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Abstract

Financial crisis of recent times have opened up strange financial
possibilities and it is not uncommon these days for popular interest
rates derivatives such as swaptions to trade at negative strikes. In
this note, irrespective of the asset classes, we provide an extension
of Normed Call Prices (NCP) in Gope and Fries (2011) to negative
strikes and forwards.

Introduction

Normed call prices (NCP) introduced in Gope and Fries (2011)

are an useful tool for construction for arbitrage-free calibration

of global volatility surfaces by way of smoothing techniques as in

Fengler (2009). However, the NCP definition there is specified

under log-normal like diffusion of the underlying which additionally

requires that the forward price of the underlying be always positive.

Besides, one may also be interested in negative strikes irrespective

of the sign of the forward, which particularly makes sense for

interest rate derivatives such as swaptions. In this note, we extend

the NCP definition and properties to include non-positive forwards

and negative strikes. Only Ito type diffusion of the underlying

is assumed. However, we focus on the implied distributions with

finite left tail.

Notation and Preliminaries

• S(t) is the underlying process at time t, which follows Ito-type

diffusion process.

• F (t, T ) the forward price of the underlying at time t for

delivery at T , t ≤ T .

• Ddom(t, T ), the domestic discount factor, is the time-t price

of a zero-bond that pays 1 unit of domestic currency at T .

• Dfor(t, T ) is the foreign time-t discount factor. Ddom(t, T )

and Dfor(t, T ) depend on domestic and foreign rates, respec-
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tively. In particular,

F (t, T ) = S(t)Dfor(t, T )/Ddom(t, T ) (1)

• QT is the the T -terminal measure, with the numeraire process

N(t, T ) = Ddom(t, T )

• N(.) is the normal cdf.

Forward Factor

Define ForFac(T1, T2) > 0, for maturities T1 and T2, T2 ≥ T1,

such that F (0, T2) = F (0, T1)ForFac(T1, T2).

Implied Distributions with Finite Left Tail

As stated earlier, log-normal like distributions of the underlying

S(t) is not assumed, so that S(t) can be zero or negative for any t

including time-zero. When the time-zero spot is zero or negative,

one can have zero or negative forwards, which is not a very desirable

situation. This problem is circumvented by considering shifts in

the strike dimension. For each maturity T , consider forward shift

factors x(T ) and strike shift factors s(T ) such that the following

recursive relationship holds:

x(0) < s(0) = S(0)

x(T ) = x(t)ForFac(t, T ) for T > t

s(T ) = sup
z
{z, S(T ) ≥ z a.s.}

(2)

A particular choice would be: s(0) − x(0) = 1. In any case, (2)

may be used to calibrate a priori the forward shift factors x(T )

and strike shift factors s(T ), and ensure the following:

S(T )− s(T ) ≥ 0 a.s.

F (0, T )− x(T ) > 0
(3)
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Shifted Forward

Define T -shifted forward for maturity T

ShiftFor(0, T ) = F (0, T )− x(T ) (4)

Clearly by (2), ShiftFor(0, T ) > 0 for any T .

Shifted Forward Moneyness

Shifted forward moneyness, κ(K,T ), for strike K and maturity T ,

is defined as follows:

κ(K,T ) =
K − x(T )

ShiftFor(0, T )
(5)

Further define

κmin(T ) =
s(T )− x(T )

ShiftFor(0, T )
(6)

As usual one may use κ in place of κ(K,T ), whenever the meaning

is clear from the context.

Normed Call Prices

Normed Call Price (NCP), C̃(κ, T ), for moneyness κ and maturity

T , can now be extended from the definition given in Gope and

Fries (2011) as follows:

C̃(κ, T ) =
C(κShiftFor(0, T ) + x(T ), T )

ShiftFor(0, T )Ddom(0, T )
(7)

C(κShiftFor(0, T ) +x(T ), T ) above denotes the price of a vanilla

European call with strike K = κShiftFor(0, T ) + x(T ) and ma-

turity T .

Monotonicity and Convexity Constraints

Following no-arbitrage considerations,

C̃(κ, T ) = EQT

[(
S(T )− κShiftFor(0, T )− x(T )

ShiftFor(0, T )

)+
]

= EQT

[(
S(T )− x(T )

ShiftFor(0, T )
− κ
)+
]

= EQT
[
(Y (T )− κ)

+
]
, Y (t) =

S(t)− x(t)

ShiftFor(0, T )

=

∫ ∞
κ

(y − κ)qT (T, y)dy (8)

where qT (T, y) is the transition probability density of the random

variable Y (T ) under QT . Differentiating (8), one obtains

∂C̃(κ, T )

∂κ
= −

∫ ∞
κ

qT (T, y)dy

= −QT (Y (T ) ≥ κ)

= −QT (S(T ) ≥ κShiftFor(0, T ) + x(T ))

= −QT (S(T ) ≥ K) (9)

Thus the negative of the first derivative of the normed call price

function with respect to moneyness is the QT -proability of the

option ending up in -the-money at maturity, with no scaling

due to the rates being involved and no underlying assumption

of deterministic rates. Note that when rates are deterministic,

the T -terminal measure is identical to the risk neutral measure

Q, and then the negative of the first derivative of normed call

price function is the terminal in-the-money risk neutral probability,

which is the traditional interpretation (with some scaling due to

the rates) of the first derivative of the call price function with

respect to strike. From (9) it follows that

− 1 ≤ ∂C̃(κ, T )

∂κ
≤ 0 (10)

Now further differentiate (9) to obtain

∂2C̃(κ, T )

∂κ2
= qT (T, κ) ≥ 0. (11)

Note that strict convexity is not assumed here.

Properties of Normed Call Price Function due to

monotonicity and convexity constraints

Note that the monotonicity and convexity constraints imply the

following properties of the normed call price function C̃(κ, T ),

which are much simpler (though equivalent) compared to simi-

lar properties that apply to the (unnormed) call price function

C(K,T ).

Proposition 0.1 Let κmin = κmin(T ). C̃(κmin, T ) = 1 − κmin,

C̃(κ, T ) = 1− κ for κ < κmin, and C̃(κ, T )→ 0 as κ→∞.
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Proof

C̃(κmin, T ) = EQ
T
[
(Y (T )− κmin)

+
]

= EQ
T

[(
S(T )− s(T )

ShiftFor(0, T )

)+
]

= EQ
T

[
S(T )− s(T )

ShiftFor(0, T )

]
=

F (0, T )− s(T )

ShiftFor(0, T )

= 1− s(T )− x(T )

F (0, T )− x(T )
= 1− κmin (12)

as S(T ) ≥ s(T ) a.s. and ShiftFor(0, T ) = F (0, T ) − x(T ) > 0.

For κ < κmin, C̃(κ, T ) = EQ
T
[
(Y (T )− κmin + (κmin − κ))

+
]

=

EQ
T

[(Y (T )− κmin + (κmin − κ))] = 1 − κ, as Y (T ) ≥ κmin a.s.

and EQ
T

[(Y (T )] = 1. That as κ → ∞, C̃(κ, T ) → 0 follows

similarly, and also immediately from arbitrage point of view, as

with κ→∞, the option becomes worthless.

Proposition 0.2 max(1− κ, 0) ≤ C̃(κ, T )

Proof By Jensen’s inequality, C̃(κ, T ) ≥ (EQ
T

[Y (T )− κ])+ =

max(1− κ, 0), as the max function is convex.

It is important to note that C̃(κ, T ) ≥ max(1 − κ, 0) also fol-

lows directly: Let g(T )(κ) = C̃(κ, T ) − (1 − κ). It follows that
d
dκg

(T )(κ) = ∂C̃(κ,T )
∂κ + 1 ≥ 0, due to the monotonicity constraint.

So, g(T )(κ) ≥ g(T )(κmin) = 0 for κ ≥ κmin, due to Proposition 0.1,

thus proving the assertion.

Excursion: Behavior of the NCP Function with

no Forward and Strike Adjustment

A simplified definition (7) by taking away the shift adjustments

would be as follows, assuming F (0, T ) 6= 0:

Ĉ(κ, T ) =
C(κF (0, T ), T )

F (0, T )Ddom(0, T )
(13)

No assumption is made for log normal dynamics of the underlying

S(t), so S(t) can be negative. By imposing the condition F (0, T ) 6=
0, it is just assumed that S(0) 6= 0.

Positive Forward Let κmin be an attachment point for the

implied distribution of the underlying for maturity T . What this

means is that S(T ) ≥ F (0, T )κmin a.s. Note that κmin can be

negative. It follows that Ĉ(κ, T ) = 1 − κ for κ ≤ κmin, and

Ĉ(κ, T ) → 0 as κ → ∞. Further, ∂C̃(κ,T )
∂κ = −QT (S(T ) ≥ K =

F (0, T )κ). ∂2Ĉ(κ,T )
∂κ2 ≥ 0, as the second derivative is a probability

density. The entire dynamics is captured in Figure 1.

Figure 1: Ĉ(κ, T ) as a function of κ, where κmin = −0.9 and F (0, T ) > 0

Figure 2: Ĉ(κ, T ) as a function of κ, where κmax = 1.4 and F (0, T ) < 0

Negative Forward Let κmax be an attachment point for the

implied distribution of the underlying for maturity T . What this

means is that S(T ) ≥ F (0, T )κmax a.s. Note that here F (0, T ) < 0

and κmax would be usually positive. Obviously here Ĉ(κ, T ) ≤ 0,

as F (0, T ) < 0. It follows that Ĉ(κ, T ) = 1 − κ for κ ≥ κmax,

and Ĉ(κ, T ) → 0 as κ → −∞. Further, ∂C̃(κ,T )
∂κ = −QT (S(T ) ≥

K = F (0, T )κ). However, here ∂2Ĉ(κ,T )
∂κ2 ≤ 0. This dynamics is

captured in Figure 2.

In any case, however, the simplification described here is not

very helpful. For one thing, the normed call prices can get negative

for negative forwards, and for the second, the simplification fails

to apply when the forward is traded at zero.

Calendar Arbitrage

It is not enough for an arbitrage-free global normed call price

surface to be constrained only in terms of moneyness gradients.

Since one considers a continuum of maturities, there are implica-

tions for the maturity gradient of the normed call price function.
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These implications are actually an immediate consequence of Kol-

mogorov’s Forward Equation and Feynman-Kac Theorem (See

Feller (1949) and Kac (1949) which leads to constraints on the

T -derivative of the transition probability density function. Fengler

(2009) has coined the term calendar arbitrage for implication of

this phenomenon on call prices. Under the assumptions

Dfor(T1, T2) =
Dfor(0, T2)

Dfor(0, T1)

Ddom(T1, T2) =
Ddom(0, T2)

Ddom(0, T1)

(14)

the following constraint has been proven in Gope and Fries (2011):

∂C̃(κ, T )

∂T
≥ 0 (15)

The assumptions (14) are somewhat weaker than (though not

substantially different from) assuming that the rates are determin-

istic: They mean that the rates have zero volatility on [T1, T2],

and indeed this is a reasonable approximation to make when the

maturities T1 and T2 are not far apart. In the fully general case,

when rates can be stochastic, the constraint (15) may not hold

good, and the sign of ∂C̃(κ,T )
∂T may depend on the correlation be-

tween the processes for underlying S(t), the domestic interest rate

process rdom(t) and the foreign interest rate process rfor(t).

We do not address the problem that arises out of this correlations

here, but instead prove (15) for the extension of normed call prices

due to strike shifts. First note that

C̃(κ, T1) = EQT1

[(
S(T1)− x(T1)

ShiftFor(0, T1)
− κ
)+
]

=
Ddom(0, T2)

Ddom(0, T1)
EQT2

[(
S(T1)− x(T1)

ShiftFor(0, T1)
− κ
)+

Ddom(T1, T1)

Ddom(T1, T2)

]

= EQT2

[(
S(T1)− x(T1)

ShiftFor(0, T1)
− κ
)+
]

Now by Jensen’s inequality

EQT2

[(
S(T2)− x(T2)

ShiftFor(0, T2)
− κ
)+ ∣∣∣F(T1)

]

≥
(

EQT2

[
S(T2)− x(T2)

ShiftFor(0, T2)

∣∣∣F(T1)

]
− κ
)+

=

(
F (T1, T2)− x(T2)

F (0, T2)− x(T2)
− κ
)+

=

(
S(T1)− x(T1)

F (0, T1)− x(T1)
− κ
)+

as F (T1, T2) = S(T1)
Dfor(T1,T2)
Ddom(T1,T2)

= S(T1)ForFac(T1, T2) due to

(14), and x(T2) = x(T1)ForFac(T2, T2) due to (2). It follows that

C̃(κ, T2) = EQT2

[(
S(T2)− x(T2)

ShiftFor(0, T2)
− κ
)+
]

= EQT2

[
EQT2

[(
S(T2)− x(T2)

ShiftFor(0, T2)
− κ
)+ ∣∣∣F(T1)

]]

≥ EQT2

[(
S(T1)− x(T1)

F (0, T1)− x(T1)
− κ
)+
]

= C̃(κ, T1)

Concluding Remarks

It is clear that the normed call price function remains well-behaved

even under the extension introduced here. It is to be noted that the

particular utility of the NCPs is the no-arbitrage properties which

are simple, direct, and nicely behaved in terms of bounds and

asymptotic behavior. Extension for general Ito-type diffusion only

changes the behavior for negative strikes: instead of being bounded

by 1 from above, for strikes below the attachment point for the

implied distribution, the upper bound is actually the forward

contract. Independence on rates remains unchanged.
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