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Abstract
In this paper we generalize the approach of Hinz and Wilhelm [2006]

replacing in the dynamics of the asset prices the Brownian motion by
a more general Lévy process, also taking into account the occurrence of
spikes. In particular, we reduce the modeling of an electricity futures
market to the modeling of a Lévy bond market with an additional risky
asset. This allows to employ well established techniques from interest rate
term structure modeling. We then examine Markovianity of the induced
electricity spot price, an important property when it comes to option
pricing. We show that the considered method combined with the Fourier
transform techniques provides semi analytic pricing formulas for European
electricity options. Finally we consider the pricing of path dependent
derivatives such as electricity swing options.

Key words: Electricity futures market, interest rate term structure modeling,
Lévy processes, Fourier transform techniques, electricity swing options.

1 Introduction
In the stochastic modeling of electricity markets, there are two main approaches
in the literature. The first one starts with a stochastic model for the spot price,
and from this derives the futures price dynamics by using arbitrage pricing
theory. The second approach models directly the price dynamics of the complete
curves of forward and futures contracts traded in electricity markets. We refer
to Benth et al. [2008] and references therein for an overview of literature on
electricity markets.

Spot price models have two major disadvantages that result from the non-
storability of electricity. Since spot electricity is not a traded asset spot models
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induce highly incomplete markets. The usual buy-and-hold relationship be-
tween futures and their underlying spots does not hold anymore, and one has to
identify the market price of risk, or equivalently the pricing measure, to deter-
mine futures prices (or prices of any other derivatives). However, to calibrate
the pricing measure on market data seems to be a very challenging task on
electricity markets. Further, the flexibility of spot models is rarely sufficient
to generate a family of futures curves that is consistent with observed market
curves.The second problem is to define the market information filtration, which
is an essential ingredient in derivative pricing. The usual approach is here to
assume that the information filtration is generated by the underlying electricity
spot price. However, the assumption that all information available to the mar-
ket is incorporated in the past evolution of the underlying might be acceptable
for storable assets on classical financial markets, but for non-storable underly-
ings (like electricity or temperature) this supposition is fundamentally wrong.
In contrast to storable assets, one cannot profit from forward looking informa-
tion about non-storable assets by taking long or short positions today. Thus,
forward looking information available to the market is not reflected in the past
evolution of the non-storable underlying and is therefore not included in the
filtration generated by the underlying.

A natural ansatz to cope with this information misspecification, which is car-
ried out in Benth and Meyer-Brandis [2009], could be to enlarge the filtration
by forward looking information. It seems, however, rather difficult to enlarge
the filtration explicitly by all forward looking information available to the mar-
ket. Further, from a mathematical point of view, one encounters the theory of
enlargement of filtrations which restricts the type of included forward looking
information by its analytic tractability.

In the light of the above mentioned problems it seems to be more promising
to choose the second model approach, which is to model the complete curves
of electricity futures and forwards. In particular, because futures are traded
contracts it is acceptable to assume that the complete futures curve, and thus
the filtration generated by the underlyings in this situation (futures), integrates
all forward looking information about electricity available to the market. The
electricity spot price is then read off in the short end of the curve and the
evolution of the spot price will now also be governed by the forward looking
information contained in futures prices.

In analogy to the HJM approach for forward interest rates, several authors
have proposed a HJM-type model for electricity futures curves (see Benth and
Koekebakker [2008] and Benth et al. [2008]). It seems though problematic to di-
rectly apply model approaches from interest theory to electricity futures model-
ing, which are two qualitatively very different phenomena. Also, a general HJM
ansatz for electricity futures generically implies very complex non-Markovian
dynamics for the spot price. This is in particular a problem when it comes
to pricing of path dependent electricity products like, for example, swing op-
tions (see e.g., Hambly et al. [2009], Keppo [2004] and Wallin [2008]). Here, the
Markovian property of the spot price is essential for the dynamic programming
principle needed to find the solution of the constrained stochastic optimal con-
trol problem of maximizing the expected profit of the path dependent electricity
product (see e.g. Wallin [2008]).

In Hinz andWilhelm [2006] the authors respond to this challenge in that they
introduce an approach which converts a given electricity market into a a money
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market. By a change of numeraire they establish a one-to-one correspondence
between electricity markets and markets consisting of bonds and a risky asset.
This then allows for the use of well-established theory and models from interest
rate markets in pricing of electricity derivatives.

The aim of this paper is to generalize the approach of Hinz and Wilhelm
[2006] replacing in the dynamics of the asset prices the Brownian motion by
a more general Lévy process, also taking into account the occurrence of spikes
(which are a very prominent feature of electricity prices). Advanced interest
rate theory combined with change of numéraire techniques is used to develop a
model setting for electricity futures curves. In the second part of the paper we
then consider the pricing of electricity derivatives in our setting. We first pro-
vide semi-analytic pricing formulas for European electricity options employing
Fourier transform techniques before we deal with the valuation of path depen-
dent electricity swing options. For the pricing of the latter, one valuable feature
of our model approach is that the induced dynamics of the spot price becomes
multi-dimensional Markovian (see Section 4). We specify the stochastic optimal
control problem associated to the pricing of electricity swing options as previ-
ously studied in Lund and Ollmar [2003], Keppo [2004], Hambly et al. [2009],
and Wallin [2008]. In particular, we derive in our setting the Hamilton-Jacobi-
Bellman equation associated to the pricing of swing options.

The remaining parts of the paper are organized as follows. In the next section
we develop the correspondence between electricity and fixed-income markets.
Then, in Section 3 we introduce an electricity market model derived from a
Lévy term structure model for fixed income markets. As a special example we
show that exponential Ornstein-Uhlenbeck processes, which is a commonly used
model for spot prices, can be derived as spot price dynamics in our framework.
Thereafter, in Section 4 we examine the Markov property of the spot price
process in our framework. Finally, we apply the results of Sections 3 and 4 to
valuation of electricity derivatives in Section 5.

2 Connection between electricity market and money
market

Let F (t, τ), 0 ≤ t ≤ τ , be the futures price at time t of electricity and T be a
finite time horizon, τ ≤ T . Denote the set of chronological time pairs by

D := {(t, τ) : 0 ≤ t ≤ τ ≤ T}.

We model the futures market starting by the following axioms:
C1: For every τ ∈ [0, T ] the futures price evolution (F (t, τ))(t,τ)∈D is a positive-
valued adapted stochastic process realized on a complete filtered probability
space (Ω,F,P, (Ft)t∈[0,T ]).
C2: There exists a martingale measure QF equivalent to P such that for all
τ ∈ [0, T ] the futures price process (F (t, τ))(t,τ)∈D is a QF -martingale.
C3: At t = 0 futures prices start at deterministic positive values F (0, τ),
τ ∈ [0, T ].
C4: Terminal prices form a spot price process St := F (t, t), t ∈ [0, T ].
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Following the approach of Hinz and Wilhelm [2006] we now convert an elec-
tricity market into a money market consisting of zero bonds (P (t, τ))0≤t≤τ
equipped with an additional risky asset (Nt)t∈[0,T ] by using the following trans-
formation:

P (t, τ) := F (t, τ)
St

, (1)

Nt := 1
St
. (2)

We have that the money market defined by the currency change (1)–(2) satisfies
the following axioms:
M1: (Nt)t∈[0,T ] and (P (t, τ))(t,τ)∈D are positive, adapted stochastic processes
defined on (Ω,F,P, (Ft)t∈[0,T ]).
M2: There exists a positive-valued, adapted numéraire process (Ct)t∈[0,T ] and
there exists a martingale measure QM equivalent to P, such that for all τ ∈ [0, T ]
the discounted price processes P̂ (t, τ) := P (t,τ)

Ct
, (t, τ) ∈ D, and N̂t := Nt

Ct
,

0 ≤ t ≤ T , are QM -martingales.
M3: Prices start at deterministic values N0 and (P (0, τ))τ∈[0,T ].
M4: Bond prices finish at one, i.e. P (t, t) = 1, for every t ∈ [0, T ].

We now need a slight generalization of Theorem 1 in Hinz and Wilhelm
[2006].

Theorem 2.1. i) Suppose that the commodity market (F (t, τ))(t,τ)∈D fulfills
C1 to C4 with an initial futures curve (F (0, τ))τ∈[0,T ] and a martingale measure
QF . Then the transformation (1)– (2) provides a money market satisfying M1
to M4 with the deterministic initial values

P (0, τ) := F (0, τ)
S0

, ∀ τ ∈ [0, T ], and N0 := 1
S0
,

where the numéraire process and the martingale measure are given by

Ct = Nt, t ∈ [0, T ], and QM = QF . (3)

ii) Suppose that the money market (P (t, τ))(t,τ)∈D, (Nt)t∈[0,T ] fulfills M1 to M4
with initial values (P (0, τ))τ∈[0,T ], N0, a discounting process (Ct)t∈[0,T ] and a
martingale measure QM . Then the transformation

F (t, τ) := P (t, τ)
Nt

, (t, τ) ∈ D, (4)

gives an electricity market with the deterministic initial futures curve F (0, τ) :=
P (0,τ)
N0

, for all τ ∈ [0, T ], and the martingale measure

dQF = NT
CT

C0

N0
dQM . (5)

Note that in Theorem 1 of Hinz and Wilhelm [2006] all price processes were
assumed continuous. In our proof we will only use the integrability properties
of the processes involved.
Proof.
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i) It is easy to see that the properties M1– M4 are obvious consequences of
C1– C4 due to (1) and (2), if the discounting process and the martingale
measure are given by (3).

ii) Define the futures price process F (t, τ) as in (4). The process F (t, τ) is
then positive and adapted by Assumption M1. Consider the equivalent
probability measure QF given by (5). F (t, τ) is integrable w.r.t. QF , since

EQF [F (t, τ)] = EQM
[
P (t, τ)
Nt

dQF

dQM

∣∣∣
Ft

]
= C0

N0
EQM

[
P (t, τ)
Nt

Nt
Ct

]
= C0

N0
EQM

[
P (t, τ)
Ct

]
<∞

by Assumption M2. Furthermore, M2 yields

EQF [F (t, τ)|Fs] =
EQM [F (t, τ)NtCt |Fs]

Ns
Cs

=
EQM [P (t,τ)

Ct
|Fs]

Ns
Cs

= P (s, τ)
Ns

= F (s, τ), ∀ 0 ≤ s ≤ t ≤ τ.

Hence, (F (t, τ))0≤t≤τ is a QF -martingale.

2

In the following sections we apply this approach and study electricity markets
derived from term structure models driven by general Lévy processes, using the
HJM approach.

3 Money market construction
We follow the HJM approach and specify the term structure by modeling the
(instantaneous) forward rate f(t, τ), (t, τ) ∈ D. Let P (t, τ), (t, τ) ∈ D, be the
market price at moment t of a bond paying 1 at the maturity time τ , τ ≤ T .
Given the forward rate curve f(t, τ) the bond prices are defined by

P (t, τ) = exp{−
∫ τ

t

f(t, s)ds}, (6)

while the instantaneous short rate r at time t is given by

r(t) := f(t, t). (7)

A general introduction to fixed-income markets is given in Björk [1998].
Let L = (L1, . . . , Ln) be an n-dimensional Lévy process with independent

components, defined on a probability space (Ω,F,QM ) endowed with the com-
pleted canonical filtration (Ft)t∈[0,T ] associated with L. We denote by (bi, ci, νi)
the characteristic triplet of each component Li, i = 1, . . . , n.

We assume that
A1: we are given an R-valued and Rn-valued stochastic process α(t, τ) and
η(t, τ) = (η1(t, τ), . . . , ηn(t, τ)), (t, τ) ∈ D, respectively, such that α(t, τ) and
η(t, τ) are continuous and adapted.
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A2:
∫ T

0
∫ T

0 E|α(s, u)|dsdu <∞,
∫ T

0
∫ T

0 E‖η(s, u)‖2dsdu <∞.
A3: The initial forward curve is given by a deterministic and continuously
differentiable function τ → f(0, τ) on the interval [0, T ].

For the forward rate we consider a generalized HJM model, i.e we assume
that the forward rate process follows the dynamics

f(t, τ) = f(0, τ) +
∫ t

0
α(s, τ)ds+

n∑
i=1

∫ t

0
ηi(s, τ)dLis, t ≤ τ. (8)

In terms of the short rate we can rewrite (8) and (7) as

r(t) = f(0, t) +
∫ t

0
α(s, t)ds+

n∑
i=1

∫ t

0
ηi(s, t)dLis, t ≤ T. (9)

Lévy term structure models of type (8)–(9) are frequently considered in the
literature (see e.g. Eberlein and Raible [1999], Eberlein and Özkan [2003], Fil-
ipović and S. [2008], or Jakubowski and Zabczyk [2007]).

Putting (6) and (9) together and assuming that

α(t, τ) = η(t, τ) = 0 a.s. for t > τ, (10)

so that the forward rate (8) is defined for all t, τ ∈ [0, T ], we can derive the
following representation for the bond price given in Eberlein and Özkan [2003]:

P (t, τ) = P (0, τ) exp
{∫ t

0
r(u)du

−
∫ t

0

∫ τ

0
α(s, u)duds−

n∑
i=1

∫ t

0

∫ τ

0
ηi(s, u)dudLis

}
. (11)

We now consider the bank account process as a discounting factor, i.e.

Ct = exp{
∫ t

0
r(s)ds}. (12)

In order to provide a condition which ensures that QM is a local martingale
measure for

P̂ (t, τ) := P (t, τ)
Ct

, t ∈ [0, τ ], (13)

we assume that there exist ai < 0 and di > 1 such that the Lévy measures νi of
Li satisfy ∫

{|x|>1}
euxνi(dx) <∞, u ∈ [ai, di], i = 1, . . . , n, (14)

(see Eberlein and Raible [1999] or Filipović and S. [2008]). Condition (14)
ensures the existence of the cumulant generating function

Θi(u) := logE[exp(uLi1)] (15)
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at least on the set {u ∈ C| <u ∈ [ai, di]}, where <u denotes the real part
of u ∈ C, i = 1, . . . , n. By Lemma 26.4 in Sato [1999] Θi is continuously
differentiable and has the representation:

Θi(u) = biu+ ci
2 u

2 +
∫
R
(eux − 1− ux)νi(dx), i = 1, . . . , n. (16)

As a consequence, the Lévy processes Li, i = 1, . . . , n, have finite moments
of arbitrary order. Provided

−
∫ τ

0
ηi(s, u)du ∈ (ai, di) for i = 1, . . . , n,

for any τ ≤ T , the HJM condition on the drift

α(t, x) =
n∑
i=1

∂

∂x
Θi
(
−
∫ x

0
ηi(t, u)du

)
a.s. (17)

implies that QM is a local martingale measure. The drift condition (17) is
derived in Eberlein and Özkan [2003] and Eberlein and Raible [1999], for an
analogous drift condition in the infinite dimensional Lévy setting see Jakubowski
and Zabczyk [2007] and Filipović and S. [2008].

Denoting

σi(t, τ) := −
∫ τ

0
ηi(t, u)du, i = 1, . . . , n, (18)

we can rewrite the HJM drift condition (17) as∫ τ

0
α(s, u)du =

n∑
i=1

∫ τ

0

∂

∂u
Θi(σi(s, u))du

=
n∑
i=1

Θi(σi(s, τ)) a.s. (19)

Substituting (19) into (11), we get the same representation for P (t, τ) as in Eber-
lein and Raible [1999]

P (t, τ) = P (0, τ) exp
{∫ t

0
r(u)du−

n∑
i=1

∫ t

0
Θi(σi(s, τ))ds

+
n∑
i=1

∫ t

0
σi(s, τ)dLis

}
. (20)

To complete the modeling of the arbitrage-free money market satisfying As-
sumptions M1–M4, we assume that the risky asset Nt is given by

Nt = exp{
∫ t

0
r(u)du−

n∑
i=1

∫ t

0
Θi(vi(s))ds+

n∑
i=1

∫ t

0
vi(s)dLis}, N0 = 1, (21)

where v = (v1, . . . , vn) is a continuous and adapted process, such that

N̂t = Nt
Ct
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is a well-defined local martingale under QM .
We consider the electricity price processes

F (t, τ) = P (t, τ)
Nt

and S(t) = 1
Nt
, ∀(t, τ) ∈ D, (22)

where P (t, τ) and Nt are now given by (20) and (21).
According to Theorem 2.1 the transformation (22) gives an arbitrage-free

commodity futures market with the deterministic initial futures curve F (0, τ) :=
P (0, τ)/N0 = P (0, τ). By the same theorem,

dQF = NT
CT

C0

N0
dQM

= exp
{

n∑
i=1

∫ T

0
vi(s)dLis −

n∑
i=1

∫ T

0
Θi(vi(s))ds

}
dQM (23)

is a martingale measure for F (t, τ), (t, τ) ∈ D.
In order to study the electricity market (22) under the martingale measure

QF defined by (23) we need the distribution of L under QF . By Girsanov’s The-
orem for semimartingales (cf. Theorem III.3.24 in Jacod and Shiryaev [2003]),
L is a semimartingale under QF . In particular, if the process v(t) appearing
in (21) and (23) is deterministic, we get from Girsanov’s Theorem the following
Proposition:

Proposition 3.1. L = (L1, . . . , Ln) is a (non-homogeneous) Lévy process with
independent components under the measure QF , where for every j = 1, . . . , n,
the characteristic triplet of Lj w.r.t. QF is given by

bQ
F

j (t) := bj + cjv
j(t) +

∫
R

(ev
j(t)x − 1)xI|x|≤1(x)νj(dx), (24)

cQ
F

j (t) := cj , (25)

νQ
F

j (dt, dx) := ev
j(t)xνj(dx)dt. (26)

For the definition of a non-homogeneous Lévy process we refer to Hambly
et al. [2009].

Remark 3.2. Note that if v(t) is a constant function, then by Proposition 3.1
L is a time-homogeneous Lévy process under QF .

For the reminder of the paper we assume that v(t) is a deterministic, con-
tinuous function.

Let us consider an example, which shows that our model for the electric-
ity market contains the case, where the spot price process is an exponential
Ornstein-Uhlenbeck process with seasonality effect. We refer also to Bregman
[2008], Examples 3.4.4-3.4.5.

Example 3.3. LetWQF
t be a standard Brownian motion under QF and a Lévy

process L is given by

Lt = WQF
t +

∫ t

0

∫
R
xJL(dx× ds)
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for some Poisson random measure JL on R × (0,∞). Let Xt be an Ornstein-
Uhlenbeck process driven by L, i.e.

dXt = −Xtdt+ dLt, X0 = x0 ∈ R, t ≤ T.

Then

Xte
−(T−t) = x0e

−T︸ ︷︷ ︸
=:k

+
t∫

0

e−(T−s)dLs. (27)

We assume also that ∫
R
ex(1 + |x|)νQ

F

(dx) <∞, (28)

where νQF is the Lévy measure of L under QF .
Our attention now is to specify a money market Nt, P (t, T ), t ≤ T , such that

the corresponding futures market induces an exponential Ornstein-Uhlenbeck
model for the spot prices. This illustrates that our approach includes this very
established class of spot models. Let us consider

Nt = e−(Xt+θ(t)), t ≤ T, (29)

where θ(t) : [0, T ]→ R is a deterministic, differentiable function that character-
ize seasonality of the corresponding spot price. Let a bond price process P (t, T ),
t ∈ [0, T ], be given by

P (t, T ) = exp
{
θ(T )− θ(t) + (e−(T−t) − 1)Xt + 1

2

T∫
t

e−2(T−s)ds

+
T∫
t

∫
R

(
exp{e−(T−s)x} − 1

)
νQ

F

(dx)ds
}
. (30)

Then by (22)

St = 1
Nt

= eXt+θ(t), t ≤ T, (31)
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and by (30), and (31)

F (t, T ) = S(t)P (t, T ) = F (0, T ) exp
{ t∫

0

e−(T−s)dLs −
1
2

t∫
0

e−2(T−s)ds

−
t∫

0

∫
R

(
ee

−(T−s)x − 1
)
νQ

F

(dx)ds
}

= F (0, T ) exp
{ t∫

0

e−(T−s)dWQF
s − 1

2

t∫
0

e−2(T−s)ds

+
t∫

0

∫
R

e−(T−s)xdJL(dx× ds)

−
∫ t

0

∫
R

(
ee

−(T−s)x − 1
)
νQ

F

(dx)ds
}
, t ≤ T, (32)

where

F (0, T ) = exp
{
k + θ(T ) + 1

2

T∫
0

e−2(T−s)ds

+
∫ T

0

∫
R

(
exp{e−(T−s)x} − 1

)
νQ

F

(dx)ds
}
,

and k ∈ R is defined in (27). Note that by the exponential formula for Poisson
random measures (see e.g. Cont and Tankov [2004], Proposition 3.6) the process
F (t, T ) given in (32) is a martingale. Indeed, choosing Ct = Nt as a discounting
process we have obviously QF = QM in this example.

We now derive the forward rate that gives us the bond P (t, T ) as in (30):

f(t, T ) = − ∂

∂T
lnP (t, T )

= e−(T−t)Xt − θ′(T )− 1
2 +

∫ T

t

∫
R

exp{e−(T−s)x}e−(T−s)xνQ
F

(dx)ds}

−
∫
R
(ex − 1)νQ

F

(dx) +
∫ T

t

e−2(T−s)ds. (33)

In particular, the corresponding short rate process is then given by

r(t) = f(t, t) = Xt − θ′(t)−
1
2 −

∫
R

(ex − 1)νQ
F

(dx).

Note that condition (28) guarantees that f(t, T ) in (33) and P (t, T ) in (30) are
well-defined.

4 Markov property
In this section we examine the Markov property of the spot price process S given
by (22). To begin with, applying Proposition 3.1, we compute the dynamics of
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S under QF as follows.

Lemma 4.1. The dynamics of S under QF is given by

dS(t) = S(t)[−r(t) + 1
2

n∑
i=1

ci(vi(t))2 +
n∑
i=1

Θi(vi(t))]dt− S(t−)
n∑
i=1

vi(t)dLit

+
∫
Rn

S(t−)(e〈v(t−),x〉 − 1 + 〈v(t−), x〉)JL(dx× dt), (34)

where JL is the jump measure of L.

Proof. First, by (21)–(22)

S(t) = exp{−
∫ t

0
r(u)du+

n∑
i=1

∫ t

0
Θi(vi(s))ds−

n∑
i=1

∫ t

0
vi(s)dLis}, (35)

where Θ(t) and v(t) are deterministic, continuous functions and L is a non-
homogeneous Lévy process satisfying Proposition 3.1. The rest follows from the
Itô formula. 2

Hence, since v is deterministic, we get the following result:

Proposition 4.2. Suppose the short rate process r is a Markov process. Then
the vector process (S, r) is a Markov process.

Proof. Since r is a Markov process and v is deterministic, (S, r) is a Markov
process by (34). 2

Remark 4.3. Note that if the volatility η is deterministic, then also the drift α
is deterministic by (17) and the short rate process r is a Markov process by (9).

Next we elaborate the question, when the spot price S itself is a one-
dimensional Markov process under QF . For this purpose we assume from now
on that the volatility η = (η1, . . . , ηn) appearing in (9) is deterministic.

Note that by (22), (21), and (20) we can factorize electricity price processes
as follows

F (t, τ) = F (0, τ) exp{
n∑
i=1

∫ t

0
δi(s, τ)dLis −

n∑
i=1

∫ t

0
ψi(s, τ)ds}, (36)

where

δi(s, τ) := σi(s, τ)− vi(s), and (37)
ψi(s, τ) := Θi(σi(s, τ))−Θi(vi(s)). (38)

Setting τ = t in (36) we obtain the electricity spot price process

S(t) = F (t, t) = F (0, t) exp
{ n∑
i=1

∫ t

0
δi(s, t)dLis −

n∑
i=1

∫ t

0
ψi(s, t)ds

}
. (39)

11



Note that by assumption the coefficients δ = (δ1, . . . , δn) and ψ = (ψ1, . . . , ψn)
are deterministic, since σ = (σ1, . . . , σn) is deterministic. For the sake of sim-
plicity we will only consider the one-dimensional case, i.e. we assume n = 1.
However, all results of this subsection still hold in the case of multidimensional
non-homogeneous Lévy process with independent components. In other words,
we examine the Markov property of the spot price process S given by

S(t) = F (0, t) exp{
∫ t

0
δ(s, t)dLs −

∫ t

0
ψ(s, t)ds}, t ∈ [0, T ], (40)

under the futures martingale measure QF when δ(s, t) and ψ(s, t) are determin-
istic and continuous. Because F (0, t) is also deterministic by assumptions, S is
a Markov process iff the process

Zt =
∫ t

0
δ(s, t)dLs, t ∈ [0, T ], (41)

is Markovian. Recall that L is a non-homogeneous Lévy process under QF by
Proposition 3.1.

Proposition 4.4. We assume that there are constants ε, η > 0 and functions
c(t), γ(t) : [0, T ]→ R+, such that for all t ∈ [0, T ]

1.
∫ t

0 c(s)ds <∞,

2. γ(t) ≥ ε,

3. <Φt(u) ≤ c(t)−γ(t)|u|η, for every u ∈ R, where Φt(·) is the characteristic
exponent of Lt under QF defined by

EQF [eiuLt ] = eΦt(u), u ∈ R,

where <Φt(u) denotes the real part of Φt(u). Then the spot price process S is
Markovian iff for all fixed w and u with 0 < w < u ≤ T there exists a real
constant ξ = ξwu (which may depend on w and u) such that

δ(t, u) = ξwu δ(t, w), ∀t ∈ [0, T ],

where δ is the volatility structure of S in (40).

Corollary 4.5. Under the hypotheses of Proposition 4.4 the spot price process
S is Markovian iff its volatility structure δ admits the representation

δ(t, τ) = ζ(t)ρ(τ), ∀(t, τ) ∈ D, (42)

where ζ, ρ : [0, T ]→ R are continuously differentiable functions.

The proofs of Proposition 4.4 and Corollary 4.5 are omitted, since they can
be recovered from the ones given in Section 4 in Eberlein and Raible [1999]
under minimal technical changes.

Now we consider two examples of the volatility function δ that satisfies (42).
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Example 4.6 (Vasicek volatility structure). Recall that

δ(t, τ) = σ(t, τ)− v(t),

where σ is the volatility of the corresponding bond and v is a deterministic
function. Let

σ(t, τ) = σ̂

a
(1− e−a(τ−t)) (Vasicek volatility),

where σ̂ > 0 and a 6= 0. Then by Corollary 4.5 the spot price process S is
Markovian iff there exist continuously differentiable functions ζ, ρ : [0, T ] → R,
such that

v(t) = σ̂

a
(1− e−a(τ−t))− ζ(t)ρ(τ).

Since v is constant in τ , by deriving we obtain

ζ(t)ρ′(τ) = σ̂eate−aτ ,

and consequently

ζ(t) = λσ̂eat,

ρ′(τ) = 1
λ
e−aτ

for (t, τ) ∈ D and some λ 6= 0. Then ρ(τ) = − 1
aλe
−aτ + c for some c ∈ R, λ 6= 0.

Hence, in this example the spot price process S is Markovian iff v(t) is of the
form

v(t) = σ̂

a
− σ̂ceat

for some c ∈ R.

Example 4.7 (Ho-Lee volatility structure). In case the bond volatility structure
σ satisfies

σ(t, τ) = σ̂(τ − t) with σ̂ > 0 (Ho-Lee volatility),

Corollary 4.5 yields that the spot price S is a Markov process iff v(t) is of the
form v(t) = σ̂(c− t) for some c ∈ R.

We follow the approach of Hinz and Wilhelm [2006] and, applying Corol-
lary 4.5, characterize the class of stationary volatility structures δ that lead to
Markovian spot price process S.

Proposition 4.8. Suppose the volatility structure δ is stationary, that means,
there exists a twice continuously differentiable function δ̃ : [0, T ] → R+ such
that δ(t, τ) = δ̃(τ − t) for all (t, τ) ∈ D. Then, under the hypotheses of Propo-
sition 4.4, S is a Markov process iff δ is of the form

δ(t, τ) = δ̂ea(τ−t) (43)

with a ∈ R and δ̂ > 0.
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Proof. If δ is of the form (43), then S is a Markov process by Corollary 4.5.
Assume now that S is Markovian. As δ(t, τ) is stationary by assumption, the
partial derivatives satisfy

∂

∂τ
δ(t, τ) = δ̃′(τ − t) = − ∂

∂t
δ(t, τ).

Corollary 4.5 yields then

ζ ′(t)ρ(τ) = −ζ(t)ρ′(τ),

i.e.
(log ρ)′(τ) = −(log ζ ′)(t)

for all (t, τ) ∈ D. Since t and τ are independent variables, neither of the last
equality sides can actually depend on t or τ . Hence both sides are constant.
Denoting their common value by a, we obtain

ρ(τ) = eaτ+K1 and ζ(t) = e−at+K2

with two real constants K1 and K2, and hence

δ(t, τ) = eK1+K2ea(τ−t).

Defining δ̂ := eK1+K2 , we get (43). 2

The volatility structure (43) picks up the maturity effect for a < 0: the
volatility increases when a future contract comes to delivery, since tempera-
ture forecasts, outages and other specifics about the delivery period become
more and more precise. However, the model (43) does not include seasonality:
futures during winter months show higher prices than comparable contracts dur-
ing the summer. See Benth and Koekebakker [2008], Klüppelberg et al. [2010],
and Kiesel et al. [2009] for a description of electricity futures and options mar-
kets. In order to include the seasonality we can use, for example, the volatility
model suggested in Fackler and Tian [1999]:

δ(t, τ) = a(t)e−b(τ−t), b ≥ 0.

The seasonal part a(t) can be modeled, for example, as a truncated Fourier
series

a(t) = a+
J∑
j=1

(dj sin(2πjt)− fj cos(2πjt)),

where a ≥ 0, dj , fj ∈ R, and t is measured in years. See Fackler and Tian [1999]
and Benth and Koekebakker [2008] for more details on the modeling of volatility.

5 Valuation of options
We recall that we consider the case of deterministic volatility η.
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5.1 Pricing of European options
For the valuation of the European options on the spot price we use Fourier
transform method applied to the dampened payoff. For an overview of this
method see Papapantoleon [2006]. We here consider the example of pricing an
electricity floor contract. Electricity calls, puts and caps can be priced similarly.
See also Hinz and Wilhelm [2006] for the pricing of European options on the
electricity spot price under the assumption of continuous futures and spot price
processes.

A floor is a European type contract that protects against low commodity
prices within [τ1, τ2]. It ensures a cash flow at intensity ((K − S(s))+)s∈[τ1,τ2]
with strike price K > 0 at any time s ∈ [τ1, τ2] of the contract.

In the remainder of this paper we suppose that the riskless interest rate r is
constant. The fair price at time t of the floor option with strike price K > 0 is
equal to

Floor(t,K) = EQF
[ ∫ τ2

t∨τ1
e−r(τ−t)(K − S(τ))+dτ

∣∣∣Ft].
By Fubini’s Theorem we get

Floor(t,K) =
∫ τ2

t∨τ1
e−r(τ−t)EQF

[
(K − S(τ))+

∣∣∣Ft]dτ. (44)

To simplify the notation we only consider the one-dimensional case under as-
sumption of the deterministic coefficients, i.e. we assume the spot price process
S(t) to be given by (40), where δ and ψ are deterministic.

Recall that by (36)-(39) we can also factorize the spot price process S in the
one-dimensional case as follows

S(τ) = F (t, τ) exp{
∫ τ

t

δ(s, τ)dLs −
∫ τ

t

ψ(s, τ)ds} =: F (t, τ)Uτt , (45)

where F (t, τ), for 0 ≤ t ≤ τ , is a QF -martingale, and L is a non-homogeneous
Lévy process. Since F (t, τ) is Ft-measurable and Uτt is independent of Ft, by
substituting (45) into (44) we obtain

Floor(t,K) =
∫ τ2

t∨τ1
e−r(τ−t)EQF

[
(K − F (t, τ)Uτt )+dτ

∣∣∣Ft]dτ
=
∫ τ2

t∨τ1
e−r(τ−t)F (t, τ)e−

∫ τ
t
ψ(s,τ)ds

EQF [(K(f)− e
∫ τ
t
δ(s,τ)dLs)+]∣∣∣

f :=F (t,τ)
dτ,

(46)

where K(f) := K
f exp{

∫ τ
t
ψ(s, τ)ds}, f > 0. In order to compute the expecta-

tion in (46), consider the integrable dampened pay-off function

g(x) := ex(K(f)− ex)+ ∈ L1(R).

Denote by ĝ its Fourier transform:

ĝ(u) :=
∫
R
eiuxg(x)dx = K(f)2+iu 1

(1 + iu)(2 + iu) ∈ L
1(R). (47)
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Using the Inversion Theorem for Fourier transform (cf. Königsberger [1993],
Section 8.2) we get

EQF
[(
K(f)− e

∫ τ
t
δ(s,τ)dLs

)+]
= EQF

[
e
−
∫ τ
t
δ(s,τ)dLsg(

∫ τ

t

δ(s, τ)dLs)
]

= EQF
[
e
−
∫ τ
t
δ(s,τ)dLs 1

2π

∫
R
e
−iu
∫ τ
t
δ(s,τ)dLs ĝ(u)du

]
= 1

2πE
QF
[ ∫

R
e
−(1+iu)

∫ τ
t
δ(s,τ)dLs ĝ(u)du

]
= 1

2π

∫
R
EQF

[
e
−(1+iu)

∫ τ
t
δ(s,τ)dLs

]
ĝ(u)du, (48)

where (47) allows to apply Fubini’s Theorem in the last equality. By Proposi-
tion 3.1 and Proposition 1.9 in Kluge [2005]

EQF [e−
∫ τ
t

(1+iu)δ(s,τ)dLs ] = exp{
∫ τ

t

ΘQF
s (−(1 + iu)δ(s, τ))ds}, (49)

where ΘQF
s is given by

ΘQF
s (z) = zbQ

F

s + z2

2 c
QF
s +

∫
R

(ezx − 1− zx)ev(s)xν(dx), s ≤ T.

Substituting (48), (47), and (49) into (46), we obtain the following pricing for-
mula

Floor(t,K) =
∫ τ2

t∨τ1
e−r(τ−t)F (t, τ)e−

∫ τ
t
ψ(s,τ)ds

×
∫
R

exp{
∫ τ

t

ΘQF
s (−(1 + ix)δ(s, τ))ds}

×
(

K

F (t, τ)e
∫ τ
t
ψ(s,τ)ds

)2+ix 1
(1 + ix)(2 + ix)dxdτ

= K2ert
∫ τ2

t∨τ1
e−rτ

∫
R

exp{
∫ τ

t

ΘQF
s (−(1 + ix)δ(s, τ))ds}

×

e∫ τt ψ(s,τ)ds

F (t, τ)

1+ix
Kix

(1 + ix)(2 + ix)dxdτ.

5.2 Pricing of swing options
In this section we illustrate how the spot price model (34) can be used to valu-
ate electricity swing options. Electricity swing options are spot path dependent
derivatives, which can be used to hedge the electricity spot price risk as well
as the risk in the option owner’s electricity consumption process. The expres-
sion “swing options” comes from the constraint on the electricity consumption
process which “swings” between the lower and upper boundaries.

For the sake of simplicity we consider a special case, where the process L is
a one-dimensional Lévy process under QM and v ∈ R is a constant. Then by
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Remark 3.2 L is also a Lévy process under QF . Moreover, by Assumption (14)
and Proposition 3.1 we have that L admits the canonical representation:

Lt = bQ
F

t+
√
cWQF

t +
∫ t

0

∫
R
xJ̄QF

L (dx× ds), (50)

whereWQF is a standard Brownian motion and J̄QF
L is the compensated random

measure of jumps under QF . Recall that by (9) and (50) the short rate process
r follows the dynamics

dr(t) = α(t, t)dt+ η(t, t)dLt
= (bQ

F

η(t, t) + α(t, t))dt+
√
cη(t, t)dWQF

t

+
∫
R
xη(t, t)J̄QF

L (dx× dt), t ∈ [0, T ]. (51)

Now we assume that the volatility η of the short rate process r is deterministic,
and hence r is a Markov process.

Recall that, since r is Markovian, by Proposition 4.2 (S, r) is also a Markov
process. Furthermore, by (34) and (50) the dynamics of the electricity spot
price S is given by

dS(t) = S(t)[−r(t) + 1
2cv

2 + Θ(v)− vbQ
F

]dt− S(t)v
√
cdWQF

t

− S(t−)v
∫
R
xJ̄QF

L (dx× dt) + S(t−)
∫
R
(evx − 1 + vx)JL(dx× dt)

= S(t)[−r(t) + 1
2cv

2 + Θ(v)− vbQ
F

+
∫
R

(evx − 1 + vx)νQ
F

(dx)]dt

− S(t)v
√
cdWQF

t + S(t−)
∫
R

(evx − 1)J̄QF
L (dx× dt)

= −S(t)(r(t)− β)dt− S(t)v
√
cdWQF

t

+ S(t−)
∫
R
(evx − 1)J̄QF

L (dx× dt), t ∈ [0, T ], (52)

where, by (16), (24), and (26) for β we get

β :=
∫
R

(evx − 1− vx)ν(dx)− v
∫
|x|≤1

(evx − 1)xν(dx)

+
∫
R

(evx − 1 + vx)evxν(dx)

=
∫
R

(evx − 1− vxI|x|>1)ν(dx) +
∫
R

(evx − 1 + vxI|x|>1)evxν(dx).

Moreover, we assume that there exists a unique solution (Su(t), ru(t)) of the
system (52) – (51) satisfying the initial condition (Su(u), ru(u)) = (s, r) ∈ R2,
and such that

EQF [(Su(t))2] <∞ for all t ∈ [0, T ].

For instance, if u = 0 then (s, r) = (1, r(0)) = (1, f(0, 0)).
Let us consider a swing option on the spot price process (52). A swing option

is an agreement to purchase energy at a certain fixed price over a specified time
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interval. Following Wallin [2008] we define the payoff of a swing option settled
at time T as ∫ T

u

ν(t)(Su(t)−K)dt, (53)

where ν(t) is the production intensity, S is the electricity spot price and K > 0
is the strike price of the contract. The holder of the contract has the right
(within specified limits), to control the intensity of electricity production at any
moment. The goal of the option holder is to maximize the value of the contract
by selecting the optimal intensity process ν among the processes that are limited
by contract specific lower and upper bounds:

νlow ≤ ν(t) ≤ νup a.e. t ∈ [u, T ],

under the constraint that the optimal intensity process ν is such that the total
volume produced

Cν(t) = c+
∫ t

u

ν(x)dx, u ≤ t ≤ T, (54)

does not exceed the maximum amount C̄ that can be produced during the
contract life time.

Hence the option holder tries to maximize the expected profit, i.e. to find

V (u, s, r, c) := sup
ν∈N

EQF
[∫ T∧τC̄

u

ν(t)(Su(t)−K)dt
]

(55)

= EQF
[∫ T∧τC̄

u

ν∗(t)(Su(t)−K)dt
]
, (56)

where

N := {ν progressively measurable: ν(t) ∈ [νlow, νup] for a.e. t ∈ [u, T ]}

is the control set, and

τC̄ := inf{t > u| Cν(t) = C̄}

is the first time when all of production rights are used up. Note that the value
function V satisfies the boundary conditions

V (T, s, r, c) = 0 and V (u, s, r, C̄) = 0. (57)

If we assume that the value function V is sufficiently smooth, then by Itô
formula and by (52), and (51) we get

0 = V (T ∧ τC̄ , Su(T ∧ τC̄), ru(T ∧ τC̄), Cν(T ∧ τC̄))

= V (u, s, r, c) +
∫ T∧τC̄

u

AνV (t, Su(t), ru(t), Cν(t))dt

−
√
c

∫ T∧τC̄

u

(∂sV Su(t)v(t) + ∂rV η(t, t))dWQF
t

+
∫ T∧τC̄

u

∫
R

(∂rV η(t, t)x+ Su(t−)(evx − 1)∂sV )J̄QF
L (dx× dt), (58)
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where

AνV (t, Su(t), ru(t), Cν(t)) := ∂tV + ∂cV ν(t)− ∂sV Su(t)(ru(t)− β)

+ ∂rV (bQ
F

η(t, t) + α(t, t)) + c

2

(
(Su(t))2v2(t)∂2

ssV − 2Su(t)v(t)η(t, t)∂2
srV

+ η2(t, t)∂2
rrV

)
+
∫
R

(
V (t, Su(t)evx, ru(t) + xη(t, t), Cν(t))

− V (t, Su(t), ru(t), Cν(t))− ∂sV Su(t)(evx − 1)− ∂rV xη(t, t)
)
evxν(dx).

(59)

Applying Dynkin formula (Theorem 1.24 in Øksendal and Sulem [2005]) we
can now formulate a verification theorem for the optimal control problem (55)
analogous to the classical result for the Hamilton-Jacobi-Bellman equation for
jump diffusions (see Theorem 3.1 in Øksendal and Sulem [2005]):

Proposition 5.1. Let S = [u, T ) × R2
+ × [0, C̄). Assume that there exist V̂ ∈

C2(S)∩C(S̄) and ν̂ ∈ N , such that (ν̂, V̂ ) is a solution of the Hamilton-Jacobi-
Bellman equation

Aν̂V (t, s, r, c) + ν̂(s−K) = 0 for each (t, s, r, c) ∈ S, (60)

satisfying

EQF
[ ∫ T∧τC̄

u

|Aν̂ V̂ (t, Su(t), ru(t), C ν̂(t))|dt
]
<∞. (61)

Moreover, suppose that V̂ fulfills the terminal and boundary conditions (57).
Then V̂ is the value function of the swing option defined in (55).

Note that the Markov property of the process (S, r) is essential for the proof
of Proposition 5.1. We refer to Øksendal and Sulem [2005] for more details on
stochastic optimal control problems.
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