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Abstract

Fire sales and default contagion are two of the main drivers of systemic risk in finan-
cial networks. While default contagion spreads via direct balance sheet exposures between
institutions, fire sales describe iterated distressed selling of assets and their associated de-
cline in price which impacts all institutions invested in these assets. That is, institutions
are indirectly linked if they have overlapping asset portfolios. In this paper, we develop a
model that helps us understand the joint effect of the two contagion channels and investigate
structures of financial systems that promote or hinder the spread of an initial local shock.
We first consider the contagion process for an explicitly given system and then derive our
main results for random ensembles of systems whose macroscopic statistical characteristics
of defining parameters are close to each other. In particular, we model direct exposures
by means of a random graph. Our approach ensures robustness to local uncertainties and
changes in the system. We characterize resilient and non-resilient system structures by cri-
teria that can be used by regulators to assess system stability. Moreover, we provide explicit
capital requirements that secure the financial system against the joint impact of fire sales
and default contagion.

Keywords: systemic risk, financial contagion, asset fire sales, price-mediated contagion, default
contagion, capital requirements

1 Introduction

Today’s financial networks are characterized by various types of dependencies between financial
institutions and a complex network structure. While these connections go along with attractive
business opportunities for each single institution, they also bear the risk of spreading and
amplifying local shocks through large parts of the system, which is known as systemic risk.
A particular challenge is to study the interplay and mutual reinforcement of various types of
contagious connections. Two of the main drivers of systemic risk that we focus on in this paper
are the contagion channels default contagion and fire sales (see [29] for instance).

Default contagion describes insolvency transmission between direct neighbors in a financial
network due to the inability to meet financial obligations. That is, if a certain bank has to
declare bankruptcy and hence cannot (fully) repay loans or other pending liabilities, then all
exposed institutions in the system have to write off their losses and can get into financial distress
themselves. Although default contagion takes place between direct neighbours in the network,
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it was one of the main insights from the financial crisis that also second order effects play an
important role when assessing an institution’s stability with respect to certain shock events.
This is the main difference of systemic risk as compared to classical counterparty risk: not only
an institution’s contractual partners are important but also their business connections and so
on, which the first institution has no influence on or even knowledge of.

The contagion channel fire sales describes a similar effect: It can happen if for some reason
one or more investors sell off a large number of shares of a certain illiquid asset which causes
a decrease in the asset’s share-price. Hence, by mark-to-market of portfolio values, this leads
to losses for all institutions invested in the asset and thus possibly causes further asset sales
in order to comply with external regulations or internal strategies. This on the other hand
drives down prices even further and the cycle of fire sales goes on and on. In contrast to default
contagion, fire sales can transmit distress from one institution to another even without a direct
business relationship. Each institution that holds an asset portfolio of some kind is then exposed
to all other institutions with a (partially) overlapping portfolio. However, due to second order
effects, institutions can even be exposed to other institutions without having any overlapping
asset holdings. In contrast to default contagion, fire sales can start while all institutions in the
network are still solvent but some of them choose to sell assets either voluntarily or because of
regulatory requirements.

Clearly, the two described effects can further amplify each other. If, for instance, during a
fire sales cascade an institution goes bankrupt, as described above its creditors have to write
off their loss and may be driven into selling parts of their asset portfolio thus sparking further
fire sales. The underlying motivation for this paper is thus to model the interplay of default
contagion and fire sales and particularly to understand which structures of direct exposures and
overlapping asset portfolios promote or prevent the spread of local stress in a system.

Related Work One of the first papers to rigorously address contagion effects in financial
networks was the seminal work by Eisenberg and Noe [21]. In its original form their model
(the EN-model) describes the channel of default contagion without bankruptcy costs and under
a perfect claim enforcement technology. The main insight was the existence (and sometimes
uniqueness) of a payment vector that clears liabilities in an explicitly given interbank network.
The popularity of the EN-model is partly due to its tractability which allows for a number of
extensions including for example default costs, fire sales and crossholdings between banks (see
[13, 25, 32, 34]).

Other lines of research addressed the question which network structures promote a cascade
of defaults. For example the authors in [3, 2] compare stylized network structures, the ring
and complete network. They show that complete networks can absorb small shocks better
but large shocks are amplified. The authors of [10] present a more general framework that
allows to compare a larger set of network structures, including the empirically relevant core-
periphery network. In addition, in contrast to previous studies they account for the presence
of bankruptcy cost. Their main insight is that for highly capitalized systems a more diversified
network structure is better, while for poorly capitalized systems diversification can be harmful
and create potential for larger amplification of bankruptcy cost.

Another line of research, which started in [24] and continued for example in [17, 20, 18],
uses asymptotic random graph techniques. Similarly to [3, 2, 10], the objective is to gain under-
standing of which network structures promote systemic risk and which capital requirements are
suitable to prevent large cascades. Rather than considering a concrete network configuration,
these works derive results for a whole family of random graph configurations whose macroscopic
statistical characteristics are calibrated to resemble an originally observed structure. That is,
statements about the final state of the system are possible in terms of global statistical quan-
tities only, and independent of the precise structure on a microscopic level; this makes this
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approach robust to local uncertainties as well as changes over time and thus attractive from
a regulatory perspective. Moreover, for large systems a natural notion of resilience emerges
that is not based on any arbitrarily chosen parameters, but considers an arbitrarily small initial
shock and its effect on the global system.

In terms of fire sales, [26] consider an economy consisting of multiple banks and multiple
assets with different liquidity levels to study first order effects of fire sales (the asset sales of one
bank creates a balance sheet hit to another bank only if it holds the same asset). In [11] the
authors introduce a systemicness matrix to quantify the aggregated effects of liquidation when
banks hold overlapping portfolios. Their analysis includes the impact of second order effects.
Using a large system approach, [19] proposes a model for fire sales that also accounts for higher
order effects. The authors derive asymptotic results about the fraction of finally defaulted
institutions, the number of sold asset shares and the ensuing final price impact. Also see [9] for
a similar albeit much simpler framework for investigating fire sales on a random network by a
branching process approximation.

While the asymptotic methods line of research accomplishes to characterize favorable and
unfavorable system structures, it has so far only been possible to model one contagion channel at
a time. It is the aim of this paper to present the first integrated model for default contagion and
fire sales that uses the asymptotic approach to provide insight into the effect of certain structural
characteristics on system stability. In an Eisenberg-Noe setting this integration has been done
in [13] and in [34]. In [6] the authors endogenize possible intervention to stop contagion that
propagates through fire sales and default losses.

Contribution In this paper we study the joint effects of default contagion and fire sales and
their impact on system stability as well as systemic risk management.

Integrated Model for Default Contagion and Fire Sales. Our main objective in this paper is to
specify and study a stochastic network model for default contagion and fire sales. To prepare the
ground for such a model, we first state a deterministic model for simultaneous default contagion
and fire sales such that in particular the two can amplify each other. At this we assume the
following underlying parameters for each institution i ∈ [n] = {1, . . . , n}: Its initial capital ci,
which is reduced by some individual exogenous shock `i, a list of direct exposures (ej,i) to other
institutions j such that i’s capital is reduced by ej,i if j defaults, and a vector xi = (xAi ) of
numbers of shares held of each asset A. In addition every institution is assigned sale functions
ρAi that abstractly describe asset sales of each asset A due to regulation or other constraints as
institution i incurs losses. The sale functions are allowed to vary across different institutions, as
for example hedge funds, investment banks or commercial banks might have a very different asset
sales behaviour, and asset classes, for example in order to distinguish between sales of assets
with different liquidity levels. Lastly, a function hA is given that specifies the impact of sales
on asset A’s price – assuming that exogenous price changes are negligible during the contagion
process and hA is the sole driver of the asset price. We only require minimal assumptions on ρAi
(non-decreasing) and hA (continuous and non-decreasing) to derive our first result about the
set of finally defaulted institutions and the vector of finally sold shares in terms of a fixed point
equation. In addition we assign to each institution i ∈ [n] a value si of systemic importance.
This value does not influence the contagion process but allows for a more refined risk analysis
based on the set of finally defaulted institutions after a cascade.

The Stochastic Model. The previously mentioned results allow us to compute the final damage
to any explicitly given financial system. The actual focus of this paper, however, is to go one
step further and to model a whole ensemble of systems simultaneously to understand which
structural properties in a system expedite or inhibit the spread of distress. More precisely, we
aim at performing an asymptotic analysis for a financial system that inherits the model features
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and flexibility of our deterministic model. Our model for the financial system exhibits a degree
of flexibility and heterogeneity to capture observed features that was previously unseen within
the literature on asymptotic random graph models for systemic risk. We achieve this by the
following means:

1. We randomly rewire direct links in the network according to the following method: We
assign to each institution i a type αi out of finitely many types [T ] := {1, ..., T}. Insti-
tutions of the same type share a certain similarity, for example they could be residing in
the same geographical region, be of a similar institutional type or in the same layer of a
tired network such as core-periphery. Classification of certain institutions as systemically
important financial institution (SIFI) is also possible. In addition we assign in-weights
w−,αi and out-weights w+,α

i , α ∈ [T ] and draw a random link from i to another institution

j of type αj with a probability proportional to w
+,αj
i and w−,αij . That is, w±,αi describe

the tendency of i to send/receive links from institutions with certain types. They can be
calibrated to the observed in-/out-degree in a concrete network configuration. We refer to
Section 6 for details on the estimation of the parameters. This set of parameters ensures
that important statistical properties of this random graph are in line with observed real
financial networks with a complex tired structure especially on a global level. While in
some countries a power law or core/periphery degree sequence was observed (see [15]), one
degree sequence is not enough to describe networks consisting of different subnetworks.
For a global perspective it is essential to model also connections between different sub-
systems in a flexible way. The combination of finitely many types and a continuum of
possible weights does exactly the job of delivering realistic network skeletons on which
default contagion processes can still be described by finite dimensional fixed point equa-
tions. This idea was developed in [18] for a pure default contagion analysis. The empirical
distribution of parameters (weights and types) is assumed to be close in distribution to a
multidimensional random vector (W−,W+, A).

2. The parameter vector (W−,W+, A) is then complemented by random components de-
scribing the empirical distribution of systemic importance, capital, exogenous loss and
asset holdings. This leads to (W−,W+,X, S, C, L,A) as the parameter of our finan-
cial system. We only pose a first moment restriction on (W−,W+,X, S, C, L,A) and in
particular allow for all kind of possible dependencies between the components. We then
consider a whole ensemble of financial systems with parameters close in distribution to
(W−,W+,X, S, C, L,A).

For the stochastic system we derive similar results as for the explicit system about the fraction
of finally defaulted institutions and the vector of finally sold asset shares. The following informal
statement summarises the main insights from Theorem 3.3.

Mock Theorem. Consider a financial system of size n ∈ N that was hit by some exogenous
shock. Let M ∈ N denote the number of assets in the system. Then under certain regularity
assumptions there exist constants 0 ≤ k0 ≤ K0 ≤ 1 and 0 ≤ km ≤ Km <∞, 1 ≤ m ≤M , such
that

k0 + op(1) ≤ number of finally defaulted institutions

n
≤ K0 + op(1),

km + op(1) ≤ number of finally sold shares of asset m

n
≤ Km + op(1),

where op(1) denotes a term that vanishes as n becomes large. The constants k0,K0, km,Km can
be computed explicitly in terms of the global system statistics, and in many relevant settings
k0 = K0, km = Km,m ≤M .
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For large systems we thus derive explicit lower and upper bounds for the fraction of finally
defaulted institutions and sold shares triggered by some initial shock. Moreover, the upper
and lower bounds coincide in most cases and then our results allow to determine the quantities
exactly. The bounds are robust to local changes and are thus suitable to understand the effect
of certain structural characteristics of the network and in particular the joint impact of default
contagion and fire sales on system stability.

An asymptotic analysis is justifiable by the fact that a large number of institutions (funds,
investment banks, insurance companies, etc.) are participating in the financial system. Ad-
ditionally we test the analytic results with a simulation study, which shows that systems of
reasonable size are well approximated by our analytic results.

For the proofs we can partly resort to results from [17, 18] and [19]. Still the combination
of both channels poses a number of new technical challenges. In the pure contagion model one
can use so called finitary systems, i.e. systems where the characterizing parameter vector in
Item 2. above only takes finitely many values, to approximate default contagion in more general
systems (see [17, 20, 18]). These finitary systems can be well understood by means of the
differential equation method (see [35]). However, once fire sales are included, finitary systems
pose some discontinuity issues and thus require new techniques, which we develop here.

Risk Management. As already mentioned before, our asymptotic approach entails the advantage
of a natural notion of resilience. More particularly, we consider arbitrarily small initial shocks
and use our main result for the stochastic model to determine whether the resulting fraction
of finally defaulted institutions vanishes or remains bounded away from 0. We derive explicit
criteria for regulators to determine the stability of a financial system and we demonstrate in
an example that resilience can heavily depend on the joint impact of default contagion and fire
sales. This specifically underlines the importance of an integrated modelling.

Moreover, based on the resilience criteria we show for a class of financial systems how to
determine sufficient capital requirements to ensure stability. The regulated institutions them-
selves can easily calculate these capital requirements after a regulator announces a few global
parameters – they are thus very transparent. Further, as the capital requirements only de-
pend on global parameters and the bank’s own business decisions (its balance sheet) they are
inherently fair and cannot be manipulated.

Outline In Section 2, we state our model for the financial system and the contagion process.
We then state and explain our main result for the stochastic model in Section 3. In Section
4, we derive criteria for financial networks to be (non-)resilient with respect to small initial
shocks. We then apply them to obtain sufficient capital requirements in Section 5 and carry
out a simulation study to show that our results are applicable for large finite networks and
to demonstrate the joint impact of default contagion and fire sales. In Section 6 we discuss
estimation of the model before we conclude with a discussion including the limitations of the
model in Section 7. In Section 8, we provide proofs for all the results. Finally, we provide a
glossary listing all important symbols, parameters and functions for our model.

2 An Integrated Model for the Financial System

In this section, we state our model for a financial system. It includes all the parameters we
need to investigate the interplay of the contagion channels fire sales and default contagion. We
assume that there are n ∈ N financial institutions. We use the term financial institutions in
a wide sense. It may include banks, insurance companies, mutual funds, asset managers but
also non-financial institutions, as for example corporations if they hold a large number of the
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assets and would sell them in case of a decline in value. We denote the set of institutions by
[n] := {1, . . . , n}. Further we consider M ∈ N assets. These are the assets institutions invest in
and that are considered relevant for potential fire sales. We denote by [M ] := {1, . . . ,M} the
set of these assets.

2.1 Model Parameters

Each institution i ∈ [n] has a set of parameters assigned:

1. The value of systemic importance si ∈ R+,0: It describes the potential damage that
a default of institution i will cause for the global financial system or the wider economy.
For example, if institution i ∈ [n] is crucial in providing certain payment infrastructure it
would have a higher value si assigned than a bank that is not offering such service. See
[20] for more details and possible choices for si.

2. The initial capital parameter ci ∈ R+,∞ := R+∪{∞}: This parameter determines the
monetary buffer of institution i against losses. For banks this is usually their equity (assets
minus liabilities), which is positive if the bank is solvent. For low leverage institutions,
such as mutual and money market funds, it could the total value of assets managed. In
the following, we refer to ci as capital for simplicity.

3. The exogenous loss parameter `i ∈ R+,0: It models the impact of some external shock
on institution i. The specification of `i allows for a variety of stress tests for the financial
system, i. e. asset price shock, defaults of some institutions, etc. The actual magnitude of
`i will thus crucially depend on the stress testing and the business model of institution i.
The actual new capital of institution i after the shock is ci − `i.

4. The number xmi ∈ R+,0 of shares institution i holds of asset m ∈ [M ]: As we are
only interested in the effect of sales, we consider only positive holdings. If an institution
i is shortening asset m, we set xmi = 0. So for each institution we can assign a vector
xi := (x1i , . . . , x

M
i ) ∈ RM+,0 of asset holdings.

5. Direct exposures ei,j ∈ R+,0: In this section, we consider ei,j to be the observed
(deterministic) exposure of j to i. If ei,j > 0, this means that institution i owes a monetary
amount to institution j via for example a loan. In the next section, we will propose a
random model for {ei,j}i,j∈[n].

6. A sales function ρi : R+,0 → [0, 1]M : This function models the sales of asset 1, . . . ,M
by institution i after it lost a certain fraction of its capital.

In Figure 1 we summarize the parameters assigned to each institution.

2.2 Fire Sales

Fire sales are the combination of asset sales and price impact. The exogenous losses `i, i ∈ [n],
possibly drive some institutions into selling parts of their assets. This can be due to their own
risk preference or regulation that forces them to stay within certain risk bounds or leverage
constraints. We model these asset sales by vector valued functions ρi = (ρ1i , . . . , ρ

M
i ) : R+,0 →

[0, 1]M , which describe the fraction of holdings of asset 1, . . . ,M sold by institution i after it
lost a certain fraction of its capital, i. e. i ∈ [n] sells xmi ρ

m
i (Λ/ci) of its shares of asset m after

it incurred losses of Λ. The specification of ρi will crucially depend on the type of institution
(i.e. asset manager, investment bank, insurance company,...) and the respective regulatory
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asset m
price impact function hm

shares xmi

ut

institution i institution j

systemic importance si
exposure ei,j−−−−−−−−→ systemic importance sj

capital ci
exposure ej,i←−−−−−−−− capital cj

exogenous loss `i exogenous loss `j

sale function ⇢mi sale function ⇢mj

shares xmj

Figure 1: Model parameters for institutions i and j in the financial system as well as asset m

requirement. Allowing for different sales behavior for different institutions is thus especially
important if one goes beyond the banking network. Moreover, by allowing ρi to be vector
valued, we account for the fact that financial institutions might follow a certain strategy when
selling assets. For example they might start with liquid assets first or try to keep their overall
market exposure. We make the following natural assumptions: the sale functions ρi for i ∈ [n]
are non-decreasing, ρi(0) = (0, . . . , 0) and ρi(u) = (1, . . . , 1) for all u ≥ 1. Moreover to simplify
notation in the following, we choose ρi to be right-continuous for every i ∈ [n] and denote by
◦
ρi(u) := limε→0+ ρi((1− ε)u) its left-continuous modification.

The sales will cause prices to go down because the assets are not perfectly liquid (the
limit order book has finite depth). To model the decline in the asset prices we use functions
hm : RM+,0 → [0, 1] which are non-decreasing and continuous in each coordinate. We assume that
the share price of each asset m ∈ [M ] decreases by hm(y) after nym∈R+,0 shares of asset m have
been sold, where y = (y1, . . . , yM ). Each institution i ∈ [n] is further assumed to suffer losses
of xi · h(y) due to mark-to-market valuation of its portfolio, where h(y) = (h1(y), . . . , hM (y)).

There are two remarks in order: First, we pick y as the argument of h instead of the actual
vector of sold shares ny; this choice is purely conventional for any fixed n but will be convenient
for our results (also cf. Assumption 3.1). Second, as institutions start selling assets during the
contagion process, they actually reduce their exposure to future price drops and xi ·h(y) merely
functions as an upper bound on i’s losses. In this sense our model is conservative, and moreover,
this assumption allows for better analytic results in the following.

For a financial system without direct exposures, i. e. ei,j = 0 for all i, j ∈ [n], the contagion
process is then solely driven by rounds of alternating asset sales and price impact, i. e. fire sales.
Denoting by σ(k) = (σ1(k), . . . , σ

M
(k)) the vector of sold shares in round k ∈ N0 with σ(0) = 0 we

then derive

σ(k) =
∑
i∈[n]

xi � ρi
(
`i + xi · h(n−1σ(k−1))

ci

)
, k ≥ 1.

Here � denotes the Hadamard (entry-wise) product of two vectors, while · denotes the scalar
product. See [19] for results on the pure fire sales process in a slightly more restricted setting.
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2.3 Default Contagion

If on the other hand, we consider a financial system with xi = 0 for all i ∈ [n], then contagion
completely proceeds via the direct exposure network. That is, if `i ≥ ci and institution i ∈ [n]
is therefore initially defaulted, then each institution j ∈ [n] suffers losses of ei,j . This possibly
causes further defaults in the system and so on. Note that we suppose a recovery rate of
zero, which is a conservative yet reasonable assumption because the time horizon of the default
contagion process is short compared to the time the resolution of an insolvent institution takes,
and there is a huge amount of uncertainty about the actual value of an insolvent institution
immediately after its default. One could easily implement other fixed recovery rates in our
model.

Again we can consider the pure default contagion process in rounds. Denoting D(k) ⊆ [n]
the set of defaulted institutions in round k ∈ N0 with D(0) := {i ∈ [n] : 0 ≥ ci − `i} we obtain

D(k) =

i ∈ [n] :
∑

j∈D(k−1)

ej,i ≥ ci − `i

 , k ≥ 1,

and the contagion process ends after at most n−1 rounds. In particular, Dn := D(n−1) consists of
all finally defaulted institutions and Sn =

∑
i∈Dn si amounts to the total final systemic damage

caused by defaults. See [4, 17, 18] for more results on the pure default contagion process.

2.4 The Contagion Process

The focus of this section is on the understanding of the joint effects of fire sales and default
contagion. We therefore combine the two processes from above and again consider contagion in
rounds: Let D(0) = ∅ and σ(0) = 0 ∈ RM . Moreover, for k ≥ 1,

D(k) =

{
i ∈ [n] :

∑
j∈D(k−1)

ej,i ≥ ci − `i − xi · h
(
n−1σ(k−1)

)}
(2.1)

and

σ(k) =
∑
i∈[n]

xi � ρi
(∑

j∈D(k−1)
ej,i + `i + xi · h

(
n−1σ(k−1)

)
ci

)
. (2.2)

Then D(0) ⊆ D(1) ⊆ · · · ⊆ [n] and σ(0) ≤ σ(1) ≤ · · · ≤
∑

i∈[n] xi. We can thus conclude that
the process converges as k → ∞. Let then Dn :=

⋃
k∈ND(k) be the set of finally defaulted

institutions, Sn =
∑

i∈Dn si their systemic importance and χn := n−1 limk→∞ σ(k) the vector of
finally sold shares divided by n.

Lemma 2.1. There exists a smallest solution (Dn,χn) to

D =

{
i ∈ [n] :

∑
j∈D

ej,i ≥ ci − `i − xi · h(χ)

}
, (2.3)

χ = n−1
∑
i∈[n]

xi � ρi
(∑

j∈D ej,i + `i + xi · h(χ)

ci

)
. (2.4)

Moreover, Dn ⊆ Dn and χn ≤ χn.

The case that Dn ( Dn or χn < χn can happen if in the contagion process the sold shares
converge to a vector that would be large enough to cause new defaults or trigger further asset
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sales but is actually never reached in finitely many steps. Then the process converges to a
non-equilibrium state. As for real financial systems the least possible number of sold shares
in each round is lower bounded by 1, this can actually never happen and for all practical
purposes the final set of defaulted institutions is given by Dn, their caused systemic damage by
Sn :=

∑
i∈Dn si and the vector of finally sold shares is given by χn.

Furthermore, in the next section the following explicit lower bound on (Dn,χn) will be
necessary to draw an extensive picture of the contagion process.

Lemma 2.2. Let
◦
ρi be the left-continuous modification of ρi for every i ∈ [n]. Then there exists

a smallest solution (D̂n, χ̂n) to

D =

{
i ∈ [n] :

∑
j∈D

ej,i > ci − `i − xi · h(χ)

}
, (2.5)

χ = n−1
∑
i∈[n]

xi � ◦
ρi

(∑
j∈D ej,i + `i + xi · h(χ)

ci

)
. (2.6)

Moreover, D̂n ⊆ Dn and χ̂n ≤ χn.

Finally, denote Ŝn =
∑

i∈D̂n si. Then altogether, we derive the following statement.

Proposition 2.3. For the set of finally defaulted institutions Dn, their total systemic impor-
tance Sn and the vector χn of finally sold shares divided by n it holds

D̂n ⊆ Dn ⊆ Dn, Ŝn ≤ Sn ≤ Sn, χ̂n ≤ χn ≤ χn.

3 The Stochastic Model

In the previous section, we considered the combined contagion process of fire sales and default
contagion on any explicitly given financial system. In this section, we go one step further and
analyze a whole ensemble of systems simultaneously that share certain statistical character-
istics, i.e. we introduce a random model for the financial system that captures the essential
characteristics observed for real financial systems. This will ultimately help us to understand
which system structures promote global contagion or contain it locally.

In a first step we specify a random model for the inter-institutional exposures ei,j ; we adopt
the multi-type financial network model from [18]. We let the connection probability of two
institutions in the system depend on their respective types – larger within communities or within
cores, smaller between communities and for periphery institutions for instance. Second, we
allow for different exposure distributions between different institution types – larger exposures
between core-institutions for example.

From now on we assume that inter-institutional exposures ei,j are bounded and take integer
values in {0, . . . , R} for some R ∈ N. We refer to [31] for an extension to exposures modelled by
sequences of exchangeable (possibly unbounded) random variables in the multi-type financial
network model. We define a probability measure P on {0, . . . , R}|E|, where E is the set of
possible directed edges E := {(i, j) ∈ [n]2 : i 6= j}. To model random exposures has several
advantages:

1. The network of exposures can change significantly on a microscopic level but as empirical
studies show, the global statistics are reasonably stable (see e. g. [15]).
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2. Often only the aggregated exposures
∑

j∈[n] ei,j are available to the regulator. Since the
individual exposures are unknown it is thus advisable to use the information available
and consider probabilistic samples. Ideally one obtains results that hold for all possible
realizations.

3. A random network is analytically more tractable and provides more understanding of the
impact of the network characteristics on the combined fire sales and contagion process.

Our choice of P has to be such that the generated networks share the characteristics of observed
financial networks. We assume that the global financial system is composed of institutions of
T ∈ N different types in total. Instead of assuming deterministic exposures {ei,j}j∈[n] ⊂ R+,0

as given Item 5. in Subsection 2.1 we now associate to each institution i ∈ [n]:

5’. (a) An institution-type αi ∈ [T ]: This parameter allocates institution i to a certain
subsystem such as country or core/periphery.

5’. (b) A vector of in-weights w−i ∈ R
[R]×[T ]
+,0 : The in-weight w−,r,αi describes the tendency

of institution i to be exposed to an institution of type α with an exposure of size r.

5’. (c) A vector of out-weights w+
i ∈ R

[R]×[T ]
+,0 : The out-weight w+,r,α

i describes the ten-
dency of institutions of type α to be exposed to i with an exposure of size r.

We assume in the following that institutions of the same type have the same sales function.
This still allows to distinguish between different types such as e.g. country, core/periphery,
banks/insurance companies/wealth managers, combinations of the aforementioned, or any other
reasonable segmentation and as noted before is important to account for different regulatory
environments. We denote by ρα the sales function of institutions of type α. The occurrence of
an edge of multiplicity r ∈ [R] (exposure size) going from i to j is then modeled by a Bernoulli
random variable Xr

i,j with success probability

pri,j :=

{
min

{
R−1, n−1w

+,r,αj
i w−,r,αij

}
, if i 6= j,

0, if i = j,
(3.1)

where we assume mutual exclusiveness (
∑

r∈[R]X
r
i,j ≤ 1) respectively independence Xr1

i1,j1
⊥

Xr2
i2,j2

for all r1, r2 and (i1, j1) 6= (i2, j2).
Now consider a collection of financial systems with varying size n. We want to ensure

that their statistical characteristics measured by means of the empirical distribution functions
stabilize as n → ∞. Moreover, we want to prohibit that exposures or asset holdings condense
in one institution.

Assumption 3.1 (Regular Vertex Sequence). Let M ∈ N. For each n ∈ N consider a system
with n institutions and M assets specified by the sequences w−(n) = (w−i (n))i∈[n] of in-weights,

w+(n) = (w+
i (n))i∈[n] of out-weights, x(n) = (xi(n))i∈[n] of asset holdings, s(n) = (si(n))i∈[n]

of systemic importance values, c(n) = (ci(n))i∈[n] of capitals, `(n) = (`i(n))i∈[n] of exogenous
losses and α(n) = (αi(n))i∈[n] of institution types. Then the following shall hold:

(a) Convergence in distribution: For each n ∈ N let the random empirical distribution
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function of the system parameters be denoted by

Fn(w−,w+,x, s, c, `, α)

:= n−1
∑
i∈[n]

∏
r∈[R],β∈[T ]

1
{
w−r,βi ≤ w−,r,β, w+,r,β

i ≤ w+,r,β
}

×
∏

m∈[M ]

1 {xmi ≤ xm}1{si ≤ s, ci ≤ c, `i ≤ `, αi ≤ α},

for w−,w+ ∈ R[R]×[T ]
+,0 , x ∈ RM+,0, s ∈ R+,0, c ∈ R+,0,∞, ` ∈ R+,0 and α ∈ [T ]. Let in the

following (W−
n ,W

+
n ,Xn, Sn, Cn, Ln, An) denote a random vector distributed according to

Fn. Then there exists a distribution function F such that

Fn(w−,w+,x, s, c, `, α)→ F (w−,w+,x, s, c, `, α), as n→∞,

at all continuity points of Fα(w−,w+,x, s, c, `) := F (w−,w+,x, s, c, `, α).

(b) Convergence of means: Denote by (W−,W+,X, S, C, L,A) a random vector dis-
tributed according to the limiting distribution F . Then as n→∞,

E[W−,r,αn ]→ E[W−,r,α] <∞, E[W+,r,α
n ]→ E[W+,r,α] <∞, for all r ∈ [R], α ∈ [T ],

E[Sn]→ E[S] <∞ and E[Xm
n ]→ E[Xm] <∞, for all m ∈ [M ].

Let V = [R]× [T ]2. Define now for z ∈ RV+,0 and χ ∈ RM+,0,

g(z,χ) :=
∑
β∈[T ]

E

[
Sψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

f r,α,β(z,χ) := E

[
W+,r,αψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β, (r, α, β) ∈ V,

fm(z,χ) :=
∑
β∈[T ]

E

[
Xmφmβ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ],

where we abbreviate
Yr,β :=

∑
γ∈[T ]

W−,r,γzr,β,γ , r ∈ [R], β ∈ [T ],

and for {qs}s∈[R] in R+,0 and independent Qs ∼ Poi(qs), s ∈ [R],

ψ(q1, . . . , qR; t) := P

∑
s∈[R]

sQs ≥ t

 ,

respectively the vector

φα(q1, . . . , qR; `, c) := E

[
ρα

(∑
s∈[R] sQs + `

c

)]
, α ∈ [T ].

Let us give an intuitive explanation for the functions g, f r,α,β and fm first. For this we consider
the special case R = T = 1 and start by looking at the fire sales and the default contagion
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process separately.
We start with the default contagion process. Heuristically, for an externally given vector

of asset sales χ, the function f1,1,1(·,χ) describes (in the limit n → ∞) the intensity of the
default contagion process over time. Here time refers to steps in a sequential analysis of the
process, which leads to the same set of defaulted institutions. Let now z̄ ∈ [0,E[W+]] denote
the total out-weight of finally defaulted banks divided by n. Then by the specification of pi,j for
any fixed bank i ∈ [n] the number of incoming edges (exposures) from finally defaulted banks
is given by a random variable Poi(w−,1,1i z̄). Institution i is hence finally defaulted itself if and

only if Poi(w−,1,1i z̄) ≥ ci − `i − xi · h(χ). Summing over all banks in the system we thus derive
the following identity:

z̄ = n−1
∑
i∈[n]

w+,1,1
i 1

{
Poi(w−,1,1i z̄) ≥ ci−`i−xi ·h(χ)

}
≈ E

[
W+,1,1ψ(W−,1,1z̄;C−L−X ·h(χ))

]
,

and therefore f1,1,1(z̄,χ) = 0. Further, the damage by finally defaulted banks is then given by

n−1
∑
i∈[n]

si1
{
`i + Poi(w−,1,1i z̄) +xi · h(χ) ≥ ci

}
≈ E

[
Sψ(W−,1,1z̄, C −L−X · h(χ))

]
= g(z̄,χ).

Hence if fire sales are ignored, meaning the initial capital is simply reduced by a fixed amount
accounting for some externally given sales vector χ, then in order to get the final state of the
system we only need to determine the (first) root z̄ of f1,1,1(·,χ) and plug it into g(·,χ).

Let us now look at the fire sales system with an externally given default contagion result.
For the case of one asset with label 1, fixing the sum of the out-weights of defaulted institutions,
divided by n to be z, then the loss institution i receives due to the liabilities to defaulted banks
is described by the random quantity Poi(w−,1,1i z) and, for continuous ρ1, similarly as in the
derivation of Lemma 2.1, the number of finally sold shares χ̄ solves

χ̄ = n−1
∑
i∈[n]

x1i ρ
1
1

(
`i + Poi(w−,1,1i z) + x1ih

1(χ̄)

ci

)
≈ E

[
X1φ1(W

−,1,1z;L+X1h(χ̄), C))
]
(3.2)

such that χ̄ is a root of f1(z, ·). Moreover, the final systemic importance of defaulted institutions
divided by n is given by

n−1
∑
i∈[n]

si1
{

Poi(w−,1,1i z) + `i + x1ih
1(χ̄) ≥ ci

}
≈ E

[
Sψ(W−,1,1z, C − L−X1h(χ̄))

]
= g(z, χ̄).

(3.3)
So the root χ̄ of f1(z, ·) determines the end of the process and again g yields the damage by
defaulted institutions.

These heuristics show that the joint fire sales and default contagion process should come
to an end at a joint root of the functions f r,α,β, (r, α, β) ∈ V , and fm,m ∈ [M ]. Under some
circumstances, however, if the distribution of (W−,W+,X, S, C, L,A) has atoms and one or
more of the functions ρα, α ∈ [T ], are discontinuous, also the functions f r,α,β and fm might be
discontinuous. Similar as in the previous section, it is then in general not possible to determine
the precise end state of the system. Still we will be able to derive lower bounds on the final
default fraction and the vector of finally sold shares. To this end, define lower semi-continuous
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modifications of g, f r,α,β, (r, α, β) ∈ V , and fm, m ∈ [M ], by

◦
g(z,χ) :=

∑
β∈[T ]

E

[
S
◦
ψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

◦
f r,α,β(z,χ) := E

[
W+,r,α

◦
ψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β , (r, α, β) ∈ V,

◦
fm(z,χ) :=

∑
β∈[T ]

E

[
Xm

◦
φmβ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ],

where as before
Yr,β :=

∑
γ∈[T ]

W−,r,γzr,β,γ , r ∈ [R], β ∈ [T ],

and for {qs}s∈[R] in R+,0 and independent Qs ∼ Poi(qs), s ∈ [R],

◦
ψ(q1, . . . , qR; t) := P

∑
s∈[R]

sQs > t

 ,

and the vector

◦
φβ(q1, . . . , qR; `, c) := E

[
◦
ρβ

(∑
s∈[R] sQs + `

c

)]
, β ∈ [T ],

for
◦
ρβ(u) := limε→0+ ρβ((1− ε)u). Further, let

◦
P0 and P0 the largest connected subsets of

◦
P :=

⋂
(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
fm(z,χ) ≥ 0

}
respectively

P :=
⋂

(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 : f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 : fm(z,χ) ≥ 0

}
that contain (0,0) (note that f r,α,β(0,0) ≥

◦
f r,α,β(0,0) ≥ 0 for all (r, α, β) ∈ V as well as

fm(0) ≥
◦
fm(0) ≥ 0 for all m ∈ [M ] and thus 0 ∈

◦
P and 0 ∈ P ). We will later make use of

the fact that P and P0 are clearly closed sets. Finally, define z∗ ∈ RV+,0 and χ∗ ∈ RM+,0 by

(z∗)r,α,β := sup(z,χ)∈P0
zr,α,β and (χ∗)m := sup(z,χ)∈P0

χm. Then the following holds:

Lemma 3.2. There exists a smallest joint root (ẑ, χ̂) of all the functions
◦
f r,α,β, (r, α, β) ∈ V ,

and
◦
fm, m ∈ [M ]. It holds (ẑ, χ̂) ∈

◦
P0. Further, (z∗,χ∗) as defined above is a joint root of the

functions f r,α,β, fm and (z∗,χ∗) ∈ P0.

The proof is analogue to the one of [19, Lemma EC. 1.]. We can then describe the final
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default fraction and the number of sold shares asymptotically as n→∞ in terms of (ẑ, χ̂) and
(z∗,χ∗).

Theorem 3.3. Consider a financial system that fulfills Assumption 3.1. Then for the final
systemic damage n−1Sn and χmn , the number of finally sold shares of asset m ∈ [M ] divided by
n, it holds

◦
g(ẑ, χ̂) + op(1) ≤ n−1Sn ≤ g(z∗,χ∗) + op(1),

χ̂m + op(1) ≤ χmn ≤ (χ∗)m + op(1).

In particular, for the final price impact hm(χn) on asset m ∈ [M ] it holds

hm(χ̂) + op(1) ≤ hm(χn) ≤ hm(χ∗) + op(1).

In most cases, (ẑ, χ̂) and (z∗,χ∗) will coincide and
◦
g(ẑ, χ̂) = g(z∗,χ∗). Theorem 3.3 then

describes the limits in probability of χn and n−1Sn for n → ∞. Note that the final default
fraction can be obtained from the theorem by choosing S ≡ 1.

4 Resilient and Non-resilient Systems

Our results from the previous section allow us to compute the final state of a system that was
initially hit by some exogenous shock starting a cascade of default contagion and fire sales. We
shall now go one step further and describe the vulnerability of an initially unshocked system to
small shocks. We achieve this goal by considering shocks L of different magnitude on the same
initially unshocked system described by (W−,W+,X, S, C,A). In the following, if we use the
notations g,

◦
g, z∗ and χ∗ from Section 3 we mean the unshocked system with L ≡ 0.

Our notion of resilience is related to the one for pure fire sales in [19] and this section uses
and extends ideas and methods from [19, Section 3].

4.1 Resilience

When it comes to regulation of a financial system, one desirable property is the capability
to absorb local shocks rather than amplify them through large parts of the system. In our
asymptotic model we can consider arbitrarily small shocks L and the following natural notion
of resilience emerges: when considering initial shocks L such that E[L/C] → 0, then a system
is called resilient if also the induced asymptotic final damage n−1Sn,L tends to 0.

Here and in the following we say that a sequence of events (En)n∈N holds with high probability
(w. h. p.) if P(En)→ 1, as n→∞.

Definition 4.1 (Resilience). A financial system (W−,W+,X, S, C,A) is said to be resilient,
if for each ε > 0 there exists δ > 0 such that for all L with E[L/C] < δ it holds n−1Sn,L ≤ ε
with high probability.

While this definition (and Corollary 4.3 below) is concerned with the final systemic damage
only, the following theorem also investigates the number of sold shares of the assets (and hence
the price impacts which also affect the wider economy) in the limit E[L/C]→ 0.

Theorem 4.2. For each ε > 0 there exists δ > 0 such that for all L with E[L/C] < δ the final
damage by defaulted institutions n−1Sn,L and the number nχmn,L of finally sold shares of asset
m ∈ [M ] in the shocked system satisfy w. h. p.

n−1Sn,L ≤ g(z∗,χ∗) + ε and χmn,L ≤ (χ∗)m + ε, m ∈ [M ].
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In particular, we derive the following resilience criterion.

Corollary 4.3 (Resilience Criterion). If g(z∗,χ∗) = 0, then the system is resilient.

It is thus sufficient for resilience if (z∗,χ∗) = (0,0) or equivalently P0 = {(0,0)}. If,
however, g(z∗,χ∗) = 0 while χ∗ 6= 0, then Corollary 4.3 still ensures that the final systemic
damage stays small and the system is resilient by Definition 4.1, while a large fraction of shares
of assets is sold due to fire sales as a reaction to small local shocks – see Theorem 4.6 below.

Remark 4.4. Let us compare our results with those obtained in combined default contagion
and fire-sales analysis in an Eisenberg-Noe setting as for example performed in [13], [34] and [6]:
Although there are differences in the details of the contagion process and the exact specification
of fire-sales, our deterministic setup in Section 2 and our Proposition 2.3 shares similarity with
the setup of extended Eisenberg-Noe models and existence results of a greatest and lowest
clearing vector in that literature. However, the results in Section 3 depart from this setting by
analyzing the stochastic model and n→∞ limits. Due to the asymptotic analysis one gains a) a
description of the final default set and the number of sold assets as a fixpoint equation of reduced
dimension (Theorem 3.3) and b) a classification of resilience (in particular Theorem 4.2) which
is not possible in the deterministic setting. While, our setup ignores possible intervention by
regulators, the idea behind our Definition 4.1 of resilience is that the financial system is stable
enough such that in case a cascade starts, intervention is not necessary because amplification
effects are small. The results serve as a guideline for the design of regulatory requirements that
ensure that the financial system has the desirable property that intervention is not necessary in
case of a shock. This is in contrast to the analysis in [6] where the authors provide an analytical
framework to measure the size of the amplification, and thus the conditions under which the
threat of a regulator of not intervening is credible.

4.2 Non-resilience

We now aim at characterizing non-resilient systems. For this note that our fire sales model used
here is in itself a conservative model as for each institution i ∈ [n] the entire asset holdings xi are
exposed to the price impact h(χn). It therefore ignores intermediate sales at a more favorable
asset price level. We refer to [19] for more discussion on and a treatment of intermediate sales.
The following results still give a first indication of non-resilience for general financial systems.

We consider shocks of the form `i ∈ {0, 2ci} such that P(L = 2C) > 0 and L/C is inde-
pendent of (W−,W+,X, S, C,A). It may seem odd at first to choose `i = 2ci (or any other
multiple strictly larger than 1) instead of `i = ci to express the default of institution i. The
reason is that in the proof of Theorem 4.6 below we want to use Theorem 3.3 which only con-
siders the limiting random vector (W−,W+,X, S, C, L,A). It would then be possible that
L = C in the limit n → ∞ while Ln < Cn almost surely for all n ∈ N. This situation would
not be distinguishable from Ln = Cn for all n ∈ N and in order to derive meaningful results in
Theorem 4.6 we have to choose `i > ci. Since

◦
ρβ(u) = ρβ(u) = ρβ(1) for all u > 1, β ∈ [T ], this

does not affect the contagion process.
In contrast to Definition 4.1 of resilience, we call a financial system non-resilient if any small

shock causes a lower bounded linear damage by bankrupt institutions.

Definition 4.5 (Non-resilience). A financial system is said to be non-resilient if there exists
∆ > 0 such that n−1Sn,L > ∆ w. h. p. for any L with the above listed properties.

The following theorem identifies lower bounds for the final default fraction and sold shares.
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Theorem 4.6. If the initial shock L satisfies above properties and hm(χ) is strictly increasing
in χm for all m ∈ [M ], then for any ε > 0 w. h. p.

n−1Sn,L > ◦
g(z∗,χ∗)− ε and χmn,L > (χ∗)m − ε.

The assumption on h(χ) is a rather mild one and is satisfied for all standard choices for
price impact functions such as linear price or log-linear price impact.

Corollary 4.7 (Non-resilience Criterion). If hm(χ) is strictly increasing in χm for all m ∈ [M ]
and

◦
g(z∗,χ∗) > 0, then the system is non-resilient.

For most practical purposes Corollaries 4.3 and 4.7 hence fully determine whether a financial
system is resilient or non-resilient.

5 Applications & Simulations

In this section, we provide two applications of our theory. Example 5.1 has a twofold purpose:
it demonstrates the joint impact of default contagion and fire sales. The model parameters are
chosen in such a way that the financial system would be resilient with respect to either one
of them but non-resilient with respect to their combination. Further, we provide simulations
for finite networks in this setting to confirm the applicability of our asymptotic results also for
reasonably sized financial systems. In Example 5.2, we derive sufficient capital requirements
for very general combined financial systems of default contagion and fire sales. This extends
results from [20] for pure default contagion and from [19] for pure fire sales. From a regulator’s
viewpoint, capital requirements are the main tool to manage the risk of financial institutions.
Traditionally, sufficient capital requirements are computed for each institution on a stand-alone
basis by applying some (univariate) monetary risk measure like for example Value-at-Risk or
Expected Shortfall. However, this approach fails to capture systemic effects, and a recent line
of research aims at rectifying this deficiency by determining system-wide capital requirements
based on various types of systemic (multivariate) monetary risk measures.

Historically, the first approach to systemic risk measures was to apply a univariate (mone-
tary) risk measure to some aggregated system-wide risk factor, see [12, 30, 27] for an axiomatic
characterization of this family of systemic risk measures. Capital requirements for individual
institutions must then be computed by some rule to allocate the total systemic risk capital.
An alternative approach is to determine the total systemic risk by computing sufficient capi-
tal requirements on an institutional level before aggregating to a system-wide risk factor, see
[5, 7, 22]. In this context an important but difficult question is whether from an institutional
point of view the systemic capital requirements correspond to fair shares of the overall systemic
risk, see e.g. [7]. In particular, one of the major problems in the implementation of the method-
ologies proposed in the literature mentioned above would be the fact that a given individual
systemic capital requirement in general depends on the configuration of the complete system.
As a consequence, one institution’s capital requirement might be manipulated by other insti-
tutions’ behaviour, or the entrance of a new institution into the system would potentially alter
the capital requirements of all other institutions (even without direct business relations), for
example.

One important contribution of the asymptotic methodology proposed in this paper is that,
besides certain global parameters that need to be determined by a regulating institution, the
implied systemic capital requirement for a given institution i ∈ [n] only depends on its asset
holdings xi and its in-weights w−,r,αi , which can be thought of as in-degrees, see [20]. They are
thus very transparent and can be computed locally by the institutions themselves as they only
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depend on the institutions’ own business decisions. This prevents institutions from manipulating
their own or others’ capital requirements and enables a fair allocation of systemic risk in the
financial network. For simplicity we assume S ≡ 1 throughout this section and hence consider
the final default fraction as the measure of systemic damage.

Example 5.1. Consider a financial system with R = T = M = 1. For simplicity we omit
superscripts throughout this example where appropriate. Let w−i = w+

i = xi for each i ∈ [n] and
W− = W+ = X be Pareto distributed with density fX(x) = 2x−31{x ≥ 1}. Further, let ci = 3.5
for each i ∈ [n] and in particular C = 3.5. Finally assume h(χ) = 1−e−χ and ρ(u) = 1{u ≥ 1},
that is banks sell assets at default only.

Since ci > 3, the system without fire sales would then be resilient (see [20, Theorem 3.7]).
Also the pure fire sales system without loans would be resilient by [19, Corollary 1.] since for
χ ≤ h−1(3.5)

f(χ) = E[X1{X ≥ 3.5/h(χ)}]− χ =

∫ ∞
3.5/h(χ)

2x−2dx− χ =
4

7
h(χ)− χ =

4

7

(
1− e−χ

)
− χ

and hence f ′(0) = −3/7 < 0. However, for the combined contagion system we derive that

f1,1,1(z, χ) = 2 + 2z

(
Ei

(
− 7z

2h(χ)

)
− Ei

(
− 5z

2h(χ)

))
+

4h(χ)

7
e
− 7z

2h(χ) + ze
− 3z

2h(χ) − (z + 2)e−z

− z

3

(
−e−

z
2h(χ)

(
z

2h(χ)
+ 1

)
+ e−z(z + 1)

)
1{χ ≤ log 2} − z,

f1(z, χ) = f0(z, χ) + z − χ,

where Ei(x) :=
∫ x
−∞ t

−1etdt denotes the exponential integral. In particular, f1,1,1(z, z) = f1(z, z)
and

d

dz
f1,1,1(z, z)

∣∣
z=0

= −1

3
+

1

2
e−

1
2 + e−

3
2 +

4

7
e−

7
2 + 2

(
Ei

(
−7

2

)
− Ei

(
−5

2

))
≈ 0.2462 > 0.

Hence the directional derivatives of f1,1,1 and f1 in direction (1, 1) are both positive and thus
z∗ > 0 and χ∗ > 0. See Figure 2 for an illustration.

More precisely, we numerically determine (z∗, χ∗) ≈ (0.992, 0.992) and since g(z, χ) =
◦
g(z, χ)

is given by

g(z, χ) = 1 + z2
(

2Ei

(
− 5z

2h(χ)

)
− Ei

(
− 3z

2h(χ)

)
− Ei

(
− 7z

2h(χ)

))
− (z + 1)e−z

+
2h(χ)

7

(
2h(χ)

7
− z
)
e
− 7z

2h(χ) +
4

5
zh(χ)e

− 5z
2h(χ) +

z2

3

(
e
− z

2h(χ) − e−z
)

1{χ ≤ log 2}

a lower bound on the final default fraction is asymptotically given by g(z∗, χ∗) ≈ 29.24%. The
combined system is thus non-resilient.

If we let each bank in the system initially default with probability p = 1%, then we can

determine (ẑp, χ̂p) = (z∗p , χ
∗
p) ≈ (1.028, 1.028) as the unique joint root of the functions

◦
f0(z, χ) =

f1,1,1p (z, χ) = (1− p)f1,1,1(z, χ) + p(2− z) and
◦
f1(z, χ) = f1p (z, χ) = (1− p)f1(z, χ) + p(2− χ).

Plugging it into
◦
gp(z, χ) = gp(z, χ) = (1 − p)g(z, χ) + p yields an asymptotic final fraction of

31.32%.
To verify this result for finite systems, we performed 105 simulations on systems of sizes

between 102 and 104 (1000 simulations for every multiple of 100) as well as 105 simulations
on systems of sizes between 103 and 105 (1000 simulations for every multiple of 1000), where
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Figure 2: Plot of the root sets of the functions f1,1,1(z, χ) (blue) and f1(z, χ) (orange). Solid:
the unshocked functions. Dashed: the shocked functions. In grey the set P = P0

we drew xi randomly according to the limiting distribution of X. Figure 3 shows the mean
over all 1000 simulations as an orange curve. Additionally, 100 simulations for every system
size are depicted by blue dots. The theoretical final fraction of 31.32% is drawn as a red line.
While for small n only few simulations ended in a final default fraction significantly larger than
p = 1% and those which did were considerably higher than the theoretical value of 31.32%, as
n becomes larger, the average final fraction converges to 31.32% and the deviation around this
value becomes smaller and smaller. Already for n ≈ 4, 000 the simulated and the theoretical
results are considerably close.

Example 5.2 (Capital Requirements). In the previous example we considered the case that
ρ(u) = 1{u ≥ 1}, i.e. sales at default only. Intermediate sales will make the system less resilient,
and we shall consider such an example now. We choose ρ(u) = 1 ∧ uq for some q > 0. We
consider one asset only and the parameter q could be understood as a measure for the banks’
confidence in the asset. Further, assume that the price impact is h(χ) = Θ(χν) for small χ
and ν ≥ q−1, i. e. there exist constants µ1, µ2 ∈ (0,∞) such that µ1χ

ν ≤ h(χ) ≤ µ2χ
ν for

χ ≤ χ0 small enough. The generalization to multiple assets is straight forward in analogy to
[19, Corollary 5.].

The distribution of asset holdings is assumed to have a power law tail in the sense that
1− FX(x) = Θ(x1−β) for some β ∈ (2,∞), i. e. there exist constants B1, B2 ∈ (0,∞) such that
B1x

1−β ≤ 1− FX(x) ≤ B2x
1−β for x ≥ x0 large enough.

First assume that R = T = 1. Recall then from [20, Theorem 3.11] the sufficient (and
necessary) capital requirements for a pure default contagion model without fire sales: Assume
1− FW±(w) ≤ (w/K±)1−β

±
for constants K± ∈ (0,∞) and β± > 2, and for w ≥ w0 ∈ R+.

That is, the tails of the distributions of W− and W+ are at most of power β− resp. β+. If we

let γc := 2 + β−−1
β+−1 − β− and ci = c(w−i ) for each bank i ∈ [n] with c : R+,0 → (1,∞), then the

(pure default contagion) system is resilient if either γc < 0, γc > 0 and lim infw→∞w
−γcc(w) >

β+−1
β+−2K

+(K−)1−γc =: αc or γc = 0 and lim infw→∞ c(w) > αc+ 1. It thus makes sense to define

capital requirements cdir(w) = max{2, αwγ} for some constants α > αc and γ ≥ γc.
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Figure 3: The simulation outcomes for systems as described in Example 5.1. In blue single
outcomes, in orange the mean over all outcomes and in red the theoretical asymptotic final
fraction.

Adding the capital requirements cdir against direct contagion to the sufficient capital require-
ments cind(x) = θx against fire sales (indirect contagion) found in [19, Corollary 4.], we thus
get the combined capital requirement ci ≥ c(w−i , xi) for each i ∈ [n], where

c(w, x) = max{2, αwγ}+ θx.

In fact, we can show that these capital requirements make the combined system resilient: It holds

f1(0, χ) = E
[
X min

{
1,

(
Xh(χ)

C

)q}]
− χ < 0

for χ > 0 small enough since C ≥ θX. Since f1(z, χ) is continuous in z for fixed χ, we can then
choose z > 0 small enough such that still f1(z, χ) < 0. Furthermore, it holds for χ < h−1(θ)
and z > 0 small enough that

f1,1,1(z, χ) ≤ E
[
W+P

(
Poi(W−z) ≥ max

{
2, α(W−)γ

})]
− z < 0

by resilience of the pure default contagion system (see the proof of [20, Theorem 3.11]). By
definition of (z∗, χ∗) we can then conclude z∗ < z and χ∗ < χ. However, z and χ can be chosen
arbitrarily small and thus z∗ = χ∗ = 0. The combined system is then resilient by Corollary 4.3.

6 Model Estimation Procedure

Our model describes how distress propagates through financial systems by default contagion and
fire sales. The previous section shows that our analytic results, although derived asymptotically
for large systems, approximate cascades in finite systems well. When using our model to analyze
the stability of some observed real financial network, however, it is clearly necessary to calibrate
the used model parameters to observed quantities. For this reason, we shall discuss how such a
calibration can be achieved.

We start with the type assignment. One of the core assumptions of our model is the classi-
fication of institutions into certain blocks by their type. While this assignment can be obvious
with regard to certain institution characteristics such as its business model (retail bank, hedge
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fund, insurance company, etc.) or its geographical location, other traits can be more challenging
to detect and require a more sophisticated calibration. In particular, we need to group institu-
tions into communities and identify core-periphery structures to describe real financial networks
in a proper way. The literature on such detection algorithms, however, is well developed. See
for example [8, 14, 16, 23, 36, 37], respectively [28, 33].

Having assigned a certain institution type to all members of the financial system, the next
challenge is the choice of vertex weight parameters for each of them. In the following, we propose
an estimation of weights based on likelihood maximization. For this purpose, we assume that
for each institution the distribution of its exposures r = 1 . . . R towards institutions of a given
type is known. Note that the (distribution of) exposures might not be directly observable and
possibly need to be estimated.

In our model for any two types α, β ∈ [T ] and r ∈ [R] a subsystem of links is induced
(all links of exposure size r going from an α-institution to a β-institution) and the calibration

of {w+,r,β
i , w−,r,αj }i,j∈[n] :αi=α,αj=β is independent from all other subsystems. To simplify the

discussion in the following, we thus consider a one-type (T = 1) system with constant exposure
of 1 (R = 1) and abbreviate w±,1,1i by w±i . By the same methods any other subsystem can be
calibrated to observed data.

First note that for a networkG of size n with edge set E(G) the likelihood of weight sequences
w− = (w−1 , . . . , w

−
n ) and w+ = (w+

1 , . . . , w
+
n ) is given by

L(w−1 , w
+
1 , . . . , w

−
n , w

+
n | E(G)) =

∏
(i,j)∈E(G)

(
w+
i w
−
j

n
∧ 1

) ∏
(i,j)6∈E(G)

i 6=j

(
1−

w+
i w
−
j

n
∧ 1

)
.

One can always derive the maximum-likelihood estimators ŵ−1 , . . . , ŵ
−
n , ŵ

+
1 , . . . , ŵ

+
n by numer-

ically maximizing L. In order to obtain some intuition about them, we further want to derive
an approximation of the estimators. For this, we assume that w+

i w
−
j � n for all i, j ∈ [n]

which is a reasonable assumption at least when W+, W− are square-integrable. We can hence
approximate

L(w−1 , w
+
1 , . . . , w

−
n , w

+
n | E(G)) ≈ 1

ns

∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)
,

where s :=
∑

i∈[n] d
−
i =

∑
i∈[n] d

+
i , and d−i and d+i are the in and out degree of institution i,

respectively. By the product form w+
i w
−
j in (3.1), we are free to multiply all out-weights w+

i by

some constant η if, at the same time, we multiply all in-weights by its inverse η−1. Motivated by
the fact that

∑
i∈[n] d

−
i =

∑
i∈[n] d

+
i , we use this degree of freedom to set

∑
i∈[n]w

−
i =

∑
i∈[n]w

+
i

and want to maximize the approximated likelihood function under this constraint. (Other
constraints, such as

∑
i∈[n]w

−
i = const, are also possible and lead to the same result in the

end.) By Lagrange’s multiplier method this leads to a maximization of

∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)
+ λ

∑
k∈[n]

w−k − w+
k

 .
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Differentiating with respect to w−l resp. w+
l for all l ∈ [n], we are left with solving the equations

0 =
∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)(
d−l
w−l
−
∑

k∈[n]w
+
k

n

)
+ λ

respectively

0 =
∏
i∈[n]

(
w−i
)d−i (w+

i

)d+i exp

(
−w+

i

∑
j∈[n]w

−
j

n

)(
d+l
w+
l

−
∑

k∈[n]w
−
k

n

)
− λ.

In particular, d−l /w
−
l resp. d+l /w

+
l must be independent of l and we can thus find constants λ−

and λ+ such that w−l = λ−d−l and w+
l = λ+d+l . Using the constraints

∑
i∈[n]w

−
i =

∑
i∈[n]w

+
i

and
∑

i∈[n] d
−
i =

∑
i∈[n] d

+
i , we obtain that λ = 0 and λ− = λ+ =

√
n/
∑

i∈[n] d
−
i such that the

approximated likelihood function is maximized by

w−i = d−i

√
n∑

j∈[n] d
−
j

, w+
i = d+i

√
n∑

j∈[n] d
−
j

.

That is, the approximated weight estimators are proportional to the observed degrees and only
normalized in a certain sense.

The smaller the observed fraction maxi,j∈[n] d
+
i d
−
j /
∑

k∈[n] d
−
k , the better is above approxi-

mation of w+
i w
−
j = d+i d

−
j n/

∑
k∈[n] d

−
k � n. On networks where maxi,j∈[n] d

+
i d
−
j /
∑

k∈[n] d
−
k is

large, w− and w+ have to be estimated numerically. After each institution has been assigned
a type αi according to one of the above cited methods and their weights w−i and w+

i have
been estimated, it remains to fit a multivariate distribution to the empirical distribution of
{(w−i ,w+

i , ci, αi)}i∈[n] in order to completely determine the distribution of (W−,W+, C,A).

7 Discussion

In this paper we propose an asymptotic model to analyze contagion in financial networks.
It combines two important channels of contagion: default contagion and fire sales. It can be
specified by the joint distribution of capital, asset holdings, network liabilities and other relevant
quantities. There is no restriction on the joint distribution of the parameters except that we
require existence of a first moment. This makes the model rather general and, thanks to its
asymptotic nature, allows the parameters of the model to be chosen from all kinds of distribution
as Pareto, Exponential, Gamma or Fréchet to name just a few. The sales functions ρα, α ∈ [T ]
allow to specify (and test accordingly) different regulatory environments. For example in a
crisis, a regulator could use the model as a decision guidance to decide whether to suspend
the enforcement of certain leverage requirements in order to stop a contagion spiral driven
by asset sales, aimed to fulfil them. See [13] for a discussion of events that triggered such
regulatory actions in the past. Moreover, the model serves as a decision tool for the search
of the most favourable financial systems and regulatory environments. The results provided
in Theorems 3.3, 4.2 and 4.6 allow to test different stress scenarios easily without complicated
and computationally heavy simulation of the entire contagion process. Only the functionals
g, fm and f r,α,β have to be calculated, which (if an analytic expression is not available for the
chosen parameters) can always be done via simple Monte Carlo simulation. As we have seen
in Examples 5.1 and 5.2, in some situations conclusions about resilience can even be derived
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without any simulation, on a purely analytic level.
Despite the generality of the model, results have to be taken with some caution. While it is a

first step towards an integrated model within the asymptotic framework, it is not a fully fledged
systemic risk analysis aiming to provide precise numerical predictions about the contagion
outcome triggered by certain stress scenarios. Still, we believe that it serves as valuable tool for
comparison of different regulatory measures and for identifying preferable structures of financial
systems. Some of the most crucial simplifications of our model are:

• Conservative: The model is conservative in several regards: The recovery rate of de-
faulted institutions is assumed to be zero. This can be considered a reasonable assumption
in the short term, considering that the resolution of defaulted institutions takes time. For
example, the resolution of Lehman Brothers took over 10 years, and in a bond auction for
the settlement of credit default swaps written on Lehman Brothers just three weeks after
its default the realized recovery rate only amounted to 8.625% [1]. We remark, however,
that all results in our model can be derived analogously for any other exogenously given
(but possibly institution-dependent) recovery rate. Similarly, the fire-sales process is con-
servative as xi ·h(χ) serves only as an upper bound to the loss experienced by institution
i after χ shares have been sold.

• Asset purchase The model does not feature buyers who might jump in to profit from
buying assets that have devalued due to the fire-sale spiral. These buyers are most likely
part of the non-banking sector and serve as crucial liquidity providers as shown in [11].
While our block model allows to include these institutions even if they do not participate in
the interbank lending market and are not selling assets, their positive effect as a liquidity
provider can only be incorporated via the specification of the function h. Modelling asset
purchases in an endogenous way, however, is not possible within our current model.

• Missing channels The model ignores other important channels of contagion as for ex-
ample cross-holdings, liquidity contagion or bank runs.

• Static: While the model considers different rounds of contagion, it is static in the sense
that model parameters are not changing over time. Due to the asymptotic nature varia-
tions on a local level are not likely to change the outcome as long as global characteristics
are not changing. However, in a crisis, the entire system might change and adapt to the
new environment.

• Systemically Important Financial Institutions Assumption 3.1 of a regular vertex
sequence ensures that as n → ∞ the number of vertices with certain parameters stabi-
lizes. This, together with the first moment assumption in 3.1 and the specification of link
probabilities (3.1), has the consequence that the influence of a finite set of institutions
vanishes as n → ∞. This might seem at odds with the idea that a small set of banks
is systemically important and might have to be regulated differently. In our framework
however, it is more natural to think of a small fraction of banks (of size εn) to be system-
ically important. Within our block model framework one could then assign to them their
own block αSIFI and ensure that (W−,W+) is specified such that Systemically Important
Financial Institutions build significantly more links than other institutions.

Some of the simplifications mentioned give rise to future investigations. Also, this paper focuses
on the theoretical foundations, accompanied by a simulation study to show the accuracy of the
asymptotic results for finite networks. While we study the implications of our model for few
stylized examples, it is beyond the scope of the current paper and left for future research to apply
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this model to the many different possible settings. In particular the relatively advanced block
model setup for the liability network allows to analyze many interesting shock distributions.
To name just a few examples, one could analyze shock distributions targeting institutions of
certain size only, institutions under certain regulatory requirements, institutions with large asset
holdings or only institutions participating in the interbank market.

8 Appendix

8.1 Proofs for Section 2

Proof of Lemma 2.1. Existence of a smallest solution (Dn,χn) follows from the Knaster-Tarski
theorem.

Clearly, ∅ = D(0) ⊆ Dn and 0 = σ(0) ≤ χn. So let us inductively assume that D(k) ⊆ Dn
and n−1σ(k) ≤ χn for some 0 < k ∈ N. Then

D(k+1) =

{
i ∈ [n] :

∑
j∈D(k)

ej,i ≥ ci − `i − xi · h(n−1σ(k))

}

⊆
{
i ∈ [n] :

∑
j∈Dn

ej,i ≥ ci − `i − xi · h(χn)

}
= Dn

and

n−1σ(k+1) = n−1
∑
i∈[n]

xi � ρi
(∑

j∈D(k)
ej,i + `i + xi · h

(
n−1σ(k)

)
ci

)

≤ n−1
∑
i∈[n]

xi � ρi
(∑

j∈Dn ej,i + `i + xi · h (χn)

ci

)
= χn.

In particular, this shows that Dn =
⋃
k∈ND(k) ⊆ Dn and χn = n−1 limk→∞ σ(k) ≤ χn.

Proof of Lemma 2.2. Existence of a smallest solution (D̂n, χ̂n) follows from the Knaster-Tarski
theorem. Consider now the adjusted contagion process D̃(0) = D(0) = ∅, σ̃(0) = σ(0) = 0 and

D̃(k) =

{
i ∈ [n] :

∑
j∈D̃(k−1)

ej,i > ci − `i − xi · h
(
n−1σ̃(k−1)

)}
(8.1)

respectively

σ̃(k) =
∑
i∈[n]

xi � ◦
ρi

(∑
j∈D̃(k−1)

ej,i + `i + xi · h
(
n−1σ̃(k−1)

)
ci

)
, (8.2)

for k ≥ 1. This process converges and clearly it holds

D̃n :=
⋃
k∈N
D̃(k) ⊆

⋃
k∈N
D(k) = Dn and χ̃n := n−1 lim

k→∞
σ̃(k) ≤ n−1 lim

k→∞
σ(k) = χn.

We will now show that (D̃n, χ̃n) is a solution to (2.5) and (2.6) such that in particular
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D̂n ⊆ D̃nDn and χ̂n ≤ χ̃n ≤ χn. Clearly,

D̃(k) =

{
i ∈ [n] :

∑
j∈D̃(k−1)

ej,i > ci − `i − xi · h(n−1σ̃(k−1))

}

⊆
{
i ∈ [n] :

∑
j∈D̃n

ej,i > ci − `i − xi · h(χ̃n)

}

and thus

D̃n =
⋃
k∈N
D̃(k) ⊆

{
i ∈ [n] :

∑
j∈D̃n

ej,i > ci − `i − xi · h(χ̃n)

}
.

On the other hand, if for i ∈ [n] it holds∑
j∈D̃n

ej,i > ci − `i − xi · h(χ̃n),

then by continuity of h we find k ∈ N large enough such that∑
j∈D̃n

ej,i > ci − `i − xi · h(n−1σ̃(k)).

Without loss of generality assume that k is large enough such that D̃(k) = D̃n. Then in particular

i ∈ D̃(k) = D̃n and

D̃n =

{
i ∈ [n] :

∑
j∈D̃n

ej,i > ci − `i − xi · h(χ̃n)

}
.

That is, D̃n and χ̃n solve (2.5). Moreover, they solve (2.6) as

χ̃n = n−1 lim
k→∞

σ̃(k) = n−1 lim
k→∞

∑
i∈[n]

xi � ◦
ρi

(∑
j∈D̃(k−1)

ej,i + `i + xi · h(n−1σ̃(k−1))

ci

)

= n−1
∑
i∈[n]

xi � ◦
ρi

(∑
j∈D̃n ej,i + `i + xi · h(χ̃n)

ci

)

where we used left continuity of h,
◦
ρi, i ∈ [n], and the fact that D̃(k) = D̃n for k large enough.

8.2 Proofs for Section 3

We first consider the special case, summarized in the following definition, where the weights,
asset holdings, systemic importance levels, capitals and exogenous losses take only finitely many
different values.

Definition 8.1 (Finitary Regular Vertex Sequence). A regular vertex sequence (see Assumption
3.1) denoted by (w−(n),w+(n),x(n), s(n), c(n), `(n),α(n))n∈N is called finitary if there exist

J ∈ N and a finite set {(w̃−j , w̃+
j , x̃j , s̃j , c̃j ,

˜̀
j)}j∈[J ] ⊂ R[R]×[T ]

+,0 × R[R]×[T ]
+,0 × RM+,0 × R+,0 ×

R+,∞ × R+,0 such that for all n ∈ N and i ∈ [n], there exists j = j(n, i) ∈ [J ] such that
(w−i ,w

+
i ,xi, si, ci, `i) = (w̃−j , w̃

+
j , x̃j , s̃j , c̃j ,

˜̀
j). Denote in the following

pβj (n) := P(W−
n = w̃−j ,W

+
n = w̃+

j ,Xn = x̃j , Sn = s̃j , Cn = c̃j , Ln = ˜̀
j , An = β)
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and

pβj = lim
n→∞

pβj (n) = P(W− = w̃−j ,W
+ = w̃+

j ,X = x̃j , S = s̃j , C = c̃j , L = ˜̀
j , A = β).

We can then prove a version of Theorem 3.3 for the finitary case:

Theorem 8.2. Consider a financial system described by a finitary regular vertex sequence.
Then for the final systemic damage n−1Sn and χmn , the number of finally sold shares of asset
m ∈ [M ] divided by n, it holds

◦
g(ẑ, χ̂) + op(1) ≤ n−1Sn ≤ g(z∗,χ∗) + op(1),

χ̂m + op(1) ≤ χmn ≤ (χ∗)m + op(1).

In particular, for the final price impact hm(χn) on asset m ∈ [M ] it holds

hm(χ̂) + op(1) ≤ hm(χn) ≤ hm(χ∗) + op(1).

The difficulty for this problem lies in the fact that the functions f r,α,β are discontinuous in
χ. That is, there exist values for χ (sold assets) at which a linear fraction of banks defaults.
However, f r,α,β is discontinuous at (z,χ) only if (c̃j − ˜̀

j − x̃j · h(χ)) ∈ N for some j ∈ J and
there are hence only finitely many (possibly degenerated) hyperplanes of discontinuities.

Proof. We start with the proof of the lower bounds. That is, for arbitrary ε > 0 we will show
that n−1Sn ≥ n−1Ŝn ≥ (1− ε) ◦g(ẑ, χ̂) and χmn ≥ χ̂mn ≥ (1− ε)χ̂m w. h. p. We therefore consider
the contagion process given by rounds (i’) and (ii’). That is, we first consider a cascade of
default contagion. Once this cascade has ended (after at most n − 1 steps) we start a cascade
of fire sales and so on.

In order to quantify the default contagion cascade we use [31, Theorem 3.2.4.], which extends
the setting in [18] for systemic importance. That is, if we denote by ẑ1 ∈ RV+,0 the smallest
vector such that

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ1

 > C − L

1{A = β}

 = ẑr,α,β1

for all (r, α, β) ∈ V , then the systemic importance of finally defaulted banks is bounded by

(1− δ)n
∑
β∈[T ]

E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ1

 > C − L

1{A = β}


from below w. h. p. for any fixed δ > 0. In fact, by finitariness of the system we can find θ > 0
small enough such that

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 > C − L

1{A = β}


= E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ dC − L+ θe

1{A = β}


(note that dC − L+ θe is the weak limit of dCn − Ln + θe again by finitariness) and we are
thus in the setting of [18]. However, while [31, Theorem 3.2.4.] focuses on the systemic damage
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due to defaulted banks only, here it is also important to keep track of all losses due to defaults.
In fact, the proof of [31, Theorem 3.2.4.] for finitary systems shows that the number qβj,k of
institutions of class j and type β with a total edge weight from finally defaulted neighbors of
at least k ≤ c̃j is lower bounded by

(1− δ)npβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

 ≥ k


w. h. p. for δ > 0. Since in this part of the proof we are interested in lower bounds, we as-
sume in the following that qβ

j,dc̃j−˜̀
je

= (1 − δ)npβj P(
∑

s∈[R] sPoi(
∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1 ) ≥ dc̃j −

˜̀
je), qβj,k = (1 − δ)npβj P(

∑
s∈[R] sPoi(

∑
γ∈[T ] w̃

−,s,γ
j ẑs,β,γ1 ) = k) for 1 ≤ k < dc̃j − ˜̀

je, and

qβj,0 = npβj (n)−∑dc̃j−˜̀
je

k=1 qβj,k w. h. p. That is, we increase the losses due to default contagion.
Next, we want to use [19, Theorem EC. 1.] to quantify the impact of the round of fire sales.

We need to consider losses (and defaults in particular) due to the previous default contagion
cascade. That is, we need to add to the exogenous losses `i the edge weight from defaulted
debtors of each bank i ∈ [n]. This leads to a new loss vector

(
`′i
)
i∈[n]. Note that we can set

`′i = ˜̀
j + dc̃j − ˜̀

je if i is of type j and the total edge-weight k from finally defaulted debtors of
i is larger or equal to dc̃j − ˜̀

je. Denoting by L′n a random vector distributed according to the
empirical distribution function of

(
`′i
)
i∈[n], we thus derive that w. h. p.

P
(
W−

n = w̃−j ,W
+
n = w̃+

j ,Xn = x̃j , Sn = s̃j , Cn = c̃j , L
′
n = ˜̀

j + k,An = β
)

=


(1− δ)pβj P

(∑
s∈[R] sPoi

(∑
γ∈[T ] w̃

−,s,γ
j ẑs,β,γ1

)
≥
⌈
c̃j − ˜̀

j

⌉)
, if k =

⌈
c̃j − ˜̀

j

⌉
,

(1− δ)pβj P
(∑

s∈[R] sPoi
(∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1

)
= k

)
, if 1 ≤ k ≤

⌈
c̃j − ˜̀

j

⌉
− 1,

pβj (n)− (1− δ)pβj P
(∑

s∈[R] sPoi
(∑

γ∈[T ] w̃
−,s,γ
j ẑs,β,γ1

)
≥ 1
)
, if k = 0.

For simplicity in the notation, we assume that from (x̃j , s̃j , c̃j , ˜̀
j) = (x̃k, s̃k, c̃k, ˜̀

k) it follows
j = k (i. e. classes j and k are not distinguished by their in- and out-weights only) in the follow-
ing. Otherwise consider sums over classes with the same asset holdings, systemic importance,
capital and exogenous loss.

In particular, for the weak limit (X, S, C, L′, A) of (Xn, Sn, Cn, L
′
n, An) and 0 ≤ k ≤ dc̃j− ˜̀

je

P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j+k,A = β

)
≥ (1−δ)pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)
.

Let now

◦
fmδ (χ) :=

∑
β∈[T ]

E
[
Xm ◦ρmα

(
L′ +X · h(χ)

C

)
1{A = β}

]
− χm, m ∈ [M ]

the corresponding functions as in [19] adapted to the setting with heterogeneous sales functions
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and χ̂δ its smallest fixed point. Then

◦
fmδ (χ) + χm

=
∑
β∈[T ]

∑
j∈[J ]

∑
k≥0

x̃mj
◦
ρmβ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
P(X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j + k,A = β)

≥ (1− δ)
∑
β∈[T ]

∑
j∈[J ]

∑
k≥0

x̃mj
◦
ρmβ

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)

= (1− δ)(
◦
fm(ẑ1,χ) + χm)

and
◦
fmδ (χ) ≥ (1−δ)

◦
fm(ẑ1,χ)−δχm ≥

◦
fm(ẑ1,χ)−δE[Xm]. In particular, lim infδ→0+

◦
fmδ (χ) ≥

◦
fm(ẑ1,χ) and by [19, Lemma EC. 2.] we derive that lim infδ→0+ χ̂δ ≥ χ̂1, where χ̂1 denotes

the smallest joint root of the functions
◦
fm(ẑ1,χ), m ∈ [M ]0, for fixed z = ẑ1.

We can hence choose δ small enough such that the number of finally sold shares of asset m
is lower bounded by n(1− ε)χ̂m1 w. h. p. by [19, Theorem EC. 1.]. Further, for

◦
gδ(χ) := E

[
S1
{
L′ +X · h(χ) > C

}]
=
∑
β∈[T ]

∑
j∈[J ]

s̃j
∑
k≥0

1
{
k > c̃j − ˜̀

j − x̃j · h(χ)
}
P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j + k,A = β

)

≥ (1− δ)
∑
β∈[T ]

∑
j∈[J ]

s̃j
∑
k≥0

1
{
k > c̃j − ˜̀

j − x̃j · h(χ)
}
pβj P

( ∑
s∈[R]

sPoi

( ∑
γ∈[T ]

w̃−,s,γj ẑs,β,γ1

)
= k

)
= (1− δ) ◦g(ẑ1,χ)

and possibly further reducing δ, we derive n−1Ŝn ≥
√

1− ε ◦gδ(χ̂δ) ≥ (1− ε) ◦g(ẑ1, χ̂1) w. h. p. So
if (ẑ1, χ̂1) = (ẑ, χ̂), then this finishes the proof of the lower bounds.

If (ẑ1, χ̂1) 6= (ẑ, χ̂), then by construction of (ẑ, χ̂), ẑ1 and χ̂1 it must hold that χ̂1 ≤ χ̂ and
ẑ1 � ẑ2 ≤ ẑ, where ẑ2 ∈ RV+,0 denotes the smallest vector such that for all (r, α, β) ∈ V ,

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ2

 > C − L−X · h(χ̂1)

1{A = β}

 = ẑr,α,β2 .

The next step in the cascade process would now be the default contagion cascade from (i’)
starting from the state of the system after the fire sales cascade. Note, however, that (w. h. p.)
we can equivalently restart the whole cascade process if for the default contagion cascade we
choose capitals ci − `i − xi · h((1 − ε)χ̂1). If anything this reduces contagion effects which is
alright because we are interested in lower bounds.

By the finitariness of the system, if we choose ε small enough, then ẑ2 is also the smallest
solution of

E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ ẑs,β,γ2

 > C − L−X · h((1− ε)χ̂1)

1{A = β}

 = ẑr,α,β2 .

and we can hence use [31, Theorem 3.2.4.] to quantify the default cascade. By exactly the same
means as above we can then translate the losses due to default contagion into exogenous losses
and investigate the fire sales process by [19, Theorem EC. 1.]. We derive that the vector of
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finally sold shares is lower bounded by n(1− ε)χ̂2 w. h. p., where χ̂2 denotes the smallest joint

root of the functions
◦
fm(ẑ2,χ) for z = ẑ2, and n−1Ŝn ≥ (1− ε) ◦g(ẑ2, χ̂2) w. h. p.

Again, if (ẑ2, χ̂2) = (ẑ, χ̂), then this finishes the proof of the lower bounds. Otherwise we
can continue on for t ≥ 3. Note, however, that ẑ  ẑt is only possible if χ̂t−1 and χ̂t are
separated by a hyperplane of discontinuity of f r,α,β for some (r, α, β) ∈ V (and hence the fire
sales lead to further defaults in the system). However, as remarked earlier, there can only be
finitely many such hyperplanes for finitary systems. Hence by the procedure outlined above, we
will reach ẑ in finitely many steps and hence the end results still hold w. h. p.

We can now turn to the second part of the proof. We consider the contagion process in
rounds (i) and (ii) to derive upper bounds on Sn and χn. Let (z̃(δ), χ̃(δ))δ>0 be the constructing
sequence of (z∗,χ∗) analogue to [19, Remark EC. 1.]. Then note that by upper semi-continuity
and the discrete nature of f r,α,β we can find ∆ > 0 such that f r,α,β(z, χ̃(δ)) = f r,α,β(z,χ∗) for
all 0 ≤ δ < ∆, (r, α, β) ∈ V and z ∈ RV+,0.

Fix now some δ ∈ (0,∆) and consider the financial system with reduced capital values
ci − `i − xi · h(χ̃(δ)) for each bank i ∈ [n]. We only want to consider the default contagion
process in this new financial system and we are hence in the setting of [17] with limiting random
variables (W−,W+, S, dC − L − X · h(χ̃(δ))e+, A). Note that by finitariness the regularity
transfers. By the choice of δ above, we derive that for z∗δ in this new financial system, it holds
z∗δ = z∗ and by [31, Theorem 3.2.4.] we know that the final systemic damage in the new system
is upper bounded by

n
∑
β∈[T ]

E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ(z∗)s,β,γ

 ≥ C − L−X · h(χ̃(δ))

1{A = β}

+ op(n).

(8.3)
The proof of [31, Theorem 3.2.4.] actually shows that the number of banks of type β and class
j with at least an edge-weight of k from defaulted neighbors at the end of the default contagion
process is upper bounded by

(1 + ε)npβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 ≥ k


w. h. p. for any fixed ε > 0. Similarly, as in the first part of this proof (for the lower bounds) we
can then construct a fire sales system with limiting random vector (X, S, C, L′) such that

P(X = x̃j , S = s̃j , C = c̃j , L
′ = ˜̀

j + k,A = β)

= (1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k

 , 0 ≤ k <
⌈
c̃j − ˜̀

j − x̃j · h(χ̃(δ))
⌉
,

P
(
X = x̃j , S = s̃j , C = c̃j , L

′ = ˜̀
j +

⌈
c̃j − ˜̀

j − x̃j · h(χ̃(δ))
⌉
, A = β

)
= pβj −

dc̃j−˜̀
j−x̃j ·h(χ̃(δ))e−1∑

k=0

(1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k


≤ (1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 ≥ ⌈c̃j − ˜̀
j − x̃j · h(χ̃(δ))

⌉
which dominates the stochastic final state after the default contagion cascade w. h. p.
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Let now

fmε (χ) :=
∑
β∈[T ]

E
[
Xmρmβ

(
L′ +X · h(χ)

C

)
1{A = β}

]
− χm

the corresponding functions for the fire sales system as in [19] adapted to the setting with
heterogeneous sales functions and χ∗ε the corresponding value for χ∗ in [19]. Then for fm(z,χ)
as in Section 3,

fmε (χ) + χm

=
∑
β∈[T ]

∑
j∈J

∑
k≥0

x̃mj ρ
m
β

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
P(X = x̃j , C = c̃j , L

′ = ˜̀
j + k,A = β)

≤
∑
β∈[T ]

∑
j∈J

∑
k≥0

x̃mj ρ
m
β

(
˜̀
j + k + x̃j · h(χ)

c̃j

)
(1 + ε)pβj P

∑
s∈[R]

sPoi

∑
γ∈[T ]

w̃−,s,γj (z∗)s,β,γ

 = k


= (1 + ε)(fm(z∗,χ) + χm).

In particular, we can choose ε > 0 small enough such that

fmε (χ̃(δ/2)) ≤ fm(z∗, χ̃(δ/2)) + ε
(
fm(z∗, χ̃(δ/2)) + χ̃m(δ/2)

)
≤ −δ/2 + εE[Xm] < 0,

where in the last inequality it was used that fm(z∗, χ̃(δ/2)) ≤ fm(z̃(δ/2), χ̃(δ/2)) = −δ/2.
We can hence conclude that χ∗ε ≤ χ̃(δ/2) componentwise. By (a slightly tedious but simple
generalization to type dependent sales functions of) [19, Theorem EC. 1.] we thus derive that the
number of finally sold shares of asset m in the fire sales system (X, S, C, L′) is upper bounded
by n((χ∗ε )

m + o(1)) ≤ n(χ̃m(δ/2) + o(1)) ≤ nχ̃m(δ), where the last inequality holds for n large
enough since χ̃m(δ) > 0.

The idea for the rest of this proof is now to apply this upper bound on the number of
finally sold shares inductively in each step of the following adjusted contagion process: Let
χ0 = 0 ∈ RM and for 1 ≤ k choose Dk ⊆ [n] the smallest set such that

Dk =

i ∈ [n] :
∑
j∈Dk

ej,i ≥ ci − `i − xi · h(χk−1)


respectively χk ∈ RM+,0 the smallest vector such that

χk = n−1
∑
i∈[n]

xi � ραi

(∑
j∈Dk ej,i + `i + xi · h(χk)

ci

)
.

Clearly, this process stabilizes after at most n steps at (Dn,χn), the smallest solution to (2.3)
and (2.4) and by Lemma 2.1 gives thus an upper bound to the actual contagion process described
by (2.1) and (2.2), which is sufficient for our considerations here.

In particular, since χ0 = 0 ≤ χ̃(δ), we derive that D1 ⊆ Dδ, where Dδ ⊆ [n] is the smallest
set such that

Dδ =

i ∈ [n] :
∑
j∈Dδ

ej,i ≥ ci − `i − xi · h(χ̃(δ))

 (8.4)
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and hence χ1 ≤ χδ, where χδ denotes the smallest vector such that

χδ = n−1
∑
i∈[n]

xi � ραi

(∑
j∈Dδ ej,i + `i + xi · h(χδ)

ci

)
. (8.5)

However, (8.4) is exactly the cascade of default contagion with initial capitals given by ci− `i−
xi · h(χ̃(δ)), i ∈ [n], which we considered before and (8.5) the subsequent cascade of fire sales
for which we showed that the vector of finally sold shares is upper bounded by nχ̃(δ) w. h. p.
(i. e. χδ ≤ χ̃(δ)). We can then consider the second iteration and derive that w. h. p. D2 ⊆ Dδ
and χ2 ≤ χδ. Inductively this shows that w. h. p. Dk ⊆ Dδ and χk ≤ χδ≤ χ̃(δ) w. h. p. for each
fixed k ∈ N (independent of n).

Now note that because of the finitariness of the system, the contagion process actually
stabilizes already after a bounded number of iterations K ∈ N (independent of n). We have
thus shown that also for the final vector of sold shares χn it holds χn ≤ χn = χK ≤χ̃(δ) w. h. p.
Letting δ → 0 this proves the upper bound on χn.

For the final systemic damage note that w. h. p.Dn ⊆ Dδ and hence n−1Sn ≤ n−1Sδ:= n−1
∑

i∈Dδ si.
But

n−1Sδ ≤ E

SP
∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γ(z∗)s,β,γ

 ≥ C − L−X · h(χ̃(δ))

+ op(1)

= g(z∗, χ̃(δ)) + op(1)

by (8.3). Using upper semi-continuity of g and letting δ → 0 this finishes the proof.

8.3 Proof of Theorem 3.3

In this section, we show how the validity of Theorem 8.2 can be extended to the case of general
(non-finitary) regular vertex sequences. The idea is the following: We will approximate the
given regular vertex sequence from below and from above by finitary vertex sequences and
couple the contagion processes in those systems such that the final default fraction and the
number of sold shares is under- or overestimated by the finitary systems.

We will describe the finitary systems by their distribution functions {FAk }k∈N and {FBk }k∈N
respectively in the following and we need to ensure that the functions g and fm, m ∈ [M ], are
approximated close enough. To this end, consider the integrands

hg(z,χ;w−,w+,x, s, c, `, τ)

:= s
∑
β∈[T ]

ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β},

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)

:= w+,r,αψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β}, (r, α, β) ∈ V,

hmf (z,χ;w−,w+,x, s, c, `, τ)

:= xm
∑
β∈[T ]

φmβ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; l + x · h(χ), c

1{τ = β}, m ∈ [M ],
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for (z,χ,w−,w+,x, s, c, `, τ) ∈ RV+,0 × RM+,0 × D∞, with w± = (w±,r,α)r∈[R],α∈[T ] as well as

D∞ :=
(
R[R]×[T ]
+,0

)2 × RM+3
+,0 × [T ] and where ψ and φβ, β ∈ [T ], are as defined in Section 3.

Then

g(z,χ) =

∫
D∞

hg(z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ),

f r,α,β(z,χ) =

∫
D∞

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− zr,α,β, (r, α, β) ∈ V,

fm(z,χ) =

∫
D∞

hmf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− χm, m ∈ [M ],

where F denotes the distribution function of (W−,W+,X, S, C, L,A) (note that the integrands
vanish for c =∞ and it is thus sufficient to integrate over D∞). We denote in the following

H := {hg} ∪
⋃

(r,α,β)∈V

{hr,α,βf } ∪
⋃

m∈[M ]

{hmf }

and Z := [0, ζ] × [0,η] ⊂ RV+,0 × RM+,0, for ζr,α,β = E[W+,r,α1{A = β}], (r, α, β) ∈ V , and
ηm = E[Xm], m ∈ [M ]. If we further let

◦
hg(z,χ;w−,w+,x, s, c, `, τ)

:= s
∑
β∈[T ]

◦
ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β},

◦
hr, α, βf (z,χ;w−,w+,x, s, c, `, τ)

:= w+,r,α
◦
ψ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; c− l − x · h(χ)

1{τ = β}, (r, α, β) ∈ V,

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)

:= xm
∑
β∈[T ]

◦
φmβ

∑
γ∈[T ]

w−,1,γz1,β,γ , . . . ,
∑
γ∈[T ]

w−,R,γzR,β,γ ; l + x · h(χ), c

1{τ = β}, m ∈ [M ],

where
◦
ψ and

◦
φβ, β ∈ [T ], are defined as in Section 3, then it holds

◦
g(z,χ) =

∫
D∞

◦
hg(z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ),

◦
f r,α,β(z,χ) =

∫
D∞

◦
hr, α, βf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− zr,α,β, (r, α, β) ∈ V,

◦
fm(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dF (w−,w+,x, s, c, `, τ)− χm, m ∈ [M ].

Also denote
◦
H := {

◦
hg} ∪

⋃
(r,α,β)∈V {

◦
hr, α, βf} ∪

⋃
m∈[M ]0

{
◦
hmf }.
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For j ∈ N, consider now discretizations

F̃Aj (w−,w+,x, s, c, `, τ) := F

(djw−e
j

,
djw+e
j

,
djxe
j

,
bjsc
j
,
bjcc
j
,
dj`e
j
, τ

)
,

F̃Bj (w−,w+,x, s, c, `, τ) := F

(bjw−c
j

,
bjw+c
j

,
bjxc
j

,
djse
j
,
djce
j
,
bj`c
j
, τ

)
,

where d·e and b·c shall be applied componentwise on the vectors jw−, jw+ and jx. In particular,
the distributions

{
F̃A,Bj

}
j∈N converge to F . Choose now k ∈ N, h ∈ H and let for 0 ≤ s ≤ 2k2

the sets

Is(z,χ) :=
{

(w−,w+,x, s, c, `, τ) : h(z,χ;w−,w+,x, s, c, `, τ) ≥ s

2k

}
which are closed by upper semi-continuity of h. Further, let

ĥ(z,χ;w−,w+,x, s, c, `, τ) :=
1

2k

2k2∑
s=0

1
{

(w−,w+,x, s, c, `, τ) ∈ Is(z,χ)
}

such that in particular h− (2k)−1 ≤ ĥ ≤ h ≤ k on RV+,0 × RM+,0 ×Dk with

Dk :=
{

(w−,w+,x, s, c, `, τ) : w− ≤ k1,w+ ≤ k1,x ≤ k1, s ≤ k, c ≤ k, ` ≤ k
}
.

By the Portmanteau theorem, we then know that for j ≥ jk large enough it holds∫
Dk

ĥdF̃A,Bj −
∫
Dk

ĥdF ≤ 1

2k

and hence∫
Dk

h(z,χ;w−,w+,x, s, c, `, τ)dF̃A,Bj −
∫
Dk

h(z,χ;w−,w+,x, s, c, `, τ)dF ≤ k−1 (8.6)

Completely analogue, but choosing

◦
Is(z,χ) :=

{
(w−,w+,x, s, c, `, τ) :

◦
h(z,χ;w−,w+,x, s, c, `, τ) >

s

2k

}
,

we derive for
◦
h ∈

◦
H and j ≥ jk (possibly increase jk) that∫

◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF̃A,Bj −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF ≥ −k−1, (8.7)

where
◦
Dk := {(w−,w+,x, s, c, `, τ) : w− < k1,w+ < k1,x < k1, s < k, c < k, ` < k}. We

denote F
A
k := F̃Ajk and F

B
k := F̃Bjk in the following.

Note that F
A,B
k already describe discrete distributions approximating F from below and

from above. To qualify as a distribution function of a finitary vertex sequence, however, only
finitely many atoms are allowed. For the lower bound, we thus choose

FAk (w−,w+,x, s, c, `, τ) :=

{
F
A
k (w− ∧ k,w+ ∧ k,x ∧ k, s ∧ k, c ∧ k, ` ∧ k, τ), if c <∞,

1, else,

32



thus setting capital to ∞ for banks with in-weight, out-weight, asset holdings, capital or exoge-
nous losses larger than k. We call such banks large in the following. Banks with infinite capital
keep their capital. As banks with infinite capital cannot ever default or sell any asset shares
anyway we set their weights, asset holdings and losses all to zero. In particular, above choice
reduces contagion in the system even further and thus for all k ∈ N the final systemic damage
n−1(SAk )n is stochastically dominated by n−1Sn. The same holds for the number of finally sold
shares of the assets.

We now want to construct the upper bound distribution function FBk . That is, we need
to accumulate the contagious potential of all large banks to finitely many point masses. Thus
denote the fraction of large β-banks in the system by

γβk :=

∫
Dck

1{τ = β}dF (w−,w+,x, s, c, `, τ),

where Dc
k := D∞\Dk, and

(wβk)r,α :=

{
2(γβk )−1

∫
Dck
w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0,
(r, α, β) ∈ V,

(xβk)m :=

{
2(γβk )−1

∫
Dck
xm1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0,
m ∈ [M ],

sβk :=

{
2(γβk )−1

∫
Dck
s1{τ = β}dF (w−,w+,x, s, c, `, τ) ≥ 2k, if γβk > 0,

2k, if γβk = 0.

Similar as for the lower bound before, we now let FBk be given by F
B
k on Dk. Moreover, let

FBk assign the remaining masses γβk to the points (0,wβ
k ,x

β
k , s

β
k , 0, 0, β). As we have left out

institutions with infinite capital thus far, finally let FBk assign masses P(C =∞, A = β) to the
point (0,0,0, 0,∞, 0, β) for each β ∈ [T ].

The construction above ensures that small banks are more contagious than in the original
system as their weights, asset holdings and losses are increased whereas their capitals are de-
creased. Moreover, all large banks are initially defaulted and their total number of shares held
of each asset m is given by

n
∑
β∈[T ]

(xβk)m(γβk + o(1)) = 2n

∫
Dck

xmdF (w−,w+,x, s, c, `, τ)(1 + o(1))

which is larger than in the original system,

n

∫
Dck

xmdF (w−,w+,x, s, c, `, τ)(1 + o(1)).

Finally, also the total r-out-weight of large β-banks with respect to each type α ∈ [T ]

n(wβk)r,α
(
γβk + o(1)

)
= 2n

∫
Dck

w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ)(1 + o(1))
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is increased by approximation FBk compared to the original system with

n

∫
Dck

w+,r,α1{τ = β}dF (w−,w+,x, s, c, `, τ)(1 + o(1)).

Similar as in [17] for each r ∈ [R] the number of r-edges from large banks to a specific small
bank in the approximating system thus stochastically dominates their analogue in the original
system and in particular this property transfers to the total direct exposure from large banks
by summing over all r ∈ [R]. Altogether we derive the following result.

Lemma 8.3. Consider a regular vertex sequence and let sequences {FAk }k∈N and {FBk }k∈N be
constructed as above. Further let

(
SAk
)
n

and
(
SBk
)
n

be the total systemic importance of finally
defaulted institutions in the finitary approximating systems. Then it holds that

n−1
(
SAk
)
n
� n−1Sn � n−1

(
SBk
)
n
,

where � denotes stochastic domination. If further (χA,Bk )mn denotes the number of finally sold
shares of asset m divided by n, then it holds(

χAk
)m
n
� χmn �

(
χBk
)m
n
.

Denote

gA,Bk (z,χ) =

∫
D∞

hg(z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ),(
fA,Bk

)r,α,β
(z,χ) =

∫
D∞

hr,α,βf (z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ)− zr,α,β,(
fA,Bk

)m
(z,χ) =

∫
D∞

hmf (z,χ;w−,w+,x, s, c, `, τ)dFA,Bk (w−,w+,x, s, c, `, τ)− χm,

analogue to g, f r,α,β, (r, α, β) ∈ V , and fm, m ∈ [M ]. Moreover, let
◦
gA,Bk ,

( ◦
fA, Bk

)r,α,β
,( ◦

fA, Bk
)m

, (ẑA,Bk , χ̂A,Bk ) and ((z∗)A,Bk , (χ∗)A,Bk ) the analogues of
◦
g,

◦
f r,α,β, (r, α, β) ∈ V ,

◦
fm,

m ∈ [M ], (ẑ, χ̂) and (z∗,χ∗). Then by Theorem 8.2 we derive lower and upper bounds for the
approximating systems in terms of those quantities. The following lemma compares them to
the original quantities.

Lemma 8.4. It holds
lim inf
k→∞

◦
gAk
(
ẑAk , χ̂

A
k

)
≥ ◦
g(ẑ, χ̂)

and
lim sup
k→∞

gBk

(
(z∗)Bk , (χ

∗)Bk

)
≤ g(z∗,χ∗),

as well as lim supk→∞(χ̂Ak )m ≥ χ̂m and lim infk→∞((χBk )∗)m ≤ (χ∗)m for all m ∈ [M ].

Proof. For
◦
h ∈

◦
H, using (8.7) we derive∫

◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF

=

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF̃Ajk −

∫
◦
Dk

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF

≥ −k−1 → 0, as k →∞.
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Moreover,
∫
◦
Dck
s dF → 0,

∫
◦
Dck
w+,r,α dF → 0, (r, α) ∈ [R]× [T ], and

∫
◦
Dck
xm dF → 0, m ∈ [M ], as

k →∞. In particular, it must then hold that
∫
◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF → 0. Together

with∫
◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk =

∫
Dk∩

◦
Dck

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk = o(1),

we can then conclude that∫
D∞

◦
h(z,χ;w−,w+,x, s, c, `, τ)dFAk −

∫
D∞

◦
h(z,χ;w−,w+,x, s, c, `, τ)dF ≥ o(1). (8.8)

For {FBk }k∈N, we further obtain∫
Dck

s dFBk (w−,w+,x, s, c, `, τ) =
∑
β∈[T ]

sβkγ
β
k ,∫

Dck

w+,r,α1{τ = β}dFBk (w−,w+,x, s, c, `, τ) = (wβk)r,αγβk ,∫
Dck

xmdFBk (w−,w+,x, s, c, `, τ) =
∑
β∈[T ]

(xβk)mγβk

and as k →∞, by definition of γβk , sβk , (wβk)r,α and (xβk)m all those terms vanish. In particular,∫
Dck

h(z,χ;w−,w+,x, s, c, `, τ)dFBk (w−,w+,x, s, c, `, τ)→ 0, as k →∞

and by (8.6)∫
D∞

h(z,χ;w−,w+,x, s, c, `, τ)dFBk −
∫
D∞

h(z,χ;w−,w+,x, s, c, `, τ)dF ≤ o(1). (8.9)

By (8.8) we can apply [19, Lemma EC. 2.] (extend it by the z-dimensions) and thus derive that
lim infk→∞ ẑ

A
k ≥ ẑ and lim infk→∞ χ̂

A
k ≥ χ̂, where (ẑAk , χ̂

A
k ) denotes the smallest joint root of

the functions

(
◦
fAk )r,α,β(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dFAk (w−,w+,x, s, c, `, τ)− zr,α,β,

(
◦
fAk )m(z,χ) =

∫
D∞

◦
hmf (z,χ;w−,w+,x, s, c, `, τ)dFAk (w−,w+,x, s, c, `, τ)− χm.

Now choose some δ > 0 and k large enough such that (ẑAk , χ̂
A
k ) ≥ (1− δ)(ẑ, χ̂). Then by (8.8),

lim inf
k→∞

◦
gAk (ẑAk , χ̂

A
k ) ≥ lim inf

k→∞
◦
gAk ((1− δ)(ẑ, χ̂)) ≥ ◦

g((1− δ)(ẑ, χ̂))

and using lower semi-continuity of
◦
g, as δ → 0,

lim inf
k→∞

◦
gAk
(
ẑAk , χ̂

A
k

)
≥ ◦
g(ẑ, χ̂).

For the second statement apply a small additional shock to the system in the sense that each
solvent institution defaults with probability ε > 0. Then the analogues of f r,α,β and fm in the
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shocked system are given by

f r,α,βε (z,χ) = (1− ε)f r,α,β(z,χ) + ε(E[W+]− zr,α,β),

fmε (z,χ) = (1− ε)fm(z,χ) + ε(E[Xm]− χm).

Denote the analogues of (z∗,χ∗) for these functions by (z∗(ε),χ∗(ε)). Then using (8.9) for
k large enough it holds (fBk )r,α,β(z∗(ε),χ∗(ε)) ≤ f r,α,β(z∗(ε),χ∗(ε))/2 < 0, (r, α, β) ∈ V , and
(fBk )m(z∗(ε),χ∗(ε)) ≤ fm(z∗(ε),χ∗(ε))/2 < 0, m ∈ [M ]. Note that actually it is possible that
f r,α,β(z∗(ε),χ∗(ε)) = 0 resp. fm(z∗(ε),χ∗(ε)) = 0 if E[W+,r,α1{A = β}] = 0 resp. E[Xm] = 0.
In this case, however, the corresponding coordinates zr,α,β resp. χm are trivial and can be left
out. Thus (z∗)Bk ≤ z∗(ε) and (χ∗)Bk ≤ χ∗(ε) componentwise and in particular lim supk→∞((χBk )∗)m ≤
(χ∗)m for all m ∈ [M ]. Using (8.9) again, we now obtain

lim sup
k→∞

gBk
(
(z∗)Bk , (χ

∗)Bk
)
≤ lim sup

k→∞
gBk (z∗(ε),χ∗(ε)) ≤ g(z∗(ε),χ∗(ε))

and as ε→ 0 using upper semi-continuity of g we can conclude that

lim sup
k→∞

gBk
(
(z∗)Bk , (χ

∗)Bk
)
≤ g(z∗,χ∗).

We can then state the proof of the main theorem for general regular vertex sequences:

Proof of Theorem 3.3. For arbitrary ε > 0 we can apply Lemma 8.3 to derive

P
(
n−1Sn − ◦

g(ẑ, χ̂) < −ε
)
≤ P

(
n−1

(
SAk
)
n
− ◦
g(ẑ, χ̂) < −ε

)
.

Moreover, it holds
◦
gAk (ẑAk , χ̂

A
k ) >

◦
g(ẑ, χ̂)− ε/2 for k large enough by Lemma 8.4 and then

P
(
n−1Sn − ◦

g(ẑ, χ̂) < −ε
)
≤ P

(
n−1

(
SAk
)
n
− ◦
gAk (ẑAk , χ̂

A
k ) < −ε/2

)
.

Theorem 8.2 now yields

P
(
n−1Sn − ◦

g(ẑ, χ̂) < −ε
)
→ 0, as n→∞,

and thus n−1Sn ≥ ◦
g(ẑ, χ̂) + op(1) as ε > 0 was arbitrary. Similarly,

P(χmn − χ̂m < −ε) ≤ P
(
(χAk )mn − χ̂m < −ε

)
≤ P

(
(χAk )mn − (χ̂Ak )m < −ε/2

)
→ 0

as n→∞ and hence χmn ≥ χ̂m + op(1) for all m ∈ [M ].
In the same way, by Lemma 8.3

P
(
n−1Sn − g(z∗,χ∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− g(z∗,χ∗) > ε

)
and hence for k large enough it holds gBk

(
(z∗)Bk , (χ

∗)Bk
)
< g(z∗,χ∗)+ ε/2 by Lemma 8.4. Using

Theorem 8.2 we thus conclude that

P
(
n−1Sn − g(z∗,χ∗) > ε

)
≤ P

(
n−1

(
SBk
)
n
− gBk ((z∗)Bk , (χ

∗)Bk ) > ε/2
)
→ 0, as n→∞,

as well as

P(χmn − (χ∗)m > ε) ≤ P
(
(χBk )mn − (χ∗)m > ε

)
≤ P

(
(χAk )mn − ((χ∗)Ak )m > ε/2

)
→ 0.
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8.4 Proofs for Section 4

We keep the notation g, f r,α,β, fm, z∗, χ∗,
◦
g,

◦
f r,α,β,

◦
fm, ẑ and χ̂ for the quantities from Section

3 for the unshocked system and add the index ·L to indicate the corresponding quantities and
functions in the system shocked by L.

Proof of Theorem 4.2. For arbitrary α > 0, we derive

f r,α,βL (z,χ)

= E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ C − L−X · h(χ)

1{A = β}

− zr,α,β
≤ E

[
W+,r,α1{L ≥ αC}

]
− zr,α,β

+ E

W+,r,αP

∑
s∈[R]

sPoi

∑
γ∈[T ]

W−,s,γzs,β,γ

 ≥ C(1− α)−X · h(χ)

1{A = β}

 .
Using that E[L/C] < δ, we derive with Markov’s inequality that P(L ≥ αC) < δ/α and as
E[W+,r,α] < ∞ it thus holds that E[W+,r,α1{L ≥ αC}] ≤ γ/3 for any arbitrary γ > 0 if we
choose δ > 0 small enough. Also the second summand in above inequality can be bounded by
f r,α,β(z,χ) + γ/3 if α is chosen small enough using the dominated convergence theorem.

Let now ((z̃(γ), χ̃(γ)))γ>0 ⊂ RV+,0 × RM+,0 be such that f r,α,β(z̃(γ), χ̃(γ)) = −γ for all
(r, α, β) ∈ V resp. fm(z̃(γ), χ̃(γ)) = −γ for all m ∈ [M ], which exists analogue to [19, Remark

EC. 1.] (extending it by the z-coordinates). By the above result then f r,α,βL (z̃(γ), χ̃(γ)) ≤ −γ/3 < 0
for δ small enough. Similarly, one derives that fmL (z̃(γ), χ̃(γ)) ≤ −γ/3 < 0 for δ small enough.
We can thus conclude that (z∗L,χ

∗
L) < (z̃(γ), χ̃(γ)). However, by [19, Remark EC. 1.] we fur-

ther know that (z̃(γ), χ̃(γ)) → (z∗,χ∗) and hence by upper semi-continuity of g and possibly
further decreasing δ it holds

g(z∗L,χ
∗
L) ≤ g(z∗,χ∗) + ε/3 = ε/3. (8.10)

By similar means as for f r,α,β and fm above, we also derive that gL(z,χ) ≤ ε/3 + g(z,χ) for δ
small enough. By Theorem 3.3 we can thus conclude that w. h. p.

n−1Sn,L ≤ gL(z∗L,χ
∗
L) + ε/3 ≤ g(z∗L,χ

∗
L) + 2ε/3 ≤ ε.

Now let δ small enough such that also (χ∗L)m ≤ (χ∗)m + ε/2. Applying Theorem 3.3 we thus
derive that w. h. p.

χmn,L ≤ (χ∗L)m + ε/2 ≤ (χ∗)m + ε.
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Proof of Theorem 4.6. Define for ε > 0 and IV ⊂ V resp. IM ⊂ [M ] the set

T (ε, I) :=
⋂

(r,α,β)∈IV

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
f r,α,β(z,χ) ≤ −ε

}
∩

⋂
(s,θ,λ)∈IcV

{
(z,χ) ∈ RV+,0 × RM+,0 : zs,θ,λ ≥ E[W+,s,θ1{A = λ}]

}
∩
⋂

m∈IM

{
(z,χ) ∈ RV+,0 × RM+,0 :

◦
fm(z,χ) ≤ −ε

}
∩
⋂
k∈IcM

{
(z,χ) ∈ RV+,0 × RM+,0 : χk ≥ E[Xk]

}
where we denote IcV := V \IV and IcM = [M ]\IM . Moreover, denote by (ẑ(ε, I), χ̂(ε, I)) ∈
RV+,0 × RM+,0 the smallest vector such that

◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε for (r, α, β) ∈ IV and

ẑs,θ,λ(ε, I) = E[W+,r,α1{A = β}] for (s, θ, λ) ∈ IcV resp.
◦
fm(ẑ(ε, I), χ̂(ε, I)) = −ε for m ∈ IM

and χ̂k(ε, I) = E[Xk] for k ∈ IcM . The existence of such a vector is ensured analogue to
Lemma 3.2. In particular, it then holds (ẑ(ε, I), χ̂(ε, I)) ∈ T (ε, I) and by the construction of
(ẑ(ε, I), χ̂(ε, I)) analogue to Lemma 3.2 we obtain that (ẑ(ε, I), χ̂(ε, I)) ≤ (z,χ) for any other
(z,χ) ∈ T (ε, I)

In particular, this implies that (ẑ(ε, I), χ̂(ε, I)) is non-decreasing in ε and thus continuous
for almost every ε > 0. As moreover, the expressions f r,α,β(ẑ(ε, I), χ̂(ε, I)) + ẑr,α,β(ε, I) and
fm(ẑ(ε, I), χ̂(ε, I)) + χ̂m(ε, I) are bounded and increasing in ε, we derive that for almost every
ε > 0 and δ > 0, we can choose γ > 0 small enough such that

f r,α,β(ẑ(ε, I), χ̂(ε, I)) + ẑr,α,β(ε, I) ≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε− γ, I)) + ẑr,α,β(ε− γ, I) + δ

and

fm(ẑ(ε, I), χ̂(ε, I)) + χ̂m(ε, I) ≤ fm(ẑ(ε− γ, I), χ̂(ε− γ, I)) + χ̂m(ε− γ, I) + δ.

If (r, α, β) ∈ IV , as ẑ(ε, I) is strictly increasing, we derive that

◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) ≤ f r,α,β(ẑ(ε, I), χ̂(ε, I))

≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε− γ, I)) + δ

≤ f r,α,β(ẑ(ε− γ, I), χ̂(ε, I)) + δ

≤
◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) + δ

and choosing δ arbitrarily small we conclude that for almost every ε > 0,

f r,α,β(ẑ(ε, I), χ̂(ε, I)) =
◦
f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε.

Moreover, if m ∈ IM , then χ̂m(ε, I) is strictly increasing and by the assumption of hm(χ) being
strictly increasing in χm, we derive for xm > 0 that

ρα

(
`+ x · h(χ̂(ε− γ, I))

c

)
≤ ◦
ρα

(
`+ x · h(χ̂(ε, I))

c

)
entry-wise for all α ∈ [T ]. Hence similarly as above, fm(ẑ(ε, I), χ̂(ε, I)) =

◦
fm(ẑ(ε, I), χ̂(ε, I)) =

−ε.
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Let us now show that (z∗,χ∗) ≤ (ẑ(ε, I), χ̂(ε, I)). To this end, suppose that we could choose
some (z,χ) ∈ P0 such that zr,α,β > ẑr,α,β(ε, I) for some (r, α, β) ∈ V or χm > χ̂(ε, I) for some
m ∈ [M ]. Then by P0 ⊂ [0, ζ] × [0,η], where ζr,α,β = E[W+,r,α1{A = β}] and ηm = E[Xm],
and monotonicity of the functions f r,α,β resp. fm we would derive the existence of a point
P0 3 (z̃, χ̃) ≤ (ẑ(ε, I), χ̂(ε, I)) such that either z̃r,α,β = ẑr,α,β(ε, I) for some (r, α, β) ∈ IV
or χ̃m = χ̂M (ε, I) for some m ∈ IM . But then f r,α,β(z̃, χ̃) ≤ f r,α,β(ẑ(ε, I), χ̂(ε, I)) = −ε
resp. fm(z̃, χ̃) ≤ fm(ẑ(ε, I), χ̂(ε, I)) = −ε and thus a contradiction to (z̃, χ̃) ∈ P0. It must
therefore hold (z∗,χ∗) ≤ (ẑ(ε, I), χ̂(ε, I)). Let now for given shock L,

IM := {m ∈ [M ] : χ̂mL < E[Xm]} and IV := {(r, α, β) ∈ V : ẑr,α,βL < E[W+,r,α1{A = β}].

If IV = ∅ and IM = ∅ the result is trivial, so assume that either IV 6= ∅ or IM 6= ∅. For m ∈ IM ,

using
◦
fmL (ẑL, χ̂L) = 0 we then derive by independence of L/C and (W−,W+,X, S, C,A)

◦
fm(ẑL, χ̂L) =

◦
fmL (ẑL, χ̂L)− P(L = 2C)(E[Xm]− χ̂mL )

P(L = 0)
< 0

and analogously
◦
f r,α,β(ẑL, χ̂L) < 0 for (r, α, β) ∈ IV . For the choice

ε := −max

{
max

(r,α,β)∈IV

◦
f r,α,β(ẑL, χ̂L), max

m∈IM

◦
fm(ẑL, χ̂L)

}
> 0

it then holds (ẑL, χ̂L) ∈ T (ε, I) and further (ẑL, χ̂L) ≥ (ẑ(ε, I), χ̂(ε, I)) ≥ (z∗,χ∗). We can
then apply Theorem 3.3 and conclude

n−1Sn,L ≥ ◦
gL(ẑL, χ̂L) + op(1) ≥ ◦

g(z∗,χ∗) + op(1)

as well as
χmn,L ≥ χ̂mL + op(1) ≥ (χ∗)m + op(1).

Glossary

o(1)
the Landau notation for a term that converges to 0
(e. g. as n→∞)

op(1)
the Landau notation for a term that converges to 0 in
probability (e. g. as n→∞)

R+,0, R+,∞ positive real numbers with 0 resp. ∞
[a, b]

cuboid spanned by vectors a, b ∈ Rd consisting of all
x ∈ Rd such that ai ≤ xi ≤ bi, i = 1, . . . , d

n ∈ N number of banks in the system
M ∈ N number of assets/asset classes
[n] = {1, . . . , n} set of banks
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xmi ∈ R+,0 number of shares of asset m ∈ [M ] held by bank i ∈ [n]
xi = (x1i , . . . , x

M
i ) ∈ RM+,0 vector of asset holdings of bank i ∈ [n]

ci ∈ R+,∞ equity of bank i ∈ [n]
`i ∈ R+,0 exogenous losses of bank i ∈ [n]

w−,αi , w+,α
i ∈ R+,0 ∈ R+,0

in- resp. out-weight of bank i ∈ [n] towards bank of type
α ∈ [T ]

w−i = (w−,1i , . . . , w−,Ti ) ∈ RT+,0
vector of in-weights of bank i ∈ [n] towards banks of
types α = 1, . . . , T

w+
i = (w+,1

i , . . . , w+,T
i ) ∈ RT+,0

vector of out-weights of bank i ∈ [n] towards banks of
types α = 1, . . . , T

Xr
i,j

indicator random variable for an edge of size r ∈ [R]
going from bank i ∈ [n] to bank j ∈ [n]

(W−
n ,W

+
n ,Xn, Sn, Cn, An)

random vector distributed according to the empirical
distribution of {(w−i ,w+

i ,xi, si, ci, `i)}i∈[n]
(W−,W+,X, S, C,A) limit in distribution of (W−

n ,W
+
n ,Xn, Sn, Cn, An)

ρβ : R+,0 → [0, 1]M
non-decreasing, right-continuous sale functions for each
type β ∈ [T ]

◦
ρβ(u) = limε→0+ ρβ((1− ε)u) left-continuous modification of ρβ, β ∈ [T ]

hm : RM+,0 → [0, 1]
non-decreasing (componentwise) relative loss function
of asset m ∈ [M ]

h(y) = (h1(y), . . . , hM (y)) vector of loss functions
χn ∈ RM+,0 vector of finally sold shares divided by n

Dn ⊂ [n] set of finally defaulted banks
Yr,β :=

∑
γ∈[T ]W

−,r,γzr,β,γ , r ∈
[R], β ∈ [T ],
Qs ∼ Poi(qs), s ∈ [R] Independent Poisson for {qs}s∈[R] ⊂ R+,0

ψ(q1, . . . , qR; t) := P

∑
s∈[R]

sQs ≥ t


φα(q1, . . . , qR; `, c) := E

[
ρα

(∑
s∈[R] sQs + `

c

)]
, α ∈ [T ].

ψ(z,χ;w−,x, c, `) = P
(
Poi(w−z) ≥ c− `− x · h(χ)

)
φβ(z,χ;w−,x, c, `) = E

[
ρβ

(
Poi(w−z) + `+ x · h(χ)

c

)]
, β ∈ [T ]

g(z,χ) :=
∑
β∈[T ]

E

[
Sψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

f r,α,β(z,χ) := E

[
W+,r,αψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β, (r, α, β) ∈ V,

fm(z,χ) :=
∑
β∈[T ]

E

[
Xmφmβ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ]

P :=
⋂

(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 : f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 : fm(z,χ) ≥ 0

}
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P0 connected component of P containing 0

(z∗,χ∗) ∈ RT 2+M
+,0

largest joint root of the functions fm, m ∈
[M ],f r,α,β, (r, α, β) ∈ V in P0

◦
φα(q1, . . . , qR; `, c) := E

[
◦
ρα

(∑
s∈[R] sQs + `

c

)]
, α ∈ [T ].

◦
g(z,χ) :=

∑
β∈[T ]

E

[
Sψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
,

◦
f r,α,β(z,χ) := E

[
W+,r,αψ

(
Y1,β, . . . , YR,β ;C − L−X · h(χ)

)
1{A = β}

]
− zr,α,β, (r, α, β) ∈ V,

◦
fm(z,χ) :=

∑
β∈[T ]

E

[
Xm

◦
φmβ

(
Y1,β, . . . , YR,β ;L+X · h(χ), C

)
1{A = β}

]
− χm, m ∈ [M ]

◦
P :=

⋂
(r,α,β)∈V

{
(z,χ) ∈ RV+,0 × RM+,0 : f r,α,β(z,χ) ≥ 0

}
∩
⋂

m∈[M ]

{
(z,χ) ∈ RV+,0 × RM+,0 : fm(z,χ) ≥ 0

}
◦
P0 connected component of

◦
P containing 0

(ẑ, χ̂) ∈ RT 2+M
+,0 smallest joint root of the functions

◦
fm, m ∈ [M ]0
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