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1 Introduction

In this paper we present a unified framework for the valuation of caps, floors and swaptions.
These instruments are the most common derivative securities which are traded in a fixed income
desk of a financial institution (see e.g. Brigo and Mercurio (2006)). Practitioners usually price
these products by relying on a Black-Scholes like formula, which was first presented in Black
(1976). The market convention of pricing caps and swaptions using the Black formula is based
on an application of the Black and Scholes (1973) formula for stock options by assuming that
the underlying interest rates are lognormally distributed. Remarkably, the use of this kind of
formulae had no theoretical justification, since they involved a procedure in which the discount
factor and the Libor rates were assumed to be independent so as to write the pricing formula as
a product of a bond price and the expected payoff. The systematic use of this market practice
ignited the interest of academics aiming at providing a coherent theoretical background.

In a series of articles, Miltersen et al. (1997), Brace et al. (1997), Jamshidian (1997) and
Musiela and Rutkowski (1997), provided these theoretical foundations, introducing the Libor
and Swap Market Model. Following these papers a stream of contributions appeared, trying to
extend the basic model to the case where the volatility of the underlying factor is stochastic.
The most famous proposals on this side can be found e.g. in Andersen and Brotherton-Ratcliffe
(2001), Wu and Zhang (2006), Joshi and Rebonato (2003), Andersen and Andreasen (2002),
Piterbarg (2005a), Piterbarg (2005b). Other approaches explored different dynamics for the
driving process with respect to the CEV or displaced-diffusion considered before for the Libor
rate: for example Glasserman and Kou (2003), Eberlein and Özkan (2005) introduced jump
and more general Lévy processes, allowing for discontinuous sample paths of the driving pro-
cess. Another interesting approach is the one of Brigo and Mercurio (2003) based on a mixture
of lognormals.

A typical problem in the previous approaches is that once the closed form solution for cap
prices is found, to obtain an analogous result for swaptions it is customary to assume that the
underlying (which is a coupon bond) behaves like a scalar process (typically again geomet-
ric Brownian motion). This results in inconsistencies between the so-called Libor and Swap
Market Models. Even more important, by assuming that the coupon bond is driven by a scalar
process, we do not take into account the correlation effects among the different coupons, a key
feature of a swaption which may be viewed also as a correlation product. This last remark is
of paramount importance for practitioners (see e.g. the introduction of Collin-Dufresne and
Goldstein (2002)).

In this paper we consider a new approach based on the stochastic discount factor methodol-
ogy, where instead of modeling directly the Libor rate, one concentrates on quotients of traded
assets (i.e. bonds). It has been first introduced by Constantinides (1992) and then developed
by Gouriéroux and Sufana (2011) in a spot interest rate framework and by Keller-Ressel et al.
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(2009) in a Libor perspective. In this latter work they use affine processes on the state space
Rd
≥0 as driving processes and provide a full characterization of the model, which allows them

to provide closed form solutions for caps and swaptions up to Fourier integrals. This approach
is very interesting and easily overcomes many difficulties which are to be faced in the compu-
tation of Radon-Nikodym derivatives.

We provide an extension of this approach, by considering affine processes on the state space
S++
d , the set of positive definite symmetric matrices. This state space may seem awkward

at first sight, but the processes belonging to this family admit a characterization in terms of
ODE’s which resembles the one found for standard affine models, an example being given by
the famous Duffie and Kan (1996) model. In fact, in Cuchiero et al. (2011) the authors extend
to the set S+

d (the set of positive semidefinite symmetric matrices) the classification of affine
processes performed by Duffie et al. (2003) for the state space Rd

≥0 × Rn−d introduced by
Duffie and Kan (1996). What is more, the state space S++

d leads to stochastic factors which
are non trivially correlated. The most famous example of process defined in the set S++

d is the
Wishart process, originally defined by Bru (1991), introduced in finance by Gouriéroux and
Sufana (2003) and then extensively applied in Gouriéroux and Sufana (2010), Gouriéroux and
Sufana (2011), Da Fonseca et al. (2008), Da Fonseca et al. (2007b), Da Fonseca et al. (2011),
Da Fonseca and Grasselli (2011), among others.

The interesting feature of our framework is the possibility to obtain semi-closed form solu-
tions for the pricing of swaptions in a multifactor setting, which is a well known challenging
problem. In fact the exercise probability involves a multi-dimensional inequality. There have
been many approaches to simplify the problem: for example, Singleton and Umantsev (2002)
suggest an approximation of the exercise boundary with a linear function of the state variables.
However, the most efficient approach seems to be the one of Collin-Dufresne and Goldstein
(2002) which heavily uses the affine structure of the model and is based on the Edgeworth
expansion for the characteristic function in terms of the cumulants. Since the cumulants decay
very quickly the Edgeworth expansion for the exercise probability turns out to be very accurate
and fast.

The paper is organized as follows. In Section 2 we introduce our framework by recalling some
useful definitions and results on affine processes. Section 3 investigates the case of the state
space S++

d and presents the technical results. In Section 4 we focus on the pricing problem
of the relevant derivatives. Caps and Floors are briefly treated since their pricing is now quite
standard within the FFT methodology, while we devote more attention to the pricing of swap-
tions by adopting the approach of Collin-Dufresne and Goldstein (2002). Section 5 illustrates
the flexibility of our framework through a numerical exercise. Section 6 concludes the paper,
and we gather in the technical Appendices proofs and some remarks useful for implementation.
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2 Affine Processes on the set S++
d of strictly positive definite sym-

metric matrices

2.1 General results and notations

To outline the setup we will consider affine processes taking values in the interior of the cone
S+
d . We will use the notations ψt(u) = φ(t, u) and φt(u) = φ(t, u) so as to be consistent

with Keller-Ressel et al. (2009). We will be employing a property of the functions defining the
Laplace transform, that we report after the following

Definition 1. (Cuchiero et al. (2011), Definition 2.1) Let (Ω,F , (Ft)t≥0 ,P) be a filtered prob-
ability space with the filtration (Ft)t≥0 satisfying the usual assumptions. A Markov process
Σ = (Σt)t≥0 with state space S+

d , transition probability pt(Σ0, A) = P(Σt ∈ A) for A ∈ S+
d ,

and transition semigroup (Pt)t≥0 acting on bounded functions f on S+
d is called affine process

if:

1. it is stochastically continuous, that is, lims→t ps(Σ0, ·) = pt(Σ0, ·) weakly on S+
d ∀t, x ∈

S+
d , and

2. its Laplace transform has exponential-affine dependence on the initial state:

Pte
−Tr[uΣ0] = E

[
e−Tr[uΣt]

∣∣∣F0

]
=
∫
S+
d

e−Tr[uξ]pt(Σ0, dξ) = e−φt(u)−Tr[ψt(u)Σ0], (1)

∀t and Σ0, u ∈ S+
d , for some function φ : R≥0× S+

d → R≥0 and ψ : R≥0× S+
d → S+

d .

Having applications in mind, we will consider affine processes which are solvable in the sense
of Grasselli and Tebaldi (2008) (who investigated affine processes on the more general sym-
metric cone state space domain): this means that the state space that we will consider is the
interior of S+

d , namely the cone of strictly positive definite symmetric matrices, denoted by
S++
d

1. Solvability is important, in fact it ensures that the Riccati Ordinary Differential Equa-
tion associated to the Laplace transform (1) through the usual Feynman-Kac argument has a
regular globally integrable flow: this will be crucial to outline our methodology (see e.g. the
proof of Theorem 4 in the sequel).

The next property closes our survey on affine processes. It will be needed when we prove that
the structure of the model is preserved under changes of measure.

Lemma 2. (Cuchiero et al. (2011) Lemma 3.2) Let Σ be an affine process on S+
d , then the

functions φ and ψ satisfy the following property:

φt+s(u) = φt(u) + φs(ψt(u)),

ψt+s(u) = ψs(ψt(u)).

1By analogy, the set of negative (resp. strictly negative) definite symmetric d × d matrices will be denoted by
S−d (resp. S−−d ).
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2.2 Examples

The previous general framework may be quite abstract at a first sight, mostly because of the
high technical level required to properly introduce the notion of admissibility and existence
for affine processes, see Cuchiero et al. (2011). In this subsection we provide some examples
which will illustrate some concrete applications. We start with the most important one, which
will also constitute our main object of study in the numerical illustrations.

2.2.1 The Wishart process

We suppose that the process Σ is governed by the following (matrix) SDE:

dΣt = (ΩΩ> +MΣt + ΣtM
>)dt+

√
ΣtdWtQ+Q>dW>t

√
Σt, (2)

which was first studied by Bru (1991) and whose solution is known as Wishart process. We
assume M,Q invertible and M negative definite so as to ensure stationarity of the process.
Moreover we require ΩΩ> = κQ>Q for a real parameter κ ≥ d + 1 to grant solvability (or
equivalently to grant that Det(Σt) > 0 with probability 1). Under the solvability assumption
Grasselli and Tebaldi (2008) showed that the Riccati ODE corresponding to the characteristic
function can be linearized and therefore admits a closed form solution. This is important in
view of possible applications since in this case the functions φ and ψ in definition (1) are
explicitly known:

Proposition 3. Consider the process Σ = (Σt)0≤t≤T which solves the SDE (2). Then the
conditional Laplace transform is given by:

E
[
e−Tr[uΣT ]

∣∣∣Ft] = e−φτ (u)−Tr[ψτ (u)Σt], (3)

where τ := T − t. The functions φτ (u) and ψτ (u) satisfy the following system of ODE’s:

∂ψτ
∂τ

= ψτ (u)M +M>ψτ (u)− 2ψτ (u)Q>Qψτ (u), ψ0(u) = u, (4)

∂φτ
∂τ

= Tr
[
κQ>Qψτ (u)

]
, φ0(u) = 0 (5)

which is solved by

ψτ (u) = (uψ12,τ (u) + ψ22,τ (u))−1 (uψ11,τ (u) + ψ21,τ (u)) , (6)

where (
ψ11,τ (u) ψ12,τ (u)
ψ21,τ (u) ψ22,τ (u)

)
= exp

{
τ

(
M 2Q>Q

0 −M>

)}
(7)

and
φτ (u) =

κ

2
Tr
[
log (uψ12,τ (u) + ψ22,τ (u)) +M>τ

]
. (8)

Proof. See Grasselli and Tebaldi (2008).
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The Wishart process constitutes the matrix analogue of the square root (Bessel) process. In fact
we have that the matrix M can be thought of as a mean reversion parameter: this is evident
from the Lyapunov equation defining the long-run matrix Σ∞, which is given by

−κQ>Q = MΣ∞ + Σ∞M>. (9)

The second way to appreciate the analogies w.r.t the square root process is to look at the dy-
namics of the entries of the matrix process Σ. Concentrating on the main diagonal, in the 2× 2
case we have:

dΣ11 =
(
κ
(
Q2

11 +Q2
21

)
+ 2 (M11Σ11 +M12Σ12)

)
dt

+ 2σ11
t

(
Q11dW

11
t +Q21dW

12
t

)
+ 2σ12

t

(
Q11dW21 +Q21dW

22
t

)
(10)

dΣ22 =
(
κ
(
Q2

22 +Q2
12

)
+ 2 (M21Σ12 +M22Σ22)

)
dt

+ 2σ12
t

(
Q12dW

11
t +Q22dW

12
t

)
+ 2σ22

t

(
Q12dW

21 +Q22dW
22
)

(11)

where we set (
σ11 σ12

σ12 σ22

)
:=
√

Σ. (12)

We refer to Da Fonseca et al. (2007a) for additional insights on the behavior of the Wishart
process when aggregating its parameters.

2.2.2 The pure jump OU process

The procedure we adopt in this paper is general, meaning that we can consider different exam-
ples of processes lying in the cone of positive definite matrices. In particular, we may consider
the matrix subordinators proposed by Barndorff-Nielsen and Stelzer (2007), or jump-diffusions
like in Leippold and Trojani (2010). In what follows we provide some examples with the cal-
culations of the functions φτ and ψτ .

Let us consider the SDE

dΣt = MΣt + ΣtM
> + dLt, (13)

where M ∈ GL(d) is assumed as usual to be negative definite so as to grant stationarity, and
Lt is a pure jump process (compound Poisson Process) with constant intensity λ and jump
distribution ν with support on S++

d . The strong solution to this equation is given by:

Σt = eMtΣ0e
M>t +

∫ t

0
eM(t−s)dLse

M>(t−s). (14)

We are interested in the computation of the Laplace transform of this family of processes:

E
[
eTr[uΣT ]

∣∣∣Ft] = e−φτ (u)−Tr[ψτ (u)Σt]. (15)
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The functions φ and ψ solve the following (matrix) ODE’s:

∂ψτ
∂τ

= ψτ (u)M +M>ψτ (u) ψ0(u) = u (16)

∂φτ
∂τ

= −λ
∫
S+
d \{0}

(
e−Tr[ψτ (u)ξ] − 1

)
ν(dξ) φ0(u) = 0. (17)

The solution for the first ODE is given by:

ψτ (u) = eM
>τueMτ , (18)

so we can compute the Laplace transform by quadrature:

∂φτ
∂τ

= −λ
∫
S+
d \{0}

(
e
−Tr

[
eM
>τueMτ ξ

]
− 1
)
ν(dξ). (19)

In the following we provide explicit computations by assuming some particular distribution
ν(·) for the jump size. The proofs of this formulae may be found in Gupta and Nagar (2000).
For the sake of clarity, we specify that the Wishart distribution that we consider in the next
sections are the classical distributions arising in the context of multivariate statistics.

Wishart Distribution. Let J be the jump size. Consider the case J ∼ Wisd (n,Q). Then
we have

φτ (u) = −λ
∫ τ

0
det
(
Id + 2eM

>sueMsQ
)−n

2
ds+ λτ. (20)

Non-Central Wishart Distribution. Let be J ∼Wisd (n,Q,M), then we have

φτ (u) = −λ
∫ τ

0
det (Q)−

n
2 det

(
2eM

>sueMs +Q−1
)−n

2×

exp
{

Tr
[
−1

2
Q−1MM> +

1
2
Q−1MM>Q−1

(
2eM

>sueMs +Q−1
)]}

ds

+ λτ. (21)

Beta type I distribution. Let be J ∼ βId(a, b), then

φτ (u) = −λ
∫ τ

0
1F1(a; a+ b;−eM>sueMs)ds+ λτ. (22)

Beta type II distribution. Let be J ∼ βIId (a, b), then

φτ (u) = −λ
∫ τ

0

Γd(a+ b)
Γd(b)

Ψ(a;−b+
1
2

(d+ 1); eM
>sueMs)ds+ λτ, (23)

where mFn, Γd(a), and Ψ(a; b;R) denote respectively the hypergeometric function of matrix
argument, the multivariate Gamma function and the confluent hypergeometric function, see
e.g. Gupta and Nagar (2000).
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3 A Libor model on S++
d

To outline the general framework for Libor models, we start by considering a filtered measur-
able space (Ω,F ,Ft) and a family of probability measures (PTk)1≤k≤N . Under the measure
PTN we introduce a stochastic process Σ taking values on the cone state space S++

d . At this
stage the process may be a diffusion, a pure jump or a jump-diffusion process taking values on
S++
d . Consider a discrete tenor structure 0 = T0 ≤ T1 ≤ ... ≤ TN = T . We recall that the

Libor rate is defined via quotients of bonds:

L(t, Tk) :=
1

∆T

(
B(t, Tk−1)
B(t, Tk)

− 1
)
, (24)

where ∆T is assumed to be constant and ∆T = Tk − Tk−1. The relation between the Libor
rate and the forward price is given by:

F (t, Tk−1, Tk) = 1 + ∆TL(t, Tk). (25)

We proceed in full analogy with Keller-Ressel et al. (2009) by extending their results to pro-
cesses taking values on the cone of positive definite matrices. The intuition is simple: to build
up a Libor model with positive rates, quotients of bonds should be strictly greater than one. On
the other hand, a no-arbitrage argument (see e.g. Geman et al. (1995)) implies that quotients
of bonds must be martingales under the forward risk neutral measure indexed by the maturity
of the denominator, so that the key ingredient in the approach of Keller-Ressel et al. (2009)
consists in the possibility of constructing a family of martingales that stay greater than one up
to a bounded time horizon. This will be possible thanks to the affine structure of the model,
since in this framework bond prices are exponentially affine in the positive (definite) factors, as
well as their quotients.

3.1 Martingales strictly greater than one

Let us first define the set

IT :=
{
u ∈ Sd : E

[
e−Tr[uΣT ]

]
<∞,∀Σ0 ∈ S++

d

}
.

By the affine property of the process Σ we have

E
[
e−Tr[uΣt]

]
= e−φt(u)−Tr[ψt(u)Σ0],

φ : [0, T ]× IT → R,

ψ : [0, T ]× IT → Sd. (26)

Within this setting we are able to construct martingales that stay greater than one up to a
bounded time horizon T .
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Theorem 4. Let Σ be an affine process, and let u ∈ IT ∩ S−−d , then the process Mu defined
by

Mu
t = exp {−φT−t(u)− Tr [ψT−t(u)Σt]} (27)

is a martingale and Mu
t > 1 a.s. ∀t ∈ [0, T ] .

Proof. See Appendix.

Equipped with this positivity result, we can proceed by considering a tenor structure of non
negative Libor rates L(0, Tk) for k = {1, ..., N − 1}. Standard arbitrage arguments (see e.g.
Geman et al. (1995)) imply that discounted traded assets, in our case bonds, are martingales
under the terminal martingale measure:

B(∗, Tk)
B(∗, TN )

∈M (PTN ) ∀k ∈ {1, ..., N − 1} , (28)

whereM (PTN ) denotes the set of martingales with respect to the forward risk neutral prob-
ability PTN . The idea in Keller-Ressel et al. (2009) is then to model quotients of bond prices
using the martingales Mu defined as follows:

B(t, T1)
B(t, TN )

= Mu1
t (29)

...

B(t, TN−1)
B(t, TN )

= M
uN−1

t (30)

∀t ∈ [0, T1] , ..., t ∈ [0, TN−1] respectively. As a consequence, the initial values of the martin-
gales Muk

0 must satisfy the relation

Muk
0 = exp {−φT (uk)− Tr [ψT (uk)Σ0]} =

B(0, Tk)
B(0, TN )

, (31)

for all k ∈ {1, ..., N − 1}, so that it is possible to set uN = 0 as we have MuN
0 = 1.

In the following proposition, we show that it is possible to fit (basically) any initial term struc-
ture of bond rates. The state space we are considering offers a wide range of possibilities to
perform this task. However, since we are interested in applications, we adopt the simplest
choice directly coming from the scalar case and we focus on the particular (but realistic) case
where all Libor rates are positive.

Proposition 5. Let L(0, T1), ..., L(0, TN ) be a tenor structure of positive initial Libor rates,
and let Σ be an affine process on S++

d . Define

γΣ := sup
u∈IT∩S−−d

E
[
e−Tr[uΣT ]

]
. (32)

If γΣ > B(0,T1)
B(0,TN ) then there exists a strictly increasing sequence of matrices (i.e. uk ≺ uk+1 if

and only if uk −uk+1 ∈ S−−d ) u1 ≺ u2 ≺ ... ≺ uN−1 ≺ 0 in IT ∩S−−d and uN = 0 such that

Muk
0 =

B(0, Tk)
B(0, TN )

, ∀k ∈ {1, ..., N} . (33)
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Conversely, let the bond prices be given by (29)-(30) and satisfy the initial condition (31). Then
the Libor rates L(t, Tk) are positive a.s. ∀t ∈ [0, Tk] and k ∈ {1, ..., N − 1} .

Proof. See Appendix.

3.2 A fully-affine arbitrage-free model

If we look at the definition of the Libor rate we realize that it is quite natural to require quotients
of bonds to be driven by an exponentially affine function of the state: in fact, in this case also
bond prices as well as forward prices will be affine functions. This is also in line with the
previous approaches of Constantinides (1992) and Gouriéroux and Sufana (2011) based on the
stochastic discount factor. In other words, the approach of Keller-Ressel et al. (2009) is able to
provide a fully affine structure2. To prove the affine structure or our model, we first show that
under (29)-(30), forward prices are of exponential-affine form under any forward measure. To
do this, first we notice that in this framework quotients of bonds are exponentially affine in the
state factors, so that also forward prices will be: for k = 1, ..., N − 1

B(t, Tk)
B(t, Tk+1)

=
B(t, Tk)
B(t, TN )

B(t, TN )
B(t, Tk+1)

=
Muk
t

M
uk+1

t

= exp {−φTN−t(uk) + φTN−t(uk+1)}

exp {Tr [(−ψTN−t(uk) + ψTN−t(uk+1)) Σt]}

=: exp {ATN−t(uk, uk+1) + Tr [BTN−t(uk, uk+1)Σt]} . (34)

With this result, we are able to show very easily that the model is arbitrage free, that is forward
prices are martingales with respect to their corresponding forward measures (see Geman et al.
(1995)):

B(∗, Tk)
B(∗, TN )

∈M (PTN ) . (35)

This comes from the fact that forward measures are related one another via the quotients of the
martingales Mu:

∂PTk
∂PTk+1

|Ft =
F (t, Tk, Tk+1)
F (0, Tk, Tk+1)

=
B(0, Tk+1)
B(0, Tk)

Muk
t

M
uk+1

t

, (36)

∀k ∈ {1, ..., N}. Then L(∗, Tk) is a martingale under the forward measure PTk+1
since the

successive densities from PTk+1
to PTN yield a telescoping product and a PTN martingale (see

Keller-Ressel et al. (2009)). More precisely:

1 + ∆TL(∗, Tk) =
B(∗, Tk)
B(∗, Tk+1)

=
Muk

Muk+1
∈M

(
PTk+1

)
(37)

since
Muk

Muk+1

N−1∏
l=k+1

Mul

Mul+1
= Muk ∈M (PTN ) . (38)

2This is the reason why we will be able to apply the approach by Collin-Dufresne and Goldstein (2002), who
originally started from an affine short rate in order to price swaptions: in fact, also in their framework bond prices
are affine functions of the state variables.
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Also, the density between the PTk -forward measure and the terminal forward measure PTN is
given by the martingale Muk as indicated by (29)-(30):

∂PTk
∂PTN

|Ft =
B(0, TN )
B(0, Tk)

B(t, Tk)
B(t, TN )

=
B(0, TN )
B(0, Tk)

Muk
t =

Muk
t

Muk
0

. (39)

In this arbitrage-free model with positive Libor rates, the affine structure is preserved: that is, it
is possible to extend to the state space S++

d the analogous result of Keller-Ressel et al. (2009).

Proposition 6. Let the bond structure be defined through (29)-(30), where the process Mu. is
given by (27). Then forward prices are exponentially affine in the state variable Σ under any
forward measure.

Proof. The result comes directly from formula (6.23) in Keller-Ressel et al. (2009) once the
scalar product is replaced by the trace operator.

4 Pricing of Derivatives

We now focus on the pricing problem for vanilla options like Caps, Floors and for exotic
options like swaptions in the affine Libor model on S++

d introduced in the previous section. We
shall see that the pricing of Caps and Floors may be performed using standard Fourier pricing
techniques as in Keller-Ressel et al. (2009), whereas, for the case of swaptions, we will resort
to a quasi closed form solution. In fact, since the moments of the underlying affine process
are known through its characteristic function, we can expand the exercise probability via an
Edgeworth development, as shown in Collin-Dufresne and Goldstein (2002). This approach
will lead to an efficient approximation that will avoid the numerical problems underlying the
computation of the exercise probability in Keller-Ressel et al. (2009).

4.1 Caps and Floors

A Cap may be thought of as a portfolio of call options on the successive Libor rates, named
Caplets, whereas Floors are portfolios of put options named floorlets. These options are usually
settled in arrears, which means that the caplet with maturity Tk is settled at time Tk+1. The
tenor length ∆T is assumed to be constant. Since the two products are equivalent, we will
focus on Caps. A Cap with unit notional has a payoff given by the following:

∆T (L(Tk, Tk)−K)+ k = 1, ..., N − 1 (40)

We rewrite the payoff of caplets as in Keller-Ressel et al. (2009):

∆T (L(Tk, Tk)−K)+ = (1 + ∆TL(Tk, Tk)− (1 + ∆TK))+

=

(
Muk
Tk

M
uk+1

Tk

−K

)+

, (41)

with K := 1 + ∆TK.

11



Thus we see that the caplet is equivalent to an option on the forward price. In order to avoid the
computation of expectations involving a joint distribution, each single caplet is priced under
the corresponding forward measure:

C (Tk,K) = B(0, Tk+1)EPTk+1

[(
Muk
Tk

M
uk+1

Tk

−K

)+]
= B(0, Tk+1)EPTk+1

[(
eY −K

)+]
, (42)

with:

Y := log

(
Muk
Tk

M
uk+1

Tk

)
= ATN−Tk(uk, uk+1) + Tr [BTN−Tk(uk, uk+1)ΣTk ] , (43)

for ATN−Tk(uk, uk+1), BTN−Tk(uk, uk+1) defined as in (34). The pricing problem can be
solved via Fourier techniques through the Carr and Madan (1999) methodology. Hence we
have the following proposition, whose standard proof is omitted.

Proposition 7. Let α > 0. The price of a caplet with strike K and maturity Tk is given by the
formula:

C (Tk,K) = B(0, Tk+1)
exp {−αc}

2π

×
∫ +∞

−∞
e−ivc

EPTk+1

[
ei(v−(α+1)i)(ATN−Tk (uk,uk+1)+Tr[BTN−Tk (uk,uk+1)ΣTk ])

]
(α+ iv) (1 + α+ iv)

dv,

(44)

where:

c = log (1 + ∆TK) ,

ATN−Tk(uk, uk+1) = −φTN−Tk(uk) + φTN−Tk(uk+1),

BTN−Tk(uk, uk+1) = −ψTN−Tk(uk) + ψTN−Tk(uk+1).

In other words, pricing a Cap involves the computation of the moment generating function of
e.g. the Wishart process, which can be efficiently performed through the linearization of the
associated Riccati ODEs as explained in Proposition 3. The parameter α > 0 represents the
damping factor introduced by Carr and Madan (1999). We report in the Appendix B the explicit
expression of the characteristic function involved in the pricing procedure.

4.2 Swaptions

The payoff of a receiver (resp. payer) swaption may be seen as a call (resp. put) on a coupon
bond with strike price equal to one. We consider a receiver swaption that starts at Ti with
maturity Tm, (i < m ≤ N). The time-Ti value is given by:

STi(K,Ti, Tm) =

(
m∑

k=i+1

ckB(Ti, Tk)− 1

)+

(45)
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where

ck =

{
∆TK if i+ 1 ≤ k ≤ m− 1,
1 + ∆TK if k = m.

(46)

Unfortunately, we face some difficulties if we try to adopt the Fourier technique that we em-
ployed to price a caplet. To see this we look at the proof of Proposition 7.2. in Keller-Ressel
et al. (2009), which requires the computation of the Fourier transform of the payoff3:

f̃(z) =
∫

R
d(d+1)

2

eTr[izΣTi ]
(

m∑
k=i+1

cke
ATN−Ti (uk,ui)+Tr[BTN−Ti (uk,ui)ΣTi ] − 1

)+

dvech(ΣTi),

(47)

where for a symmetric matrix A, vech(A) stands for the vector in Rd(d+1)/2 consisting in the
columns of the upper-diagonal part of A including the diagonal. The problem is given by the
presence of the positive part in the payoff function. To get rid of it, we should be able to find a
value Σ̃ such that

m∑
k=i+1

cke
ATN−Ti (uk,ui)+Tr[BTN−Ti (uk,ui)Σ̃] = 1, (48)

that is we should solve a single equation in d(d + 1)/2 unknowns (the elements of Σ̃), which
is highly non trivial when d > 1. Thus, pricing swaptions is challenging when we consider
multiple factor affine models: this is a well known problem, see e.g. Jamshidian (1989) and
Collin-Dufresne and Goldstein (2002). Keller-Ressel et al. (2009) investigate the case d = 1,
that is a Libor model driven by a (univariate) CIR process like in Jamshidian (1987). In that
case, solving an equation similar to (48) is simple and the pricing of a swaption is only slightly
more numerically complicated than the pricing of a Cap. As our purpose is to extend their
methodology to a process with values in the set of strictly positive definite symmetric matrices
we face a numerical difficulty related to the dimension of the state space. In order to solve
this difficulty we follow Collin-Dufresne and Goldstein (2002)’s methodology which strongly
depends on the affine property of the process used to modelize the rates. As the processes we
use have this affine property we can carry out the approximation for the swaption price pro-
posed by these authors. Therefore, we can get around the dimensional difficulties posed by the
process.

We briefly recall the main results of Collin-Dufresne and Goldstein (2002) to approximate the
exercise probabilities for the swaption. We define the Ti-price of a coupon bond, for i < m ≤
N , as follows:

CB(Ti) =
m∑

k=i+1

ckB(Ti, Tk). (49)

Let us derive the general form of the pricing formula for a receiver swaption, for 0 = T0 = t <

3B(Ti, Tk) = B(Ti,Tk)
B(Ti,TN )

B(Ti,TN )
B(Ti,Ti)

=
M

uk
Ti

M
ui
Ti

= exp {ATN−Ti(uk, ui) + Tr [BTN−Ti(uk, ui)ΣTi ]}

13



Ti:

S0(K,Ti, Tm) = EQ
[
e−

∫ Ti
0 rsds (CB(Ti)− 1)+

]
= EQ

[
e−

∫ Ti
0 rsds

(
CB(Ti)1(CB(Ti)>1) − 1(CB(Ti)>1)

)]
=

m∑
k=i+1

ckEQ
[
e−

∫ Tk
0 rsds1(CB(Ti)>1)

]
− EQ

[
e−

∫ Ti
0 rsds1(CB(Ti)>1)

]
.

We switch to the forward measure as follows:

S0(K,Ti, TN ) =
m∑

k=i+1

ckB(0, Tk)EQ

[
e−

∫ Tk
0 rsds

B(0, Tk)
1(CB(Ti)>1)

]

−B(0, Ti)EQ

[
e−

∫ Ti
0 rsds

B(0, Ti)
1(CB(Ti)>1)

]

=
m∑

k=i+1

ckB(0, Tk)EPTk
[
1(CB(Ti)>1)

]
−B(0, Ti)EPTi

[
1(CB(Ti)>1)

]
=

m∑
k=i+1

ckB(0, Tk)PTk [(CB(Ti) > 1)]

−B(0, Ti)PTi [(CB(Ti) > 1)] .

The exercise probabilities PTk [(CB(Ti) > 1)] and PTi [(CB(Ti) > 1)] do not admit in general
a closed form expression but can be efficiently approximated thanks to an Edgeworth expan-
sion procedure. Intuitively, the moments of the coupon bonds admit a simple closed-form
expression in our affine framework, and these moments uniquely identify the cumulants of the
distribution. One can expand the characteristic function in terms of the cumulants and compute
the exercise probabilities by Fourier inversion.

Using the notation of Collin-Dufresne and Goldstein (2002) (their formula (5)) for the q − th
power of a coupon bond we notice that, for i < m ≤ N :

(CB(Ti))
q = (ci+1B(Ti, Ti+1) + ...+ cmB(Ti, Tm))q

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
×
(
B(Ti, Tj1) · ... ·B(Ti, Tjq)

)
. (50)

Now in our framework we have (see also formula (7.9) in Keller-Ressel et al. (2009))

B(Ti, Tjl) =
M

ujl
Ti

Mui
Ti

(51)

for l = 1, ..., q, meaning that we can rewrite the q − th power of the coupon-bond as follows:

(CB(Ti))
q =

m∑
j1,...,jq=i+1

(
cj1 · ... · cjq

)
×

(
M

uj1
Ti

Mui
Ti

· ... ·
M

ujq
Ti

Mui
Ti

)
. (52)
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Recall, from (27), that we have

M
ujl
Ti

= exp {−φTN−Ti(ujl)− Tr [ψTN−Ti(ujl)ΣTi ]} , (53)

for l = 1, ..., q and

Mui
Ti

= exp {−φTN−Ti(ui)− Tr [ψTN−Ti(ui)ΣTi ]} . (54)

In conclusion, the q − th moment under PTk has the following expression:

EPTk [CB(Ti)q]

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
× EPTk

[(
M

uj1
Ti

Mui
Ti

· ... ·
M

ujq
Ti

Mui
Ti

)]

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
×

EPTk

[
exp

{
q∑
l=1

(
− φTN−Ti(ujl)− Tr [ψTN−Ti(ujl)ΣTi ]

)
+ q
(
φTN−Ti(ui) + Tr [ψTN−Ti(ui)ΣTi ]

)}]

=
m∑

j1,...,jq=i+1

(
cj1 · ... · cjq

)
× exp

{(
−

q∑
l=1

φTN−Ti(ujl)

)
+ qφTN−Ti(ui)

}

× EPTk

[
exp

{
Tr

[((
−

q∑
l=1

ψTN−Ti(ujl)

)
+ qψTN−Ti(ui)

)
ΣTi

]}]
, (55)

where the functions φ and ψ are as usual the solutions of Riccati ODE’s of the form (4), (5).
Once the first m moments under the corresponding forward measures are exactly determined,
we can estimate the exercise probabilities PTk [(CB(T0) > 1)] under each forward measure by
relying on a cumulant expansion for PTk [CB(T0)].

5 The Wishart Libor Model

The aim of this section is to illustrate a specific choice for the driving process Σ. As in the
general setup, we specify the process under the terminal probability measure PTN . The example
we choose is the Wishart process, which was already presented in section 2.2.1:

dΣt = (ΩΩ> +MΣt + ΣtM
>)dt+

√
ΣtdW

TN
t Q+Q>dW TN>

t

√
Σt. (56)

Here W TN
t denotes a matrix Brownian motion, i.e. a d × d matrix of independent Brownian

motions under the PN -forward probability measure. In the sequel we will write Wt for nota-
tional simplicity.
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In this section we show the impact of the relevant parameters on the implied volatility surface
generated by vanilla options for a Libor model driven by a Wishart process. With the aim
to investigate some complex movements of the implied volatility surface, we first compute
the covariation between the Libor rate and its volatility: this covariation is a crucial quantity
allowing for the so called skew effect on the smile, in perfect analogy with the leverage effect
for vanilla options in the equity market.

5.1 The skew of vanilla options

We want to compute the covariation between the Libor rate and its volatility, so we proceed
to derive the dynamics of the Libor rate in the Wishart model. This may be done along the
following steps: using the shorthand

Bk := BTN−t(uk, uk+1) = −ψTN−t(uk) + ψTN−t(uk+1), (57)

recall that we have:

1 + ∆TL(t, Tk, Tk+1) =
B(t, Tk)
B(t, Tk+1)

= eAk+Tr[BkΣt]. (58)

In differential form, after dividing both sides by L(t, Tk, Tk+1) we have

dL(t, Tk, Tk+1)
L(t, Tk, Tk+1)

=
1 + ∆TL(t, Tk, Tk+1)

L(t, Tk, Tk+1)
([...]dt+ Tr [BkdΣt]) . (59)

To preserve analytical tractability, we freeze the coefficients and approximate as follows:

1 + ∆TL(t, Tk, Tk+1)
L(t, Tk, Tk+1)

≈ 1 + ∆TL(0, Tk, Tk+1)
L(0, Tk, Tk+1)

=: C. (60)

Proposition 8. Under the assumption of frozen coefficients (60), the conditional infinitesimal
correlation between the Libor rate and its volatility cannot be negative and is given by

d 〈L(t, Tk, Tk+1), vol(L(t, Tk, Tk+1))〉

=
Tr
[
BkQ

>QBkQ
>QBkΣ

]
dt√

Tr
[
QBkΣB>k Q

>
]√

Tr [ΣBkQ>QBkQ>QBkQ>QBk]
. (61)

Proof. See Appendix.

From the previous formula we realize that the matrixQ is responsible for the shape of the skew.
We also have an indirect impact of the mean reversion speed matrix M coming from the term
Bk which is the difference of two solutions of the Riccati ODE’s (4) and (5). The presence of
Σ suggests that in the present framework the skew is stochastic. What is more, it can only have
positive sign.

16



5.2 Numerical illustration with diagonal parameters

The dynamics above show that the Wishart specification provides a very rich structure of the
model. Since we want to get an understanding of the impact of different parameters we will
look first at the case where all matrices are diagonal, which basically corresponds to a model
driven by a two factor square root process (see e.g. Da Fonseca and Grasselli (2011)).
We use the following set of parameters as a benchmark:

Σ0 =

(
3.75 0

0 3.45

)
, M =

(
−0.3125 ∗ 1.0e−003 0

0 −0.5000 ∗ 1.0e−003

)
,

Q =

(
0.034 0

0 0.0420

)
, κ = 3.

The impact of the Gindikin parameter κ is quite easy to understand: the process acts by influ-
encing the overall level of the surface. This is due to the fact that the higher κ the lower the
probability that the process Σ approaches 0. It is interesting to note that there is not only a level
impact, but also a curvature effect, as we can see in Figure 1.

[Insert Figure 1 here]

Let us now look at the parameters along the diagonals of the matrices M and Q. The following
claims may be easily checked by looking at the SDE’s satisfied by the elements of Σ (see also
Da Fonseca et al. (2007a)). Note that we assumed all eigenvalues of M to lie in the negative
real line.

− For |M11| ↗ (↘) the surface is shifted downwards (upwards).

− For |M22| ↗ (↘) the surface is shifted downwards (upwards).

The impact is more evident for OTM caplets with short maturities. This is due to the fact that
as the process decreases (in matrix sense) the probability that caplets with short maturities are
exercised is lowered more than the analogous probability for longer term caplets.

[Insert Figure 2 here]

We then consider the impact of Q11, Q22. We have the following:

− As Q11 ↗ (↘) the surface is shifted upwards (downwards). In particular if we multiply
Q22 by a constant c > 1, then the increment in the short term is higher for OTM than for
ITM caplets. If c < 1 then the decrease is higher for short term OTM caplets, which is
intuitive, given the discussion above.

− The same impacts, with different magnitudes, is observed also for Q22.

[Insert Figure 3 here]
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5.3 The term structure of ATM implied volatilities for caplets

5.3.1 Diagonal parameters

We proceed to consider the term structure of caplet implied volatilities. When the matrix Σ0 is
diagonal, the impact of the elements of Q is the same: an increase in the absolute value of any
element of Q will result in a steeper term structure of ATM caplet volatilities.

[Insert Figure 4 here]

Considering a model where Σ0 is a full matrix does not influence this result in a significant
way.

5.3.2 More complex adjustments: impact of off-diagonal elements

To appreciate the flexibility of the Wishart framework, we focus now on the impact of the off-
diagonal elements. We introduce off-diagonal elements in M and Q and look at the relative
change in the short term smile (4 months) and the long term smile (32 months). We introduce a
fully populated matrix Σ0 and look at the impact of M12 and M21. Our experiments show that
there is a symmetry between the sign of Σ0,12 (the initial value of Σ12) and M12, M21. More
precisely, the implied volatility changes are as in Table 1.

Σ0,12 > 0 Σ0,12 < 0

M12 > 0 Increase Decrease
M12 < 0 Decrease Increase

M21 > 0 Increase Decrease
M21 < 0 Decrease Increase

Table 1: Implied volatility changes: relation between Σ0,12 and M12,M21.

The reason for this symmetry is to be looked for in the drift part of the dynamics of the single
elements of the matrix process Σ.

Next we look at the impact of Q12 and Q21. To this end we model Q as a symmetric matrix
and set Q21 = Q12 = ρ

√
Q11Q22 for a real parameter ρ. Also in this case we recognize two

main shapes of the adjustment that we denote by S1, S2.
We now proceed to perform other numerical tests which will show that our modeling frame-
work has a certain degree of flexibility. For these tests we set:

M =

(
−0.3125 ∗ 1.0e−003 0

0 −0.5000 ∗ 1.0e−003

)
,

Q =

(
0.02 ρ

√
Q11Q22

ρ
√
Q11Q22 0.0420

)
, κ = 3,
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Σ0,12 > 0 Σ0,12 < 0

ρ > 0 S1 S2

ρ < 0 S2 S1

Table 2: Implied volatility changes: relation between Σ0,12 and ρ.

so basically M is parametrized as before but Q is symmetric and equiped with a parameter ρ
which summarizes the information on the off-diagonal elements. We require Σ0 = Σ∞, where
Σ∞ is given by the solution of the Lyapunov equation (9). After that we perturbate Σ0 in order
to include off-diagonal elements and set Σ0,12 = Σ0,21 = 2. We have a good degree of control
on the term structure of ATM implied volatilities. In particular, we may have larger percentage
shifts in the long-term w.r.t. the short-term ATM implied volatility, or, for ρ = −0.6 we may
even reproduce a situation where the short term ATM implied volatility increases whereas the
long-term ATM implied volatility decreases.

[Insert Figure 5 here]

If we adopt the same kind of parametrization for the matrix M by introducing a second param-
eter ρ2, then we have further flexibility because we can impose many different combinations
of ρ and ρ2. For example, Figure 6 shows that we are able to isolate an effect on the term
structure of ATM implied volatility: in fact we have a moderate change for ITM caplets while
OTM caplets are practically unchanged, but the shape of the term structure of ATM implied
volatility is modified in a significant way.

[Insert Figure 6 here]

Finally, just for illustrative purposes we report a prototypical Caplet volatility surface generated
by the model.

[Insert Figure 7 here]

As far as Swaptions are concerned an example of ATM implied volatility surface for different
expiries and underlying swap lengths is given below.

[Insert Figure 8 here]

6 The Pure Jump Libor Model

Finally, in this section, we would like to provide a second example for the driving process Σ,
so as to let the reader appreciate the degree of generality of this framework. As in the general
setup, we specify the process under the terminal probability measure PTN . The example we
choose is a matrix compound Poisson process, which was already presented in section 2.2.2:

dΣt = MΣt + ΣtM
> + dL

PTN
t . (62)
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All assumptions presented in section 2.2.2 are in order. More specifically, we assume thatL
PTN
t

is a compound Poisson process with constant intensity λ and jump distribution taking values in
S++
d . As a specific example of jump distribution we choose the standard Wishart distribution.

By recalling the results in section 2.2.2 we have that the solution for the function ψτ (u) is

ψτ (u) = eM
>τueMτ , (63)

whereas for φτ (u) we have

φτ (u) = −λ
∫ τ

0
det
(
Id + 2eM

>sueMsQ
)−n

2
ds+ λτ. (64)

In concrete pricing applications, the computation of the solution for φτ (u) implies a numerical
integration with respect to the time dimension. This numerical integration has an impact on
the performance of the model which turns out to be slower than the Wishart Libor model.
For illustrative purposes, we report an example for an implied volatility surface for caplets
generated by the compound Poisson Libor model with central Wishart distributed jumps. The
mean reversion matrix M and the jump intensity λ are given by:

M =

(
−0.0550 0

0 −0.1760

)
,

λ = 0.1.

As far as the jump size distribution is concerned, the parameters are the following:

Q =

(
0.27 0

0 0.05

)
,

n = 3.1,

and the initial state of the process is

Σ0 =

(
1.875 0.6
0.6 1.275

)
.

[Insert Figure 9 here]

7 Conclusions

In this paper we presented an extension of the approach of Keller-Ressel et al. (2009) to the
more general setting of affine processes on positive definite matrices. We showed that their
methodology may be adapted to this state space in a straightforward way. What is more, it
is possible to efficiently price European swaptions in this multi-factor setting by means of a
cumulant expansion due to Collin-Dufresne and Goldstein (2002). In doing so we are in front
of a setting which is potentially able to capture correlation effects which can not be described
by a single-factor framework. We provided numerical examples for the Wishart Libor model,
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where the introduction of off-diagonal elements gives rise to new possibilities in the control of
the shape of the implied volatility surface.

Our contribution may be seen as a starting point for a description of market models in this state
space, in consequence we believe that there are many possible directions for future research. An
example is given by the problem of calibrating this family of models to real market data. As the
structure of the products in the fixed-income market suggests, even in the plain vanilla case, we
expect the objective function that should be minimized in the calibration procedure to be quite
involved. Yet, some calibration results were obtained on equity derivatives in Da Fonseca and
Grasselli (2011) for Wishart based models so a calibration using interest rates derivatives might
be feasible. Certainly, it will be a delicate issue and may constitute an interesting contribution
by its own. Once the model is calibrated on vanillas, one could then further investigate the
performance of the model on more exotic structures, like e.g. Bermudan swaptions and barrier
options. Theses issues are left for future work.

21



Appendix A: proofs

Proof of Theorem 4

For all u ∈ IT we have
E [Mu

T ] = E
[
e−Tr[uΣT ]

]
<∞,

and by the affine property we obtain

E [Mu
T |Ft] = E [exp {−φT−T (u)− Tr [ψT−T (u)ΣT ]} |Ft]

= E [exp {−Tr [uΣT ]} |Ft]

= exp {−φT−t(u)− Tr [ψT−t(u)Σt]} = Mu
t ,

hence the process is a martingale. Now we show that Mu
t > 1. Recall that by assumption

u ∈ IT ∩ S−−d and
Mu
t = E [exp {−Tr [uΣT ]} |Ft] ,

so that if −Tr [uΣT ] > 0 a.s. then we are done. We proceed as in Gouriéroux and Sufana
(2003) and apply the singular value decomposition to the negative definite matrix u, i.e. u may
be written as:

u =
n∑
i=1

λiuiu
>
i

where λi are the eigenvalues of u and ui are the eigenvectors. By assumption ΣT takes values
in S++

d , hence

−Tr [uΣT ] = −Tr

[
n∑
i=1

λiuiu
>
i ΣT

]

= −
n∑
i=1

λiTr
[
uiu
>
i ΣT

]
= −

n∑
i=1

λiu
>
i ΣTui > 0 (65)

as we wanted.

Proof of Proposition 5

We follow closely the proof in Keller-Ressel et al. (2009). By assumption, initial Libor rates
are strictly positive, then

B(0, T1)
B(0, TN )

>
B(0, T2)
B(0, TN )

> ... >
B(0, TN )
B(0, TN )

= 1. (66)

Recall that we have

E
[
e−Tr[u1ΣT ]

]
= Mu1

0 = exp {−φT (u1)− Tr [ψT (u1)Σ0]} =
B(0, T1)
B(0, TN )

. (67)
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By the definition of γΣ in (32), we have that if γΣ = ∞ then we are done, else we can claim
that there exists an ε > 0 such that γΣ − ε > B(0,T1)

B(0,TN ) . Then we can find a matrix ũ s.t.

E
[
e−Tr[ũΣT ]

]
> γΣ − ε >

B(0, T1)
B(0, TN )

. (68)

In analogy with Keller-Ressel et al. (2009) we introduce the function

f : [0, 1]→ R≥0

ξ → E
[
e−Tr[ξũΣT ]

]
(69)

and we want to show that f is continuous. First, since Σ ∈ S++
d and u ∈ S−−d we have that

if u ≺ v then −Tr [uΣT ] > −Tr [vΣT ], hence by monotone convergence we can conclude that
f is increasing. We now introduce an increasing sequence (an)n∈N ↗ 1 and apply Fatou’s
lemma to obtain

lim inf
n→∞

E
[
e−Tr[anũΣT ]

]
≥ E

[
lim inf
n→∞

e−Tr[anũΣT ]
]

= E
[
e−Tr[ũΣT ]

]
,

implying that f is lower semi-continuous. Since f is also increasing we have that f is contin-
uous. Now f(0) = 1 and f(1) > B(0,T1)

B(0,TN ) , hence there exist some numbers 0 = ξN < ξN−1 <

... < ξ1 < 1 such that

f (ξk) = M ξkũ
0 =

B(0, Tk)
B(0, TN )

, ∀k ∈ {1, ..., N} .

By setting uk = ξkũ (for k = 1, ..., N − 1) we obtain a sequence of matrices uk ≺ uk+1, uk −
uk+1 ∈ S−−d which allows us to fit the initial tenor structure of Libor rates as desired. Finally,
we apply Proposition 1 and Lemma 3.2 (ii) in Cuchiero et al. (2011) in order to obtain the last
sentence of the Proposition 5.

Proof of Proposition 8

In this section we proceed as in the proof of Proposition 4.1 in Da Fonseca et al. (2008). Recall
that Wt is a shorthand for W TN

t . From (59) it follows that

dL(t, Tk, Tk+1)
L(t, Tk, Tk+1)

= C

(...)dt+ 2
√

Tr
[
QBkΣB>k Q

>
] Tr

[
QBk

√
ΣdWt

]
√

Tr
[
QBkΣB>k Q

>
]


:= C

(
(...)dt+ 2

√
Tr
[
QBkΣB>k Q

>
]
dW̃t

)
, (70)

where C was defined in (60) and the scalar noise driving the factor process may be derived as
follows:

dTr
[
QBkΣtBkQ

>
]

=
(

Tr
[
QBkβQ

>QBkQ
>
]

+ 2Tr
[
QBkMΣtBkQ

>
])
dt

+ 2Tr
[
QBk

√
ΣtdWtQBkQ

>
]

= (...)dt+ 2
√

Tr [ΣtBkQ>QBkQ>QBkQ>QBk]
Tr
[
QBkQ

>QBk
√

ΣtdWt

]√
Tr [ΣBkQ>QBkQ>QBkQ>QBk]

:= (...)dt+ 2
√

Tr [ΣtBkQ>QBkQ>QBkQ>QBk]dZt. (71)
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The covariation between the noise of the Libor rate and its volatility is then given by〈
dW̃t, dZt

〉
=

〈
Tr
[
QBk

√
ΣtdWt

]√
Tr
[
QBkΣtB>k Q

>
] , Tr

[
QBkQ

>QBk
√

ΣtdWt

]√
Tr [ΣtBkQ>QBkQ>QBkQ>QBk]

〉

=

(∑
p,q,r,sQpqBqr

√
ΣrsdWsp

)(∑
a,b,c,d,e,f,g QabBbcQ

>
cdQdeBef

√
ΣfgdWga

)
√

Tr
[
QBkΣB>k Q

>
]√

Tr [ΣBkQ>QBkQ>QBkQ>QBk]

=

∑
a,b,c,d,e,f,g,q,r BfeQ

>
edBcbQ

>
baQaqBqr

√
Σrg

√
Σgfdt√

Tr
[
QBkΣB>k Q

>
]√

Tr [ΣBkQ>QBkQ>QBkQ>QBk]

=
Tr
[
BkQ

>QBkQ
>QBkΣt

]
dt√

Tr
[
QBkΣtB>k Q

>
]√

Tr [ΣtBkQ>QBkQ>QBkQ>QBk]
.

Now we turn on the positivity of the skew. With the notation in the proof of Proposition 5,
from ξk > ξk+1 we have uk ≺ uk+1 and then Bk ∈ S+

d . In all terms in the numerator and
the denominator we recognize congruent transformations of matrices in S+

d which leave the
signs of the eigenvalues unchanged. The self-duality of S+

d allows us to claim that all traces
are positive, hence we are done.

Appendix B: the characteristic function

With the purpose of pricing caplets, we need to have a more explicit form for the characteristic
function appearing in Proposition 7. Once we have this expression we can plug in the functions
φτ (u) and ψτ (u) to obtain a closed form solution. The pricing problem will be then solved via
FFT. Recall that we are considering the following expectation:

ϕ(v) = EPTk+1

[
ei(v−(α+1)i)(Ak+Tr[BkΣTk ])

]
= ei(v−(α+1)i)AkEPTk+1

exp

Tr

i (v − (α+ 1) i)Bk︸ ︷︷ ︸
u

ΣTk


 (72)

where

Ak := −φTN−Tk(uk) + φTN−Tk(uk+1);

Bk := −ψTN−Tk(uk) + ψTN−Tk(uk+1). (73)

As we computed the shape of the function φτ (u) and ψτ (u) under the PTN -forward measure,
we need to switch from the PTk+1

to the PTN -forward measure:

ei(v−(α+1)i)AkEPTk+1

[
eTr[uΣTk ]

]
= ei(v−(α+1)i)AkEPTN

[
∂PTk+1

∂PTN
eTr[uΣTk ]

]
= ei(v−(α+1)i)AkEPTN

[
M

uk+1

Tk

M
uk+1

0

eTr[uΣTk ]
]
, (74)
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where the last equation follows from (39). Let us focus on the expectation which becomes:

EPTN

[
exp

{
− φTN−Tk(uk+1)− Tr [ψTN−Tk(uk+1)ΣTk ]

+ φTN (uk+1) + Tr [ψTN (uk+1)Σ0] + Tr [uΣTk ]
}]

= exp
{
− φTN−Tk(uk+1) + φTN (uk+1) + Tr [ψTN (uk+1)Σ0]

}
× EPTN

[
eTr[(−ψTN−Tk (uk+1)+u)ΣTk ]

]
= exp

{
− φTN−Tk(uk+1) + φTN (uk+1) + Tr [ψTN (uk+1)Σ0]

− φTk
(
− ψTN−Tk(uk+1) + u

)
− Tr

[
ψTk

(
− ψTN−Tk(uk+1) + u

)
Σ0

]}
. (75)

Now, recalling the previous terms in front of the expectation in (74), we obtain the final expres-
sion which is

exp

{
i(v − (α+ 1)i)

( Ak︷ ︸︸ ︷
−φTN−Tk(uk) + φTN−Tk(uk+1)

)
− φTN−Tk(uk+1) + φTN (uk+1)

−φTk
(
− ψTN−Tk(uk+1) + i(v − (α+ 1)i)

( Bk︷ ︸︸ ︷
−ψTN−Tk(uk) + ψTN−Tk(uk+1)

)
︸ ︷︷ ︸

u

)
+Tr [ψTN (uk+1)Σ0]

− Tr

[
ψTk

(
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)
︸ ︷︷ ︸

u

)
Σ0

]}
.

25



Figures

Figure 1: Doubling κ with respect to the basic case causes an upward shift of the surface. The
plot represents the two smiles (4 months and 32 months) for the basic (κ = 3) and the modified
case (κ = 6).

Figure 2: Impact of M11. M11 is negative and the present image shows the effects on the two
smiles (4 months and 32 months) we obtain when we multiply it by a constant c = 1.8
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Figure 3: Impact of Q11. Q11 is positive and the present image shows the effects on the two
smiles (4 months and 32 months) we obtain when we multiply it by a constant c = 2

Figure 4: Impact of Q on the term structures of ATM implied volatilities. Here we consider
Q11 and multiply its value by a constant c = 1, 1.5, 2 so as to get the values in the legend.
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Figure 5: The images above highlight the flexibility of the Wishart Libor model. We are able
to impose different patterns to the term structure of ATM implied volatility. On the top we
have the smiles and on the bottom we observe the relative changes of the smiles, i.e. for every
point of the smiles we calculate the quantity

(
σimpfinal − σ

imp
initial

)
/σimpinitial. Notice in particular

the situation on the left side, where we observe around 5% (ATM) an increase of the short term
smile and a decrease on the long term.
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Figure 6: Impact on the implied volatility surface when both M and Q are parametrized as
symmetric matrices. Notice the level around 5%, corresponding to ATM. This shows that if
we parametrize both M and Q via ρ, ρ2 we have a flexible setting which is controlled just by
two parameters that allow us to perform different combinations. In particular ρ and ρ2 have
opposite impacts in the present example (ρ > 0 whereas ρ2 < 0), meaning that we have a good
degree of control.
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Figure 7: Caplet Implied Volatility Surface generated by the Wishart Libor model

Figure 8: ATM Swaption Implied Volatility Surface generated by the Wishart Libor model
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Figure 9: Caplet Implied Volatility Surface generated by the compound Poisson Libor model
with Wishart distributed jumps
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