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Abstract. A well-known application of Malliavin calculus in Mathematical Finance is the

probabilistic representation of option price sensitivities, the so-called Greeks, as expectation
functionals that do not involve the derivative of the pay-off function. This allows for numerically

tractable computation of the Greeks even for discontinuous pay-off functions. However, while
the pay-off function is allowed to be irregular, the coefficients of the underlying diffusion are

required to be smooth in the existing literature, which for example excludes already simple

regime switching diffusion models. The aim of this article is to generalise this application of
Malliavin calculus to Itô diffusions with irregular drift coefficients, whereat we here focus on

the computation of the Delta, which is the option price sensitivity with respect to the initial

value of the underlying. To this purpose we first show existence, Malliavin differentiability, and
(Sobolev) differentiability in the initial condition of strong solutions of Itô diffusions with drift

coefficients that can be decomposed into the sum of a bounded but merely measurable and a

Lipschitz part. Furthermore, we give explicit expressions for the corresponding Malliavin and
Sobolev derivative in terms of the local time of the diffusion, respectively. We then turn to

the main objective of this article and analyse the existence and probabilistic representation of

the corresponding Deltas for lookback and Asian type options. We conclude with a simulation
study of several regime-switching examples.
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1. Introduction

Throughout this paper, let T > 0 be a given time horizon and (Ω,F , P ) a complete probability
space equipped with a one-dimensional Brownian motion {Bt}t∈[0,T ] and the filtration {Ft}t∈[0,T ]

generated by {Bt}t∈[0,T ] augmented by the P -null sets. Further, we will only deal with random
variables that are Brownian functionals, i.e. we assume F := FT .

One of the most prominent applications of Malliavin calculus in financial mathematics concerns
the derivation of numerically tractable expressions for the so-called Greeks, which are important
sensitivities of option prices with respect to involved parameters. The first paper to address this
application was [15], which has consecutively triggered an active research interest in this topic, see
e.g. [14], [4], [1]. See also [7], [11] and references therein for a related approach based on functional
Itô calculus. Suppose the risk-neutral dynamics of the underlying asset of a European option is
driven by a stochastic differential equation (for short SDE) of the form

dXx
t = b(Xx

t )dt+ σ(Xx
t )dBt, X

x
0 = x ∈ R ,

where b : R → R and σ : R → R are some given drift and volatility coefficients, respectively. Let
Φ : R → R denote the pay-off function and the expectation E[Φ(Xx

T )] the risk-neutral price at
time zero of the option with maturity T > 0. For notational simplicity we assume the discounting
rate to be zero. In this paper we will focus on the Delta

∂

∂x
E[Φ(Xx

T )] , (1.1)

which is a measure for the sensitivity of the option price with respect to changes of the initial value
of the underlying asset. As is well known, the Delta has a particular role among the Greeks as it
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determines the hedge portfolio in many complete market models. If the drift b(·), the volatility σ(·),
and the pay-off Φ(·) are ”sufficiently regular” to allow for differentiation under the expectation,
the Delta can be computed in a straight-forward manner as

E

[
∂

∂x
Φ(Xx

T )

]
= E[Φ′(Xx

T )ZT ] , (1.2)

where the first variation process Zt := ∂
∂xX

x
t is given by

Zt = exp

{∫ t

0

[
b′(Xx

s )− 1

2
(σ′(Xx

s ))2
]
ds+

∫ t

0

σ′(Xx
s ) dBs

}
, (1.3)

and where Φ′, b′, σ′ denote the derivatives of Φ, b, σ, respectively. For example, requiring that
Φ, b, σ are continuously differentiable with bounded derivatives would allow (1.2) to hold (we refer
to [18] for conditions on b and σ that guarantee the existence of the first variation process), and
the expectation in (1.2) could be approximated e.g. by Monte Carlo methods. In most realistic
situations, though, straight-forward computations as in (1.2) are not possible. In that case, one
could combine numerical methods to approximate the derivative and the expectation in (1.1),
respectively, to compute the Delta. However, in particular for discontinuous pay-offs Φ as is the
case for a digital option this procedure might be numerically inefficient, see for example [15]. At
that point, the following result for lookback options obtained with the help of Malliavin calculus
appears to be useful, where the option pay-off is allowed to depend on the path of the underlying
at finitely many time points.

Theorem 1.1 (Proposition 3.2 in [15]). Let b(·) and σ(·) be continuously differentiable with
bounded Lipschitz derivatives, σ(·) > ε > 0, and Φ : Rm → R be such that the pay-off
Φ(Xx

T1
, . . . , Xx

Tm
), T1, . . . , Tm ∈ (0, T ], of the corresponding lookback option is square integrable.

Then the Delta exists and is given by

∂

∂x
E[Φ(Xx

T1
, . . . , Xx

Tm)] = E

[
Φ(Xx

T1
, . . . , Xx

Tm)

∫ T

0

a(t)σ−1(Xx
t )Zt dBt

]
, (1.4)

where Zt is the first variation process given in (1.3) and a(t) is any square integrable deterministic
function such that, for every i = 1, . . . ,m,∫ Ti

0

a(s)ds = 1.

While for notational simplicity we present the above result for one-dimensional Xx we remark
that in [15] the extension to multi-dimensional underlying asset and Brownian motion is considered.
If the option is of European type, i.e. the pay-off Φ(Xx

T ) depends only on the underlying at T ,
then (1.4) is the probabilistic representation of the space derivative of a solution to a Kolmogorov
equation which is also referred to as Bismuth-Elworthy-Li type formula in the literature due to
[13], [6]. The strength of (1.4) is that the Delta is expressed again as an expectation of the pay-off

multiplied by the so-called Malliavin weight
∫ T

0
a(t)σ−1(Xx

t )Zt dBt. Computing the Delta by
Monte-Carlo via this reformulation then guarantees a convergence rate that is independent of the
regularity of the pay-off function Φ and the dimensionality. Note that the Malliavin weight is
independent of the option pay-off, and thus the same weight can be employed in the computations
of the Deltas of different options. Also, in [14] and [3] the question of how to optimally choose the
function a(t) with respect to computational efficiency is considered.

While the representation (1.4) succeeds to handle irregular pay-offs by getting rid of the de-
rivative of Φ, the regularity assumptions on the coefficients b and σ driving the dynamics of the
underlying diffusion are rather strong. Consider for example an extended Black and Scholes model
where the stock pays a dividend yield that switches to a higher level when the stock value passes
a certain threshold. Then, again with the risk-free rate equal to zero for simplicity, the logarithm
of the stock price is modelled by the following dynamics under the risk-neutral measure:

dXx
t = b(Xx

t )dt+ σdBt, X
x
0 = x ∈ R ,
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where σ > 0 is constant and the drift coefficient b : R→ R is given by

b(x) := −λ11(−∞,R)(x)− λ21[R,∞)(x),

for dividend yields λ1, λ2 ∈ R+ and a given threshold R ∈ R. In [9], a (more complex) irregular
drift b is interpreted as state-dependent fees deducted by the insurer in the evolution of variable
annuities instead of dividend yield. Already, this simple regime-switching model is not covered by
the result in Theorem 1.1 since the drift coefficient is not continuously differentiable.

Or allow for state-dependent regime-switching of the mean reversion rate in an extended
Ornstein-Uhlenbeck process:

dXx
t = b(Xx

t )dt+ σdBt, X
x
0 = x ∈ R ,

where σ > 0 is constant and the drift coefficient b : R→ R is given by

b(x) := −λ1x1(−∞,R)(x)− λ2x1[R,∞)(x)

for mean reversion rates λ1, λ2 ∈ R+ and a given threshold R ∈ R (here the mean reversion level is
set equal to zero). This type of model captures well, for instance, the evolution of electricity spot
prices, which switches between so-called spike regimes on high price levels with very fast mean
reversion and base regimes on normal price levels with moderate speed of mean reversion, see
e.g. [5], [17], [26] and references therein. Alternatively, an extended Ornstein-Uhlenbeck process
with state-dependent regime-switching of the mean reversion level (low and high interest rate
environments) is an interesting modification of the Vaš́ıček short rate model. Note that in that
case the Delta is rather a generalised Rho, i.e. a sensitivity measure with respect to the short end
of the yield curve. We observe that also these two extended Ornstein-Uhlenbeck processes are not
covered by the result in Theorem 1.1.

Motivated by these examples, this paper aims at deriving an analogous result to Theorem 1.1
when the underlying is driven by an SDE with irregular drift coefficient. More precisely, we will
consider SDE’s

dXx
t = b(t,Xx

t )dt+ dBt, 0 ≤ t ≤ T, Xx
0 = x ∈ R , (1.5)

where we allow for time-inhomogeneous drift coefficients b : [0, T ]× R→ R in the form

b(t, x) = b̃(t, x) + b̂(t, x) , (t, x) ∈ [0, T ]× R , (1.6)

for b̃ merely bounded and measurable, and b̂ Lipschitz continuous and at most of linear growth in
x uniformly in t, i.e. there exists a constant C > 0 such that

|b̂(t, x)− b̂(t, y)| ≤ C|x− y| (1.7)

|b̂(t, x)| ≤ C(1 + |x|) (1.8)

for x, y ∈ R and t ∈ [0, T ]. Adding the Lipschitz component b̂(t, x) in (1.6) is motivated by the fact
that many drift coefficients interesting for financial applications are of linear growths. At present
we are not able to show our results for general measurable drift coefficients of linear growths, but
only for those where the irregular behavior remains in a bounded spectrum. However, from an
application point of view this class is very rhich already, and in particular it contains the regime
switching examples from above. In (1.5) we consider a constant volatility coefficient σ(t, x) := 1,
but we will see at the end of Section 3 (Theorem 3.8) that our results apply to many SDE’s with
more general volatility coefficients which can be reduced to SDE’s of type (1.5) (which for example
is possible for volatility coefficients as in Theorem 1.1).

In order to be able to apply Malliavin calculus to the underlying diffusion, the first thing we
need to ensure is that the solution of SDE (1.5) is a Brownian functionals, i.e. we are interested
in the existence of strong solutions of (1.5).

Definition 1.2. A strong solution of SDE (1.5) is a continuous, {Ft}t∈[0,T ]-adapted process
{Xx

t }t∈[0,T ] that solves equation (1.5).
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Remark 1.3. Note that the usual definition of a strong solution requires the existence of a
Brownian-adapted solution of (1.5) on any given stochastic basis. However, an {Ft}t∈[0,T ]-
adapted solution {Xx

t }t∈[0,T ] on the given stochastic basis (Ω,F , P,B) can be written in the form
Xx
t = Ft(B·) for some family of functionals Ft, t ∈ [0, T ], (see e.g. [24] for an explicit form of

Ft). Then for any other stochastic basis (Ω̂, F̂ , P̂ , B̂) one gets that Xx
t := Ft(B̂·), t ∈ [0, T ], is a

B̂-adapted solution to SDE (1.5). So once there is a Brownian-adapted solution of (1.5) on one
given stochastic basis, it follows that there indeed exists a strong solution in the usual sense. This
justifies our definition of a strong solution above.

To pursue our objectives we proceed as follows in the remaining parts of the paper. In Sec-
tion 2 we recall some fundamental concepts from Malliavin calculus and local time calculus which
compose central mathematical tools in the following analysis.

We then analyse in Section 3 the existence and Malliavin differentiability of a unique strong
solution of SDE’s with irregular drift coefficients as in (1.5) (Theorem 3.1). It is well known that
the SDE is Malliavin differentiable as soon as the coefficients are Lipschitz continuous (see e.g.
[28]); for merely bounded and measurable drift coefficients Malliavin differentiability was shown
only recently in [25], (see also [23]). Here, we extend ideas introduced for bounded coefficients in
[25] to drift coefficients of type (1.6). Unlike in most of the existing literature on strong solutions
of SDE’s with irregular coefficients our approach does not rely on a pathwise uniqueness argument
(Yamada-Watanabe Theorem). Instead, we employ a compactness criterium based on Malliavin
calculus together with local time calculus to directly construct a strong solution which in addition
is Malliavin differentiable. Also, we are able to give an explicit expression for the Malliavin
derivative of the strong solution of (1.5) in terms of the integral of b (and not the derivative of b)
with respect to local time of the strong solution (Proposition 3.2). We mention that while existence
and Malliavin differentiability of strong solutions could be extended to analogue multi-dimensional
SDE’s as in [23], the explicit expression of the Malliavin derivative is in general only possible for
one-dimensional SDE’s as considered in this paper. Moreover, in this paper we replace arguments
that are based on White Noise analysis in [25] and [23] by alternative proofs which might make
the text more accessible for readers who are unfamiliar with concepts from White Noise analysis.

Next, we need to analyse the regularity of the dependence of the strong solution in its initial
condition and to introduce the analogue of the first variation process (1.3) in case of irregular drift
coefficients. Using the close connection between the Malliavin derivative and the first variation
process, we find that the strong solution is Sobolev differentiable in its initial condition (Theorem
3.4). Again, we give an explicit expression for the corresponding (Sobolev) first variation process
which does not include the derivative of b (Proposition 3.5).

In Section 4 we develop our main result (Theorem 4.2) which extends Theorem 1.1 to SDE’s with
irregular drift coefficients. To this end, one has to show in the first place that the Delta exists, i.e.
that E[Φ(Xx

T1
, . . . , Xx

Tm
)] is continuously differentiable in x. At this point the explicit expressions

for the Malliavin derivative and the first variation process are essential. In the final representation
of the Delta we then have gotten rid of both the derivative of the pay-off Φ and the derivative of
the drift coefficient b in the first variation process, whence the title ”Computing Deltas without
Derivatives” of the paper. In addition to Deltas of lookback options as in Theorem 1.1, we further

consider Deltas of Asian options with pay-offs of the type Φ
(∫ T2

T1
Xx
u du

)
for T1, T2 ∈ [0, T ] and

some function Φ : R→ R. In case the starting point of the averaging period of the Asian pay-off
lies in the future, i.e. T1 > 0, we are able to give analogue results to the ones of lookback options.
If the averaging period starts today, i.e. T1 = 0, the Malliavin weight in the expression for the
Delta would include a general Skorohod integral which is neither numerically nor mathematically
tractable in our analysis (except for linear coefficients as in the Black and Scholes model where
the Skorohod integral turns out to be an Itô integral). However, we are still able to state two
approximation results for the Delta in this case.

In Section 5 we consider some examples and compute the Deltas in the concrete regime-switching
models mentioned above. We do a small simulation study and compare the performance to a finite
difference approximation of the Delta in the same spirit as in [15].
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We conclude the paper by an appendix with some technical proofs from Section 3 which have
been deferred to the end of the paper for better readability.

Notations: We summarise some of the most frequently used notations:

• C1(R) denotes the space of continuously differentiable functions f : R→ R.
• C∞0 ([0, T ] × R), respectively C∞0 (R), denotes the space of infinitely many times differen-

tiable functions on [0, T ]× R, respectively R, with compact support.
• For a measurable space (S,G) equipped with a measure µ, we denote by Lp(S,G) or Lp(S)

the Banach space of (equivalence classes of) functions on S integrable to some power p,
p ≥ 1.

• Lploc(R) denotes the space of locally Lebesgue integrable functions to some power p, p ≥ 1,
i.e.

∫
U
|f(x)|pdx <∞ for every open bounded subset U ⊂ R.

• W 1,p
loc (R) denotes the subspace of Lploc(R) of weakly (Sobolev) differentiable functions such

that the weak derivative f ′ belongs to Lploc(R), p ≥ 1.
• For a progressive process Y· we denote the Doléans-Dade exponential of the corresponding

Brownian integral (if well defined) by

E
(∫ t

0

b(u, Yu)dBu

)
:= exp

(∫ t

0

b(u, Yu)dBu −
1

2

∫ t

0

b2(u, Yu)du

)
, t ∈ [0, T ]. (1.9)

• For Z ∈ L2(Ω,FT ) we denote the Wiener-transform of Z in f ∈ L2([0, T ]) by

W(Z)(f) := E

[
ZE

(∫ T

0

f(s)dBs

)]
.

• We will use the symbol . to denote less or equal than up to a positive real constant C > 0
not depending on the parameters of interest, i.e. if we have two mathematical expressions
E1(θ), E2(θ) depending on some parameter of interest θ then E1(θ) . E2(θ) if, and only
if, there is a positive real number C > 0 independent of θ such that E1(θ) ≤ CE2(θ).

2. Framework

Our main results centrally rely on tools from Malliavin calculus as well as integration with
respect to local time both in time and space. We here provide a concise introduction to the main
concepts in these two areas that will be employed in the following sections. For deeper information
on Malliavin calculus the reader is referred to i.e. [28, 21, 22, 10]. As for theory on local time
integration for Brownian motion we refer to i.e. [12, 29].

2.1. Malliavin calculus. Denote by S the set of simple random variables F ∈ L2(Ω) in the form

F = f

(∫ T

0

h1(s)dBs, . . . ,

∫ T

0

hn(s)dBs

)
, h1, . . . , hn ∈ L2([0, T ]), f ∈ C∞0 (Rn).

The Malliavin derivative operator D acting on such simple random variables is the process DF =
{DtF, t ∈ [0, T ]} in L2(Ω× [0, T ]) defined by

DtF =

n∑
i=1

∂if

(∫ T

0

h1(s)dBs, . . . ,

∫ T

0

hn(s)dBs

)
hi(t).

Define the following norm on S:

‖F‖1,2 := ‖F‖L2(Ω) + ‖DF‖L2(Ω;L2([0,T ])) = E[|F |2]1/2 + E

[∫ T

0

|DtF |2dt

]1/2

. (2.1)

We denote by D1,2 the closure of the family of simple random variables S with respect to the
norm given in (2.1), and we will refer to this space as the space of Malliavin differentiable random
variables in L2(Ω) with Malliavin derivative belonging to L2(Ω).
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In the derivation of the probabilistic representation for the Delta, the following chain rule for
the Malliavin derivative will be essential:

Lemma 2.1. Let ϕ : Rm → R be continuously differentiable with bounded partial derivatives.
Further, suppose that F = (F1, . . . , Fm) is a random vector whose components are in D1,2. Then
ϕ(F ) ∈ D1,2 and

Dtϕ(F ) =

m∑
i=1

∂iϕ(F )DtFi, P − a.s., t ∈ [0, T ].

The Malliavin derivative operator D : D1,2 → L2(Ω × [0, T ]) admits an adjoint operator δ =
D∗ : Dom(δ) → L2(Ω) where the domain Dom(δ) is characterised by all u ∈ L2(Ω × [0, T ]) such
that for all F ∈ D1,2 we have

E

[∫ T

0

DtF utdt

]
≤ C‖F‖1,2,

where C is some constant depending on u.
For a stochastic process u ∈ Dom(δ) (not necessarily adapted to {Ft}t∈[0,T ]) we denote by

δ(u) :=

∫ T

0

utδBt (2.2)

the action of δ on u. The above expression (2.2) is known as the Skorokhod integral of u and
it is an anticipative stochastic integral. It turns out that all {Ft}t∈[0,T ]-adapted processes in

L2(Ω× [0, T ]) are in the domain of δ and for such processes ut we have

δ(u) =

∫ T

0

utdBt,

i.e.the Skorokhod and Itô integrals coincide. In this sense, the Skorokhod integral can be considered
to be an extension of the Itô integral to non-adapted integrands.

The dual relation between the Malliavin derivative and the Skorokhod integral implies the
following important formula:

Theorem 2.2 (Duality formula). Let F ∈ D1,2 and u ∈ Dom(δ). Then

E

[
F

∫ T

0

utδBt

]
= E

[∫ T

0

utDtFdt

]
. (2.3)

The next result, which is due to [8] and central in proving existence of strong solutions in the
following, provides a compactness criterion for subsets of L2(Ω) based on Malliavin calculus.

Proposition 2.3. Let Fn ∈ D1,2, n = 1, 2..., be a given sequence of Malliavin differentiable
random variables. Assume that there exist constants α > 0 and C > 0 such that

sup
n
E[|Fn|2] ≤ C,

sup
n
E
[
|DtFn −Dt′Fn|2

]
≤ C|t− t′|α

for 0 ≤ t′ ≤ t ≤ T , and

sup
n

sup
0≤t≤T

E
[
|DtFn|2

]
≤ C .

Then the sequence Fn, n = 1, 2..., is relatively compact in L2(Ω).

We conclude this review on Malliavin calculus by stating a relation between the Malliavin de-
rivative and the first variation process of the solution of an SDE with smooth coefficients that
is essential in the derivation of Theorem 1.1. We give the result for the case when the volatil-
ity coefficient is equal to 1, but the analogue result is valid for more general smooth volatility
coefficients. Assume the drift coefficient b(t, x) in the SDE (1.5) fulfils the Lipschitz and linear
growth conditions (1.7)-(1.8). Then it is well known that there exists a unique strong solution
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Xx
t , t ∈ [0, T ], to equation (1.5) that is Malliavin differentiable, and that for all 0 ≤ s ≤ t ≤ T the

Malliavin derivative DsX
x
t fulfils, see e.g. [28, Theorem 2.2.1]

DsX
x
t = 1 +

∫ t

s

b′(u,Xx
u)DsX

x
udu, (2.4)

where b′ denotes the (weak) derivative of b with respect to x.
Further, under these assumptions the strong solution is also differentiable in its initial condition,

and the first variation process ∂
∂xX

x
t , t ∈ [0, T ], fulfils (see e.g. [18] for differentiable coefficients

and [2] for an extension to Lipschitz coefficients)

∂

∂x
Xx
t = 1 +

∫ t

0

b′(u,Xx
u)

∂

∂x
Xx
udu. (2.5)

Solving equations (2.4) and (2.5) thus yields the following proposition.

Proposition 2.4. Let Xx
t , t ∈ [0, T ], be the unique strong solution to equation (1.5) when b(t, x)

fulfils the Lipschitz and linear growth condition (1.7)-(1.8). Then Xx
t is Malliavin differentiable

and differentiable in its initial condition for all t ∈ [0, T ], and for all s ≤ t ≤ T we have

DsX
x
t = exp

{∫ t

s

b′(u,Xx
u)du

}
(2.6)

and

∂

∂x
Xx
t = exp

{∫ t

0

b′(u,Xx
u)du

}
. (2.7)

As a consequence,

∂

∂x
Xx
t = DsX

x
t

∂

∂x
Xx
s , (2.8)

where all equalities hold P -a.s.

2.2. Integration with respect to local-time. Let now Xx be a given (strong) solution to SDE
(1.5). In the sequel we need the concept of stochastic integration over the plane with respect to
the local time LX

x

(t, y) of Xx. For Brownian motion, the local time integration theory in time
and space has been introduced in [12]. We extend this local time integration theory to more
general diffusions of type (1.5) by resorting to the Brownian setting under an equivalent measure
where Xx is a Brownian motion. To this end, we notice the following fact that is extensively used
throughout the paper.

Remark 2.5. The Radon-Nikodym density

dQ

dP
= E

(
−
∫ T

0

b(s,Xx
s )dBs

)
defines a probability measure Q equivalent to P under which Xx is Brownian motion starting in x.
Indeed, because b is of at most linear growth we obtain by Grönwall’s inequality as in the proof of
Lemma A.1 a constant Ct,x > 0 such that |Xx

t | ≤ Ct,x(1 + |Bt|). One can thus find a equidistant
partition 0 = t0 < t1... < tm = T such that

E

[
exp

{∫ ti+1

ti

b2(s,Xx
s )ds

}]
≤ E

[
exp

{∫ ti+1

ti

(
C1 + C2|Bs|+ C3|Bs|2

)
ds

}
<∞

]
for all i = 0, ...,m−1, where C1, C2 and C3 are some positive constants. Then it is well-known, see
e.g. [16, Corollary 5.16], that Q is an equivalent probability measure under which Xx is Brownian
motion by Girsanov’s theorem.
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We now define the feasible integrands for the local time-space integral with respect to LX
x

(t, y)
by the Banach space (Hx, ‖·‖) of functions f : [0, T ]× R −→ R with norm

‖f‖x = 2

(∫ T

0

∫
R
f2(s, y)

1√
2πs

exp

(
−|y − x|

2

2s

)
dyds

)1/2

+

∫ T

0

∫
R
|y − x| |f(s, y)| 1

s
√

2πs
exp

(
−|y − x|

2

2s

)
dyds.

We remark that this space of integrands is the same as the one introduced in [12] for Brownian
motion (i.e. the special case when the Xx is a Brownian motion), except that we have in a straight
forward manner generalised the space in [12] to the situation when the Brownian motion has
arbitrary initial value x.

We denote by f∆ : [0, T ]× R −→ R a simple function in the form

f∆(s, y) =
∑

1≤i≤n−1,1≤j≤m−1

fij1(yi,yi+1](y)1(sj ,sj+1](s),

where (sj)1≤j≤m is a partition of [0, T ] and (yi)1≤i≤n and (fij)1≤i≤n,1≤j≤m are finite sequences
of real numbers. It is readily checked that the space of simple functions is dense in (Hx, ‖·‖). The
local time-space integral of an simple function f∆ with respect to LX

x

(dt, dy) is then defined by∫ T

0

∫
R
f∆(s, y)LX

x

(ds, dy) :=

:=
∑

1≤i≤n−1
1≤j≤m−1

fij(L
Xx(sj+1, yi+1)− LX

x

(sj , yi+1)− LX
x

(sj+1, yi) + LX
x

(sj , yi)).

Lemma 2.6. For f ∈ Hx let fn, n ≥ 1, be a sequence of simple functions converging to f in

Hx. Then
∫ T

0

∫
R fn(s, y)LX

x

(ds, dy), n ≥ 1, converges in probability. Further, for any other
approximating sequence of simple functions the limit remains the same.

Proof. Define FX
x

n :=
∫ T

0

∫
R fn(s, x)LX

x

(ds, dx). Now consider the equivalent measure Q from

Remark 2.5 under which Xx is Brownian motion. Define FX
x

:=
∫ T

0

∫
R f(s, x)LX

x

(ds, dx) to be
the time-space integral of f with respect to the local time of Brownian motion Xx under Q, which
exists as an L1(Q)-limit of FX

x

n , n ≥ 1 by the Brownian local time integration theory introduced
in [12] (since fn, n ≥ 1 converge to f in Hx). We show that FX

x

n , n ≥ 1 converge in probability to
FX

x

under P . Indeed,

E[1 ∧ |FX
x

− FX
x

n |] =E

[(
1 ∧ |FB

x

− FB
x

n |
)
E

(∫ T

0

b(s,Bxs )dBs

)]

≤E

E (∫ T

0

b(s,Bxs )dBs

)1+ε
1/(1+ε)

E

[(
1 ∧ |FB

x

− FB
x

n |
) 1+ε

ε

] ε
1+ε

≤CεE[
(

1 ∧ |FB
x

− FB
x

n |
)

]
ε

1+ε
n→∞−→ 0 , (2.9)

where, in analogy to the notation FX
x

and FX
x

n above, the notation FB
x

and FB
x

n refers to the
corresponding integrals with respect to local time of Brownian motion Bx under P , and where in
the first equality we have used that (FB

x

, FB
x

n ) has the same law under P as (FX
x

, FX
x

n ) under
Q. The inequalities follow by Lemma A.1 for some ε > 0 suitably small. Further, by [12] we
know that FB

x

n , n ≥ 1 converge to FB
x

in L1(P ), which implies the convergence in (2.9). Hence
FX

x

n , n ≥ 1 converge to FX
x

in the Ky-Fan metric d(X,Y ) = E[1 ∧ |X − Y |], X,Y ∈ L0(Ω),
which characterises convergence in probability. Finally, again by [12], FX

x

is independent of the
approximating sequence fn, n ≥ 1. �
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Definition 2.7. For f ∈ Hx the limit in Lemma 2.6 is called the time-space integral of f with

respect to LX
x

(dt, dx) and is denoted by
∫ T

0

∫
R f(s, y)LX

x

(ds, dy). Further, for any t ∈ [0, T ] we

define
∫ t

0

∫
R f(s, y)LX

x

(ds, dy) :=
∫ T

0

∫
R f(s, y)I[0,t](s)L

Xx(ds, dy).

Remark 2.8. We notice that the drift coefficient b(t, x) in (1.6), which is of linear growth in x
uniformly in t, is in Hx, and thus the local time integral of b(t, x) with respect to LX

x

(dt, dy) exists
for any x ∈ R.

If Xx is a Brownian motion B· we have the following decomposition due to [12] that we employ
in the construction of strong solutions, and that also constitutes the foundation in the construction
of the local time integral in [12].

Theorem 2.9. Let f ∈ H0. Then∫ t

0

∫
R
f(s, y)LB

x

(ds, dy) =

= −
∫ t

0

f(s,Bxs )dBs +

∫ T

T−t
f(T − s, B̂xs )dWs −

∫ T

T−t
f(T − s, B̂xs )

B̂s
T − s

ds,

(2.10)

where B̂t = BT−t, 0 ≤ t ≤ T is time-reversed Brownian motion, and W·, defined by

B̂t = BT +Wt −
∫ t

0

B̂s
T − s

ds,

is a Brownian motion with respect to the filtration of B̂·.

We conclude this subsection by stating three further identities for the local time integral of a
general diffusions Xx which will be useful later on.

Lemma 2.10. Let f ∈ Hx be Lipschitz continuous in x. Then for all t ∈ [0, T ]

−
∫ t

0

∫
R
f(s, y)LX

x

(ds, dy) =

∫ t

0

f ′(s,Xx
s )ds. (2.11)

where f ′ denotes the (weak) derivative of f(t, y) with respect to y.
If f ∈ Hx is time homogeneous (i.e. f(t, y) = f(y) only depends on the space variable) and

locally square integrable, then for any t ∈ [0, T ]∫ t

0

∫
R
f(s, x)LX

x

(ds, dx) = −[f(·, Xx), Xx]t. (2.12)

and

−
∫ t

0

∫
R
f(s, y)LX

x

(ds, dy) = 2F (Xx
t )− 2F (x)− 2

∫ t

0

f(Xx
s )dXx

s (2.13)

where F is a primitive function of f and [b̃(·, Xx
· ), Xx

· ]t is the generalised covariation process

[f(·, Xx
· ), Xx

· ]t := P − lim
m→∞

m∑
k=1

(
f(tmk , X

x
tmk

)− f(tmk−1, X
x
tmk−1

)
)(

Xx
tk
−Xx

tk−1

)
where for every m {tmk }mk=1 is a partition of [0, t] such that lim

m
sup

k=1,...,m
|tmk − tmk−1| = 0. Note that

(2.13) can be considered as a generalised Itô formula.

Proof. If Xx = x+B, then identities (2.11)-(2.13) are given in [12]. For general Xx, we consider
the identities under the equivalent measure Q from Remark 2.5. Then, by the construction of the
local time integral outlined in Lemma 2.6, the integrals in the identities are the ones with respect
to Brownian motion Xx, for which we know the identities hold by [12] (where such identities are
given in the case x = 0 but one can easily extend them to the case of the Brownian motion starting
at an arbitrary x ∈ R). �
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3. Existence, Malliavin, and Sobolev differentiability of strong solutions

In this section we prepare the necessary theoretical grounds to develop the probabilistic rep-
resentation of Deltas. Being notationally and technically rather heavy, the proofs of this section
are deferred to Appendix A for an improved flow and readability of the paper. We first study the
existence and Malliavin differentiability of a unique strong solution of SDE (1.5) before we turn
to the differentiability of the strong solution in its initial condition and the corresponding first
variation process. We state the first main result of this section:

Theorem 3.1. Suppose that the drift coefficient b : [0, T ] × R → R is in the form (1.6). Then
there exists a unique strong solution {Xx

t }t∈[0,T ] to SDE (1.5). In addition, Xx
t is Malliavin

differentiable for every t ∈ [0, T ].

The proof of Theorem 3.1 employs several auxiliary results presented in Appendix A. The main
steps are:

(1) First, we construct a weak solution Xx to (1.5) by means of Girsanov’s theorem, that is
we introduce a probability space (Ω,F , P ) that carries some Brownian motion B and a
continuous process Xx such that (1.5) is fulfilled. However, a priori Xx is not adapted to
the filtration {Ft}t∈[0,T ] generated by Brownian motion B.

(2) Next, we approximate the drift coefficient b = b̃ + b̂ by a sequence of functions (which
always exists by standard approximation results)

bn := b̃n + b̂, n ≥ 1, (3.1)

such that {b̃n}n≥1 ⊂ C∞0 ([0, T ]× R) with supn≥1 ‖b̃n‖∞ ≤ C <∞ and b̃n → b̃ in (t, x) ∈
[0, T ] × R a.e. with respect to the Lebesgue measure. By standard results on SDE’s, we
know that for each smooth coefficient bn, n ≥ 1, there exists a unique strong solution Xn,x

·
to the SDE

dXn,x
t = bn(t,Xn,x

t )dt+ dBt, 0 ≤ t ≤ T, Xn,x
0 = x ∈ R . (3.2)

We then show that for each t ∈ [0, T ] the sequenceXn,x
t converges weakly to the conditional

expectation E[Xx
t |Ft] in the space L2(Ω;Ft) of square integrable, Ft-measurable random

variables.
(3) By Proposition 2.4 we know that for each t ∈ [0, T ] the strong solutions Xn,x

t , n ≥ 1, are
Malliavin differentiable with

DsX
n,x
t = exp

{∫ t

s

b′n(u,Xn,x
u )du

}
, 0 ≤ s ≤ t ≤ T, n ≥ 1, (3.3)

where b′n denotes the derivative of bn with respect to x. We will use representation (3.3)
to employ a compactness criterion based on Malliavin calculus to show that for every
t ∈ [0, T ] the set of random variables {Xn,x

t }n≥1 is relatively compact in L2(Ω;Ft), which
then allows to conclude that Xn,x

t converges strongly in L2(Ω;Ft) to E[Xx
t |Ft]. Further

we obtain that E[Xx
t |Ft] is Malliavin differentiable as a consequence of the compactness

criterion.
(4) In the last step we show that E[Xx

t |Ft] = Xx
t , which implies that Xx

t is Ft-measurable
and thus a strong solution. Moreover, we show that this solution is unique.

Notation: In the following we sometimes include the drift coefficient b into the sequence {bn}n≥0

by putting b0 := b̃0 + b̂ := b̃+ b̂ = b.

The next important result is an explicit representation of the Malliavin derivative of the strong
solution Xx

t , t ∈ [0, T ]. For smooth coefficients b we can explicitly express the Malliavin deriva-
tive in terms of the derivative of b as stated in (3.3). For general, not necessarily differentiable
coefficients b, we are still able to give an explicit formula which now only involves the coefficient
b in a local time integral:



COMPUTING DELTAS WITHOUT DERIVATIVES 11

Proposition 3.2. For 0 ≤ s ≤ t ≤ T , the Malliavin derivative DsX
x
t of the unique strong solution

Xx
t to equation (1.5) has the following explicit representation:

DsX
x
t = exp

{
−
∫ t

s

∫
R
b(u, y)LX

x

(du, dy)

}
P-a.s., (3.4)

where LX
x

(du, dy) denotes integration in space and time with respect to the local time of Xx, see
Section 2.2 for definitions.

Next, we turn our attention to the study of the strong solution Xx
t as a function in its initial

condition x for SDE’s with possible irregular drift coefficients. The first result establishes Hölder
continuity jointly in time and space.

Proposition 3.3. Let Xx
t , t ∈ [0, T ] be the unique strong solution to the SDE (1.5). Then for

all s, t ∈ [0, T ] and x, y ∈ K for any arbitrary compact subset K ⊂ R there exists a constant

C = C(K, ‖b̃‖∞, ‖b̂′‖∞) > 0 such that

E
[
|Xx

t −Xy
s |2
]
≤ C(|t− s|+ |x− y|2).

In particular, there exists a continuous version of the random field (t, x) 7→ Xx
t with Hölder

continuous trajectories of order α < 1/2 in t ∈ [0, T ] and α < 1 in x ∈ R.

If the drift coefficient b is regular, then we know by Proposition 2.4 that Xx
t is even differentiable

as a function in x. The first variation process ∂
∂xX

x
· is then given by (2.7) in terms of the derivative

of the drift coefficient and is closely related to the Malliavin derivative by (2.8). In the following
we will derive analogous results for irregular drift coefficients, where in general the first variation
process will now exist in the Sobolev derivative sense. Let U ⊂ R be an open and bounded subset.
The Sobolev space W 1,2(U) is defined as the set of functions u : R→ R, u ∈ L2(U) such that its
weak derivative belongs to L2(U). We endow this space with the norm

‖u‖1,2 = ‖u‖2 + ‖u′‖2

where u′ stands for the weak derivative of u ∈ W 1,2(U). We say that the solution Xx
t , t ∈ [0, T ],

is Sobolev differentiable in U if for all t ∈ [0, T ], X ·t belongs to W 1,2(U), P -a.s. Observe that in
general X ·t is not in W 1,2(R), e.g. take b ≡ 0.

Theorem 3.4. Let b : [0, T ] × R → R be as in (1.6). Let Xx
t , t ∈ [0, T ] be the unique strong

solution to the SDE (1.5) and U ⊂ R an open, bounded set. Then for every t ∈ [0, T ] we have

(x 7→ Xx
t ) ∈ L2(Ω,W 1,2(U)).

We remark that using analogue techniques as in [27] one could even establish that the strong
solution gives rise to a flow of Sobolev diffeomorphisms. This, however, is beyond the scope of
this paper.

Similarly as for the Malliavin derivative, we are able to give an explicit representation for
the first variation process in the Sobolev sense that does not involve the derivative of the drift
coefficient by employing local time integration.

Proposition 3.5. Let b : [0, T ] × R → R be as in (1.6). Then the first variation process (in
the Sobolev sense) of the strong solution Xx

t , t ∈ [0, T ] to SDE (1.5) has the following explicit
representation

∂

∂x
Xx
t = exp

{
−
∫ t

0

∫
R
b(u, y)LX

x

(du, dy)

}
dt⊗ P − a.s. (3.5)

As a direct consequence of Proposition 3.5 together with Proposition 3.2 we obtain the following
relation between the Malliavin derivative and the first variation process, which is an extension of
Proposition 2.4 to irregular drift coefficients and which is a key result in deriving the desired
expression for the Delta.
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Corollary 3.6. Let Xx
t , t ∈ [0, T ], be the unique strong solution to (1.5). Then the following

relationship between the spatial derivative and the Malliavin derivative of Xx
t holds:

∂

∂x
Xx
t = DsX

x
t

∂

∂x
Xx
s P − a.s. (3.6)

for any s, t ∈ [0, T ], s ≤ t.

Remark 3.7. Note that by Lemma 2.10 the Malliavin derivative in (3.4) and the first variation
process in (3.5) can be expressed in various alternative ways. Firstly, we observe that by formula

(2.11) the local time integral of the regular part b̂ in b can be separated and rewritten in the form

−
∫ t

s

∫
R
b(u, y)LX

x

(du, dy) = −
∫ t

s

∫
R
b̃(u, y)LX

x

(du, dy) +

∫ t

s

b̂′(u,Xx
u)du a.s. (3.7)

If in addition b̃(t, ·) is locally square integrable and continuous in t as a map from [0, T ] to
L2
loc(R) or even time-homogeneous, then by Lemma 2.10 also the local time integral associated

to the irregular part b̃ can be reformulated in terms of the generalised covariation process as in
(2.12) or in terms of the generalised Itô formula as in (2.13), respectively. In particular, these
reformulations appear to be useful for simulation purposes.

We conclude this section by giving an extension of all the results seen so far to a class of SDE’s
with more general diffusion coefficients.

Theorem 3.8. Consider the time-homogeneous SDE

dXx
t = b(Xx

t )dt+ σ(Xx
t )dBt, Xx

0 = x ∈ R, 0 ≤ t ≤ T, (3.8)

where the coefficients b : R −→ R and σ : R −→ R are Borel measurable. Require that there exists
a twice continuously differentiable bijection Λ : R −→ R with derivatives Λ′ and Λ′′ such that

Λ′(y)σ(y) = 1 for a.e. y ∈ R,

as well as

Λ−1 is Lipschitz continuous.

Suppose that the function b∗ : R −→ R given by

b∗(x) := Λ′
(
Λ−1(x)

)
b(Λ−1 (x)) +

1

2
Λ′′
(
Λ−1(x)

)
σ(Λ−1 (x))2

satisfies the conditions of Theorem 3.1. Then there exists a Malliavin differentiable strong solution
Xx
· to (3.8) which is (locally) Sobolev differentiable in its initial condition.

Proof. The proof is obtained directly from Itô’s formula. See [25]. �

4. Existence and derivative-free representations of the Delta

We now turn the attention to the study of option price sensitivities with respect to the initial
value of an underlying asset with irregular drift coefficient. Notably, we will consider lookback
options with path-dependent (discounted) pay-off in the form

Φ(Xx
T1
, . . . , Xx

Tm) (4.1)

for time points T1, . . . , Tm ∈ (0, T ], some function Φ : Rm → R, and where the evolution of the
underlying price process under the risk-neutral pricing measure is modelled by the strong solution
Xx of SDE (1.5) with possibly irregular drift b as in (1.6). In particular, for m = 1 the pay-off
(4.1) is associated to a European option with maturity T1. Then the current option price is given
by E

[
Φ(Xx

T1
, . . . , Xx

Tm
)
]

and the main objective of this section is to establish existence and a
derivative-free, probabilistic representation of the Delta

∂

∂x
E
[
Φ(Xx

T1
, . . . , Xx

Tm)
]
.
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After having analysed lookback options, we will also address the problem of computing Deltas of
Asian options with (discounted) path-dependent pay-off in the form

Φ

(∫ T2

T1

Xx
u du

)
(4.2)

for T1, T2 ∈ [0, T ] and some function Φ : R→ R.
We start with a preliminary result which shows that in case of a smooth pay-off function with

compact support the Delta exists for a large class of path dependent options that includes both
lookback as well as Asian options.

Lemma 4.1. Let Xx
t , t ∈ [0, T ], be the strong solution to SDE (1.5) and {Xn,x

t }n≥1 the cor-
responding approximating strong solutions of SDE (3.2). Let Φ ∈ C∞0 (Rm) and consider the
functions

un(x) := E

[
Φ

(∫ T

0

Xn,x
u µ1(du),

∫ T

0

Xn,x
u µ2(du), . . . ,

∫ T

0

Xn,x
u µm(du)

)]
(4.3)

and

u(x) := E

[
Φ

(∫ T

0

Xx
uµ1(du),

∫ T

0

Xx
uµ2(du), . . . ,

∫ T

0

Xx
uµm(du)

)]
(4.4)

where µ1, . . . , µm are finite measures on [0, T ] independent of x ∈ R. Consider also the function

ū(x) := E

[
m∑
i=1

∂iΦ

(∫ T

0

Xx
uµ1(du),

∫ T

0

Xx
uµ2(du), . . . ,

∫ T

0

Xx
uµm(du)

)∫ T

0

∂

∂x
Xx
uµi(du)

]
(4.5)

where ∂
∂xX

x is the first variation process of Xx introduced in (3.5). Then

un(x)
n→∞−−−−→ u(x) for all x ∈ R,

and
u′n(x)

n→∞−−−−→ ū(x)

uniformly on compact subsets K ⊂ R, where u′n denotes the derivative. As a result, we obtain that
u ∈ C1(R) with u′ = ū. In particular, we obtain the result for lookback options by taking µi = δti
the Dirac measure concentrated on ti, i = 1, . . . ,m, and for Asian options by taking m = 1 and
µ1 = du.

Proof. First of all, observe that the expression in (4.5) is well-defined. This can be seen by using
Cauchy-Schwarz inequality, the fact that Φ ∈ C∞0 (Rm), and Corollary A.9.

It is readily checked that un(x)→ u(x) for all x ∈ R since Φ is smooth by using the mean-value
theorem and the fact that Xn,x

t → Xx
t in L2(Ω) as n→∞ for every t ∈ [0, T ] (see Theorem A.6).

We introduce the following short-hand notation for the m-dimensional random vector associated
to a process Y :

h(Y·,T ) :=

(∫ T

0

Yuµ1(du) ,

∫ T

0

Yuµ2(du) , . . . ,

∫ T

0

Yuµm(du)

)
.

For the smooth coefficients bn we have un ∈ C1(R), n ≥ 1, and since ∂iΦ are bounded for all
i = 1, . . . ,m and by dominated convergence we have

u′n(x) = E

[
m∑
i=1

∂iΦ
(
h(Xn,x

·,T )
)∫ T

0

∂

∂x
Xn,x
u µi(du)

]
.

Moreover, we can take integration with respect to µi(du), i = 1, ...m, outside the expectation.
Thus

u′n(x) =

m∑
i=1

∫ T

0

E

[
∂iΦ

(
h(Xn,x

·,T )
) ∂

∂x
Xn,x
u

]
µi(du).
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Hence

|u′n(x)− ū(x)| =
m∑
i=1

∫ T

0

E

[
∂iΦ

(
h(Xn,x

·,T )
) ∂

∂x
Xn,x
u − ∂iΦ

(
h(Xx

·,T )
) ∂

∂x
Xx
u

]
µi(du)

=:

m∑
i=1

∫ T

0

Fn,i(u, x)µi(du)

where Fn,i(u, x) denotes the expectation in the integral. We will show that for any i = 1, . . . ,m
and compact subset K ⊂ R,

sup
(u,x)∈[0,T ]×K

|Fn,i(u, x)| n→∞−−−−→ 0.

Indeed, by plugging in expression (3.5) for the first variation process and Girsanov’s theorem we
get

|Fn,i(u, x)| ≤

∣∣∣∣∣E[∂iΦ (h(Bx·,T )
)

exp

{
−
∫ u

0

∫
R
bn(v, y)LB

x

(dv, dy)

}
E

(∫ T

0

bn(u,Bxu)dBu

)

− ∂iΦ
(
h(Bx·,T )

)
exp

{
−
∫ u

0

∫
R
b(v, y)LB

x

(dv, dy)

}
E

(∫ T

0

b(u,Bxu)dBu

))]∣∣∣∣∣
≤

∣∣∣∣∣E[∂iΦ (h(Bx·,T )
)
E

(∫ T

0

b(u,Bxu)dBu

)

×
(

exp

{
−
∫ u

0

∫
R
bn(v, y)LB

x

(dv, dy)

}
− exp

{
−
∫ u

0

∫
R
b(v, y)LB

x

(dv, dy)

})]∣∣∣∣∣
+

∣∣∣∣∣E[∂iΦ (h(Bx·,T )
)

exp

{
−
∫ u

0

∫
R
bn(v, y)LB

x

(dv, dy)

}

×

(
E

(∫ T

0

bn(u,Bxu)dBu

)
− E

(∫ T

0

b(u,Bxu)dBu

))]∣∣∣∣∣
:= In + IIn

Here, we will show estimates for IIn, for In the argument is analogous. Similarly to how we obtain
the estimate II1

n + II2
n in the proof of Lemma A.5, using inequality |ex − 1| ≤ |x|(ex + 1) we get

IIn .E
[
|∂iΦ

(
h(Bx·,T )

)
||Un| exp

{
−
∫ u

0

∫
R
bn(v, y)LB

x

(dv, dy)

}
E

(∫ T

0

bn(u,Bxu)dBu

)]
+ E

[
|∂iΦ

(
h(Bx·,T )

)
||Un| exp

{
−
∫ u

0

∫
R
bn(v, y)LB

x

(dv, dy)

}
E

(∫ T

0

b(u,Bxu)dBu

)]
=: II1

n + II2
n ,

where

Un :=

∫ T

0

(b̃n(u,Bxu)− b̃(u,Bxu))dBu −
1

2

∫ T

0

(b2n(u,Bxu)− b2(u,Bxu))du.

We will now show that II1
n → 0 as n → ∞ uniformly in x on a compact subset K ⊂ R. The

convergence of II2
n then follows immediately, too. Denote p = 1+ε

ε with ε > 0 from Lemma A.1
and use Hölder’s inequality with exponent 1 + ε on the Doléans-Dade exponential, then employ
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formula (2.11) on b̂ in bn = b̃n + b̂ and use Cauchy-Schwarz inequality successively. As a result,

II1
n .E

E (∫ T

0

bn(u,Bxu)dBu

)1+ε
1/(1+ε)

E
[
|∂iΦ

(
h(Bx·,T∗)

)
|
]1/(2p)

E[|Un|8p]1/(8p)

× E

[
exp

{
−4p

∫ u

0

∫
R
b̃n(v, y)LB

x

(dv, dy)

]1/(4p)
}
E

[
exp

{
8p

∫ u

0

b̂′(v,Bxv )dv

}]1/(8p)

.

The first and fourth factor are bounded uniformly in n ≥ 0 and x ∈ K by Remark A.2 and Lemma

A.3, respectively. The second and and fifth factor can be controlled since ∂iΦ, i = 1, . . . ,m and b̂′

are uniformly bounded. It remains to show that

sup
x∈K

E[|Un|8p]
n→∞−−−−→ 0

for any compact subset K ⊂ R.
Using Minkowski’s inequality, Burkholder-Davis-Gundy’s inequality and Hölder’s inequality we

can write

E[|Un|8p] .
∫ T

0

E[|b̃n(u,Bxu)− b̃(u,Bxu)|8p]du+

∫ T

0

E[|b2n(u,Bxu)− b2(u,Bxu)|8p]du. (4.6)

Then write the integrand of the first term in (4.6) as

E[|b̃n(u,Bxu)− b̃(u,Bxu)|8p] =
1√
2πu

∫
R
|b̃n(u, y)− b̃(u, y)|8pe−

(y−x)2
2u dy.

Using Cauchy-Schwarz inequality on |b̃n(u, y)− b̃(u, y)|8pe
−y2
4u we obtain

E[|b̃n(u,Bxu)−b̃(u,Bxu)|8p] ≤

≤ 1√
2πu

e−
x2

2u

(∫
R
|b̃n(u, y)− b̃(u, y)|16pe−

y2

2u dy

)1/2(∫
R
e−

y2

2u+2 xyu dy

)1/2

.

Then for each u ∈ [0, T ], by taking the supremum over x ∈ K and by dominated convergence, we
get

sup
x∈K

E[|b̃n(u,Bxu)− b̃(u,Bxu)|8p] n→∞−−−−→ 0 ,

and hence the result follows. Similarly, one can argue for the second term in (4.6).
In sum,

sup
(u,x)∈[0,t]×K

|Fn,i(u, x)| n→∞−−−−→ 0

for all i = 1, . . . ,m and hence u′n(x)
n→∞−−−−→ ū(x) uniformly on compact sets K ⊂ R, and thus

u ∈ C1(R) with u′ = ū. �

We come to the main result of this paper, which extends Theorem 1.1 to lookback options
written on underlyings with irregular drift coefficients. In particular, when plugging in expression
(3.5) for the first variation process, we see that the formula for the Delta in (4.8) below involves
neither the derivative of the pay-off function Φ nor the derivative of the drift coefficient b. We
obtain this result for pay-off functions Φ ∈ Lqw(Rm), where

Lqw(Rm) :=

{
f : Rm → R measurable :

∫
Rm
|f(x)|q w(x)dx <∞

}
(4.7)

for the weight function w defined by w(x) := exp(− 1
2T |x|

2), x ∈ Rm, and where the exponent q
depends on the drift b. Note that all pay-off functions of practical relevance are contained in these
spaces.

Theorem 4.2. Let Xx be the strong solution to SDE (1.5) and Φ : Rm → R a function in
L4p
w (Rm), where p > 1 is the conjugate of 1 + ε for ε > 0 in Lemma A.1. Then, for any 0 < T1 ≤
· · · ≤ Tm ≤ T , the price

u(x) := E
[
Φ(Xx

T1
, . . . , Xx

Tm)
]
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of the associated lookback option is continuously differentiable in x ∈ R, and its derivative, i.e.
the Delta, takes the form

u′(x) = E

[
Φ(Xx

T1
, . . . , Xx

Tm)

∫ T

0

a(s)
∂

∂x
Xx
s dBs

]
(4.8)

for any bounded measurable function a : R→ R such that, for every i = 1, . . . ,m,∫ Ti

0

a(s)ds = 1. (4.9)

Proof. Assume first Φ ∈ C∞0 (Rm). Then by Lemma 4.1 with µi = δti , i = 1, . . . ,m, we know that
u(x) = E

[
Φ(Xx

T1
, . . . , Xx

Tm
)
]

is continuously differentiable with derivative

u′(x) :=

m∑
i=1

E

[
∂iΦ(Xx

T1
, . . . , Xx

Tm)
∂

∂x
Xx
Ti

]
.

Now, by Corollary 3.6, we have for any i = 1, . . . ,m

∂

∂x
Xx
Ti = DsX

x
Ti

∂

∂x
Xx
s for all s ≤ Ti . (4.10)

Also recall that DsX
x
Ti

= 0 for s ≥ Ti. So, for any function a : R→ R satisfying (4.9) we have

∂

∂x
Xx
Ti =

∫ T

0

a(s)DsX
x
Ti

∂

∂x
Xx
s ds.

As a result,

u′(x) =

m∑
i=1

E

[
∂iΦ(Xx

T1
, . . . , Xx

Tm)

∫ T

0

a(s)DsX
x
Ti

∂

∂x
Xx
s ds

]

= E

[∫ T

0

a(s)DsΦ(Xx
T1
, . . . , Xx

Tm)
∂

∂x
Xx
s ds

]
,

where in the last step we could use the chain rule for the Malliavin derivative backwards, see Lemma
2.1, since Φ(Xx

T1
, . . . , Xx

Tm
) is Malliavin differentiable due to Theorem 3.1. Then a(s) ∂

∂xX
x
s is an

Fs-adapted Skorokhod integrable process by Corollary A.9 with p = 2, so the duality formula for
the Malliavin derivative (see Theorem 2.2) yields

u′(x) = E

[
Φ(Xx

T1
, . . . , Xx

Tm)

∫ T

0

a(s)
∂

∂x
Xx
s dBs

]
.

Finally, we extend the result to a pay-off function Φ ∈ L4p
w (Rm). By standard argu-

ments we can approximate Φ by a sequence of functions Φn ∈ C∞0 (Rm), n ≥ 0, such that
Φn → Φ in L4p

w (Rm) as n → ∞. Now define un(x) := E[Φn(Xx
T1
, . . . , Xx

Tm
)] and ū(x) :=

E[Φ(Xx
T1
, . . . , Xx

Tm
)
∫ T

0
a(s) ∂

∂xX
x
s dBs]. Then

|u′n(x)− ū(x)| =

∣∣∣∣∣E
[(

Φn(Xx
T1
, . . . , Xx

Tm)− Φ(Xx
T1
, . . . , Xx

Tm)
) ∫ T

0

a(s)
∂

∂x
Xx
s dBs

]∣∣∣∣∣
≤ E

[∣∣Φn(Xx
T1
, . . . , Xx

Tm)− Φ(Xx
T1
, . . . , Xx

Tm)
∣∣2]1/2E [∫ T

0

|a(s)
∂

∂x
Xx
s |2ds

]1/2

≤ CE

[∣∣Φn(BxT1
, . . . , BxTm)− Φ(BxT1

, . . . , BxTm)
∣∣2 E (∫ T

0

b(u,Bxu)dBu

)]1/2

,

where we have used Cauchy-Schwarz inequality, Itô’s isometry, Corollary A.9 and Girsanov’s
theorem in this order. Then we apply Hölder’s inequality with 1 + ε for a small enough ε > 0 and
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use Lemma A.1 to get

|u′n(x)− ū(x)| ≤

≤ CE
[∣∣Φn(BxT1

, . . . , BxTm)− Φ(BxT1
, . . . , BxTm)

∣∣2 1+ε
ε

] ε
2(1+ε)

E

E (∫ T

0

b(u,Bxu)dBu

)1+ε
 1

2(1+ε)

≤ CE
[∣∣Φn(BxT1

, . . . , BxTm)− Φ(BxT1
, . . . , BxTm)

∣∣2 1+ε
ε

] ε
2(1+ε)

.

For the last quantity, denote by Pt(y) := 1√
2πt

e−y
2/(2t), y ∈ R the density of Bt, and set T0 := 0

and y0 := x. Recall that 0 < T1 ≤ · · · ≤ Tm. Using the independent increments of the Brownian
motion we rewrite

E

[ ∣∣Φn(BxT1
, . . . , BxTm)− Φ(BxT1

, . . . , BxTm)
∣∣2 1+ε

ε

]

=

∫
Rm
|Φn(y1, . . . , ym)− Φ(y1, . . . , ym)|2

1+ε
ε

m∏
i=1

PTi−Ti−1
(yi − yi−1)dy1 · · · dym.

Furthermore, with t∗ := mini=1,...,m−1(ti+1 − ti)

E

[ ∣∣Φn(BxT1
, . . . , BxTm)− Φ(BxT1

, . . . , BxTm)
∣∣2 1+ε

ε

]

≤ (2πt∗)−m/2
∫
Rm
|Φn(y1, . . . , ym)− Φ(y1, . . . , ym)|2

1+ε
ε

m∏
i=1

e
− y2i

4(Ti−Ti−1)

× e−
y2i

4(Ti−Ti−1)
+

yiyi−1
Ti−Ti−1

−
y2i−1

2(Ti−Ti−1) dy1 · · · dym.

By applying Cauchy-Schwarz inequality we obtain

E

[ ∣∣Φn(BxT1
, . . . , BxTm)− Φ(BxT1

, . . . , BxTm)
∣∣2 1+ε

ε

]

≤ (2πt∗)
−m/2

(∫
Rm
|Φn(y1, . . . , ym)− Φ(y1, . . . , ym)|4

1+ε
ε e−

|y|2
2T dy1 · · · dym

)1/2

×

(∫
Rm

m∏
i=1

e
− y2i

2(Ti−Ti−1)
+

2yiyi−1
Ti−Ti−1

−
y2i−1

(Ti−Ti−1) dy1 · · · dym

)1/2

=: In · II.

For the second factor we have

II ≤ e− x
2

T

(∫
Rm

e−
y1
2T +

xy1
T

m∏
i=2

e−
(yi−yi−1)2

2T dy1 · · · dym

)1/2

and hence

sup
x∈K

II <∞.

Thus, since factor In converges to 0 by assumption, we can approximate ū uniformly in x ∈ R on
compact sets by smooth pay-off functions. So u ∈ C1(R) and u′ = ū. �

Next, we consider Asian options with pay-off given by (4.2). If T1 > 0 we are able to give the
analogous result to Theorem 4.2 by approximating the Asian pay-off with lookback pay-offs:

Corollary 4.3. Let Xx be the strong solution to SDE (1.5) and Φ : R→ R a function in L4p
w̃ (R)

where w̃ is defined in (4.15) further below and where p > 1 is the conjugate of 1 + ε for ε > 0 in
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Lemma A.1. Then for any T1, T2 ∈ (0, T ] with T1 < T2, the price

u(x) = E

[
Φ

(∫ T2

T1

Xx
udu

)]
of the associated Asian option is continuously differentiable in x ∈ R, and its derivative, i.e. the
Delta, takes the form

u′(x) = E

[
Φ

(∫ T2

T1

Xx
s ds

)∫ T1

0

a(s)
∂

∂x
Xx
s dBs

]
(4.11)

for any bounded measurable function a : R→ R such that∫ T1

0

a(s)ds = 1. (4.12)

Proof. Assume first that Φ ∈ C1(R), and consider a series of partitions of [T1, T2] with vanishing
mesh, i.e. let {T1 = tm0 < tm1 < . . . < tmm = T2}∞m=1 with limm→∞ supi=1,...,m(tmi −tmi−1) = 0. Then
we may write the integral using Riemann sums as follows∫ T2

T1

Xx
s ds = lim

m→∞

∑
i=1,...,m

Xx
tmi

(tmi − tmi−1).

Then

Φ

(∫ T2

T1

Xx
s ds

)
= lim
m→∞

Φ

 ∑
i=1,...,m

Xx
tmi

(tmi − tmi−1)

 =: lim
m→∞

Φ̂m(Xx
tm1
, . . . , Xx

tmm
).

By Theorem 4.2 we have

u′(x) = lim
m→∞

E

[
Φ̂m(Xx

tm1
, . . . , Xx

tmm
)

∫ T

0

am(s)
∂

∂x
Xx
s dBs

]
where am is a bounded measurable function such that

∫ tmi
0

am(s)ds = 1 for each i = 1, . . . ,m.
Then

u′(x) = lim
m→∞

E

[
Φ̂m(Xx

tm1
, . . . , Xx

tmm
)

∫ T

0

am(s)
∂

∂x
Xx
s dBs

]

= E

[
Φ

(∫ T2

T1

Xx
s ds

)∫ T1

0

a(s)
∂

∂x
Xx
s dBs

]
,

where a is a function such that
∫ T1

0
a(s)ds = 1.

For a general pay-off Φ, we approximate Φ in L4p
w (R) by a sequence of functions {Φn}n≥0 ⊂

C1
0 (R) and define u(x) := E[Φ(

∫ T2

T1
Xx
s ds)] and ū(x) := E

[
Φ
(∫ T2

T1
Xx
s ds
) ∫ T1

0
a(s) ∂

∂xX
x
s dBs

]
.

Consider un(x) = E[Φn(
∫ T2

T1
Xx
s ds)]. Finally, similarly as in Theorem 4.2 one has un(x) → u(x)

as n→∞ for all x ∈ R and

|u′n(x)− ū(x)| . E

[∣∣Φn(∫ T2

T1

Bxs ds

)
− Φ

(∫ T2

T1

Bxs ds

)∣∣2p]1/p

,

which goes to zero uniformly in x ∈ K on compact sets K ⊂ R as n → ∞ by using the fact that∫ T2

T1
Bxs ds has a Gaussian distribution with mean x(T2 − T1) and variance

T 3
2−T

3
1

3 − (T2 − T1)T 2
1

which explains the weight w̃. �

Remark 4.4. From the proof of Corollary 4.3 it follows that the Delta (4.11) of an Asian option
can be approximated by the Delta

E

[
Φ

(
m∑
i=1

Xx
ti (ti − ti−1)

)∫ T2

0

a(s)
∂

∂x
Xx
s dBs

]
(4.13)
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of a lookback option for a fine enough partition T1 = t0 < t1 < · · · < tm = T2, where
∫ ti

0
a(s)ds = 1

for each i = 1, . . . ,m.. From a numerical point of view, this might make a difference since the
function a in (4.13) can be chosen to have support on the full segment [0, T2], while in (4.11) the
function a can only have support on [0, T1].

If the averaging period of the Asian option starts today, i.e. T1 = 0, then formula (4.11)
does not hold anymore. Instead, one can derive alternative closed-form expressions for the Asian
delta for smooth diffusion coefficients, see e.g. [15] and [3], which potentially can be generalised
to irregular drift coefficients. However, except for linear coefficients (Black & Scholes model),
these expressions involve stochastic integrals in the Skorokhod sense which are, in general, hard
to simulate. Instead, we here propose to enlarge the state space by one dimension and to consider
a perturbed Asian pay-off. In that case we are able to derive a probabilistic representation for
the corresponding Delta that only includes Itô integrals. More precisely, we consider the (strong)
solution to the perturbed two-dimensional SDE

dXx
t = b(t,Xx

t )dt+ dBt, X
x
0 = x ∈ R,

dY ε,x,yt = Xx
t dt+ εdWt , Y

ε,x,y
0 = y ∈ R, 0 ≤ t ≤ T, (4.14)

for ε > 0, where W is a one-dimensional Brownian motion independent of B. The idea is now
to consider the perturbed Asian pay-off with averaging period [0, T2], T2 ∈ (0, T ] as a European
pay-off on Y ε,x,yT2

:

Φ

(∫ T2

0

Xx
s ds

)
∼ Φ(Y ε,x,0T2

) = Φ

(∫ T2

0

Xx
s ds+ εWT2

)
.

We then get the following result, where we now consider the slightly differently weighted pay-off
function space

Lqw̃(R) :=

{
f : R→ R measurable:

∫
R
|f(x)|qw̃(x)dx <∞

}
for the weight function w̃ defined by

w̃(x) = exp

(
− |x|2

2T2 (T 2
2 /3 + 1)

)
, x ∈ R. (4.15)

Theorem 4.5. Let Y ε,x,y· be the second component of the strong solution to (4.14) and Φ ∈ L4p
w̃ (R),

where p > 1 is the conjugate of 1+ε for ε > 0 in Lemma A.1. For a given maturity time T2 ∈ (0, T ]
and 0 < ε ≤ 1, the price

uε(x) := E[Φ(Y ε,x,0T2
)]

of the associated perturbed Asian option is continuously differentiable in x ∈ R, and its derivative,
i.e. the Delta, takes the form

u′ε(x) = E

[
Φ(Y ε,x,0T2

)

(∫ T

0

a(s)
∂

∂x
Xx
s dBs + ε−1

∫ T

0

a(s)

∫ s

0

∂

∂x
Xx
udu dWs

)]
, (4.16)

where a : [0, T ] −→ R is a bounded measurable function such that
∫ T

0
a(s)ds = 1.

Proof. The proof is a straight forward generalization of the proof of Theorem 4.2 to the (partic-
ularly simple) two-dimensional extension (4.14) of the underlying SDE. Therefore, we here only
give the main steps.

First observe that the strong solution (Xx
t , Y

ε,x,y
t ) is clearly differentiable in y, and by Theo-

rem 3.4 also (weakly) differentiable in x, and we get

Dx,y

(
Xx
t

Y ε,x,yt

)
=

(
∂
∂xX

x
t 0∫ t

0
∂
∂xX

x
udu 1

)
,

for all t ∈ [0, T ], where Dx,y denotes the derivative.
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Assume first Φ ∈ C∞0 (R). Then it follows from Lemma 4.1 that E[Φ(Y ε,x,yT2
)] is continuously

differentiable in (x, y) with

Dx,yE[Φ(Y ε,x,yT2
)] = E

[(
0

Φ
′
(Y ε,x,yT2

)

)∗
Dx,y

(
Xx
T2

Y ε,x,yT2

)]
,

where ∗ indicates the transposition of a matrix.
On the other hand, if we denote by D the Malliavin derivative in the direction of (B,W ), it

follows by means of the estimate in (A.12) and Corollary 3.6 that Y ε,x,yT2
is Malliavin differentiable

and that for 0 ≤ s ≤ T

Ds

(
Xx
T2

Y ε,x,yT2

)(
1 0
0 ε

)−1

Dx,y

(
Xx
s

Y ε,x,ys

)
= Dx,y

(
Xx
T2

Y ε,x,yT2

)
(4.17)

dx⊗ ds⊗ P−a.e. Then, using (4.17), the chain rule from Lemma 2.1 and the duality relation for
the Malliavin derivative, we see that

Dx,yE[Φ(Y ε,x,yT2
)] = E

[(
0

Φ
′
(Y ε,x,yT2

)

)∗ ∫ T

0

a(s)Ds

(
Xx
T2

Y ε,x,yT2

)(
1 0
0 ε

)−1

Dx,y

(
Xx
s

Y ε,x,ys

)
ds

]

= E

[
Φ(Y ε,x,yT2

)

∫ T

0

a(s)

((
1 0
0 ε−1

)
Dx,y

(
Xx
s

Y ε,x,ys

))∗
d

(
Bs
Ws

)]
.

Thus

∂

∂x
E[Φ(Y ε,x,yT2

)] = E

[
Φ(Y ε,x,yT2

)

(∫ T

0

a(s)
∂

∂x
Xx
s dBs + ε−1

∫ T

0

a(s)

∫ s

0

∂

∂x
Xx
udu dWs

)]
for all x, y, ε > 0.

For general Φ ∈ L4p
w̃ (R) one pursues an approximation argument analogously to the one in the

proof of Theorem 4.2, where we now use the Gaussian distribution of
∫ T2

0
Bxs ds+ εWT2

with mean

xT2 and variance T 3
2 /3 + ε2T2, which explains the weight (4.15) for 0 < ε ≤ 1. �

Finally, we address the question whether both (4.11) for T1 → 0 as well as (4.16) for ε→ 0 are
indeed approximations for the Delta of the Asian option with averaging period starting in 0. We
here give an affirmative answer for a class of pay-off functions Φ in spaces of the type

W 1,q
w̃ (R) :=

{
f ∈W 1,q

loc (R);

∫
R
|f(x)|qw̃(x)dx+

∫
R
|f ′(x)|qw̃(x)dx <∞

}
for some q > 1, where f ′ denotes the weak derivative of f and the weight function w̃ is defined in
(4.15). See [?] for more information on weighted Sobolev spaces.

Theorem 4.6. Let Xx be the strong solution to SDE (1.5) and Φ ∈W 1,4p
w̃ (R), where p > 1 is the

conjugate of 1 + ε for ε > 0 in Lemma A.1. Further, require that the points of discontinuity of the
distributional derivative Φ

′
are contained in a Lebesgue null set and that the following conditions

are satisfied ∫
R

∫
R

sup
ε>0
|Φ(y)− Φ(y − εz)|2p w̃(y)PT (z)dydz <∞ (4.18)

and ∫
R

∫
R

sup
ε>0
|Φ′(y)− Φ′(y − εz)|4p w̃(y)PT (z)dydz <∞, (4.19)

where Pt(z) = 1√
2πt

exp(− 1
2tz

2), t > 0, z ∈ R is the Gaussian kernel. Then

u(x) := E

[
Φ

(∫ T2

0

Xx
s ds

)]
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is continuously differentiable in x ∈ R, and

u′(x) = lim
ε→0

E

[
Φ
(
Y ε,x,0T2

)(∫ T

0

a(s)
∂

∂x
Xx
s dBs + ε−1

∫ T

0

a(s)

∫ s

0

∂

∂x
Xx
udu dWs

)]
, (4.20)

as well as

u′(x) = lim
T1→0

E

[
Φ

(∫ T2

T1

Xx
udu

)∫ T1

0

a(u)
∂

∂x
Xx
udBu

]
. (4.21)

Proof. By Theorem 4.5 we have that uε ∈ C1(R) for all ε > 0. Hence,

∂

∂x
E[Φ(Y ε,x,0T2

)] = E

[
Φ
′
(Y ε,x,0T2

)
∂

∂x
Y ε,x,0T2

]
for all ε > 0, dx-a.e. Let J ⊂ R be a compact set. Then, using the same line of reasoning just as
in the proof of Theorem 4.2, using Cauchy-Schwarz inequality, Girsanov’s theorem, and Lemma
A.1 we find the estimates

sup
x∈J

∣∣∣∣ ∂∂xE[Φ(Y ε,x,0T2
)]− ∂

∂x
E[Φ(Y 0,x,0

T2
)]

∣∣∣∣ ≤ C (E [∫
R

∣∣∣Φ′(y)− Φ
′
(y − εWT2

)
∣∣∣4p w̃(y)dy

])1/(4p)

and

sup
x∈J

∣∣∣E[Φ(Y ε,x,0T2
)]− E[Φ(Y 0,x,0

T2
)]
∣∣∣ ≤ K (E [∫

R
|Φ(y)− Φ(y − εWT2

)|2p w̃(y)dy

])1/(2p)

for constants C, K depending only on T2, J , p (and not on ε).
Finally, using dominated convergence in connection with (4.18) and (4.19), the proof follows.

To prove (4.21) define uT1
(x) := E[Φ(

∫ T2

T1
Xx
udu)]. Since Φ ∈ L4p

w̃ (R), we have by Corollary 4.3

that uT1 ∈ C1(R) for every T1 > 0. Moreover, since Φ ∈W 1,4p
w̃ (R) we have

u′T1
(x) = E

[
Φ′

(∫ T2

T1

Xx
udu

)∫ T2

T1

∂

∂x
Xx
udu

]
.

Consequently, for every compact J ⊂ R we have

sup
x∈J

∣∣∣∣∣ ∂∂xE
[

Φ

(∫ T2

T1

Xx
udu

)]
− ∂

∂x
E

[
Φ

(∫ T2

0

Xx
udu

)]∣∣∣∣∣
≤ sup

x∈J

∣∣∣∣∣E
[(

Φ′

(∫ T2

T1

Xx
udu

)
− Φ′

(∫ T2

0

Xx
udu

))∫ T2

T1

∂

∂x
Xx
udu

]∣∣∣∣∣
+ sup
x∈J

∣∣∣∣∣E
[

Φ′

(∫ T2

0

Xx
udu

)∫ T1

0

∂

∂x
Xx
udu

]∣∣∣∣∣
=:A1 +A2

where A1 and A2 denote the respective summands. It is clear that A2 goes to 0 uniformly in x
on J as T1 → 0. To show the corresponding convergence for A1, similar computations as in the
beginning of the proof, using Cauchy-Schwarz inequality, Girsanov’s theorem, Lemma A.1, and
that Φ′ ∈ L4p

w̃ (R), give for some constant Cε > 0

A1 =Cε sup
x∈J

E

∣∣∣∣∣Φ′
(∫ T1

0

Bxudu

)∣∣∣∣∣
4p
1/(4p)

≤ Cε‖Φ′‖L4p
w̃

(R)

∫
R
e
− z2

2T1(T2
1 /3+1) dz

T1→0−−−−→ 0 .

Hence (4.21) follows. �

Example 4.7. We conclude this section by verifying the conditions in Theorem 4.6 for a pay-off
function that is used in the next section. Consider the function Φ : R −→ [0,∞) given by

Φ(y) = exp(−y)(C exp(y)−K)+,



22 D. R. BAÑOS, S. DUEDAHL, T. MEYER-BRANDIS, AND F. PROSKE

where C, K > 0 are constants and (x)+ := max(x, 0) for x ∈ R. We immediately see that

Φ ∈W 1,4p
loc (R) ∩ L4p

w̃ (R) and that

Φ
′
(y) = − exp(−y)(C exp(y)−K)+ + C1[log(K/C),∞)(y) dx− a.e.

On the other hand we have that

sup
ε>0

∣∣∣Φ′(y)− Φ
′
(y − εz)

∣∣∣4p ≤M(
∣∣∣Φ′(y)

∣∣∣4p + sup
ε>0

∣∣∣Φ′(y − εz)∣∣∣4p
≤M((2C +K exp(|y|))4p + (2C +K exp(|y|+ |z|))4p).

So condition (4.19) is fulfilled. In the same way one verifies condition (4.18). Hence Φ satisfies
the assumptions of the previous theorem.

5. Examples and Simulations

We complete this paper by applying the results from Section 4 to the computation of the
Deltas in the regime-switching examples mentioned in the Introduction. More complex examples
of state-dependent drift coefficients (see e.g. [9]) can be treated following the same principles. To
implement the methodology, we first employ Remark 3.7 and observe that all drift coefficients from

the regime switching examples in the Introduction can be written in the form b(t, x) = b̃(x) + b̂(x)

as in (1.6) such that identity (2.11) holds for b̂(x) and identity (2.13) holds for b̃(x). We thus get
the following rewriting of the first variation process (3.5):

∂

∂x
Xx
t = exp

{
2β̃(Xx

t )− 2β̃(x)− 2

∫ t

0

b̃(Xx
s ) dXx

s +

∫ t

0

b̂′(Xx
u)du

}
, (5.1)

where β̃(·) := b̃(0)+
∫ ·

0
b̃(y) dy is a primitive of b̃(·). This form is convenient for simulation purposes.

5.1. Black & Scholes model with regime-switching dividend yield. Consider an extended
Black & Scholes model where the stock pays a dividend yield that switches to a higher level when
the stock value passes a certain threshold R ∈ R+. That is, under the risk-neutral measure the
stock price S is given by the SDE

Ss0t = s0 +

∫ t

0

b(Ss0u )Ss0u du+

∫ t

0

σSs0u dBu ,

where σ > 0 is constant and the drift coefficient b : R→ R is given by

b(x) := −λ11(−∞,R)(x)− λ21[R,∞)(x),

for dividend yields λ1, λ2 ∈ R+. We are interested in computing the Delta of a European option
written on the stock with given pay-off function Φ : R→ R and maturity T :

∂

∂s0
E[Φ(Ss0T )] .

In order to fit the computation of the Delta in our framework, we rewrite the stock price with the
help of Itô’s formula as

Ss0T = eσX
ln(s0)/σ

T ,

where Xx
t is the solution of the SDE

Xx
t = x+

∫ t

0

b(Xx
u)du+Bt , (5.2)

with
b(x) := −λ11(−∞,R)(x)− λ21[R,∞)(x)− σ

2
,

and λ1 := λ1

σ , λ2 := λ2

σ , R := ln(R)
σ . We see that SDE (5.2) is in the required form (1.5) with

b̃(t, x) = −(λ2 − λ1)1[R,∞)(x) and b̂(t, x) = −λ1 − σ
2 . With Φ := Φ ◦ exp ◦σ· we thus get by the

chain rule
∂

∂s0
E[Φ(Ss0T )] =

∂

∂s0
E[Φ(X

ln(s0)/σ
T )] =

1

s0σ
· ∂
∂x
E[Φ(Xx

T )] |
x=

ln(s0)
σ

.
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If Φ ∈ L4p
w (R) we know by Theorem 4.2 that the Delta exists, and we can compute ∂

∂xE[Φ(Xx
T )]

by (4.8) to obtain

∂

∂s0
E[Φ(Ss0T )] = E

[
Φ(Ss0T )

∫ T

0

a(s)

s0σ

∂

∂x
X ln(s0)/σ
s dBs

]
(5.3)

for any bounded measurable function a : R → R such that
∫ T

0
a(s)ds = 1 , and where ∂

∂xX
x
s is

given by (5.1) with b̂′ = 0 and

β̃(x) :=

∫ x

0

b̃(y) dy = −(λ2 − λ1)(x−R)1[R,∞)(x).

We now consider the Delta for a call option, i.e. Φ(x) := (x −K)+, and for a digital option, i.e.
Φ(x) := 1{x≥K}, for some strike price K > 0. It is easily seen that in both cases Φ ∈ L4p

w (R).
To compute (5.3) by Monte Carlo, Xx is approximated by an Euler scheme (see [30], Theorem
3.1 on the Euler scheme approximation for coefficients b which are non-Lipschitz due to a set of
discontinuity points with Lebesgue measure zero). As in [15] we compare the performance of (5.3)
to the approximation of the Delta by a finite difference scheme combined with Monte Carlo:

∂

∂s0
E[Φ(Ss0T )] ∼

E[Φ(Ss0+ε
T )]− E[Φ(Ss0−εT )]

2ε
, (5.4)

for ε sufficiently small. We set the parameters T = 1, s0 = 100, λ̄1 = 0.05, λ̄2 = 0.15, R̄ = 108,
σ = 0.1 and K = 94. Our findings are analogue to the ones in [15]: for the continuous call option
pay-off function the approximation (5.4) seems to be more efficient (see Figure 1), whereas for
the discontinuous pay-off function of a digital option, the approximation (5.3) via the Malliavin
weight exhibits considerably better convergence (see Figure 2).

Figure 1. Delta of a European Call Option Black & Scholes model with regime-
switching dividend yield.
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Figure 2. Delta of a European Digital Option under the Black & Scholes model
with regime-switching dividend yield.

5.2. Electricity spot price model with regime-switching mean-reversion rate. Typically,
electricity spot prices exhibit a mean-reverting behaviour with at least two different regimes of
mean-reversion: a spike regime with very strong mean-reversion on exceptionally high price levels
and a base regime with moderate mean-reversion on regular price levels. These features can be
captured by modelling the electricity spot price S (under a risk-neutral pricing measure) by an
extended Ornstein-Uhlenbeck process with regime-switching mean-reversion rate:

Ss0t = s0 +

∫ t

0

b(Ss0u )du+ σBt , (5.5)

where the drift coefficient is given by

b(x) := −λ1x1(−∞,R)(x)− λ2x1[R,∞)(x) (5.6)

for mean reversion rates λ1, λ2 ∈ R+, a given spike price threshold R ∈ R, and σ > 0. In order
to guarantee positive prices, one could alternatively model the log-price by (5.5), or one could
introduce another regime with high mean-reversion as soon as the price falls below zero (we recall
that short periods of negative electricity prices have been observed).

Since electricity is a flow commodity, derivatives on spot electricity are written on the average
price of the delivery of 1 kWh over a future period [T1, T2], i.e. the underlying is of the type∫ T2

T1
Ss0t dt for T1 > 0. The most liquidly traded electricity derivatives are futures and forwards. In

that case the pay-off is linear and the computation of the Delta can be reduced to the computation
of the Deltas of European type options:

∂

∂s0
E

[
1

T2 − T1

∫ T2

T1

Ss0t dt

]
=

1

T2 − T1

∫ T2

T1

∂

∂s0
E[Ss0t ] dt .

For derivatives with non-linear pay-off Φ, the Delta

∂

∂s0
E

[
Φ

(∫ T2

T1

Ss0t dt

)]
is of Asian type.

Again, in order to fit the computation of the Delta in our framework we rewrite the stock price
with the help of Itô’s formula as

Ss0t = σX
s0/σ
t ,

where Xx is the solution of the SDE

Xx
t = x+

∫ t

0

b(Xx
u)du+Bt, (5.7)

with

b(x) := −
(
λ11(−∞,R)(x) + λ21[R,∞)(x)

)
x, (5.8)
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Figure 3. Three versions of the functions for a(s) from Remark 4.4.

where R = R/σ. We see that the SDE (5.7) is in the required form (1.5) with b̃(x) =

− (λ2 − λ1)R1[R,∞)(x) and b̂(x) = b(x) − b̃(x). As in the previous example, by the chain rule
we get that

∂

∂s0
E

[
Φ

(∫ T2

T1

Ss0t dt

)]
=

∂

∂s0
E

[
Φ

(∫ T2

T1

X
s0/σ
t dt

)]
=

1

σ

∂

∂x
E

[
Φ

(∫ T2

T1

Xx
t dt

)]∣∣∣∣∣
x=

s0
σ

(5.9)

with Φ := Φ◦ ·σ. Note that in this example the first variation process ∂
∂xX

x
s is given by (5.1) with

β̃(x) :=

∫ x

0

b̃(y) dy = − (λ2 − λ1)R(x−R)1[R,∞)(x)

and ∫ t

0

b̂′(u,Xx
u)du = −λ1

∫ t

0

1(−∞,R)(X
x
u)du− λ2

∫ t

0

1[R,∞)(X
x
u)du.

We compare the performance of the formula for the Asian Delta in Corollary 4.3 with the
approximation presented in Remark 4.4 and with a finite difference approximation analogous to
(5.4) when Φ is a call option pay-off and a digital option pay-off, respectively. Obviously, in both
cases the pay-off in terms of Xx

· fulfils the assumptions in Theorem 4.2. In the approximation
presented in Remark 4.4 an optimal (in the sense that it minimises the variance of the Malliavin
weight) choice for a(s) could improve the convergence rate of the method. In the simulations we
compared the following possible choices for a(s):

a1(s) :=

{
1
t1

if 0 ≤ s ≤ t1
0 if t1 < s ≤ T2

a2(s) :=


1
t1

if 0 ≤ s ≤ t1
k if

⌊
s−T1

T2−T1
· 2m

⌋
≡ 0 mod 2 and t1 < s ≤ T2

−k if
⌊
s−T1

T2−T1
· 2m

⌋
≡ 1 mod 2 and t1 < s ≤ T2

a3(s) :=

{
1
t1

if 0 ≤ s ≤ t1∣∣∣ s−T1

T2−T1
· m2 − 1−

⌊
s−T1

T2−T1
· m2 −

1
2

⌋∣∣∣− k if t1 < s ≤ T2

,

see Figure 3. However, the different choices of function a above did not produce relevant differences
in the results. Note, that implementing the approximation from Remark 4.4 with function a1(s)
is essentially the same as the implementing the Delta from Corollary 4.3. We thus only compare
the Delta from Corollary 4.3 with a finite difference scheme for parameters: T1 = 0.4, T2 = 1,
s0 = 100, λ1 = 0.2, λ2 = 0.4, R = 101, σ = 5 and K = 87. We remark that if T1 approaches zero,
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Figure 4. Delta of an Asian Call Option under the Electricity spot price model
with regime-switching mean-reversion rate.

Figure 5. Delta of an Asian Digital Option under the Electricity spot price
model with regime-switching mean-reversion rate.

the variance of the Malliavin weight increases, and thereby the Monte Carlo method becomes less
effective. As for the European option in Subsection 5.1, also for these Asian type options the finite
difference method seems to be more efficient for the continuous call option pay-off, see Figure 4,
whereas for the digital option pay-off, the approximation through the Malliavin weight provides
better convergence, see Figure 5.

5.3. Generalised Black & Scholes model with regime-switching short rate. Consider a
generalised Black & Scholes model where under the risk-neutral measure the stock price Ss0· is
given by

Ss0t = s0 +

∫ t

0

rr0u S
s0
u du+

∫ t

0

σSs0u dBu , (5.10)

and the stochastic short rate rr0· is given by an extended Vaš́ıček model where the mean-reversion
level switches between a high interest rate regime and a low interest rate regime when the short
rate passes a certain threshold R ∈ R:

rr0t = r0 +

∫ t

0

b(rr0u )du+B∗t , (5.11)

where B∗t = ρB̃t +
√

1− ρ2Bt and the drift coefficient is given by

b(x) := −λ(x−m11(−∞,R)(x)−m21[R,∞)(x)) (5.12)

for a mean-reversion rate λ ∈ R+ and mean-reversion levels m1,m2 ∈ R, and where B̃ is a

Brownian motion independent of B, i.e. we allow for a correlation coefficient 0 ≤
√

1− ρ2 <
1 with the stock price. Note that we set the volatility coefficient in (5.11) equal to one for
notational simplicity. We see that the drift of the SDE (5.11) is in the required form (1.5) with
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b̃(x) = −λ (m1 −m2) 1[R,∞)(x) and b̂(x) = −λ (x−m1). Further, we mention that the SDE (5.11)
has a Malliavin differentiable unique strong solution with respect to the filtration Ft, 0 ≤ t ≤ T ,

generated by the Brownian motions B̃· and B·. Moreover, there exists an Ω∗ with probability
mass 1 such that for all ω ∈ Ω∗ and 0 ≤ t ≤ T : (x 7−→ rx(t, ω)) ∈ ∩p>0W

1,p
loc (R). The proofs of

these properties are essentially the same as in Section 3. For example, Girsanov’s theorem in the

previous proofs is applied to the Brownian motion B∗t := ρB̃t +
√

1− ρ2Bt, 0 ≤ t ≤ T .
Now consider the price of a European option with pay-off function Φ written on the stock at

maturity T :

E
[
e−

∫ T
0
rr0s dsΦ

(
s0e

∫ T
0
rr0s ds+σBT− 1

2σ
2T
)]

.

In this example we are interested in computing the generalised Rho

∂

∂r0
E
[
e−

∫ T
0
rr0s dsΦ

(
s0e

∫ T
0
rr0s ds+σBT− 1

2σ
2T
)]

, (5.13)

that is, the sensitivity of the option with respect to the initial value r0 of the short rate (i.e. a
sensitivity with respect to movements of the short end of the yield curve). We see that (5.13)
has the form of a Delta with respect to an Asian pay-off in the short rate rr0· which, however,
additionally depends on the factor BT .

Although the extension of the results in Section 4 is straight forward to this simple two-
dimensional setting, we can still remain in the one-dimensional setting from Section 4 by con-

sidering the Malliavin derivative D̃s only with respect to Brownian motion B̃· and by applying
relation (3.6) from Corollary 3.6 in the form

∂

∂r0
rr0t =

1

ρ
D̃sr

r0
t

∂

∂r0
rr0s for all s ≤ t . (5.14)

We here intend to analyse the performance of the approximation (4.20) from Theorem 4.6 for
an Asian Delta. Under the corresponding assumptions from Theorem 4.6 for the pay-off function

Φ̄

(∫ T

0

rr0t dt,BT

)
:= exp

{
−
∫ T

0

rr0t dt

}
Φ

(
s0 exp

{∫ T

0

rr0t dt+ σBT −
1

2
σ2T

})
,

and by following the argument in the proof of Theorem 4.6 we then obtain that the function

u(r0) := E

[
Φ̄

(∫ T

0

rr0t dt,BT

)]
is continuously differentiable in r0 ∈ R, and that

∂

∂r0
u(r0) = lim

n→∞
E

[
Φ̄

(∫ T

0

rr0s ds+ n−1WT , BT

)
(∫ T

0

a(s)

ρ

∂

∂r0
rr0s dB̃s + n

∫ T

0

a(s)

(∫ s

0

∂

∂r0
rr0u du

)
dWs

)]
(5.15)

where a : R→ R is as in Theorem 4.6. Note that in this example the first variation process ∂
∂r0

rr0s
is given by (5.1) with

β̃(x) :=

∫ x

0

b̃(y) dy = −λ (m1 −m2) (x−R) 1[R,∞)(x)

and ∫ t

0

b̂′(u,Xx
u)du = −λt.

We compare the performance of the approximation of the generalised Rho ∂
∂r0

u presented in

(5.15) with a finite difference approximation analogous to (5.4) when Φ is a call option pay-off,
see Figure 6. The parameters are T = 1, s = 2, σ = 0.1, λ = 0.3, m1 = 0.5, m2 = 1.2, R = 1.4
and K = exp(0.4) and we choose a(s) = 1/T . Note that for a call option pay-off Φ we know
from Example 4.7 that the assumptions in Theorem 4.6 are fulfilled. Further, we also compute
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the Delta of a digital pay-off, see Figure 7, even though the conditions of Theorem 4.6 are not
satisfied. Our conjecture is that the result of Theorem 4.6 also holds for discontinuous pay-offs, and

the simulation reinforces that. As n from Theorem 4.6 increases Φ̄
(∫ T

0
rr0(s)ds+ n−1WT , BT

)
becomes a better approximation of Φ̄

(∫ T
0
rr0(s)ds,BT

)
but at the same time the variance of the

Malliavin weight increases, thus, the convergence of the Monte Carlo simulation becomes slower.
The experience of several simulations is that n ∼ 20 gives the best balance between these two
opposite impacts. However, we can see that in both cases the finite difference method seems
considerably more efficient.

Figure 6. Approximation: Generalised Rho of a European Call Option under
the Generalised Black & Scholes model with regime-switching short rate.

Figure 7. Approximation: Generalised Rho of a European Digital Option under
the Generalised Black & Scholes model with regime-switching short rate.

Appendix A. Proofs of results in Section 3

In this appendix we recollect the proofs of the results in Section 3.

A.1. Some auxiliary results. We start by giving some auxiliary technical lemmata which pro-
vide relevant estimates that will be progressively used throughout some proofs in the sequel.

Lemma A.1. Let b : [0, T ]×R→ R be a function of at most linear growth, i.e. |b(t, x)| ≤ C(1+|x|)
for some C > 0, all x ∈ R and t ∈ [0, T ]. Then for any compact subset K ⊂ R there exists an
ε > 0 such that

sup
x∈K

E

E (∫ T

0

b(u,Bxu)dBu

)1+ε
 <∞ (A.1)

where Bxt := x+Bt.
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Proof. Indeed, write

E

E (∫ T

0

b(u,Bxu)dBu

)1+ε
 =E

[
exp

{∫ T

0

(1 + ε)b(u,Bxu)dBu −
1

2

∫ T

0

(1 + ε)b2(u,Bxu)du

}]

=E

[
exp

{∫ T

0

(1 + ε)b(u,Bxu)dBu −
1

2

∫ T

0

(1 + ε)2b2(u,Bxu)du

+
1

2

∫ T

0

ε(1 + ε)b2(u,Bxu)du

}]

=E

[
exp

{
1

2

∫ T

0

ε(1 + ε)b2(u,Xε,x
u )du

}]

where in the last step Xε,x denotes a weak solution of the SDE{
dXε,x

t = (1 + ε)b(t,Xε,x
t )dt+ dBt, t ∈ [0, T ]

Xε,x
0 = x,

which is obtained from Girsanov’s theorem in the same way as in the first step of Subsection A.2
in equation (A.8). Observe that, since b has at most linear growth, we have

|Xε,x
t | ≤ |x|+ C(1 + ε)

∫ t

0

(1 + |Xε,x
u |)du+ |Bt|

for every t ∈ [0, T ]. Then Grönwall’s inequality gives

|Xε,x
t | ≤ (|x|+ C(1 + ε)T + |Bt|) eC(1+ε)T , (A.2)

and due to the sublinearity of b and the estimate (A.2) we can find a constant Cε,T depending
only on ε, T such that limε↘0 Cε,T <∞ and

|b(u,Xε,x
u )| ≤ Cε,T (1 + |x|+ |Bt|) .

As a result,

E
[

exp

{
ε(1+ε)

∫ T

0

b2(u,Xε,x
u )du

}]
≤ E

[
exp

{
ε(1 + ε)C2

ε,T

∫ T

0

(1 + |x|+ |Bu|)2
du

}]

≤ eC̃ε,TT (1+|x|)2E

[
exp

{
2C̃ε,T (1 + |x|)

∫ T

0

|Bu|du+ C̃ε,T

∫ T

0

|Bu|2du

}]
where C̃ε,T := ε(1 + ε)C2

ε,T > 0 is a constant such that limε↘0 C̃ε,T = 0. Clearly, from the above
expression we can see that for every compact set K ⊂ R we can choose ε > 0 small enough such
that

sup
x∈K

E
[

exp

{
ε(1 + ε)

∫ T

0

b2(u,Xε,x
u )du

}]
<∞.

�

Remark A.2. From Lemma A.1 it follows immediately that if the approximating functions bn,
n ≥ 1 are as in (3.1) then for any compact subset K ⊂ R, one can find an ε > 0 such that

sup
x∈K

sup
n≥0

E

E (∫ T

0

bn(u,Bxu)dBu

)1+ε
 <∞, (A.3)

where we recall that b0 := b.
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Lemma A.3. Let f : [0, T ]×R→ R be a bounded measurable function. Then for every t ∈ [0, T ],
λ ∈ R and compact subset K ⊂ R we have

sup
x∈K

E

[
exp

{
λ

∫ t

0

∫
R
f(s, y)LB

x

(ds, dy)

}]
<∞ (A.4)

where LB
x

(ds, dy) denotes integration with respect to local-time of the Brownian motion Bxt :=
Bt+x in both time and space, see Section 2 or [12] for more information on local-time integration.

Proof. By virtue of decomposition (2.10) from the Section 2 and Cauchy-Schwarz inequality twice
we have

E

[
exp

{
λ

∫ t

0

∫
R
f(s, y)LB

x

(ds, dy)

}]
≤E

[
exp

{
−2λ

∫ t

0

f(s,Bxs )dBs

}]1/2

× E

[
exp

{
4λ

∫ T

T−t
f(T − s,BxT−s)dWs

}]1/4

× E

[
exp

{
−4λ

∫ T

T−t
f(T − s,BxT−s)

BT−s
T − s

ds

}]1/4

=: I · II · III.

where Wt :=
∫ t

0
BT−s
T−s ds+BT−t−BT is a Brownian motion with respect to the filtration generated

by B̂·. For factor I, Hölder’s inequality gives

E

[
exp

{
− 2λ

∫ t

0

f(s,Bxs )dBs

}]
≤

≤ E
[
E
(∫ t

0

(−4λf(s,Bxs ))dBs

)]1/2

E

[
exp

{∫ t

0

(8λ2f2(s,Bxs ))ds

}]1/2

= E

[
exp

{∫ t

0

(8λ2f2(s,Bxs ))ds

}]1/2

≤ C,

where C > 0 is independent of x since f is bounded. Analogously, we obtain a bound for II.
Finally, III follows from

E

[
exp

{
k

∫ T

0

|Bs|
s
ds

}]
<∞ (A.5)

for any k ∈ R, see Lemma A.4 below. �

Lemma A.4. Let B be a one-dimensional Brownian motion on [0, T ]. Then for any integer p ≥ 1
and 0 ≤ ε < 1/(4p)

E

[∣∣∣∣∣
∫ T

0

|Bu|1+ε

u1+ε
du

∣∣∣∣∣
p]

<∞. (A.6)
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Proof. Indeed,

E

[∣∣∣∣∣
∫ T

0

|Bu|1+ε

u1+ε
du

∣∣∣∣∣
p]
≤E

[(
sup

u∈[0,T ]

|Bu|ε
)p ∣∣∣∣∣

∫ T

0

|Bu|
u1+ε

du

∣∣∣∣∣
p]

≤E

[
sup

u∈[0,T ]

|Bu|2pε
]1/2

E

∣∣∣∣∣
∫ T

0

|Bu|
u1+ε

du

∣∣∣∣∣
2p
1/2

≤CE

∣∣∣∣∣
∫ T

0

|Bu|
u1+ε

du

∣∣∣∣∣
2p
1/2

for a positive constant C > 0. Now, set d := 2p then we may write

E

∣∣∣∣∣
∫ T

0

|Bu|
u1+ε

du

∣∣∣∣∣
2p
 =

∫ T

0

d)
· · ·
∫ T

0

E [|Bu1 | · · · |Bud |]
u1+ε

1 · · ·u1+ε
d

du1 · · · dud

= d!

∫
0<u1<···<ud<T

E [|Bu1
| · · · |Bud |]

u1+ε
1 · · ·u1+ε

d

du1 · · · dud (A.7)

where the last equality follows from the fact that the integrand is a symmetric function.
Then for a centered random Gaussian vector (Z1, . . . , Zd) with covariances Cov(Zi, Zj) = σi,j ,

i, j = 1, . . . , d we have the following estimate that can be found in [20, Theorem 1]

E[|Z1 · · ·Zd|] ≤

∑
π∈Sd

d∏
j=1

σj,π(j)

1/2

where Sd denotes the set of permutations of (1, . . . , d). Applying the above inequality to the
integral in (A.7)

∫
0<u1<···<ud<T

E [|Bu1
| · · · |Bud |]

u1+ε
1 · · ·u1+ε

d

du1 · · · dud ≤
∑
π∈Sd

∫
0<u1<···<ud<T

d∏
j=1

(
uj ∧ uπ(j)

u1+ε
j u1+ε

π(j)

)1/2

du1 · · · dud.

Given a permutation π ∈ Sd we have that, if 0 < u1 < u2 < · · ·ud < T then

d∏
j=1

(
uj ∧ uπ(j)

u1+ε
j u1+ε

π(j)

)1/2

=
u
α1/2
1 · · ·uαd/2d

u1+ε
1 · · ·u1+ε

d

where the αi’s, depend on π and have the property that
∑d
i=1 αi = d and αi ∈ {0, 1, 2} for all

i = 1, . . . , d. Moreover, observe that α1 ≥ 1 independently of π since u1∧uπ(1) = u1 for all π ∈ Sd.
So, if we now integrate iteratively we obtain∫

0<u1<···<ud<T

E [|Bu1
| · · · |Bud |]

u1+ε
1 · · ·u1+ε

d

du1 · · · dud ≤
∑
π∈Sd

1∏d
j=1

(
1
2

∑j
i=1 αi − jε

)T d( 1
2−ε)

if, and only if 1
2

∑j
i=1 αi − jε > 0 for all j = 1, . . . , d which holds by just observing that

1

2

j∑
i=1

αi >
α1

2
≥ d 1

2d
≥ j 1

2d

for every j = 1, . . . , d where we used α1 ≥ 1. So it suffices to take ε ≥ 0 such that ε < 1
2d . �
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A.2. Proof of Theorem 3.1. We now develop the proof of Theorem 3.1 according to the four-
step scheme outlined in Section 3. In order to construct a weak solution of (1.5) in the first

step, let (Ω,F , P̃ ) be some given probability space which carries a Brownian motion B̃, and put

Xx
t := B̃t+x, t ∈ [0, T ]. As we already noted in Remark 2.5, it is well-known, see e.g. [16, Corollary

5.16], that for sublinear coefficients b the Radon-Nikodym derivative dP
dP̃

:= E
(∫ T

0
b(u,Xx

u)dB̃u

)
defines an equivalent probability measure P under which the process

Bt := Xx
t − x−

∫ t

0

b(s,Xx
s )ds, t ∈ [0, T ], (A.8)

is a Brownian motion on (Ω,F , P ). Hence, because of (A.8), the pair (Xx, B) is a weak solution
of (1.5) on (Ω,F , P ). The stochastic basis that we operate on in the following is now given by the
filtered probability space (Ω,F , P, {Ft}t∈[0,T ]), which carries the weak solution (Xx, B) of (1.5),
where {Ft}t∈[0,T ] denotes the filtration generated by Bt, t ∈ [0, T ], augmented by the P -null sets.

Next, we prove that for given t ∈ [0, T ] the sequence of strong solutions {Xn,x
t }n≥1 of the SDE’s

(3.2) with regular coefficients bn from (3.1) converges weakly in L2(Ω;Ft) to E[Xx
t |Ft].

Lemma A.5. Let bn : [0, T ]×R→ R be a sequence of functions approximating b a.e. as in (3.1)
and Xn,x

t the corresponding strong solutions to (3.2), n ≥ 1. Then for every t ∈ [0, T ] and function
ϕ ∈ L2p

w (R) where the space L2p
w (R) is defined as in (4.7) with p being the conjugate exponent of

1 + ε, ε > 0 from Lemma A.1, we have

ϕ(Xn,x
t )

n→∞−−−−→ E[ϕ(Xx
t )|Ft]

weakly in L2(Ω;Ft).

Proof. First of all, we shall see that ϕ(Xn,x
t ), E[ϕ(Xx

t )|Ft] ∈ L2(Ω;Ft), n ≥ 0. Indeed, Girsanov’s
theorem, Remark A.2 and the fact that ϕ ∈ L2p

w (R) imply that for some constant Cε > 0 with
ε > 0 small enough we have

sup
n≥0

E[|ϕ(Xn,x
t )|2] ≤ CεE[|ϕ(x+Bt)|2

1+ε
ε ]

ε
1+ε = Cε

1√
2πt

∫
R
|ϕ(x+ z)|2

1+ε
ε e−

|z|2
2T dz <∞. (A.9)

To show that

E [ϕ(Xn,x
t )Z]

n→∞−−−−→ E[E[ϕ(Xx
t )|Ft]Z]

for any Z ∈ L2(Ω;Ft) it suffices to show

W(Xn,x
t )(f)

n→∞−−−−→W(E[Xx
t |Ft)](f)

for every f ∈ L2([0, T ])
Indeed, by Girsanov’s theorem we can write

E

[(
ϕ(Xn,x

t )− E[ϕ(Xx
t )|Ft]

)
E

(∫ T

0

f(u)dBu

)]
=

=E

[
ϕ(Bxt )

(
E

(∫ T

0

(bn(u,Bxu) + f(u))dBu

)
− E

(∫ T

0

(b(u,Bxu) + f(u))dBu

))]

=E

[
ϕ(Bxt )E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)

×

(
E

(∫ T

0

(bn(u,Bxu) + f(u))dBu

)/
E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)
− 1

)]
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Then, using inequality |ex − 1| ≤ |x|(ex + 1) we have

E

[(
ϕ(Xn,x

t )− E[ϕ(Xx
t )|Ft]

)
E

(∫ T

0

f(u)dBu

)]

≤E

[
|ϕ(Bxt )| |Un| E

(∫ T

0

(bn(u,Bxu) + f(u))dBu

)]

+ E

[
|ϕ(Bxt )| |Un| E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)]
:= In + IIn

where

Un :=

∫ T

0

(bn(u,Bxu)− b(u,Bxu))dBu −
1

2

∫ T

0

[(bn(u,Bxu) + f(u))2 − (b(u,Bxu) + f(u))2]du.

For the term In, Hölder’s inequality with exponents p = 1+ε
ε and q = 1 + ε and then again for

p = q = 2 yields

In ≤ E
[
|ϕ(Bxt )Un|

1+ε
ε

] ε
1+ε

E

E (∫ T

0

(bn(u,Bxu) + f(u))dBu

)1+ε
 1

1+ε

≤ E
[
|ϕ(Bxt )|2

1+ε
ε

] ε
2(1+ε)

E
[
|Un|2

1+ε
ε

] ε
2(1+ε)

E

E (∫ T

0

(bn(u,Bxu) + f(u)) dBu

)1+ε
 1

1+ε

=: I1 · I2
n · I3

n,

where I1, I2
n and I3

n are the respective factors above and ε > 0 is such that I3
n is bounded uniformly

in n ≥ 0 (see Remark A.2). We can then control the first factor I1 due to the fact that ϕ ∈ L2p
w (R)

as it is shown in (A.9).
Finally, for the second factor I2

n define p := 2 1+ε
ε . Then using Minkowski’s inequality,

Burkholder-Davis-Gundy’s inequality and Hölder’s inequality we can write

(I2
n)p =E

[∣∣∣∣∣
∫ T

0

(bn(u,Bxu)− b(u,Bxu))dBu −
1

2

∫ T

0

[(bn(u,Bxu) + f(u))2 − (b(u,Bxu) + f(u))2]du

∣∣∣∣∣
p]

≤ 2p−1E

[∣∣∣∣∣
∫ T

0

(bn(u,Bxu)− b(u,Bxu))dBu

∣∣∣∣∣
p]

+ 2p−2E

[∣∣∣∣∣
∫ T

0

[(bn(u,Bxu) + f(u))2 − (b(u,Bxu) + f(u))2]du

∣∣∣∣∣
p]

. 2p−1E

(∫ T

0

|bn(u,Bxu)− b(u,Bxu)|2 du

)p/2
+ 2p−2T p−1

∫ T

0

E
[∣∣(bn(u,Bxu) + f(u))2 − (b(u,Bxu) + f(u))2

∣∣2p] du
. 2p−1T p/2−1

∫ T

0

E [|bn(u,Bxu)− b(u,Bxu)|p] du

+ 2p−2T p−1

∫ T

0

E
[∣∣(bn(u,Bxu) + f(u))2 − (b(u,Bxu) + f(u))2

∣∣2p] du
and by dominated convergence we obtain I2

n → 0 as n → ∞. Similarly, we obtain the result for
IIn. �
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We now turn to the third step of our scheme to prove Theorem 3.1. The next theorem gives the
L2(Ω;Ft)-convergence of the sequence of strong solutions Xn,x

t to the limit E[Xx
t |Ft] which, in

addition, is Malliavin differentiable. The technique used in this result is the compactness criterion
given in Proposition 2.3 due to [8].

Theorem A.6. Let bn : [0, T ]×R→ R, n ≥ 1, be as in (3.1) and Xn,x
· the corresponding strong

solutions to (3.2). Then, for each t ∈ [0, T ]

Xn,x
t

L2(Ω;Ft)−−−−−−→ E[Xx
t |Ft] (A.10)

as n→∞. Moreover, the right-hand side of (A.10) is Malliavin differentiable.

Proof. The main step is to show relative compactness of {Xn,x
t }n≥1 by applying Proposition 2.3.

Let t ∈ [0, T ], 0 ≤ s ≤ s′ ≤ t and a compact set K ⊂ R be given. Using the explicit represen-
tation introduced in (3.3), Girsanov’s theorem, the mean-value theorem, Hölder’s inequality with
exponent 1+ε for a sufficiently small ε > 0 and Cauchy-Schwarz inequality successively we obtain

E
[
(DsX

n,x
t −Ds′X

n,x
t )2

]
=

=E

exp

{
2

∫ t

s′
b′n(u,Bxu)du

}(
exp

{∫ s′

s

b′n(u,Bxu)du

}
− 1

)2

E

(∫ T

0

bn(u,Bxu)dBu

)
≤E

[
exp

{
2

∫ t

s′
b′n(u,Bxu)du

}(
sup

0≤α≤1
exp

{
α

∫ s′

s

b′n(u,Bxu)du

})2

×

(∫ s′

s

b′n(u,Bxu)du

)2

E

(∫ T

0

bn(u,Bxu)dBu

)]

≤E

[
exp

{
2

1 + ε

ε

∫ t

s′
b′n(u,Bxu)du

}
sup

0≤α≤1
exp

{
2

1 + ε

ε
α

∫ s′

s

b′n(u,Bxu)du

}

×

∣∣∣∣∣
∫ s′

s

b′n(u,Bxu)du

∣∣∣∣∣
2 1+ε

ε
] ε

1+ε

E

E (∫ T

0

bn(u,Bxu)dBu

)1+ε
 1

1+ε

≤E
[
exp

{
4

1 + ε

ε

∫ t

s′
(b̃′n(u,Bxu) + b̂′(u,Bxu))du

}] ε
2(1+ε)

× E

[
sup

0≤α≤1
exp

{
8

1 + ε

ε
α

∫ s′

s

(b̃′n(u,Bxu) + b̂′(u,Bxu))du

}] ε
4(1+ε)

× E

∣∣∣∣∣
∫ s′

s

(b̃′n(u,Bxu) + b̂′(u,Bxu))du

∣∣∣∣∣
8 1+ε

ε


ε

4(1+ε)

E

E (∫ T

0

bn(u,Bxu)dBu

)1+ε
 1

1+ε

=: I1
n · I2

n · I3
n · I4

n,

where I1
n, I2

n, I3
n and I4

n denote the respective factors shown above.
Here, by Remark A.2, ε > 0 is chosen such that

sup
x∈K

sup
n≥0

I4
n <∞.

For I1
n and I2

n we use Cauchy-Schwarz inequality and the fact that b̂′ is bounded and get

I1
n . E

[
exp

{
4

1 + ε

ε

∫ t

s′
b̃′n(u,Bxu)du

}] ε
2(1+ε)

=: II1
n
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and

I2
n . E

[
sup

0≤α≤1
exp

{
8

1 + ε

ε
α

∫ s′

s

b̃′n(u,Bxu)du

}] ε
4(1+ε)

=: II2
n.

For I3
n, Minkowski’s inequality and the boundedness of b̂′ give

I3
n ≤ E

∣∣∣∣∣
∫ s′

s

b̃′n(u,Bxu)du

∣∣∣∣∣
8 1+ε

ε

+

∣∣∣∣∣
∫ s′

s

b̂′(u,Bxu)du

∣∣∣∣∣
8 1+ε

ε


ε

4(1+ε)

. E

∣∣∣∣∣
∫ s′

s

b̃′n(u,Bxu)du

∣∣∣∣∣
8 1+ε

ε


ε

4(1+ε)

+ ‖b̂′‖2∞T |s′ − s|

≤ II3
n + ‖b̂′‖2∞T |s′ − s|.

Now we want to get rid of the derivatives b̃′n in II1
n, II

2
n and II3

n. In order to do so, we use
integration with respect to the local time of the Brownian motion, see Theorem 2.9 in the Section
2 or e.g. [12] for more information about local-time integration. We obtain

E
[
(DsX

n,x
t −Ds′X

n,x
t )2

]
.E

[
exp

{
−4

1 + ε

ε

∫ t

s′

∫
R
b̃n(u, y)LB

x

(du, dy)

}] ε
2(1+ε)

× E

[
sup

0≤α≤1
exp

{
−8

1 + ε

ε
α

∫ s′

s

∫
R
b̃n(u, x)LB

x

(du, dy)

}] ε
4(1+ε)

×

(
E

∣∣∣∣∣
∫ s′

s

∫
R
b̃n(u, x)LB

x

(du, dy)

∣∣∣∣∣
8 1+ε

ε


ε

4(1+ε)

+ ‖b̂′‖|s′ − s|

)
.

Observe that factors II1
n and II2

n can be controlled uniformly in n ≥ 1 and x ∈ K by virtue
of Lemma A.3. Now, denote pε := 4 1+ε

ε . Then for factor II3
n we use representation (2.11) from

Theorem 2.9 in connection with (2.10) in Section 2 and apply Minkowski’s inequality, Burkholder-
Davis-Gundy’s inequality and Hölder’s inequality with exponent (ε′ + 2)/ε′ for a suitable ε′ > 0
in order to obtain

II3
n ≤E

∣∣∣∣∣
∫ s′

s

b̃n(u,Bxu)dBu −
∫ T−s

T−s′
b̃n(T − u, B̂xu)dWu +

∫ T−s

T−s′
b̃n(T − u, B̂xu)

B̂u
T − u

du

∣∣∣∣∣
2pε
1/pε

.E

[(∫ s′

s

|b̃n(u,Bxu)|2du

)pε]1/pε

+ E

[(∫ T−s

T−s′
|b̃n(T − u, B̂xu)|2du

)pε]1/pε

+ E

∣∣∣∣∣
∫ T−s

T−s′
b̃n(T − u, B̂xu)

B̂u
T − u

du

∣∣∣∣∣
2pε
1/pε

. |s′ − s|ε
′/(ε′+2)E

(∫ s′

s

|b̃n(u,Bxu)|ε
′+2du

) 2pε
ε′+2

1/pε

+ |s′ − s|ε
′/(ε′+2)E

(∫ T−s

T−s′
|b̃n(T − u, B̂xu)|ε

′+2du

) 2pε
ε′+2

1/pε

+ |s′ − s|2ε
′/(ε′+2)E

∣∣∣∣∣
∫ T−s

T−s′

∣∣∣∣b̃n(T − u, B̂xu)
B̂u
T − u

∣∣∣∣(ε′+2)/2

du

∣∣∣∣∣
4pε
ε′+2

1/pε

.
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The last expectation is bounded by taking ε′ < 2
8pε−1 and applying Lemma A.4.

Altogether, we can find a constant C > 0 such that

sup
x∈K

sup
n≥1

E
[
(Ds′X

n,x
t −DsX

n,x
t )2

]
≤ C|s′ − s|ε

′/(ε′+2) (A.11)

for 0 ≤ s′ ≤ s ≤ t where 0 < ε′/(ε′ + 2) < 1.
Similarly, one also obtains

sup
x∈K

sup
0≤s≤t

sup
n≥1

E
[
(DsX

n,x
t )2

]
≤ C (A.12)

for a constant C > 0.
Then (A.9) with ϕ = id, (A.11), (A.12) together with Proposition 2.3 imply that the set

{Xn,x
t }n≥1 is relatively compact in L2(Ω;Ft). Since the sequence of solutions Xn,x

t also converges
weakly to E[Xx

t |Ft] due to Lemma A.5 with ϕ = id, by uniqueness of the limit we have that

Xnk,x
t

L2(Ω;Ft)−−−−−−→ E[Xx
t |Ft]

for a subsequence nk, k ≥ 0.
In fact, one observes that the L2(Ω;Ft)-convergence holds for the whole sequence. Indeed,

assume by contradiction, that there exists a subsequence nj , j ≥ 0, such that there is an ε > 0
with E[|Xnj ,x

t −Xx
t |2] > ε for all j ≥ 0. Then {bnj}j≥0 is a sequence of approximating coefficients

as required in (3.1). Thus, by the previous results there exists a subsequence njm , m ≥ 0, such
that Xnjm ,x → Xx in L2(Ω;Ft), which gives rise to a contradiction.

Moreover, since the sequence of Malliavin derivatives {DsX
n,x
t }n≥1 is bounded uniformly in n

in the L2([0, T ] × Ω)-norm because of (A.12), we also have that the limit E[Xx
t |Ft] is Malliavin

differentiable, see for instance [28, Lemma 1.2.3]. �

Remark A.7. Note that we have proved the estimates (A.11) and (A.12) uniformly in x ∈ K for
a compact set K even though this is not needed to apply Proposition 2.3. We will, however, use
this uniform bounds later on in the proofs of Lemma A.8 and Theorem 3.4.

We are now ready to complete the proof of Theorem 3.1 by use of the previous steps.

Proof of Theorem 3.1. It remains to prove that Xx
t is Ft-measurable for every t ∈ [0, T ] and by

Remark 1.3 it then follows that there exists a strong solution in the usual sense that is Malliavin
differentiable. Indeed, let ϕ be a continuous bounded function, then by Theorem A.6 we have, for
a subsequence nk, k ≥ 0, that

ϕ(Xnk,x
t )→ ϕ(E[Xx

t |Ft]), P − a.s.

as k →∞.
On the other side, by Lemma A.5 we also have

ϕ(Xn,x
t )→ E [ϕ(Xx

t )|Ft]

weakly in L2(Ω;Ft). By the uniqueness of the limit we immediately have

ϕ (E[Xx
t |Ft]) = E [ϕ(Xx

t )|Ft] , P − a.s.

for all continuous, bounded functions ϕ, which implies thatXx
t is Ft-measurable for every t ∈ [0, T ].

To show uniqueness, assume that we have two strong solutions Xx and Y x to the SDE (1.5).
Then using the Cameron-Martin formula shows that

W(Xx
t )(h) = E[Xx

t (h)],

for h ∈ L2([0, T ]) where we recall that W(Xx
t )(h) denotes the Wiener transform, and the process

Xx
t (h), 0 ≤ t ≤ T satisfies the SDE

dXx
t (h) = (b(t,Xx

t (h)) + h(t))dt+ dB̂t, X
x
0 (h) = x (A.13)
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for a Brownian motion B̂t, 0 ≤ t ≤ T. In the same way, the process Y xt (h), 0 ≤ t ≤ T solves
(A.13). On the other hand, it follows from the linear growth of the drift coefficient b that Xx

t (h)
and Y xt (h), 0 ≤ t ≤ T , are unique in law (see e.g. Proposition 3.10 in [16]). Hence

W(Xx
t )(h) =W(Y xt )(h)

for all t, h. Thus Xx and Y x are indistinguishable. �

A.3. Proof of Proposition 3.2: By equation (3.3) and formula (2.11), we can write for regular
coefficients bn

DsX
n,x
t = exp

{
−
∫ t

s

∫
R
bn(u, y)LX

n,x

(du, dy)

}
.

Then, since Xn,x
t , n ≥ 0 is relatively compact in L2(Ω;Ft) and ‖DsX

n,x
t ‖L2([0,T ]×Ω) is bounded

uniformly in n ≥ 0 due to the proof of Theorem A.6 we know that the sequence DsX
n,x
t , n ≥ 0

converges weakly to DsX
x
t in L2([0, T ] × Ω), see [28, Lemma 1.2.3]. Therefore, it is enough to

check that our candidate is the weak limit. So we must prove that

〈
W
(

exp
{
−
∫ t
·
∫
R bn(u, y)LX

n,x

(du, dy)
}
− exp

{
−
∫ t
·
∫
R b(u, y)LX

x

(du, dy)
})

(f), g

〉
L2([0,T ])

→ 0

as n → ∞ for every f ∈ L2([0, T ]) and g ∈ C∞0 ([0, T ]). It suffices to show that the Wiener
transform goes to zero.

Then, as we did for Lemma A.5, using Girsanov’s theorem we have∣∣∣∣∣E [E (∫ T0 f(u)dBu

)(
exp

{
−
∫ t
s

∫
R bn(u, y)LX

n,x

(du, dy)
}
− exp

{
−
∫ t
s

∫
R b(u, y)LX

x

(du, dy)
})] ∣∣∣∣∣

=

∣∣∣∣∣E
[

exp

{
−
∫ t

s

∫
R
bn(u, y)LB

x

(du, dy)

}
E

(∫ T

0

(bn(u,Bxu) + f(u))dBu

)

− exp

{
−
∫ t

s

∫
R
b(u, y)LB

x

(du, dy)

}
E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)]∣∣∣∣∣
≤

∣∣∣∣∣E
[(

exp

{
−
∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}
− exp

{
−
∫ t

s

∫
R
b̃(u, y)LB

x

(du, dy)

})

× exp

{∫ t

s

b̂′(u,Bxu)du

}
E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)]∣∣∣∣∣
+

∣∣∣∣∣E
[(
E

(∫ T

0

(bn(u,Bxu) + f(u))dBu

)
− E

(∫ T

0

(b(u,Bxu) + f(u))dBu

))

× exp

{
−
∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}
exp

{∫ t

s

b̂′(u,Bxu)du

}]∣∣∣∣∣
=: In + IIn.

For term In we define p := 1+ε
ε for a suitable ε > 0 and then apply Hölder’s inequality with

exponent 1 + ε on the stochastic exponential. Then we apply Cauchy-Schwarz inequality and

bound the factor with ‖b̂′‖∞, and finally we use inequality |ex − 1| ≤ |x|(ex + 1). As a result we
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obtain

In =

∣∣∣∣∣E
[

exp

{
−
∫ t

s

∫
R
b̃(u, y)LB

x

(du, dy)

}(
exp

{
−
∫ t

s

∫
R

(b̃n(u, y)− b̃(u, y))LB
x

(du, dy)

}
− 1

)

× exp

{∫ t

s

b̂′(u,Bxu)du

}
E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)]∣∣∣∣∣
.E

[
exp

{
−2p

∫ t

s

∫
R
b̃(u, y)LB

x

(du, dy)

}

×
∣∣∣∣ (exp

{
−
∫ t

s

∫
R

(b̃n(u, y)− b̃(u, y))LB
x

(du, dy)

}
− 1

)2p ∣∣∣∣
]1/(2p)

× E
[
E

(∫ T

0

(b(u,Bxu) + f(u))dBu

)1+ε ]1/(1+ε)

.E

[ ∣∣∣∣∫ t

s

∫
R

(b̃n(u, y)− b̃(u, y))LB
x

(du, dy)

∣∣∣∣2p( exp

{
−
∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}

+ exp

{
−
∫ t

s

∫
R
b̃(u, y)LB

x

(du, dy)

})2p
]1/(2p)

where in the last inequality we choose ε > 0 small enough so that the stochastic exponential is
bounded due to Lemma A.1. Then Minkowski’s inequality gives

(In)2p .E

[
|Vn|2p exp

{
−2p

∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}]
+ E

[
|Vn|2p exp

{
−2p

∫ t

s

∫
R
b̃(u, y)LB

x

(du, dy)

}] (A.14)

where

Vn :=

∫ t

s

∫
R
(b̃n(u, y)− b̃(u, y))LB

x

(du, dy).

Then Cauchy-Schwarz inequality and Lemma A.3 give

E

[
|Vn|2p exp

{
− 2p

∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}]
≤ (A.15)

≤ E
[
|Vn|4p

]1/2
E

[
exp

{
−4p

∫ t

s

∫
R
b̃n(u, y)LB

x

(du, dy)

}]1/2

. E
[
|Vn|4p

]1/2
.

Finally, using representation (2.10) in the Section 2, Minkowski’s inequality, Burkholder-Davis-
Gundy’s inequality in the first two terms and Hölder’s inequality in the last term we obtain
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E
[
|Vn|p

]
= E

[∣∣∣∣ ∫ t

s

(b̃n(u,Bxu)− b̃(u,Bxu))dBu +

∫ T−s

T−t
(b̃n(T − u, B̂xu)− b̃(T − u, B̂xu))dWu

−
∫ T−s

T−t
(b̃n(T − u, B̂xu)− b̃(T − u, B̂xu))

B̂u
T − u

du

∣∣∣∣p
]

≤ E

[ ∣∣∣∣∫ t

s

(b̃n(u,Bxu)− b̃(u,Bxu))dBu

∣∣∣∣p + E

[ ∣∣∣∣∣
∫ T−s

T−t
(b̃n(T − u, B̂xu)− b̃(T − u, B̂xu))dWu

∣∣∣∣∣
p ]

+ E

[ ∣∣∣∣∣
∫ T−s

T−t
(b̃n(T − u, B̂xu)− b̃(T − u, B̂xu))

B̂u
T − u

du

∣∣∣∣∣
p ]

≤ E

[ [∫ t

s

|b̃n(u,Bxu)− b̃(u,Bxu)|2du
]p/2

+ E

[∫ T−s

T−t
|b̃n(T − u, B̂xu)− b̃(T − u, B̂xu)|2du

]p/2 ]

+ E

[ ∣∣∣∣∣
∫ T−s

T−t
(b̃n(T − u, B̂xu)− b̃(T − u, B̂xu))

B̂u
T − u

du

∣∣∣∣∣
p ]
.

By dominated convergence, all terms converge to zero as n→∞. In order to justify that the third
term also converges to 0 one needs to use the estimate in Lemma A.4. The second term in (A.14)
is estimated in the same way. Similarly, one can also bound IIn.

Lemma A.8. Let bn : [0, T ] × R → R, n ≥ 0 be as in (3.1) and Xn,x
t the corresponding strong

solutions with drift coefficients bn. Then, for any compact subset K ⊂ R and p ≥ 1

sup
n≥1

sup
x∈K

sup
t∈[0,T ]

E

[(
∂

∂x
Xn,x
t

)p]
≤ CK,p

for a constant CK,p > 0 depending on K and p. Here, ∂
∂xX

n,x
t is the first variation process of

Xn,x
t , n ≥ 1 (see Proposition 2.4).

Proof. The proof of this result relies on the proof of (A.12) in Theorem A.6 by observing that
∂
∂xX

n,x
t = D0X

n,x
t by Proposition 2.4. Then following exactly the same steps as in Theorem A.6

we see that all computations can be done for an arbitrary power p ≥ 1. Finally, from the term II1
n

in the proof of Theorem A.6 one can see that supn≥1 supx∈K supt∈[0,T ]E
[(

∂
∂xX

n,x
t

)p]
<∞. �

A.4. Proof of Proposition 3.3: First, start observing that, for any given p ≥ 1, we have

E [|Xn,x
t |p] . |x|p +

∫ t

0

E
[
|b̃n(u,Xn,x

u )|p
]
du+

∫ t

0

E
[
|b̂(u,Xn,x

u )|p
]
du+ E [|Bt|p]

. |x|p + |t|p + C

∫ t

0

E [|Xn,x
u |p] du

due to the uniform boundedness of b̃n, the continuity of b̂ and Hölder continuity of the Brownian
motion. Then, Grönwall’s inequality gives

sup
n≥1

E [|Xn,x
t |p] ≤ C. (A.16)

Now, assume that 0 ≤ s < t ≤ T . Then

Xn,x
t −Xn,y

s = x− y +

∫ t

0

bn(u,Xn,x
u )du−

∫ s

0

bn(u,Xn,y
u )du+Bt −Bs

= x− y +

∫ t

s

bn(u,Xn,x
u )du+

∫ s

0

(bn(u,Xn,x
u )− bn(u,Xn,y

u ))du+Bt −Bs.
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Now since bn has linear growth together with (A.16), the uniform boundedness of b̃n and Hölder
continuity of the Brownian motion yield

E
[
|Xn,x

t −Xn,y
s |2

]
. |x− y|2 + |t− s|+ E

[∣∣∣∣∫ s

0

(bn(u,Xn,x
u )− bn(u,Xn,y

u ))du

∣∣∣∣2
]
.

Then we use the fact that Xn,s,·
t is a stochastic flow of diffeomorphisms (see e.g. [18]), the mean

value theorem and Lemma A.8 in order to obtain

E

[∣∣∣∣∫ s

0

(bn(u,Xn,x
u )− bn(u,Xn,y

u ))du

∣∣∣∣2
]

= |x− y|2E

[∣∣∣∣∫ s

0

∫ 1

0

b′n(u,Xn,x+τ(y−x)
u )

∂

∂x
Xn,x+τ(y−x)
u )dτdu

∣∣∣∣2
]

≤ C|x− y|2
∫ 1

0

E

[∣∣∣∣∫ s

0

b′n(u,Xn,x+τ(y−x)
u )

∂

∂x
Xn,x+τ(y−x)
u )du

∣∣∣∣2
]
dτ

= C|x− y|2
∫ 1

0

E

[∣∣∣∣ ∂∂xXn,x+τ(y−x)
s − (1− τ)

∣∣∣∣2
]
dτ

≤ C|x− y|2 sup
s∈[0,T ]
x∈K

E

[∣∣∣∣ ∂∂xXn,x
s

∣∣∣∣2
]

≤ C|x− y|2.
Altogether

E
[
|Xn,x

t −Xn,y
s |

2
]
≤ C

(
|t− s|+ |x− y|2

)
for a finite constant C > 0 independent of n.

To conclude, we use Fatou’s lemma applied to a subsequence and the fact that Xn,x
t → Xx

t in
L2(Ω) as n→∞ due to Theorem A.6.

A.5. Proof of Theorem 3.4. First of all, observe that for any smooth function with compact
support ϕ ∈ C∞0 (U,R) and t ∈ [0, T ], the sequence of random variables

〈Xn
t , ϕ〉 :=

∫
U

Xn,x
t ϕ(x)dx

converges weakly in L2(Ω) to 〈Xt, ϕ〉 by using the Wiener transform following the same steps as
in Lemma A.5.

Then for all measurable sets A ∈ F , ϕ ∈ C∞0 (R) and using Cauchy-Schwarz inequality we have

E[1A〈Xnk,x
t −Xx

t , ϕ
′〉] ≤ ‖ϕ′‖L2(U)|U |1/2

(
sup

x∈supp(U)

E
[
1A(Xnk,x

t −Xx
t )2
])1/2

<∞

where the last quantity is finite by Proposition 3.3. Then by Theorem A.6 we see that

lim
k→∞

E[1A〈Xnk,x
t −Xx

t , ϕ
′〉] = 0.

In addition, by virtue of Lemma A.8 we have that

sup
n≥0

E‖Xn,x
t ‖2W 1,2(U) <∞,

that is x 7→ Xn,x
t is bounded in L2(Ω,W 1,2(U)). As a result, the sequence Xn,x

t is weakly relatively
compact in L2(Ω,W 1,2(U)), see e.g. [19, Theorem 10.44], and therefore there exists a subsequence
nk, k ≥ 0 such that Xnk,x

t converges weakly to some element Yt ∈ L2(Ω,W 1,2(U)) as k →∞. Let
us denote by Y ′t the weak derivative of Yt.

Then

E[1A〈Xx
t , ϕ

′〉] = lim
k→∞

E[1A〈Xnk,x
t , ϕ′〉] = − lim

k→∞
E[1A〈

∂

∂x
Xnk,x
t , ϕ〉] = −E[1A〈Y ′t , ϕ〉].
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So

〈Xt, ϕ
′〉 = −〈Y ′t , ϕ〉, P − a.s. (A.17)

Finally, we need to show that there exists a measurable set Ω0 ⊂ Ω with full measure such that
X ·t has a weak derivative on this subset. To this end choose a sequence {ϕn} in C∞(R) dense in
W 1,2(U). Choose a measurable subset Ωn of Ω with full measure such that (A.17) holds on Ωn
with ϕ replaced by ϕn. Then Ω0 := ∩n≥1Ωn satisfies the desired property.

Corollary A.9. Let b : [0, T ] × R → R as in (1.6) and Xx
t the corresponding strong solution of

(1.5). Then, for any compact subset K ⊂ R and p ≥ 1

sup
x∈K

sup
t∈[0,T ]

E

[(
∂

∂x
Xx
t

)p]
≤ CK,p

for a constant CK,p > 0 depending on K and p. Here, ∂
∂xX

x
t is the first variation process of Xx

t ,
(see Proposition 3.5).

Proof. This is a direct consequence of Lemma A.8 in connection with Fatou’s lemma. �

A.6. Proof of Proposition 3.5: By Theorem 3.4 we know that the sequence {Xn,x
t }n≥0 con-

verges weakly to Xx
t in L2(Ω,W 1,2(U)). Therefore, it is enough to check that our candidate is the

limit of ∂
∂xX

n,x
t in the weak topology of L2(U × Ω) for any open bounded U ⊂ R, i.e.∫

U

W
(

exp

{
−
∫ t

0

∫
R
bn(u, y)LX

n,x

(du, dy)

}
− exp

{
−
∫ t

0

∫
R
b(u, y)LX

x

(du, dy)

})
(f)g(x)dx

converges to 0 as n → ∞ for every f ∈ L2([0, T ]) and g ∈ C∞0 (U). This can be shown following
exactly the same steps as in Proposition 3.2 by integrating In and IIn against g(x) over x ∈ U .
The only difference here is that we need all bounds to be uniformly in x ∈ U . At the end, one
needs to show that

sup
n≥0

sup
x∈supp(U)

E
[
|Vn|2pe−2p

∫ t
0

∫
R b̃n(u,y)LB

x
(du,dy)

]
<∞

where

Vn :=

∫ t

0

∫
R

(b̃n(u, y)− b̃(u, y))LB
x

(du, dy)

which holds by Lemma A.3 and the fact that b̃n, n ≥ 0, is uniformly bounded. For IIn one can
follow similar steps and use Remark A.2.
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