gs]

= Ws∧τn∧σ1 + EQ1 [1{s∧τn<σ1}W
(2)
(t∧τn∧σ1)∨(s∧τn)|Gs]

+ EQ1 [1{s∧τn≥σ1}W
(2)
(t∧τn∧σ1)∨(s∧τn)|Gs]

= Ws∧τn∧σ1 + EQ1 [1{s∧τn<σ1}W
(2)
t∧τn∧σ1 |Gs]

+ EQ1 [1{s∧τn≥σ1}W
(2)
s∧τn |Gs]

= Ws∧τn∧σ1 +W
(2)
s∧τn1{s∧τn≥σ1} = Ws∧τn ,

since W (2)
t∧τn∧σ1 = (Wt∧τn∧σ1 −Wσ1)1{t∧τn∧σ1≥σ1} = 0.

Hence Q ∈ Mloc(W ). For the second part of i) we use the fact that Q ∈
MNUI(W ) is equivalent to

Wt > EQ[WT |Gt],

for some t ∈ [0, T ]. By applying Lemma 4.3 we obtain

EQ[WT |Gt] = EQ1 [EQ2 [WT |Gσ1∨t]|Gt]
≤ EQ1 [Wσ1∨t|Gt] ≤Wt,

(4.8)

where one of the inequalities is strict for some t if Q1 or Q2 belong to the
setMNUI(W ).
ii) We introduce the set

Z(W ) := {Z;ZW is a P − local martingale}.

Then the Radon-Nikodym density process Z belongs to Z(W ). As shown in
Lemma 2.3. of Stricker and Yan [36], since σ1 < T , we have that Z ∈ Z(W σ1)
i.e. ZW σ1 is a P -local martingale on [0, T ]. We define the measure Q1 ≈ P
by

dQ1

dP
= Zσ1 .

Furthermore Zt
Zt∧σ1

is a Radon-Nikodym density process for a measure Q2 ≈
P such that W (2) is a Q2-local martingale on [0, T ] as we now prove. Let

13



(τn)n∈N be a localizing sequence for the Q-local martingale W . Then

EP
[ Zt
Zt∧σ1

W
(2)
t∧τn |Gs

]
= EP

[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{t∧τn≥σ1}|Gs
]

= EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{t∧τn≥σ1}(1{s∧τn≥σ1}

+ 1{s∧τn<σ1≤t∧τn} + 1{t∧τn<σ1})|Gs
]

= EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn≥σ1}|Gs
]

+ EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn<σ1≤t∧τn}|Gs
]

= 1{s∧τn≥σ1}
1

Zσ1
(EP [ZtWt∧τn |Gs]− EP [ZtWσ1 |Gs])

+ EP
[
EP
[ Zt
Zt∧σ1

(Wt∧τn −Wσ1)1{s∧τn<σ1≤t∧τn}|Gs∨σ1
]
|Gs
]

=
Zs

Zσ1∧s
(Ws∧τn −Wσ1)1{s∧τn≥σ1}

+ EP
[
1{s∧τn<σ1≤t∧τn}

1

Zσ1
(EP [ZtWt∧τn |Gs∨σ1 ]

− EP [Wσ1Zt|Gs∨σ1 ])|Gs
]

=
Zs

Zσ1∧s
W

(2)
s∧τn + EP

[
1{s∧τn<σ1≤t∧τn}

1

Zσ1
(Zt∧(σ1∨s)W(t∧τn)∧(σ1∨s)

−Wσ1Zt∧(σ1∨s))|Gs
]

=
Zs

Zσ1∧s
W

(2)
s∧τn + EP

[
1{s∧τn<σ1≤t∧τn}

Zt∧(σ1∨s)

Zσ1
(Wt∧τn∧σ1 −Wσ1)|Gs

]
=

Zs
Zσ1∧s

W
(2)
s∧τn .

Hence ( 1
Zσ1∧t

ZtW
(2)
t )t∈[0,T ] is a P -local martingale. Thus we can define

dQ2

dP
|Gt :=

Zt
Zσ1∧t

, t ∈ [0, T ],

and this concludes the proof.

Theorem 4.6 shows that a change in the dynamics of the market wealth
process can possibly lead to a switch to a martingale measure belonging to
MNUI(W ) with consequent formation of a bubble in the sense of Definition
3.8. Here this shift is directly generated by the impact of the resulting trading
activity due to the influence of many micro-economic interactions.
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5 Example

We now consider a specific setting to illustrate the concepts presented in
Section 2. Let B = (B1, B2) be a 2-dimensional Brownian motion and set
F = F1 ∨ F2, where F1 and F2 are the natural filtrations associated to B1

and B2 respectively. Let X = (Xt)t∈[0,T ] be a process satisfying the following
dynamics

dXt = σXtdB
2
t , X0 = x0,

with x0 ∈ R+ and consider a defaultable claim such that X = XT and
Rt = cXt for all t ∈ [0, T ] and some c ∈ (0, 1). It follows from the Doob’s
maximal inequality applied to the martingale X that our chosen R satisfies
(2.1). We assume that the stochastic intensity µ is given by a Cox-Ingersoll-
Ross model

dµt = (a+ bµt)dt+ θ
√
µtdB

1
t ,

µ0 = µ̃,
(5.1)

where a, θ, µ̃ > 0 and b ∈ R.

Proposition 5.1. The credibility process F satisfies under P the following
equation

dFt = −ψtLt
√
µtdB

1
t − F̃tLt−dM̂t − e−ΓtLtµtdt, (5.2)

where Lt = (1−Ht)e
Γt and F̃t = P (t < τ ≤ T |Ft) for all t ∈ [0, T ], and

ψt = θβ(t)eα(t)+β(t)µt−Γt , (5.3)

with

α(t) =
2a

θ2
ln
( 2λe

(λ−b)(T−t)
2

(λ− b)(eλ(T−t) − 1) + 2λ

)
, (5.4)

and

β(t) = − 2(eλ(T−t) − 1)

(λ− b)(eλ(T−t) − 1) + 2λ
, (5.5)

for all t ∈ [0, T ] with λ :=
√
b2 + 2θ2.

Proof. It follows from Corollary 5.1.1 of Bielecki and Rutkowski [4] that

Ft = P (t < τ ≤ T |Gt) = 1{τ>t}EP [1{t<τ≤T}e
Γt |Ft]

= LtP (t < τ ≤ T |Ft) = LtF̃t,

where we have denoted Lt = (1−Ht)e
Γt , t ∈ [0, T ] and F̃t = P (t < τ ≤ T |Ft)

for all t ∈ [0, T ]. Using the definition of the F-hazard process, F can be
written in the form

F̃t = −EP [e−ΓT |Ft] + e−Γt .
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Since µ is an affine process, e.g. by Filipovic [14], we have that

F̃t = e−Γt(1− EP [e−(ΓT−Γt)|F1
t ]) = −e−Γteα(t)+β(t)µt + e−Γt , (5.6)

where α(t) and β(t) are given by (5.4) and (5.5) respectively. By applying
Itô’s formula and using (5.1) we obtain that F̃ satisfies the equation

dF̃t = −e−Γteα(t)+β(t)µtθ
√
µtβ(t)dB1

t − e−Γtµtdt

= −ψt
√
µtdB

1
t − e−Γtµtdt

(5.7)

for all t ∈ [0, T ], where ψ is given by (5.3). By the integration by parts
formula we have that

dFt = LtdF̃t + F̃tdLt + d[F,L]t

= −ψtLt
√
µtdB

1
t − F̃tLt−dM̂t − e−ΓtLtµtdt.

We examine the dynamics of the process Λ in this setting.

Theorem 5.2. The process Λ satisfies the following equation

dΛt = Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt), (5.8)

for all t ∈ [0, T ], where ξ1 and ξ2 are given by

ξ1
t =

(1− c)ψt
√
µte

Γt

(1− c)eα(t)+β(t)µt + c
and ξ2

t = − cµt

(1− c)eα(t)+β(t)µt + c
(5.9)

for all t ∈ [0, T ].

Proof. By (2.2) we have

Λt = EP [XT 1{τ>T}|Gt] + EP [cXτ1{τ≤T}|Gt]1{τ>t}. (5.10)

It follows from Corollary 5.1.1. of [4] that

EP [XT 1{τ>T}|GT ] = LtEP [XT 1{τ>T}|Ft], (5.11)

where Lt = (1−Ht)e
Γt , t ∈ [0, T ]. Hence

EP [XT 1{τ>T}|Gt] = LtEP [1{τ>T}XT |Ft] = LtEP [EP [XT 1{τ>T}|FT ]|Ft]
= LtEP [XTP (τ > T |FT )|Ft] = LtEP [XT e

−ΓT |Ft]
= LtEP [XT |F2

t ]EP [e−ΓT |F1
t ]

= LtXte
α(t)+β(t)µt−Γt .
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By Lemma 4.1. of [3] we then have

EP [cXτ1{τ≤T}|Gt]1{τ>t} = cLtEP [

∫ T

t
Xse

−ΓsdΓs|Ft] = cLt

∫ T

t
EP [Xse

−Γsµs|Ft]ds

= cLt

∫ T

t
EP [Xs|F2

t ]EP [e−Γsµs|F1
t ]ds

= cLtXt

∫ T

t
EP [e−Γsµs|F1

t ]ds

= cLtXt(EP [

∫ T

0
e−Γsµsds|F1

t ]−
∫ t

0
e−Γsµsds).

Since

EP [

∫ T

0
e−Γsµsds|Ft] = EP [1− e−ΓT |Ft] = 1− EP [e−ΓT |Ft]

= 1− e−ΓtEP [e−
∫ T
t µsds|Ft] = 1− e−Γteα(t)+β(t)µt ,

we obtain

Λt = LtXt(c+ (1− c)eα(t)+β(t)µt−Γt − c
∫ t

0
e−Γsµsds)

= LtXtDt,

(5.12)

where

Dt := c+ (1− c)eα(t)+β(t)µt−Γt − c
∫ t

0
e−Γsµsds

= (1− c)eα(t)+β(t)µt−Γt + ce−Γt > 0,

(5.13)

a.s. for all t ∈ [0, T ]. Since

d
(
eα(t)+β(t)µt−Γt

)
= θβ(t)

√
µte

α(t)+β(t)µt−ΓtdB1
t = ψt

√
µtdB

1
t ,

where ψ is defined in (5.3). We have

dDt = Dt

((1− c)ψt
√
µt

Dt
dB1

t −
ce−Γtµt
Dt

dt
)

= Dt(ξ
1
t dB

1
t + ξ2

t dt),

where

ξ1
t =

(1− c)ψt
√
µt

Dt
=

(1− c)ψt
√
µte

Γt

(1− c)eα(t)+β(t)µt + c
≤ 0.

and

ξ2
t = −ce

−Γtµt
Dt

= − cµt

(1− c)eα(t)+β(t)µt + c
≤ 0.

An application of Itô’s product formula yields

dΛt = Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt)

and this concludes the proof.
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Let us now examine the structure of the market wealth process W . We
remind that in our setting the immersion property holds under the measure
P .

Theorem 5.3. The market wealth process W is a (G, P )-semimartingale
that admits the canonical decomposition

Wt = Mt +At,

for all t ∈ [0, T ], where the local martingale part M is given by

dMt = (f(t, Ft)ξ
1
t − fx(t, Ft)Ltψt

√
µt)ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t

+ (cXt − f(t, Ft)Λt−)dM̂t,
(5.14)

and the finite variation part A is given by

dAt =
{

[f(t, Ft)ξ
2
t + ft(t, Ft)− fx(t, Ft)Lte

−Γtµt +
1

2
fxx(t, Ft)L

2
tψ

2
t µt

+ fx(t, Ft)LtF̃tµ̂t − fx(t, Ft)Ltψt
√
µtξ

1
t ]Λt + cXtµ̂t

}
dt.

(5.15)

Proof. By applying the integration by parts formula we obtain

dWt = f(t, Ft)dΛt + Λtdf(t, Ft) + d[Λ, f(·, F )]t + cXtdHt. (5.16)

We start by determining the dynamics of f(t, Ft). Using Itô’s formula (see
Theorem II.32 in Protter [31]) and (5.2) we have

f(t, Ft) = f(0, F0) +

∫ t

0
fs(s, Fs)ds+

∫ t

0
fx(s, Fs−)dFs +

1

2

∫ t

0
fxx(s, Fs−)d[F, F ]cs

+
∑

0<s≤t
{f(s, Fs)− f(s, Fs−)− fx(s, Fs−)∆Fs)}

= f(0, F0) +

∫ t

0
fs(s, Fs)ds−

∫ t

0
fx(s, Fs)Lsψs

√
µsdB

1
s

−
∫ t

0
fx(s, Fs−)F̃s−Ls−dM̂s −

∫ t

0
fx(s, Fs)Lse

−Γsµsds

+
1

2

∫ t

0
fxx(s, Fs)L

2
sψ

2
sµsds

+

∫ t

0
{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃s−Ls−}dM̂s

+

∫ t

0
fx(s, Fs)F̃sLsµ̂sds,
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where we wrote the sum of jumps as a stochastic integral as shown below∑
0<s≤t

{f(s, Fs)− f(s, Fs−)− fx(s, Fs−)∆Fs}

=
∑

0<s≤t
{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃sLs−∆Hs}

=
∑

0<s≤t
{f(s, Fs)− f(s, Fs−)}∆Hs +

∑
0<s≤t

fx(s, Fs−)F̃sLs−∆Hs

=

∫ t

0
(f(s, Fs)− f(s, Fs−))dHs +

∫ t

0
fx(s, Fs−)F̃sLs−dHs

=

∫ t

0
{f(s, Fs)− f(s, Fs−) + fx(s, Fs−)F̃sLs−}dM̂s +

∫ t

0
fx(s, Fs−)F̃sLs−µ̂sds.

Therefore

f(t, Ft) = f(0, F0)−
∫ t

0
fx(s, Fs)Lsψs

√
µsdB

1
s +

∫ t

0

(
f(s, Fs)− f(s, Fs−)

)
dM̂s

+

∫ t

0

(
fs(s, Fs)− fx(s, Fs)Lse

−Γsµs +
1

2
fxx(s, Fs)L

2
sψ

2
sµs

+ fx(s, Fs)F̃sLsµ̂s

)
ds.

It follows from Theorem 5.2 and the expression of f(t, Ft) that the quadratic
covariation [Λ, f(·, F )] is equal to

d[Λ, f(·, F )]t = −(f(t, Ft)− f(t, Ft−))Λt−dHt − fx(t, Ft)Ltψtξ
1
t

√
µtΛtdt

= −(f(t, Ft)− f(t, Ft−))Λt−dM̂t − fx(t, Ft)Ltψtξ
1
t

√
µtΛtdt.

By replacing the expressions of [Λ, f(·, F )] and f(t, Ft) in (5.16) and by using

19



(5.8) we obtain

dWt = f(t, Ft)ξ
1
t ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t − f(t, Ft−)Λt−dM̂t

+ f(t, Ft)ξ
2
t Λtdt− fx(t, Ft)Ltψt

√
µtΛtdB

1
t

+ (f(t, Ft)− f(t, Ft−))Λt−dM̂t +
(
ft(t, Ft)− fx(t, Ft)Lte

−Γtµt

+
1

2
fxx(t, Ft)L

2
tψ

2
t µt + fx(t, Ft)F̃tLtµ̂t

)
Λtdt

− fx(t, Ft)Ltψt
√
µtξ

1
t Λtdt− (f(t, Ft)− f(t, Ft−))Λt−dM̂t

+ cXtdM̂t + cXtµ̂tdt

=
(
f(t, Ft)ξ

1
t − fx(t, Ft)Ltψt

√
µt

)
ΛtdB

1
t + σf(t, Ft)ΛtdB

2
t

+ (cXt − f(t, Ft−)Λt−)dM̂t

+
{(
f(t, Ft)ξ

2
t + ft(t, Ft)− fx(t, Ft)Lte

−Γtµt

+
1

2
fxx(t, Ft)L

2
tψ

2
t µt + fx(t, Ft)LtF̃tµ̂t

− fx(t, Ft)Ltψtξ
1
t

√
µt

)
Λt + cXtµ̂t

}
dt.

We now assume that Mloc(W ) 6= ∅ and derive first a general form for the
Radon-Nikodym density process associated to a measure Q ∈Mloc(W ).

Proposition 5.4. Let Q ∈ Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ] i.e. Zt = dQ

dP |Gt , t ∈ [0, T ]. Furthermore, we assume that
the quadratic covariation [Z,M ] is locally integrable. Then Z admits the
representation

dZt = Zt−(b
(1)
t dB1

t + b
(2)
t dB2

t + b
(3)
t−dM̂t), t ∈ [0, T ], (5.17)

where (b
(i)
t )t∈[0,T ] are G-predictable processes for all i = 1, 2, 3, satisfying

0 = dAt +
[(
b
(1)
t (ξ1

t f(t, Ft)− fx(t, Ft)Ltψt
√
µt)

+ σb
(2)
t f(t, Ft)

)
Λt + b

(3)
t (cXt − f(t, Ft)Λt−)µ̂t

]
dt

(5.18)

dt⊗ dP -almost surely on [0, T ]× Ω.

Proof. Since the process Z is strictly positive, representation (5.17) follows
by the martingale representation theorem with respect to (G, P ), see [4].
From the predictable version of Girsanov’s Theorem we obtain that W ad-
mits under Q the following decomposition

Wt = Mt −
∫ t

0

1

Zs−
d〈Z,M〉s +At +

∫ t

0

1

Zs−
d〈Z,M〉s, t ∈ [0, T ].
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Since Q ∈Mloc(W ), this implies that

At +

∫ t

0

1

Zs−
d〈Z,M〉s = 0

dt⊗ dP -a.s. which is equivalent to (5.18).

We now state an auxiliary result, that will be used later in the proofs.

Lemma 5.5. On the set {τ > t} we have

Rt < Λt. (5.19)

Proof. Since Rt = cXt for all t ≥ 0, we obtain

Rt1{τ>t} = cXt1{τ>t} = cEP [XT |Gt]1{τ>t}
= c1{τ>t}EP [XT 1{τ>T} +XT 1{τ≤T}|Gt]
= c(1{τ>t}EP [XT 1{τ>T}|Gt] + 1{τ>t}EP [EP [XT 1{t<τ≤T}|Gτ ]|Gt])
= c1{τ>t}EP [XT 1{τ>T} +Xτ1{t<τ≤T}|Gt] < Λt1{τ>t},

since c ∈ (0, 1).

The next result provides a concrete example (by specifying a function f(t, x))
when the setMloc(W ) is non-empty. We also compute a specific form of the
density process. Let

f(t, x) :=

{
1 + k(T − t)(1− x

p )3 if x ≤ p, t ∈ [0, T ],

1 if x > p, t ∈ [0, T ].
(5.20)

where k > 0 is a positive constant. The partial derivatives of f(t, x) will be
equal to

ft(t, x) :=

{
−k(1− x

p )3 if x ≤ p, t ∈ [0, T ],

0 if x > p, t ∈ [0, T ].

and

fx(t, x) :=

{
−3k

p (T − t)(1− x
p )2 if x ≤ p, t ∈ [0, T ],

0 if x > p, t ∈ [0, T ]

and the second derivative of f(t, x) with respect to x is given by

fxx(t, x) :=

{
6k
p2

(T − t)(1− x
p ) if x ≤ p, t ∈ [0, T ],

0 if x > p, t ∈ [0, T ]

Hence f(t, x) has bounded first and second order partial derivatives. Note
that, in the setting of this example, the impact of the credibility process F
on the wealth process W is bounded. However the wealth process is not
bounded.
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Theorem 5.6. If the function f(t, x) is defined by (5.20), thenMloc(W ) 6=
∅.

Proof. We now rewrite the expression of the finite variation part A of W as
given in (5.15) in a simpler form. .By (5.3), (5.6) and (5.9), we have

dAt =
{
f(t, Ft)ξ

2
t + ft(t, Ft)

}
Λtdt+

{
− fx(t, Ft)e

α(t)+β(t)µt

·
(

1 +
1− c

(1− c)eα(t)+β(t)µt + c
θ2β2(t)eα(t)+β(t)µt

)
Λt

+
1

2
fxx(t, Ft)θ

2β2(t)e2α(t)+2β(t)µtΛt + cXt

}
µ̂tdt.

We denote

δt := −fx(t, Ft)e
α(t)+β(t)µt

(
1 +

(1− c)eα(t)+β(t)µt

(1− c)eα(t)+β(t)µt + c
θ2β2(t)

)
+

1

2
fxx(t, Ft)θ

2β2(t)e2α(t)+2β(t)µt ,

(5.21)

for all t ∈ [0, T ]. It is easy to see that 0 ≤ δt < Cδ for some constant Cδ > 0
a.s. for all t ∈ [0, T ]. Therefore

dAt =
{
f(t, Ft)ξ

2
t + ft(t, Ft)

}
Λtdt+

(
δtΛt + cXt

)
µ̂tdt.

We define the process Z(1) = (Z
(1)
t )t∈[0,T ] by

dZ
(1)
t = b

(1)
t Z

(1)
t dB2

t , (5.22)

and

b
(1)
t = −

f(t, Ft)ξ
2
t + ft(t, Ft) + cXt

2Λt
µt1{τ>t}

σf(t, Ft)

= − 1

σ
ξ2
t −

ft(t, Ft)

σf(t, Ft)
− cXt

2σf(t, Ft)Λt
µt1{τ>t}

=
1

σ

c

(1− c)eα(t)+β(t)µt + c
µt + k(1− Ft

p
)

1

σf(t, Ft)
1{σ1≤t}

− 1

2σf(t, Ft)

cµt

(1− c)eα(t)+β(t)µt + c
1{τ>t}

=
1

σ

cµt

(1− c)eα(t)+β(t)µt + c

(
1− 1

2f(t, Ft)
1{τ>t}

)
+ k(1− Ft

p
)

1

σf(t, Ft)
1{σ1≤t},

where we have used the fact that Λt = XtLtDt with Dt defined in (5.13). By
Proposition 5.7 we have that Z(1) is a P -martingale. We define the measure
Q1 by

dQ1

dP
|GT = Z

(1)
T , (5.23)
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Under the measure Q1, the process

B̃2
t = B2

t −
∫ t

0
b(1)
s ds, t ∈ [0, T ],

is a Brownian motion with respect to the filtrationG. By applying Girsanov’s
theorem we obtain that W admits the following decomposition under Q1:

Wt = M1
t +A1

t , t ∈ [0, T ],

with the local martingale part (M1
t )t∈[0,T ] equal to

dM1
t =

(
f(t, Ft)ξ

1
t − fx(t, Ft)Ltψt

√
µt

)
ΛtdB

1
t + σf(t, Ft)ΛtdB̃

2
t

+ (cXt − f(t, Ft)Λt)dM̂t,

and the finite variation part (A1
t )t∈[0,T ] is given by

dA1
t = (

c

2
Xt + δtΛt)µ̂tdt.

We define the process Z(2) = (Z(2))t∈[0,T ] as the solution of

dZ
(2)
t = bt−Z

(2)
t− dM̂t, t ∈ [0, T ], (5.24)

with
bt =

c
2Xt + δtΛt

f(t, Ft)Λt − cXt
, t ∈ [0, T ]. (5.25)

We prove that Z(2) is a Q1-martingale. We start by showing that (bt)t∈[0,T ]

defined in (5.25) satisfies bt > −1 for all t ∈ [0, T ]. We have

bt =
c
2Xt + δtΛt

f(t, Ft)Λt − cXt
1{τ≤t} +

c
2Xt + δtΛt

f(t, Ft)Λt − cXt
1{τ>t}

= −1

2
1{τ≤t} +

c
2Xt + δtΛt

f(t, Ft)Λt − cXt
1{τ>t}.

(5.26)

On the set {τ > t} we have by Lemma 5.5, (3.1) and (5.21) that

cXt < Λt ≤ f(t, Ft)Λt, (5.27)

so
bt ≥ 0 on {τ > t}. (5.28)
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Moreover bt > −1 for all t ∈ [0, T ]. It follows from Theorem II.37 in Protter
[31] that the unique solution of equation (5.24) is given by

Z
(2)
t = exp

(∫ t

0
bsdM̂s

)
Πs≤t(1 + bs∆Hs) exp(−bs∆Hs)

= exp
(∫ t

0
bsdHs −

∫ t∧τ

0
bsµsds

)
(1 + bτ1{τ≤t}) exp(−bτ1{τ≤t})

= 1{τ>t} exp
(
−
∫ t∧τ

0
bsµsds

)
+

1

2
1{τ≤t} exp

(
−
∫ t∧τ

0
bsµsds

)
≤ 1{τ>t} +

1

2
1{τ≤t} <

3

2
,

(5.29)

where we have used (5.26) and (5.28). Therefore Z(2) is a positive Q1-
martingale since it is a bounded local martingale. Analogously we obtain
that

|∆Z(2)
t | = |Z

(2)
t − Z

(2)
t− | ≤ K∆,

for some K∆ > 0. Hence Z(2) has bounded jumps. It follows from Lemma
3.14 in [20] that [Z(2),M1] has locally integrable variation. Therefore its
Q1-compensator 〈Z(2),M1〉 exists and is well defined.
We now define the measure Q2 by

dQ2

dQ1
|GT = Z

(2)
T . (5.30)

Since 〈Z(2),M1〉 exists under Q1, the predictable version of Girsanov’s theo-
rem (see Theorem III.40 in [31]) yields the following canonical decomposition
of W under Q2

Wt = M2
t +A2

t , t ∈ [0, T ],

where the local martingale part M2 is given by

M2
t = M1

t −
∫ t

0

1

Z
(2)
s−
d〈Z(2),M1〉s

and the finite variation part A2 by

A2
t = A1

t +

∫ t

0

1

Z
(2)
s−
d〈Z(2),M1〉s

=

∫ t

0
(
c

2
Xs + δsΛs)µ̂sds+

∫ t

0
bsd〈M̂,M1〉s

=

∫ t

0
(
c

2
Xs + δsΛs)µ̂sds+

∫ t

0
bs(cXs − f(s, Fs)Λs)µ̂sds

= 0,
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where we have used (5.25). Hence W is a local martingale under Q2. Then
the equivalent probability measure Q ≈ P defined by

dQ

dP
=
dQ1

dP

dQ2

dQ1
(5.31)

where Q1 and Q2 are defined in (5.23) and (5.30) respectively, belongs to
Mloc(W ), i.eMloc(W ) 6= ∅. The following proposition concludes the proof.

Proposition 5.7. The process Z(1) = (Z
(1)
t )t∈[0,T ] defined by

dZ
(1)
t = b

(1)
t Z

(1)
t dB2

t ,

with (b
(1)
t )t∈[0,T ] given by (5.22) is a P -martingale.

Proof. The process b(1) can be written under the form

b
(1)
t = k1

t µt + k2
t , t ∈ [0, T ],

where (k1
t )t∈[0,T ] and (k2

t )t∈[0,T ] are càdlàg adapted bounded processes, given
by

k1
t =

1

σ

c

(1− c)eα(t)+β(t)µt + c

(
1− 1

2f(t, Ft)
1{τ>t}

)
and

k2
t = k(1− Ft

p
)

1

σf(t, Ft)
1{σ1≤t}. (5.32)

Let K > 0 be such that 0 ≤ kit ≤ K for all t ∈ [0, T ] and i = 1, 2.
Since the default intensity process µ given by (5.1) is a Cox-Ingersoll-Ross
process, it can be written as the finite sum of squared Ornstein-Uhlenbeck
processes, see Dufresne [13]. For simplicity, we assume that µ can be written
under the form

µt = r2
t , t ∈ [0, T ], (5.33)

where (rt)t∈[0,T ] is an Ornstein-Uhlenbeck process satisfying the equation

drt = −mrtdt+ ζdB1
t , r0 = r̄ > 0, (5.34)

where m ∈ R and ζ > 0. Equation (5.34) admits the solution

rt = r̄e−mt + ζe−mt
∫ t

0
emsdB1

s , t ∈ [0, T ].

However, the proof can be easily extended to the general case when µ is a
finite sum of squared Ornstein-Uhlenbeck processes. Let now σn = inf{t ≥
0; b

(1)
t ≥ n} and denote Znt := Z

(1)
t∧σn , for all t ∈ [0, T ]. For each n ∈ N, the
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process (Znt )t∈[0,T ] is a P -martingale, since the Novikov condition is trivially
satisfied:

EP
[

exp
(1

2

∫ T∧σn

0
(b(1)
s )2ds

)]
≤ EP [exp(

1

2
n2T )] <∞.

In order to show that the positive local martingale Z(1) is a P -martingale,
we now prove that

EP [Z
(1)
T ] = 1.

To this purpose, it is sufficient to show that the family (ZnT )n∈N is uniformly
integrable, since an application of Lebesgue’s dominated convergence theo-
rem yields

1 = lim
n→∞

EP [ZnT ] = EP [ lim
n→∞

ZnT ] = EP [Z
(1)
T ].

As in Theorem 2 of Hitsuda [18] and Theorem 2.1 of Klebaner and Liptser
[28], the uniform integrability of the family (ZnT )n∈N follows by applying the
de la Vallée-Poussin Theorem with g(x) = x log x, x ≥ 0, and showing that

sup
n

EP [g(ZnT )] <∞.

We have

EP [g(ZnT )] = EP [ZnT logZnT ]

= EP
[
ZnT

(∫ T

0
1{σn≥s}b

(1)
s dB2

s −
1

2

∫ T

0
1{σn≥s}(b

(1)
s )2ds

)]
≤ EP

[
ZnT (

∫ T

0
1{σn≥s}b

(1)
s dB2

s )
]

= EPn
[ ∫ T

0
1{σn≥s}b

(1)
s dB2

s

]
,

where the probability measure Pn ≈ P is defined by

dPn
dP

= ZnT .

Under Pn, the process (Bn
t )t≥0 given by

Bn
t = B2

t∧σn −
∫ σn∧t

0
b(1)
s ds, t ∈ [0, T ],

is a Brownian motion. Hence

EPn
[ ∫ T

0
1{σn≥s}b

(1)
s dB2

s

]
= EPn

[ ∫ T

0
1{σn≥s}b

(1)
s dBn

s

]
+ EPn

[ ∫ T

0
1{σn≥s}(b

(1)
s )2ds

]
≤ EPn

[ ∫ T

0
(b(1)
s )2ds

]
≤ 2K2EPn

[ ∫ T

0
(µ2
s + 1)ds

]
= 2K2

(∫ T

0
EPn [r4

s ]ds+ T
)
.
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Since r does not change its dynamics under the measure Pn and B1 remains
a Brownian Motion under Pn, we have that

EPn [r4
s ] = EPn

[(
r̄e−ms + ζe−ms

∫ s

0
emudB1

u

)4]
= r̄4e−4ms +

3ζ2r̄2

m
(e−2ms − e−4ms) +

3ζ4

4m2
(1− e−2ms)2 := ψ(s),

and therefore

EPn
[ ∫ T

0
1{σn≥s}b

(1)
s dB2

s

]
≤ 2K2

(∫ T

0
EPn [r4

s ]ds+ T
)

= 2K2
(∫ T

0
ψ(s)ds+ T

)
<∞.

Hence
sup
n

EP [ZnT ] <∞,

and this implies that the family (ZnT )n∈N is uniformly integrable.

The following proposition provides us with a general criterion for checking
when an element ofMloc(W ) is an element ofMNUI(W ).

Proposition 5.8. Let Q ∈ Mloc(W ) and P (0 < σ1 < T ) > 0. If the
process (W e

t )t∈[0,T ] is a Q-supermartingale with respect to the filtration G,
then Q ∈MNUI(W ).

Proof. Let Q ∈Mloc(W ) such that (W e
t )t∈[0,T ] is a (G, Q)-supermartingale.

Let ε > 0 such that P (σ1 + ε < T ) > 0 and Fσ1+ε < p on {σ1 + ε > T}. We
have

EQ[WT ] = EQ[W e
T ] = EQ[EQ[W e

T |Gσ1+ε]] ≤ EQ[W e
(σ1+ε)∧T ]

< EQ[W(σ1+ε)∧T ] ≤ EQ[W0].

Therefore W is a Q-strict local martingale on [0, T ].

The following result shows that the assumptions of Proposition 3.10 hold in
this context.

Proposition 5.9. Let Q ∈ Mloc(W ) be defined in (5.31), with Radon-
Nikodym density

Zt =
dQ

dP
|Ft , t ∈ [0, T ].

Then W eZ is a P -submartingale.
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Proof. By using Theorem 5.2 we have thatW e satisfies under P the equation

dW e
t = dΛt +RtdHt

= Λt−(ξ1
t dB

1
t + σdB2

t − dM̂t + ξ2
t dt) +Rt−dM̂t +Rtµ̂tdt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t + (ξ2
t Λt + cXtµ̂t)dt

= Λt(ξ
1
t dB

1
t + σdB2

t ) + (cXt − Λt−)dM̂t,

since by (5.9) we have

ξ2
t = −ce

−Γtµt
Dt

, t ∈ [0, T ],

and therefore by (5.12), we have P -a.s.

cXtµ̂t+ξ
2
t Λt = cXtµt1{τ≥t}−

ce−Γtµt
Dt

LtXtDt = cXtµt1{τ≥t}−ce−ΓtµtXtLt = 0.

By applying the integration by parts formula we obtain the canonical semi-
martingale decomposition of W eZ

(W eZ)t = mt + at, t ∈ [0, T ],

where the local martingale part (mt)t∈[0,T ] is given by

dmt = Zt−dW
e
t +W e

t−dZt,

and the finite variation part (at)t∈[0,T ] is equal to

dat = d[W e, Z]t = Z
(2)
t d[W e, Z(1)]t + Z

(1)
t− d[W e, Z(2)]t

= σb
(1)
t ZtΛtdt+ bt−Zt−(cXt − Λt−)dHt.

Hence, it follows from (5.26) that

at = a0 +

∫ t

0
σb(1)

s ZsΛsds+
1

2
Zτ (Λτ− − cXτ )1{τ≤t},

Therefore (at)t∈[0,T ] is an increasing process since b(1)
t > 0 for all t ∈ [0, T ]

and this implies that W eZ is a P -local submartingale. To conclude the
proof it is sufficient to show that the local martingale part m of W eZ is a
P -martingale. The process W e satisfies the inequalities

0 < W e
t = EP [XT 1{τ>T} + cXτ1{τ≤T}|Gt] ≤ Xt∧τ , (5.35)

for all t ∈ [0, T ], since c < 1. Hence, it follows from (5.29) and (5.35) that

0 ≤W e
t Zt ≤

3

2
Xτ
t Z

(1)
t .
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Let Yt := Z
(1)
t Xτ

t . We have

dYt = Z
(1)
t dXτ

t +Xτ
t dZ

(1)
t + d[Z(1), Xτ ]t

= σZ
(1)
t Xτ

t dB
2
t + b

(1)
t Z

(1)
t Xτ

t dB
2
t + σb

(1)
t Z

(1)
t Xτ

t dt

= (σ + b
(1)
t )YtdB

2
t + σb

(1)
t Ytdt.

Therefore Y is a P -local submartingale. However Y can be written under
the following multiplicative decomposition

Yt = MY
t A

Y
t ,

where MY is a local martingale given by

MY
t = exp

(∫ t

0
(σ + b(1)

s )dB2
s −

1

2

∫ t

0
(σ + b(1)

s )2ds
)
, t ∈ [0, T ],

and AY is a continuous finite variation process given by

AYt = exp
(∫ t

0
σb(1)

s ds
)
, t ∈ [0, T ].

With the same argument as in the proof of Proposition 5.7 with σ + b(1)

instead of b(1), we obtain that (MY
t )t∈[0,T ] is a P -martingale by the de la

Vallée-Poussin Theorem. Therefore by σb(1)
s > 0 a.s. for all s ≥ 0, we have

EP [Yt|Gs] = EP [MY
t A

Y
t |Gs] ≥ EP [MY

t |Gs]AYs = MY
s A

Y
s = Ys,

which implies that (Yt)t∈[0,T ] is a P -submartingale, closed by YT , i.e

Yt ≤ EP [YT |Gt], t ∈ [0, T ].

Since 0 ≤W eZt ≤ 3
2Yt for all t ∈ [0, T ], we have

sup
t∈[0,T ]

EP [W e
t Zt] ≤

3

2
sup
t∈[0,T ]

EP [Yt] ≤
3

2
EP [YT ] <∞.

Furthermore, for every ε > 0, there exists δ > 0 such that if A ∈ G and
P (A) < δ we have EP [Yt1A] < ε for all t ∈ [0, T ]. Hence

EP [W e
t Zt1A] ≤ 3

2
EP [Yt1A] < ε.

Therefore W eZ is also a uniformly integrable local submartingale. Let
(σn)n≥0 be a localizing sequence for W eZ. An application of Lebesgue’s
dominated convergence theorem yields

EP [W e
t Zt|Gs] = EP [ lim

n→∞
W e
t∧σnZt∧σn |Gs] = lim

n→∞
EP [W e

t∧σnZt∧σn |Gs]

≥ lim
n→∞

W e
s∧σnZs∧σn = W e

sZs.

Hence W eZ is a P -submartingale.
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Corollary 5.10. If Q ∈ Mloc(W ) satisfies the assumptions of Proposition
5.9, then

WQ
t −W e

t ≥ 0,

for all t ∈ [0, T ]

Proof. It follows by Propositions 3.10 and 5.9.

The following proposition provides a sufficient condition to guarantee that
the process W e exhibits a R-supermartingale behavior on the interval [0, T ],
under some measure R ∈Mloc(W ).

Proposition 5.11. Let R ∈Mloc(W ) with Radon-Nikodym density process
Z = (Zt)t∈[0,T ], where Zt = dR

dP |Gt , for t ∈ [0, T ]. We assume that the
quadratic covariation process [Z,M ] is locally integrable.
If the processes b(i), i = 1, 2, 3, in the representation (5.17) of Z satisfy the
inequality

(ξ1
t b

(1)
t + σb

(2)
t )
(

1 +
c

1− c
e−α(t)−β(t)µt

)
≤ b(3)

t µt, (5.36)

on the set {τ > t}, then W e is a R-supermartingale on [0, T ]. In particular
R ∈MNUI(W ).

Proof. It follows from the predictable version of the Girsanov theorem that
W e admits the following semimartingale decomposition under R

W e
t = Nt +At, t ∈ [0, T ]

where the local martingale part N = (Nt)t∈[0,T ] is given by

Nt = W e
t −

∫ t

0

1

Zs
d〈Z,W e〉, t ∈ [0, T ],

and the finite variation part A = (At)t∈[0,T ] is equal to

At =

∫ t

0

1

Zs
d〈Z,W e〉, t ∈ [0, T ].

We have

At =

∫ t

0

(
(ξ1
sb

(1)
s + σb(2)

s )Λs + (cXs − Λs)b
(3)
s µ̂s

)
ds.

Therefore A is decreasing if

(ξ1
t b

(1)
t + σb

(2)
t )Λt + (cXt − Λt)b

(3)
t µ̂t ≤ 0, t ∈ [0, T ],

or equivalently
(ξ1
t b

(1)
t + σb

(2)
t )Λt ≤ (Λt − cXt)b

(3)
t µt (5.37)
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on {τ > t}. By replacing Λt = LtDtXt, where (Dt)t∈[0,T ] is defined in (5.13),
(5.37) becomes

(ξ1
t b

(1)
t + σb

(2)
t )LtDt ≤ (LtDt − c)b(3)

t µt

on {τ > t}, or

(ξ1
t b

(1)
t + σb

(2)
t )
(

1 +
c

1− c
e−α(t)−β(t)µt

)
≤ b(3)

t µt,

on the set {τ > t}. Hence W e is a local R-supermartingale. Since W e
t =

Nt + At ≥ 0, this implies Nt ≥ −At, for all t ∈ [0, T ]. Therefore N is
a positive local R-martingale, and via an application of Fatou’s lemma, a
R-supermartingale. This implies

ER[W e
t |Gs] = ER[Nt|Gs] + ER[At|Gs] ≤ Ns +As,

for any s, t ∈ [0, T ], with s ≤ t. Hence W e is an R-supermartingale. It
follows from Proposition 5.8 that R ∈MNUI(W ).

6 Conclusion

In this paper we present a mathematical model for the formation of bubbles
in the valuation of defaultable claims in reduced-form credit risk framework.
We propose a constructive definition of bubble, which is triggered by the
impact of the credibility process on the defaultable claim’s risk neutral val-
uation. This setting is very flexible and can be readapted to include the
influence of other (macro-economic) factors, which may induce bubble birth.
Moreover it is consistent with the no-arbitrage (NFLVR) framework, as we
show in a specific example, where the default intensity is given by a Cox-
Ingersoll-Ross model. We also study the connection of our approach with
the martingale theory of bubbles and provide a characterization ofMloc(W ),
which shows how shifts in the martingale measure may be determined by
changes in the dynamics of the market wealth in our setting.

References

[1] D. Abreu and M.K. Brunnermeier. Bubbles and crashes. Econometrica,
71(1):173–204, 2003.

[2] F. Biagini, H. Föllmer, and S. Nedelcu. Shifting martingale measures
and the birth of a bubble as a submartingale. Finance and Stochastics,
18(2):297–326, 2014.

[3] F. Biagini and I. Schreiber. Risk-minimization for life insurance liabili-
ties. SIAM Journal on Financial Mathematics, 4(1):243–264, 2013.

31



[4] T. Bielecki and M. Rutkowski. Credit Risk: Modeling, Valuation and
Hedging. Springer, 2002.

[5] R. Bilina Falafala, R. Jarrow, and P. Protter. Change
of numeraires and relative asset price bubbles. Preprint,
Available at SSRN: http://ssrn.com/abstract=2265465 or
http://dx.doi.org/10.2139/ssrn.2265465, 2014.

[6] M.K. Brunnermeier and M. Oehmke. Bubbles, financial crashes and
systemic risk. In E.N. White, editor, Handbook Of The Economics Of
Finance. Elsevier, 2013.

[7] D. Coculescu, M. Jeanblanc, and A. Nikeghbali. Default times, no-
arbitrage conditions and changes of probability measures. Finance and
Stochastics, 16(3):513–535, 2012.

[8] D. Coculescu and A. Nikeghbali. Hazard processes and martingale haz-
ard processes. Mathematical Finance, 22(3):519–537, 2012.

[9] A.M.G. Cox and D.G. Hobson. Local martingales, bubbles and option
prices. Finance and Stochastics, 9(4):477–492, 2005.

[10] F. Delbaen andW. Schachermayer. A general version of the fundamental
theorem of asset pricing. Mathematische Annalen, 300:463–520, 1994.

[11] F. Delbaen and W. Schachermayer. A simple counter-example to several
problems in the theory of asset pricing. Mathematical Finance, 8:1–12,
1998.

[12] J.B. DeLong, A. Shleifer, L. Summers, and R. Waldmann. Noise trader
risk in financial markets. Journal of Political Economy, 98(4):703–738,
1990.

[13] D. Dufresne. The integrated square-root process. Working paper, Uni-
versity of Montreal, 2001.

[14] D. Filipovic. Term Structure Models: A Graduate Course. Springer
Finance, 2009.

[15] H. Föllmer, U. Horst, and A. Kirman. Equilibria in financial mar-
kets with heterogeneous agents: A probabilistic perspective. Journal of
Mathematical Economics, 41(1-2):123–155, 2005.

[16] H. Föllmer and A. Schied. Stochastic Finance: An introduction in dis-
crete time. De Gruyter Graduate. Walter De Gruyter, 3rd edition, 2010.

[17] J.M. Harrison and D.M. Kreps. Speculative investor behavior in a stock
market with heterogeneous expectations. The Quarterly Journal of Eco-
nomics, 92(2):323–336, 1978.

32



[18] M. Hitsuda. Representation of gaussian processes equivalent to wiener
process. Osaka Journal of Mathematics, 5:299–312, 1968.

[19] J Hugonnier. Rational asset pricing bubbles and portfolio constraints.
Journal of Economic Theory, 147:2260–2302, 2011.

[20] J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes. A
Series of Comprehensive Studies in Mathematics. Springer, 2nd edition,
2003.

[21] R. Jarrow. Market manipulation, bubbles, corners and short-squeezes.
Journal of Financial and Quantitative Analysis, 27(3):311–338, 1992.

[22] R. Jarrow, Y. Kchia, and P. Protter. How to detect an asset bubble.
SIAM Journal on Financial Mathematics, 2:839–865, 2011.

[23] R. Jarrow and P. Protter. Forward and futures prices with bubbles.
International Journal of Theoretical and Applied Finance, 12(7):901–
924, 2009.

[24] R. Jarrow and P. Protter. Foreign currency bubbles. Review of Deriva-
tives Research, 14(1):67–83, 2011.

[25] R. Jarrow, P. Protter, and A Roch. A liquidity based model for asset
price bubbles. Quantitative Finance, 12(9):1339–1349, 2012.

[26] R. Jarrow, P. Protter, and K. Shimbo. Asset price bubbles in complete
markets. Advances in Mathematical Finance, Applied and Numerical
Harmonic Analysis(Part II), 2007.

[27] R. Jarrow, P. Protter, and K. Shimbo. Asset price bubbles in incomplete
markets. Mathematical Finance, 20(2):145–185, 2010.

[28] F. Klebaner and R. Liptser. Whena a stochastic exponential is a true
martingale. extension of the benes method. Theory of Probability and
its Applications, 58(1):38–62, 2014.

[29] M. Loewenstein and G.A. Willard. Rational equilibrium asset-pricing
bubbles in continuous trading models. Journal of Economic Theory,
91(1):17–58, 2000.

[30] E.M. Miller. Risk, uncertainty, and divergence of opinion. The Journal
of Finance, 32(4):1151–1168, 1977.

[31] P. Protter. Stochastic Integration and Differential Equations (2nd edi-
tion). Volume 21 of Applications of Mathematics. Springer-Verlag Berlin
Heidelberg, 2004.

33



[32] P. Protter. A mathematical theory of financial bubbles. In V. Hender-
son and R. Sincar, editors, Paris-Princeton Lectures on Mathematical
Finance, volume 2081 of Lecture Notes in Mathematics. Springer, 2013.

[33] J. Scheinkman. Speculation, Trading and Bubbles. Kenneth J. Arrow
Lecture Series. Columbia University Press, 2014.

[34] J. Scheinkman and W. Xiong. Overconfidence and speculative bubbles.
Journal of Polical Economy, 111(6):1183–1219, 2003.

[35] A. Schleifer and R.W. Vischny. The limits of arbitrage. The Journal of
Finance, 52(1):35–55, 1997.

[36] C. Stricker and J.A. Yan. Some remarks on the optional decomposition
theorem. Seminaire de probabilites(Strasbourg), 32:56–66., 1998.

[37] J. Tirole. On the possibility of speculation under rational expectations.
Econometrica, 53(6):1163–1182, 1982.

34


	Introduction
	The Setting
	Bubbles in defaultable claim valuation
	Relation with the martingale theory of bubbles

	Characterization of Mloc(W) by measure pasting
	Example
	Conclusion

