
COHERENT FOREIGN EXCHANGE MARKET MODELS

ALESSANDRO GNOATTO

Abstract. A model describing the dynamics of a foreign exchange (FX) rate

should preserve the same level of analytical tractability when the inverted
FX process is considered. We show that affine stochastic volatility models

satisfy such a requirement. Such a finding allows us to use affine stochastic

volatility models as a building block for FX dynamics which are functionally-
invariant with respect to the construction of suitable products/ratios of rates

thus generalizing the model of [12].

JEL Classification G12, G15.

1. Introduction

The foreign exchange (FX) market is the largest and most liquid financial market
in the world. According to the Bank of International settlements (see [36]), the daily
global FX market volume (or turnover) in 2010 was about 3981 billion dollars. This
huge amounts breaks-down into spot transactions (1490 billion), FX swaps (1765
billion) and FX options (207 billion). These figures give an idea of the relevance
of the market for FX products and FX options in particular and hence provide
a reasonable grounding for questions focusing on it, see also [8]. The increasing
popularity of complex insurance products featuring FX risk highlights the relevance
of the topic also for the insurance industry, see [40].

When we look at the market for FX options we observe phenomena which may
be summarized in two main categories.

• Stylized facts regarding the underlying securities.
• Stylized facts regarding the FX implied volatility.

As far as the first category is concerned, we have that, unlike e.g. in the equity
market, we may consider both the underlying and its inverse. To be more specific,
if S denotes the EURUSD exchange rate (which is the price in dollars of 1 euro),
the reciprocal of S, 1/S, denotes then the USDEUR exchange rate, i.e. the price in
euros of 1 dollar. More generally, this kind of reasoning may be further extended
as we will see, and hence suitable ratios/products of exchange rates are still ex-
change rates. This key feature of exchange rates has an implication on the set of
requirements that a realistic model should satisfy. In particular, in the simple two-
economy case, assuming a certain stochastic dynamics for the exchange rate S has
been postulated, it is not a priori clear if the process for the inverted exchange rate
process 1/S shares the same level of analytical tractability of the original process
S.
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Concerning the second problem, when we look at implied volatility of FX options
we observe different values for different levels of moneyness/maturity, which are
summarized in the so-called volatility surface.

Extending our views to multiple currencies, and hence by looking at a a variance
covariance matrix of currencies, we observe that both variances and covariances are
stochastic, pointing out the need for a model in which not only we have stochastic
volatility on single exchange rates, but also stochastic correlations among them.
An example of this phenomenon is visualized in Figure 1, where we perform a very
simple estimation on rolling windows of the variance covariance matrix of two liquid
exchange rates EURUSD and EURJPY .
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Figure 1. Time series of variance and covariances for EURUSD
and EURJPY. Estimation performed using a rolling sample of 500
data points on time series with daily frequency.

Combining the two cathegories of stylized facts above into a single model which is
at the sime time coherent under the inversion of the currency, while able to capture
the features of the smile, is a non-trivial task. Ever since the contribution of [21],
which represents an adaptation of the Black-Scholes model [5], it has become quite
common to take a model initially imagined for e.g. stock options, and employ it,
with minor adjustments, for the evaluation of FX options. An example in this sense
is the model of [26], whose FX adaptation is discussed in many references, e.g. [10],
[28]. Other models which are employed in an FX setting are e.g. [39] or [27], see
the account in [33]. Our aim in the present article is to identify a class of stochastic
processes for the evolution of exchange rates which



COHERENT FX MODELS 3

• allows for the realistic description of stochastic volatility/correlation effects
and discountinuous paths;
• is closed under inversion or, more generally, under suitable products/ratios

of processes.

This paper is outlined as follows: in Section 2, we introduce our main assump-
tions. In section 3 we present our main result: we consider the class of affine
stochastic volatility models, as introduced by [30] and show that the process for
the inverted exchange rate is still an affine process which is as analytically tractable
as the starting model. Given this result, we can then look at more advanced situa-
tions and then consider triangles or more general geometric structures of FX rates.
The idea of Section 4 is to use the previous findings in the two economy case, in or-
der to present an example of model which is functionally symmetric under suitable
product/ratios among exchange rates. The model is an extension of the multifactor
stochastic volatility model introduced by [12].

2. The setting

2.1. Basic traded assets and coherent models. We specify a general market
setting consisting of two economies. We assume the existence of a risk-free money
market account for each currency area. We denote by Bd(t), Bf (t) the domestic
and the foreign money market accounts respectively, which are solutions to the
following ODEs

dBi(t) = ridt, B
i(0) = 1, i = d, f,(2.1)

where we assume, for the sake of simplicity, that ri, i = d, f are real valued con-
stants.

Let (Ω,F ,Ft,Qi) i = d, f be a filtered probability space, where the filtration Ft
satisfies the usual assumptions. We also let F0 be the trivial sigma algebra. Let
us postpone for the moment the treatment of the family of probability measures
Qi, i = d, f . On this probability space we will be considering in general two
stochastic processes: S = (S(t))t≥0 and S−1 =

(
S(t)−1

)
t≥0. S will be employed

to model the foreign exchange rate in the usual FORDOM convention i.e., if S
is a model for EURUSD and S = 1.30, then we say that one Euro is worth 1.30
dollars. In a dual way, we let S−1 be a model for the USDEUR exchange rate, thus
capturing the point of view of a European investor. Given the processes defined
above, agents from the two economies may trade the following assets.

• The domestic agent may trade
(1) In the domestic money market account Bd =

(
Bd(t)

)
t≥0;

(2) In the foreign money market account B̃f =
(
Bf (t)S(t)

)
t≥0.

• The foreign agent may trade
(1) In the foreign money market account Bf =

(
Bf (t)

)
t≥0;

(2) In the domestic money market account B̃d =
(
Bd(t)S(t)−1

)
t≥0.

We now concern ourselves with the viability of the market setting above. To this
end we introduce the following notation: whenever they exist, we denote via

• Qd the probability measure such that

EQd

[
B̃f (T )

Bd(T )

∣∣∣∣∣Ft
]

= EQd

[
Bf (T )S(T )

Bd(T )

∣∣∣∣Ft] =
Bf (t)S(t)

Bd(t)
,
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and call it domestic risk neutral measure;
• Qf the probability measure such that

EQf

[
B̃d(T )

Bf (T )

∣∣∣∣∣Ft
]

= EQf

[
Bd(T )S(T )−1

Bf (T )

∣∣∣∣Ft] =
Bd(t)S(t)−1

Bf (t)
,

and call it foreign risk neutral measure.

We now introduce the following assumption.

Assumption 1. We assume that a Qd-risk neutral measure exists, i.e. we assume
that the process

Z = (Z(t))t≥0 :=

(
Bf (t)S(t)

S(0)Bd(t)

)
t≥0

is a true Qd-martingale with Z(0) = 1.

Under this assumption, we have that the market model we are considering is free
of arbitrage, see Definiton 9.2.8 and Theorem 14.1.1 in [14]. In general, we will not
assume that Qd is unique, as we will be concerned with stochastic volatility models
possibly featuring jumps, which provide typical examples of incomplete markets.
In such a setting the particular measure Qd will be determined as the result of a
calibration to market data.

A direct consequence of Assumption 1, is that the process Z may be employed
so as to define the density process of the risk neutral measure Qf . More explicitly,
we have

∂Qf
∂Qd

∣∣∣∣
Ft

=
S(t)Bf (t)

S(0)Bd(t)
,(2.2)

see Theorem 1 in [22]. The process above is the change of measure which is found
in the classical literature on FX markets, see e.g. Section 2.9 in [6]. While this
is a well established fact, we would like to underline, by means of the following
examples, that the change of measure above may introduce significant changes in
the model specification under different pricing measures.

Example 1. Let us consider the GARCH stochastic volatility model, which is stud-
ied in depth in [32]. The dynamics are given by

dS(t)

S(t)
= (rd − rf )dt+

√
V (t)dW 1,Qd(t),(2.3)

dV (t) = (ω − αV (t))dt+ V (t)
(
ρdW 1,Qd(t) +

√
1− ρ2dW 2,Qd(t)

)
,(2.4)

which is specified under the domestic risk neutral measure. The density process
between the foreign and the domestic risk neutral measure is given by

∂Qf
∂Qd

∣∣∣∣
Ft

= exp

{∫ t

0

√
V (s)dW 1

s −
1

2

∫ t

0

V (s)ds

}
.(2.5)

Notice that this change of measure, which is typical for stochastic volatility models
with non-zero correlations, implies that the second Brownian motion W 2 is not
affected by the measure change, so W 2,Qf = W 2,Qd , see [32, p. 257]. Under the
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foreign risk neutral measure the dynamics of the inverse exchange rate are now
given by (compare with [32, Eq. 3.6 p. 257])

dS−1(t)

S−1(t)
= (rf − rd)dt+

√
V (t)dW 1,Qf (t),(2.6)

dV (t) = (ω − αV (t) + ρV (t)3/2)dt

+ V (t)
(
−ρdW 1,Qf (t) +

√
1− ρ2dW 2,Qf (t)

)
,(2.7)

which is not a GARCH stochastic volatility model.

Example 2. Let us consider the Hull-White stochastic volatility model

dS(t)

S(t)
= (rd − rf )dt+

√
V (t)dW 1,Qd(t),(2.8)

dV (t) = µV (t)dt+ ξV (t)
(
ρdW 1,Qd(t) +

√
1− ρ2dW 2,Qd(t)

)
.(2.9)

Also in this case we have a pathological situation: under the foreign risk neutral
measure the variance will not follow a geometric Brownian motion as under the
starting measure

dS−1(t)

S−1(t)
= (rf − rd)dt+

√
V (t)dW 1,Qf (t),(2.10)

dV (t) =
(
µV (t) + ξV (t)3/2ρ

)
dt

+ ξV (t)
(
−ρdW 1,Qf (t) +

√
1− ρ2dW 2,Qf (t)

)
.(2.11)

By proceeding along the same lines, it is also possible to show that the SABR
stochastic volatility model suffers from the same lack of symmetry. On the contrary,
when we consider the stochastic volatility model by Heston, see [26], we observe that
the structure of the model is instead preserved, as shown in [13]. More specifically,
under the measure Qd, the dynamics of the instantaneous variance factor of S are
those of a square root process

dV (t) = κ(θ − V (t))dt

+ σ
√
V (t)

(
ρdW 1,Qd(t) +

√
1− ρ2dW 2,Qd(t)

)
,

for σ > 0, κ ∈ R, s.t. θκ > 0 whereas, under the measure Qf , the instantaneous
variance of the inverted exchange rate is still a square root process where the pa-
rameters under Qf are modified as follows

κQf = κ− σρ(2.12)

θQf =
κθ

κQf
(2.13)

ρQf = −ρ.(2.14)

In view of the examples above we may say that an FX model is coherent if the
processes for S and 1/S belong to the same class.
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2.2. The foreign-domestic parity. We can further extend the market setting by
introducing European options written both on the exchange rate and its inverse.
More specifically

Assumption 2. The domestic and the foreign agent may create positions in the
following assets

• European call/put options written on S
• European call/put options written on S−1.

It is well known, see e.g. [7] or [15], that option prices are intimately linked to
characteristic functions of log-prices. To this end, let us define, for fixed t ≥ 0 and
all v ∈ C such that the expectations exist, the following characteristic functions

ϕi : C→ C, i = d, f,

ϕd(v) := EQd

[
eiv logS(t)

]
, v ∈ C,(2.15)

ϕf (v) := EQf

[
eiv logS(t)

−1
]
, v ∈ C,(2.16)

where i denotes the imaginary unit. Let us define F (t) := S0e
(rd−rf )t. From

Assumption 1 we can obtain the following

Proposition 1. Under Assumption 1 the characteristic functions ϕd, ϕf obey the
following relation

ϕf (u) = F (t)−1ϕd(−u− i).(2.17)

for u ∈ R.

Proof. Using the definitions of ϕd, ϕf in (2.15), (2.16), coupled with Assumption 1
and the Bayes rule, allows us to write

ϕf (u) = EQf

[
eiu logS(t)−1

]
=

1

Z(0)
EQd

[
Z(t)eiu logS(t)−1

]
=

Bd(0)Bf (t)

S(0)Bf (0)Bd(t)
EQd

[
ei(−u−i) logS(t)

]
= F (t)−1ϕd(−u− i).

The finiteness of ϕd(−u−i) is guaranteed by the martingale property of the density
process Z, hence the proof is complete. �

When the basic market model is enriched with the above derivative securities,
we can investigate the foreign domestic parity, which is a no-arbitrage relationship,
which links call options written on an FX rate to put options on the inverse FX
rate. By foreign domestic parity we mean the following relation

CALL (S0,K, rd, rf , T ) = S0KPUT
(

1

S0
,

1

K
, rf , rd, T

)
.(2.18)

To get an understanding of the relation we follow [41] and take as an example a call
on EURUSD (recall that EURUSD is quoted in FORDOM terms, meaning that we
are looking at the dollar value of one euro and so we take the perspective of an
American investor). The payoff (S(T )−K)

+
is worth CALL (S0,K, rd, rf , T ) for

the American investor, hence CALL (S0,K, rd, rf , T ) /S0 euros. This EUR−call
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may be viewed as the payoff K
(
K−1 − S(T )−1

)+
. This payoff for a European

investor is worth KPUT
(

1
S0
, 1
K , rf , rd, T

)
. Absence of arbitrage tells us that the

two values must agree. As a Corollary to Proposition 1, we can state a corrected
proof of the following result, originally proved by [13].

Corollary 1. Under Assumption 1 then the foreign domestic parity holds.

Proof. See Appendix. �

In the following, we return to our main object of investigation, namely the iden-
tification of a wide class of models which are coherent.

3. Affine stochastic volatility models

We consider affine stochastic volatility models, in the sense of [29], [30]. More
precisely, we consider an asset price S = (S(t))t≥0 of the form

S(t) = exp {(rd − rf ) t+X(t)} t ≥ 0,(3.1)

so that X = (X(t))t≥0 is a model for the discounted stock log-price process. We

let V = (V (t))t≥0 be another process, with V0 > 0 a.s., which may represent the

instantaneous variance of (X(t))t≥0 or may control the arrival rate of its jumps. We

assume that the joint process (X,V ) = (X(t), V (t))t≥0 satisfies the assumptions

A1, A2, A3, A4 in [30] and call it affine stochastic volatility model. More precisely
we assume that

• A1 (X,V ) is a stochastically continuous, time-homogeneous Markov pro-
cess with state space R× R≥0, where R≥0 := [0,∞),
• A2 The cumulant generating function of (X(t), V (t)) is of a particular affine

form: there exist functions φ(t, v, w) and ψ(t, v, w) such that

logEQd [exp (vX(t) + wV (t))] = φ(t, v, w) + ψ(t, v, w)V0 + vX0

for all (t, v, w) ∈ U for U defined as

U :=
{

(t, v, w) ∈ R≥0 × C2
∣∣ EQd [|exp (vX(t) + wV (t))|]

= EQd [exp (<(v)X(t) + <(w)V (t))] <∞
}
.

Assumptions A1, A2 make the process (X(t), V (t))t≥0 affine in the sense of Defi-

nition 2.1 in [18]. For our purposes, this implies that the characteristic function of
the logarithmic exchange rate is of a particularly nice form

ϕd(u) = EQd

[
eiu logS(t)

]
= eiu(rd−rf )t+φ(t,iu,0)+V0ψ(t,iu,0)+X0iu,

for u ∈ R. The functions φ, ψ may be easily characterized. In fact, from Theorem
2.1 in [30] we know that φ, ψ satisfy, for (t, v, w) ∈ U , the generalized Riccati
equations

∂

∂t
φ(t, v, w) = F (v, ψ(t, v, w)), φ(0, v, w) = 0,(3.2)

∂

∂t
ψ(t, v, w) = R(v, ψ(t, v, w)), ψ(0, v, w) = w.(3.3)

The results presented in [18] imply that the RHS in the system of ODE above,
i.e. the functions F (v, ψ(t, v, w)), and R(v, ψ(t, v, w)) are of Lévy-Khintchine form,
i.e.:



8 ALESSANDRO GNOATTO

F (v, ψ) =
(
v ψ

) a
2

(
v
ψ

)
+ b

(
v
ψ

)
+

∫
R×R≥0\{0}

(
evx+ψy − 1− v x

1 + x2

)
m (dx, dy) ,(3.4)

R(v, ψ) =
(
v ψ

) α
2

(
v
ψ

)
+ β

(
v
ψ

)
+

∫
R×R≥0\{0}

(
evx+ψy − 1− v x

1 + x2
− ψ y

1 + y2

)
µ (dx, dy) .(3.5)

Moreover the set of parameters (a, α, b, β,m, µ) satisfy the following admissibility
conditions

• a, α are positive semi-definite 2× 2 matrices with a12 = a21 = a22 = 0,
• b ∈ R× R≥0, β ∈ R2,
• m,µ are Lévy measures on R× R≥0, such that

∫
R×R≥0\{0}

(
(x2 + y) ∧ 1

)
m(dx, dy) <∞.

To gain an intuition on the role of the parameters we observe that F and R
represent respectively the constant and the state-dependent characteristics of the
vector process (X(t), V (t))t≥0. More precisely

• a+ αV (t) is the instantaneous covariance matrix,
• b+ βV (t) is the drift,
• m+ µV (t) is the Lévy measure.

In the following, we will consider a simplified version of the system of ODE
(3.2), (3.3), (3.4) and (3.5). In particular, we will assume that we have at most
jumps of finite variation for the positive (variance) component. Moreover, having
applications in mind, we parametrize the linear diffusion coefficient α by means of a
coefficient ρ ∈ [−1, 1] and we include, in the jump transform, the term coming from
the martingale condition for the asset price. Finally we will assume the following
conditions

• b1 = −a112 ,
• β1 = −α11

2 .

Which correspond to the condition F (1, 0) = R(1, 0) = 0 in Theorem 2.5 in [30]. In
summary we will be assuming that the process is conservative and is a martingale,
and also R(u, 0) 6= 0 for some u ∈ R which excludes models where the distribution
of the log asset price does not depend on the variance. These are the assumptions
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A3, A4 in [30]. The functions F,R are then of the following form

F (v, ψ) = −u2 a11
2

+ b

(
v
ψ

)
+

∫
R×R≥0\{0}

(
evx+ψy − 1− vx

)
− v (ex − 1− x)m (dx, dy) ,(3.6)

R(v, ψ) =
1

2

(
v ψ

)( α11 ρ
√
α11α22

ρ
√
α11α22 α22

)(
v
ψ

)
+ β

(
v
ψ

)
+

∫
R×R≥0\{0}

(
evx+ψy − 1− vx

)
− v (ex − 1− x)µ (dx, dy) .(3.7)

We proceed to state our main result on the coherency of affine stochastic volatility
models. For the sake of clarity, let us introduce the notation φQi , ψQi , i = d, f so
as to denote the cumulant generating function under the foreign and the domestic
risk neutral measure. Similarly, we also introduce FQi , RQi i = d, f .

Theorem 1. Let (X,V ) = (X(t), V (t))t≥0 be an affine stochastic volatility model

for the exchange rate process S of the form (3.1) whose affine representation is
given by (3.6), (3.7). Then the foreign risk-neutral martingale measure Qf has the
following density process with respect to Qd

∂Qf
∂Qd

∣∣∣∣
Ft

= eXt−X0 ,(3.8)

and the model for the inverted exchange rate S−1 is still an affine stochastic volatil-
ity model with

φQf (iu,w) = φQd(i(−u− i), w),

ψQf (iu,w) = ψQd(i(−u− i), w),

and corresponding characteristics

FQf (iu, ψ) = FQd(i(−u− i), ψ),(3.9)

RQf (iu, ψ) = RQd(i(−u− i), ψ),(3.10)

for (t, i(−u− i), w) ∈ U with u ∈ R.

Proof. The form of the density process (3.8) and the martingale property are im-
mediate given our assumptions. It remains to show that the model for the inverted
exchange rate is still an affine stochastic volatility model with characteristics (3.9)-
(3.10) and for this part we follow the arguments of [29, Theorem 4.14]. We have



10 ALESSANDRO GNOATTO

that

EQf

[
eiu logS(t)−1+wV (t)

]
= EQd

[
eiu logS(t)−1+wV (t)Z(t)

] 1

Z(0)

= eiu(rf−rd)tEQd

[
ei(−u−i)X(t)+wV (t)

]
e−X(0)

= eiu(rf−rd)t+φ
Qd (i(−u−i),w)+ψQd (i(−u−i),w)V (0)+i(−u−i)X(0)−X(0)

eiu(logS(0)
−1+(rf−rd)t)+φQd (i(−u−i),w)+ψQd (i(−u−i),w)V (0)

eiu(logS(0)
−1+(rf−rd)t)+φQf (iu,w)+ψQf (iu,w)V (0)

where we set φQf (iu,w) = φQd(i(−u−i), w) and ψQf (iu,w) = ψQd(i(−u−i), w).
From the system of generalized Riccati ODEs (3.2)-(3.3) we finally obtain (3.9) and
(3.10) upon direct inspection. �

Corollary 2. Under the Assumption of Theorem 1, the admissible parameter sets
for S and S−1 are related as follows

(1) b
Qf

1 = −a11 − b1,
(2) ρQf = −ρ,

(3) β
Qf

1 = −α11 − β1,

(4) β
Qf

2 = β2 + ρ
√
α11α22,

(5) mQf (dx, dy) = exm(dx, dy),
(6) µQf (dx, dy) = exµ(dx, dy).

Proof. From Theorem 1 we know that

FQd(i(−u− i), ψ) = FQf (iu, ψ),(3.11)

RQd(i(−u− i), ψ) = RQf (iu, ψ).(3.12)

In the steps below, we analyze separately drift, diffusion and jumps coefficient of
affine stochastic volatility models.

Step 1: constant diffusion and drift coefficients. We compute FQd (i(−u− i), ψ)
in the no-jump case

FQd (i(−u− i), ψ) =
i2(−u− i)2

2
a11 + i(−u− i)b1 + ψb2

=
1

2
i2u2a11 +

(
−a11 − b1 b2

)( iu
ψ

)
+
a11
2

+ b1.

We notice that (3.9) is satisfied if and only if

b
Qf

1 = −a11 − b1

b1 = −a11
2

Where the second condition is dictated by the martingale property for the log-
exchange rate and is then satisfied by assumption. These conditions can be easily
understood by looking at the Black-Scholes model.
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Step 2: linear diffusion and drift coefficients. Let us compute, under Qd, the
function RQd (i(−u− i), ψ) in the no-jump case.

RQd(i(−u− i), ψ)

=
1

2

(
i(−u− i) ψ

)( α11 ρ
√
α11α22

ρ
√
α11α22 α22

)(
i(−u− i)

ψ

)
+
(
β1 β2

)( i(−u− i)
ψ

)
=

1

2

(
iu ψ

)( α11 −ρ√α11α22

−ρ√α11α22 α22

)(
iu
ψ

)
+
(
−α11 − β1 β2 + ρ

√
α11α22

)( iu
ψ

)
+
α11

2
+ β1.

The functional form of the model is preserved if and only if we have

ρQf = −ρ,

β
Qf

1 = −α11 − β1,

β
Qf

2 = β2 + ρ
√
α11α22,

β1 = −α11

2
,

where again the final condition is dictated by the martingale property for the log-
exchange rate and is then satisfied by assumption. These conditions may be easily
visualized by considering the Heston [26] model and where first obtained by [13].

Step 3: constant and linear jump coefficients. We concentrate on the linear part
of the cumulant generating function, since the precedure is completely analogous
for the constant part. We compute RQd (i(−u− i), ψ) in the pure-jump case.

RQd (i(−u− i), ψ) =

∫
R×R≥0\{0}

(
ei(−u−i)x+ψy − 1− i(−u− i)x

)
− i(−u− i) (ex − 1− x)µ (dx, dy)

=

∫
R×R≥0\{0}

(
e−iux+ψy − 1− iue−x + iu

)
exµ(dx, dy).

We look then at the jump transform of the inverted exchange rate under the foreign
risk neutral measure and obtain

RQf (iu, ψ) =

∫
R×R≥0\{0}

(
e−iux+ψy − 1 + iux

)
− iu

(
e−x − 1 + x

)
µQf (dx, dy)

=

∫
R×R≥0\{0}

(
e−iux+ψy − 1− iue−x + iu

)
µQf (dx, dy),

from which we obtain µQf (dx, dy) = exµ(dx, dy). The result on the constant jump
coefficient is completely analogous and this completes the proof. �

Remark 1. The results of Therem 1 and Corollary 2 can be directly extended along
the following directions, that we omit for the sake of brevity.

• It is possible to choose a multivariate volatility factor process V = (V (t))t≥0
taking values in Rd+ or even a matrix variate volatility driver taking values
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on the cone of positive semidefinite d× d matrices (See [23] for an example
based on the Wishart process, also analizyed in [9]).
• Time inhomogeneous Lévy or Affine processes may be also considered, along

the lines of [20].

4. Example: a multi-currency and functionally symmetric model

The discussion so far focused on the problem of finding models such that the
process of the inverted exchange rate is coherent, i.e. belongs to the same class as
the original process for the starting FX rate. This represents a first requirement
that any FX market model should satisfy. However, when we look at the FX
market, more complicated situations may arise. In fact we may not only compute
the inverted exchange rate, but we may also construct new exchange rates via
products/ratios of exchange rates. The simplest situations we can think of in this
sense are given by currency triangles or tetrahedra, see e.g. Figure 2.

The fact that a model is coherent, does not guarantee that products of exchange
rates preserve the functional form of the coefficients of the associated SDEs. An
example in this sense is given by the basic Heston model, as evidenced by [17].

Even though a model is not fully functionally symmetric, it is possible to use
coherent models as building blocks for processes which are stable under suitable
multiplications/ratios. Building such models is possible if we change the starting
point of the analysis: instead of specifying directly a generic exchange rate as a
given state variable, the idea is to consider a family of primitive processes and then
construct any exchange rate as a product/ratio of these primitive processes. In the
literature, this kind of procedure has been undertaken, in a stochastic volatility
setting, by [12]. The idea, which is developed in that paper is inspired by the work
of [25], who consider the following model for a generic exchange rate

Si,j(t) =
Di(t)

Dj(t)

where Di, Dj are the values of the growth optimal portfolio under currencies i, j.
This idea rephrases a classical concept from economics, which is known as the law
of one price. Alternatively, the processes Di, Dj may be thought of as the values
w.r.t. currencies i, j of gold, or, using the terminology of [12] a universal numéraire.
This is the same principle independently followed by [16] and [17] who terms this
approach intrinsic currency valuation framework.

We consider a foreign exchange market in which N currencies are traded and,
as in [12] and [25], we start by considering the value of each of these currencies in
units of an artificial currency that can be viewed as a universal numéraire. We work
under the risk neutral measure defined by the artificial currency and call S0,i(t) the
value at time t of one unit of the currency i in terms of our artificial currency (so
that S0,i can itself be thought as an exchange rate, between the artificial currency
and the currency i). We model each of the S0,i via three main mutually indepen-
dent stochastic drivers: the first is multi-variate Heston stochastic volatility term
[26] with d independent Cox-Ingersoll-Ross (CIR) components [11], V(t) ∈ Rd.We
further assume that these stochastic volatility components are common between the
different S0,i. This part corresponds to the model of [12]. We generalize the frame-
work by including a time dependent volatility term and jumps. For 0 ≤ t ≤ T ?
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EUR

USD

JPY

GBP

Figure 2. A currency tetrahedron

with T ? a fixed time horizon, we write

dS0,i(t)

S0,i(t−)
= (r0 − ri)dt− (ai)>

√
Diag(V(t))dZ0(t)

+

f∑
l=1

(
−(σil(t))

>dZl(t)

+

∫
Rg

(
e−(b

i
l)
>x − 1

)
(Nl(dx, dt)−ml(dx)dt)

)
,(4.1)

dVk(t) = κk(θk − Vk(t))dt+ ξk
√
Vk(t)dWk(t), k = 1, . . . , d;(4.2)

where i = 1, ..., N runs over different currencies, k = 1, . . . , d is the dimension of the
stochastic volatility part. The second and the third main driver are a local volatil-
ity term introduced via f time dependent e-dimensional time dependent volatility
functions σil(t), i = 1, . . . , N l = 1, . . . , f and finally the third introduces jumps,
which are included by means of f independent g-dimensional jump processes, with
associated random measures Nl and Lévy measures ml, l = 1, . . . , f . The Lévy
measures ml are assumed to satisfy the following condition ∃ M > 0 and ε > 0 s.t.∫

|x|>1

eu
>xml(dx) <∞,(4.3)

∀ u ∈ [−(1 + ε)M, (1 + ε)M ]
g
, ∀l = 1, .., f , which ensures the existence of expo-

nential moments. As far as the stochastic volatility part is concerned, κk, θk, ξk ∈ R
are parameters in a CIR dynamics, whereas

√
Diag(V) denotes the diagonal ma-

trix with the square root of the elements of the vector V in the main diagonal.
This term is multiplied with the linear vector ai ∈ Rd (i = 1, . . . , N), in conse-
quence, the dynamics of the exchange rate is also driven by a linear projection of
the variance factor V along a direction parametrized by ai, so that the total instan-
taneous variance arising from the stochastic volatility term is (ai)>Diag(V(t))aidt.
In each monetary area i, the money-market account accrues interest based on the
deterministic risk free rate ri,

dBi(t) =riBi(t)dt, i = 1, . . . , N ;(4.4)

in our universal numéraire analogy r0 is the artificial currency rate. Finally, in line
with [12], we assume an orthogonal correlation structure between the stochastic
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drivers

d〈Z0
k ,Wh〉t = ρkδkhdt, k, h = 1, . . . , d,(4.5)

together with d〈Z0
k , Z

0
h〉t = δkhdt and d〈Wk,Wh〉t = δkhdt. We notice also that the

jumps sizes are multiplied by a bi ∈ Rg, i = 1, . . . , N , consequently, the dynamics
of the exchange rate is also driven by an f -dimensional family of linear projection
of the f -dimensional family of g-dimensional jump processes.

4.1. Products and ratios of FX rates. The aim of this section is to show that
the general model that we introduced above gives rise to exchange rates which
are closed under arbitrary product/ratios. The model describes primitive exchange
rates, i.e. exchange rates with respect to an artificial currency, to which an artificial
risk-neutral measure Q0 is associated. Exchange rates among real currencies are
constructed by performing two steps: we apply first the Ito formula for semimartin-

gales in order to deduce the dynamics of Si,0(t) =
(
S0,i(t)

)−1
, and then we compute

the dynamics of Si,j = Si,0(t)S0,j(t) by relying on the product rule. Finally, we
show that the resulting process Si,j may be arbitrarily used to construct different
exchange rates, meaning that e.g. Si,j = Si,lSl,j , such that the coefficients of the
SDE preserve their functional form.

Proposition 2. The dynamics of the exchange rate Si,j =
(
Si,j(t)

)
t≥0 under the

Q0 risk neutral measure is given by

dSi,j(t)

Si,j(t−)
= (ri − rj)dt

+
(
ai − aj

)>
Diag(V(t))aidt+

(
ai − aj

)>
Diag(

√
V(t))dZ0(t)

+

f∑
l=1

[
(σil(t)− σ

j
l (t))

>(σil(t))dt+ (σil(t)− σ
j
l (t))

>dZl(t)

+

∫
R

(
e(b

i
l−b

j
l )
>x − 1

)(
Nl(dx, dt)− e−(b

i
l)
>xml(dx)dt

)]
.(4.6)

Moreover, the dynamics of the exchange rate is invariant under arbitrary prod-
ucts/ratios of exchange rates

Proof. The results directly follows by applying the Ito formula for semimartingales.
�

4.2. The Qi-risk-neutral process for the FX rate. So far, the specification
of the model has been performed under the risk neutral measure Q0 associated
to the artificial numéraire. The aim of the present section is to present the risk
neutral dynamics of the exchange rates together with a precise statement of the
relation among the parameters of the model under different measures. This is a key
step because a precise understanding of the relatioship among parameters under
different measure is necessary e.g. to perform a joint calibration of the model to
different volatility surfaces simultaneously, as shown in [12] and [23].

Under the assumptions of the fundamental theorem of asset pricing (cfr. e.g.
[4], chapters 13 and 14), investing into the foreign money market account gives a
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traded asset with value Si,jBj/Bi, and its value has to be a Qi-martingale. Hence,

d
(
Si,j(t)Bj(t)

Bi(t)

)
Si,j(t−)Bj(t−)

Bi(t−)

=
(
ai − aj

)>
Diag(

√
V(t))d(Z0)Qi(t)

+

f∑
l=1

[
(σil(t)− σ

j
l (t))

>d(Zl)Qi(t)

+

∫
R

(
e(b

i
l−b

j
l )
>x − 1

) (
Nl(dx, dt)− (ml)

Qi(dx)dt
)]
.

In the last line we implicitly defined the new Brownian motion vectors (Z0)Q
i

,

(Zl)Q
i

, l = 1, ..., f , together with the exponentially tilted Lévy measures (ml)
Qi ,

l = 1, .., f under the measure Qi from the constraint of having a Qi-local martingale
and by Girsanov theorem:

d(Z0)(t)Q
i

= dZ0(t) +
√

Diag(V(t))aidt, i = 1, .., N,(4.7)

d(Zl)(t)Q
i

= dZl(t) + σij(t)dt, l = 1, ..., f i = 1, .., N,(4.8)

(ml)
Qi(dx) = e−(b

i
l)
>xml(dx).(4.9)

If we denote by Q0 the risk neutral measure associated with the universal
numéraire, the Radon-Nikodym derivative corresponding to the change of measure
from Q0 to Qi reads

dQi

dQ0

∣∣∣∣
t

= exp

(
−
∫ t

0

(
ai
)>√

Diag(V(s))dZ0(s)− 1

2

∫ t

0

(
ai
)>

Diag(V(s))aids

f∑
l=1

[
−
∫ t

0

(
σil(s)

)>
dZl(s)− 1

2

∫ t

0

(
σil(s)

)>
σil(s)ds

+

∫ t

0

∫
Rd

(
e−(b

i
l)
>x − 1

)
(Nl(dx, ds)−ml(dx)ds)

−
∫ t

0

∫
Rd

(
e−(b

i
l)
>x − 1 + (bil)

>x
)
ml(dx)ds

])
,

hence under the Qi-risk-neutral measure the exchange rate has the following dy-
namics

dSi,j(t)

Si,j(t−)
= (ri − rj)dt+

(
ai − aj

)>
Diag(

√
V(t))d(Z0)Qi(t)

+

f∑
l=1

[
(σil(t)− σ

j
l (t))

>d(Zl)Qi(t)

+

∫
R

(
e(b

i
l−b

j
l )
>x − 1

) (
Nl(dx, dt)− (ml)

Qi(dx)dt
)]
,

as desired.
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Given our assumption on the correlation structure in (4.5), we can write the
following factorization under Q0

dWk(t) = ρkdZ
0
k(t) +

√
1− ρ2kdZ

⊥
k (t), k = 1, ..., d,

where Z⊥ is a Brownian motion independent of Z0. Hence the measure change has
also an impact on the variance processes, via the correlations ρk, k = 1, .., d,

dWQi

k (t) = dWk(t) + ρk
(
ek
)>√

Diag(V(t))aidt.(4.10)

We finally obtain the dynamics of the instantaneous variance process under the new
measure by means of a redefinition of the CIR parameters

ρQ
i

k =ρk,

κQ
i

k =κk + ξkρka
i
k,

θQ
i

k =θk
κk

κQ
i

k

,

so that we can reexpress the variance SDE in its original form

(4.11) dVk(t) = κQ
i

k (θQ
i

k − Vk(t))dt+ ξk
√
Vk(t)dWQi

k (t).

The change of measure above is well posed once we can prove that the stochastic
exponential in (4.10) is a martingale. It can be easily realized that the Radon-
Nikodym derivative may be factorized as a product of independent processes: the
first corresponds to the change of measure induced by the multifactor stochastic
volatility term, and the second is a product of f mutually independent diffusion
and jump terms. By relying on Theorem 2.1 in [37] we can conclude that the
stochastic exponential arising from the multi-factor stochastic volatility process is
a martingale. We can combine this with the results on time-inhomogeneous Lévy
processes in [20] to obtain the claim.

4.3. Some features. As we already pointed out, the model we present in this
section is intended as an illustration of how our result on the coherency of FX
market models may be applied in order to build a fully functional symmetric model
for multiple FX rates. Anyhow, we find it interesting to report some interesting
features of the approach that we introduced.

A first remark, which is important in view of Figure 1, is that our model presents
both a stochastic volatility for the single FX rates and a stochastic correlation
among different rates. To see this, we can compute the covariation between two
generic FX rates as in [12].

d

[∫ ·
0

dSi,j(s)

Si,j(s−)
,

∫ ·
0

dSi,l(s)

Si,l(s−)

]
(t)

=
(
ai − aj

)>
V(t)

(
ai − al

)
dt

+

f∑
o=1

[(
σio(t)− σjo(t)

)> (
σio(t)− σlo(t)

)
dt

+

∫
R

(
e(b

i
o−b

j
o)
>x − 1

)(
e(b

i
o−b

l
o)
>x − 1

)
N(dx, dt)

]
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The result above clearly implies that the variance covariance matrix among ex-
change rates is a stochastic process, which is a desirable feature given the discussion
in the introduction.

A second interesting feature is that the infinitesimal correlation between the
logarithm of the FX rate and its infinitesimal variance, which is usually termed
skewness, is also a stochastic process. This is a feature arising from the fact that
we are considering a multifactor stochastic volatility model. The importance of
stochastic skewness is discussed, in the FX setting e.g. in [2].

4.4. Analytical tractability. A fundamental feature of the proposed model is
the availability of a closed-form solution for the characteristic function of the log-
exchange rate, which allows the application of standard Fourier techniques, (see e.g.
[32], [34], [38], [7], [31], [19]). For the sake of simplicity, we drop all superscripts
indicating the measure and assume that the parameters have been transformed
according to the relations illustrated in the Section 4.2. The characteristic function
is provided in the following

Proposition 3. Define τ := T − t. The conditional characteristic function of the
log-exchange rate is given by:

ϕi(u) = exp

[
iux+

(
ri − rj

)
iuτ +

d∑
k=1

(
Ai,jk (τ) +Bi,jk (τ)Vk

)

τ

f∑
l=1

(
i2u2σ2

l,AV − iuσl,AV

2∫
Rg

(
eiu(b

i
l−b

j
l )
>x − 1− iu(bil − bjl )

>x
)

−iu
(
e(b

i
l−b

j
l )
>x − 1− (bil − bjl )

>x
)
ml(dx)

])]
,(4.12)

where for k = 1, .., d:

Ai,jk (τ) =
κkθk
ξ2k

[
(Qk − dk) τ − 2 log

1− cke−dkτ

1− ck

]
,

Bi,jk (τ) =
Qk − dk
ξ2k

1− e−dkτ

1− cke−dkτ
,

dk =
√
Q2
k − 4RkPk, ck =

Qk − dk
Qk + dk

,

Pk =
1

2
i2u2

(
aik − a

j
k

)2
− 1

2

(
aik − a

j
k

)2
iu,

Qk = κk − iu
(
aik − a

j
k

)
ρkξk,

Rk =
1

2
ξ2k

and

σ2
l,AV =

1

T − t

∫ T

t

(
σil(s)− σ

j
l (s)

)> (
σil(s)− σ

j
l (s)

)
ds.
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Proof. The claim directly follows by combining the results found e.g. in [35], [1]
and the Lévy-Khintchine formula. �

The article by [12] provides examples of simultaneous calibrations to a tri-
angle of FX implied volatilities of the multifactor stochastic volatility which is
nested in the present framework. A similar calibration experiment can be found in
[23], where Wishart dynamics are considered. Both articles consider the triangle
EUR−USD−JPY for a typical trading day and fit a two-dimensional multifactor
stochastic volatility model to the three volatility surfaces of EURUSD, USDJPY
and JPY EUR simultaneously. The results, are promising and the reader is re-
ferred to these references for a deeper understanding of the fitting procedure and
the consequent calibration performance.

5. Conclusions

In this paper we investigated models for FX rates. We observed that we may
simultaneously consider an FX rate and its inverse, and we looked for a model class
which is coherent, i.e. functionally invariant under inversion of the FX rate while
being rich enough in order to accomodate for stylized facts like the presence of
volatility smiles in the market.

Our main result shows that affine stochastic volatility models represent the ideal
candidates for FX modelling, when it comes to guarantee the requirement above.
More generally, however, we may not only consider an FX rate and its inverse,
but we may also construct FX rates by means of suitable products or ratios of FX
rates. The simplest example in this sense is provided by an FX triangle like EUR-
USD-JPY. Using a coherent FX model as a building block, we illustrated a possible
way to construct a setting where FX rates are functionally symmetric under such
compositions.

The results we presented in this paper are not restricted to the case where a
risk-neutral measure exists and may be applied also in the context of the more
general benchmark approach, see [3], [24].

Appendix A. Proof of Corollary 1

We follow [13]. The prices of call and put options on S under Qd may be
expressed, by means of the characteristic functions, via the following formulas:

CALL(S0,K, rd, rf , T ) = e−rdT
(

1

2
(FT −K) +

1

π

∫ ∞
0

(FT f1 −Kf2) du

)
(A.1)

PUT (S0,K, rd, rf , T ) = e−rdT
(

1

2
(FT −K)− 1

π

∫ ∞
0

(FT f1 −Kf2) du

)
(A.2)

where

f1 = <
(
e−iu logKϕd(u− i)

iuFT

)
(A.3)

f2 = <
(
e−iu logKϕd(u)

iu

)
(A.4)

Looking now at the foreign domestic parity, we would like to check the agreement
between the RHS and the LHS of the following
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1

2
(FT −K) +

1

π

∫ ∞
0

(FT f1 −Kf2) dλ

= FTK

(
1

2

(
F−1T −K−1

)
− 1

π

∫ ∞
0

(
F−1T f ′1 −K−1f ′2

)
dλ

)
.(A.5)

where f ′i indicates that f1, f2 are now computed w.r.t the foreign risk neutral
measure Qf . We substitute the expressions for f1, f2, f

′
1, f
′
2 so that:

FT −K =

− 1

π

∫ ∞
0

(
FT<

(
e−iu logKϕd(u− i)

iuFT

)
−K<

(
e−iu logKϕd(u)

iu

))
du

− 1

π

∫ ∞
0

(
K<

(
e−iu logK−1

ϕf (u− i)

iuF−1T

)
− FT<

(
e−iu logK−1

ϕf (u)

iu

))
du.

(A.6)

Now, under Assumption 1, the characteristic functions ϕd, ϕf are related accord-
ing to Proposition 1 , which allows us to write the following

FT −K =

− 1

π

∫ ∞
0

(
FT<

(
e−iu logKϕd(u− i)

iuFT

)
−K<

(
e−iu logKϕd(u)

iu

))
du

− 1

π

∫ ∞
0

(
K<

(
e−iu logK−1

F−1T ϕd(−u+ i− i)

iuF−1T

)

−FT<

(
e−iu logK−1

F−1T ϕd(−u− i)

iu

))
du

= − 1

π

∫ ∞
0

(
FT<

(
e−iu logKϕd(u− i)

iuFT

)
−K<

(
e−iu logKϕd(u)

iu

))
du

− 1

π

∫ ∞
0

(
K<

(
eiu logKϕd(−u)

iu

)
− FT<

(
eiu logKϕd(−u− i)

iuFT

))
du.(A.7)

We regroup terms and obtain:

FT −K =

+
1

π

∫ ∞
0

<
(
eiu logKϕd(−u− i)

iuFT
+
e−iu logKϕd(u− i)

−iuFT

)
duFT

− 1

π

∫ ∞
0

<
(
eiu logKϕd(−u)

iu
+
e−iu logKϕd(u)

−iu

)
duK.(A.8)

We apply the residue Theorem to both integrals and obtain respectively

1

π

(
1

2
2πi lim

u→0
u
e−iu logKϕd(u− i)

−iuFT

)
FT = FT(A.9)

1

π

(
1

2
2πi lim

u→0
u
e−iu logKϕd(u)

−iu

)
K = K(A.10)

Thus showing that the foreign domestic parity is indeed satisfied. �
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