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Abstract. With the emergence of semi- and nonparametric regression the gener-
alized linear mixed model has been expanded to account for additive predictors. In
the present paper an approach for generalized additive mixed models is proposed
which is based on likelihood-based boosting. In contrast to common procedures it
can be used in high-dimensional settings where many covariates with unknown form
of influence are available. It is constructed as a componentwise boosting method
and hence is able to perform variable selection. The complexity of the resulting
estimator is determined by information-based criteria.
Keywords: Generalized additive mixed model, Boosting, Smoothing, Variable se-
lection, Penalized quasi-likelihood, Laplace approximation.

1 Introduction

General additive mixed models (GAMMs) are an extension of generalized ad-
ditive models incorporating random effects. In the present article a boosting
approach for the selection of additive predictors is proposed.

Boosting originates in the machine learning community and turned out
to be a successful and practical strategy to improve classification procedures
by combining estimates with reweighted observations. The idea of boosting
has become especially important in the last decade as the issue of estimating
high-dimensional models has become more urgent. Since Freund and Schapire
(1996) have presented their famous AdaBoost many extensions have been
developed (e.g. gradient boosting by Friedman et al., 2000, generalized linear
and additive regression based on the L2-loss by Bühlmann and Yu, 2003).

In the following the concept of likelihood-based boosting is extended to
GAMMs which are sketched in Section 2. The fitting procedure is outlined
in Section 3 and a simulation study is reported in Section 4.

2 Generalized Additive Mixed Models - GAMMs

Let yit denote observation t in cluster i, i = 1, . . . , n, t = 1, . . . , Ti, col-
lected in yTi = (yi1, . . . , yiTi). Let xTit = (1, xit1, . . . , xitp) be the covariate



vector associated with fixed effects and zTit = (zit1, . . . , zitq) the covariate
vector associated with random effects. Then the classical parametric ran-
dom effects model assumes that the mean µit = E(yit|bi,xit, zit) is given
by µit = xTitβββ + zTitbi, where bi is a random effect. In addition it is as-
sumed that the observations yit are conditionally independent with variances
var(yit|bi) = φυ(µit), where υ(.) is a known variance function and φ is a
scale parameter.

More generally, we include nonparametric effects and a general link. Let
uTit = (uit1, . . . , uitm) denote the covariate vector associated with the non-
parametric effects. The generalized semiparametric mixed model that is con-
sidered has the form

g(µit) = xTitβββ +

m∑
j=1

α(j)(uitj) + zTitbi, (1)

where g is a monotonic differentiable link function, xTitβββ is a linear paramet-

ric term with parameter vector βββT = (β0, β1, . . . , βp), including the inter-
cept,

∑m
j=1 α(j)(uitj) is an additive term with unspecified influence functions

α(1), . . . , α(m) and finally zTitbi contains the cluster-specific random effects
bi ∼ N(0,Q), where Q is a q× q dimensional known or unknown covariance
matrix. An alternative form that we also use in the following is µit = h(ηit),
where h = g−1 is the inverse link function, called response function.

Versions of the additive model (1) have been considered e.g. by Lin and
Zhang (1999), who use natural cubic smoothing splines for the estimation
of the unknown functions α(j). In the following regression splines are used,
which have been widely used for the estimation of additive structures in
recent years, see e.g. Marx and Eilers (1998) and Wood (2006).

In regression spline methodology the unknown functions α(j)(.) are ap-
proximated by basis functions. A simple basis is known as the B-spline

basis of degree d, yielding α(j)(u) =
∑k
i=1 α

(j)
i B

(j)
i (u; d), where B

(j)
i (u; d)

denotes the i-th basis function for variable j. Let αααTj = (α
(j)
1 , . . . , α

(j)
k )

denote the unknown parameter vector of the j-th smooth function and let

BT
j (u) = (B

(j)
1 (u; d), . . . , B

(j)
k (u; d)) represent the vector-valued evaluations

of the k basis functions. Then the parameterized model for (1) has the form

g(µit) = xTitβββ + BT
1 (uit1)ααα1 + · · ·+ BT

m(uitm)αααm + zTitb.

By collecting observations within one cluster we obtain the design matrix
XT
i = (xi1, . . . ,xiTi) for the i-th covariate, and analogously we set ZTi =

(zi1, . . . , ziTi), so that the model has the simpler form

g(µµµi) = Xiβββ + Bi1ααα1 + · · ·+ Bimαααm + Zibi,

where BT
ij = [Bj(ui1j), . . . ,Bj(uiTij)] denotes the transposed B-spline de-

sign matrix of the i-th cluster and variable j. Furthermore, let XT =



[XT
1 , . . . ,X

T
n ], let Z = diag(Z1, . . . ,Zn) be a block-diagonal matrix and let

bT = (bT1 , . . . ,b
T
n ) be the vector collecting all random effects yielding the

model in matrix form

g(µµµ) = Xβββ + B1ααα1 + . . .+ Bmαααm + Zb = Xβββ + Bααα+ Zb, (2)

where αααT = (αααT1 , . . . ,ααα
T
m), B = (B1, . . . ,Bm).

The Penalized Likelihood Approach: Focusing on generalized mixed
models we assume that the conditional density f(yit|xit,uit,bi) is of ex-
ponential family type. A popular method to maximize generalized mixed
models is penalized quasi-likelihood (PQL), which has been suggested by
Breslow and Clayton (1993), Lin and Breslow (1996) and Breslow and Lin
(1995). In the following we shortly sketch the PQL approach for the semi-
parametric model. In order to avoid too severe restrictions to the form of the
functions α(j)(·), we use many basis functions in our approach, say about 20
for each function α(j)(·), and add a penalty term to the log-likelihood. With

δδδT = (βββT ,αααT ,bT ) one obtains the penalized log-likelihood

lpen(δδδ,Q) =

n∑
i=1

log

(∫
f(yi|δδδ,Q)p(bi,Q)dbi

)
− λ1

2

m∑
j=1

αααTj Kjαααj , (3)

where Kj penalizes the parameters αααj and smoothing parameter λ which
controls the influence of the penalty term. When using P-splines one pe-
nalizes the difference between adjacent categories in the form αααTj Kjαααj =

αααTj (∆∆∆d)T∆∆∆dαααj , where ∆∆∆d denotes the difference operator matrix of degree d.
By approximating the likelihood in (3) along the lines of Breslow and

Clayton (1993) one obtains the double penalized log-likelihood:

lpen(δδδ,Q) =

n∑
i=1

log(f(yi|δδδ,Q))− 1

2
bTQ−1

b b− λ1

2

m∑
j=1

αααTj Kjαααj , (4)

with block-diagonal matrix Qb = diag(Q, . . . ,Q). The first penalty term
bTQ−1

b b is due to the approximation based on the Laplace method, the sec-
ond penalty term λ

∑m
j=1ααα

T
j Kjαααj determines the smoothness of the functions

α(j)(.) depending on the chosen smoothing parameter λ.
PQL usually works within the profile likelihood concept. For GAMMs it

is implemented in the gamm function (R-package mgcv, Wood, 2006).

3 Boosted Generalized Additive Mixed Models

In Tutz and Groll (2010) and Tutz and Groll (2011a) boosting approaches
for generalized linear mixed models were introduced. The boosting algorithm
that is presented in the following extends these approaches to the framework
of additive mixed models.



It is used that spline coefficients αααj and B-spline design matrices Bj from
equation (2) can be decomposed into an unpenalized and a penalized part
(see Fahrmeir et al., 2004) with new corresponding diagonal penalty matrices
K := Kj = diag(0, . . . , 0, 1, . . . , 1). Furthermore, we drop the first column of
each Bj as the parametric term of the model already contains the intercept
and hence the smooth functions must be centered around zero in order to
avoid identification problems.

The following algorithm uses componentwise boosting and is based on the
EM-type algorithm that can be found in Fahrmeir and Tutz (2001). Only
one component αααj of the additive predictor is fitted at a time. That means
that a model containing the linear term and only one smooth component is
fitted within one iteration step.

The predictor containing all covariates associated with fixed effects and
only the covariate vector of the r-th smooth effect yields

ηηηi·r = Xiβββ + Birαααr + Zibi,

for cluster i. Altogether the predictor considering only the r-th smooth effect
has the form

ηηη··r = Xβββ + Brαααr + Zb.

We further want to introduce the vector δδδTr := (βββT ,αααTr ,b
T ), containing

only the spline coefficients of the r-th smooth component.

Algorithm bGAMM

1. Initialization

Compute starting values β̂ββ
(0)
, α̂αα(0), b̂

(0)
, Q̂

(0)
and set η̂ηη(0) = Xβ̂ββ

(0)
+

Bα̂αα(0) + Zb̂
(0)

, e.g. by fitting the generalized linear mixed model g(µµµ) =
Xβββ + Zb with the R-function glmmPQL (Wood, 2006) from the MASS li-

brary (Venables and Ripley, 2002) and setting α̂αα(0) = 0.
2. Iteration

For l = 1, 2, . . .
(a) Refitting of residuals

(i.) Computation of parameters
For r ∈ {1, . . . ,m} the model

g(µµµ) = η̂ηη(l−1) + Xβββ + Brαααr + Zb

is fitted, where η̂ηη(l−1) = Xβ̂ββ
(l−1)

+Bα̂αα(l−1)+Zb̂
(l−1)

is considered
a known off-set. Estimation refers to δδδr. In order to obtain an
additive correction of the already fitted terms, we use one step
in Fisher scoring with starting value δδδr = 0. Therefore Fisher
scoring for the r-th component takes the simple form

δ̂δδ
(l)

r = (Fpen (l−1)
r )−1s(l−1)

r



with penalized pseudo Fisher matrix Fpen (l−1)
r = ∂2lpen/∂δδδr∂δδδ

T
r

and using the unpenalized version of the penalized score function

s
pen (l−1)
r = ∂lpen/∂δδδr with lpen from (4). The variance-covariance

components are replaced by their current estimates Q̂
(l−1)

.
(ii.) Selection step

Select from r ∈ {1, . . . ,m} the component j that leads to the

smallest AIC or BIC and select (δ̂δδ
(l)

j )T =
(

(β̂ββ
∗
)T , (α̂αα∗

j )
T , (b̂

∗
)T
)

.

(iii.) Update
Set

β̂ββ
(l)

= β̂ββ
(l−1)

+ β̂ββ
∗
, b̂

(l)
= b̂

(l−1)
+ b̂

∗

and for r = 1, . . . ,m set

α̂αα(l)
r =

{
α̂αα(l−1)
r if r 6= j

α̂αα(l−1)
r + α̂αα∗

r if r = j,

(δ̂δδ
(l)

)T =

(
(β̂ββ

(l)
)T , (α̂αα

(l)
1 )T , . . . , (α̂αα(l)

m )T , (b̂
(l)

)T
)
.

With A := [X,B,Z] update η̂ηη(l) = Aδ̂δδ
(l)

(b) Computation of variance-covariance components

Estimates of Q̂
(l)

are obtained as approximate EM- or REML-type
estimates or alternative methods (see e.g. Tutz and Groll, 2010 and
Tutz and Groll, 2011b for details).

4 Simulation study

In the following we present a simulation study to check the performance of the
bGAMM algorithm and compare our algorithm to alternative approaches. The
underlying model is the additive random intercept logit model with predictor

ηit =

p∑
j=1

fj(uitj) + bi, i = 1, . . . , 40, t = 1, . . . , 10

which includes smooth effects given by f1(u) = 6 sin(u), f2(u) = 6 cos(u),
f3(u) = u2, f4(u) = 0.4u3, f5(u) = −u2, fj(u) = 0, for j = 6, . . . , 50, with
u ∈ [−π, π] except for f2, where u ∈ [−π, 2π]. We choose the different settings
p = 5, 10, 15, 20, 50. For j = 1, . . . , 50 the vectors uTit = (uit1, . . . , uit50) have
been drawn independently with components following a uniform distribution
within the specified interval. The number of observations is fixed as n =
40, Ti := T = 10,∀i = 1, . . . , n. The random effects are specified by bi ∼
N(0, σ2

b ) with three different scenarios σb = 0.4, 0.8, 1.6. The identification
of the optimal smoothing parameter λ has been carried out by BIC.



Performance of estimators is evaluated separately for the structural com-
ponents and variance σb. By averaging across 100 data sets we consider

msef :=

N∑
t=1

p∑
j=1

(fj(vtj)− f̂j(vtj))2, mseσb := ||σb − σ̂b||2,

where vtj , t = 1, . . . , N denote fine and evenly spaced grids on the different
predictor spaces for j = 1, . . . , p. Additional information on the stability
of the algorithms was collected in notconv (n.c.), the number of datasets,
where numerical problems occurred during estimation. Moreover, falseneg
(f.n.) reflects the mean number of functions fj , j = 1, 2, 3, 4, 5, that were
not selected, falsepos (f.p.) the mean number of functions fj , j = 6, . . . , p
wrongly selected, respectively. As the gamm function is not able to perform
variable selection it always estimates all functions fj , j = 1, . . . , p.

The results of all quantities for different scenarios of σb and for varying
number of noise variables can be found in Table 1 and Figures 1 and 2. We
compare our bGAMM algorithm with the R function gamm recommended in
Wood (2006), which is providing a penalized quasi-likelihood approach for
the generalized additive mixed model.

gamm bGAMM (EM) bGAMM (REML)
σb p msef mseσb

n.c. msef mseσb
f.p. f.n. msef mseσb

f.p. f.n.

0.4 5 54809.28 0.188 64 33563.44 1.382 0 0 41671.53 0.280 0 0.05
0.4 10 54826.50 0.112 85 33563.44 1.382 0 0 41671.53 0.280 0 0.05
0.4 15 51605.63 0.151 93 33563.44 1.382 0 0 41671.53 0.280 0 0.05
0.4 20 54706.54 0.149 96 33530.58 1.395 0 0 41624.79 0.282 0 0.05
0.4 50 - - 100 33648.53 1.359 0 0 41606.17 0.282 0 0.05

0.8 5 52641.67 0.470 55 34581.50 1.584 0 0 42755.58 0.545 0 0.08
0.8 10 53384.37 0.462 88 34581.50 1.584 0 0 42755.58 0.545 0 0.08
0.8 15 53842.01 0.272 95 34581.50 1.584 0 0 42755.58 0.545 0 0.08
0.8 20 55771.45 0.320 96 34581.50 1.584 0 0 42755.58 0.545 0 0.08
0.8 50 - - 100 34581.50 1.584 0 0 42755.58 0.545 0 0.08

1.6 5 53909.80 1.683 58 32844.44 1.689 0 0 40306.13 0.927 0 0.36
1.6 10 54376.56 2.160 86 32844.44 1.646 0 0 40306.13 0.927 0 0.36
1.6 15 53100.51 2.110 93 32844.44 1.410 0 0 40306.13 0.927 0 0.36
1.6 20 - - 100 32844.44 1.891 0 0 40306.13 0.927 0 0.36
1.6 50 - - 100 32884.22 1.897 0 0 40449.15 0.935 0 0.36

Table 1. Generalized additive mixed model with gamm∗ and boosting (bGAMM) on
Bernoulli data (∗ only those cases, where gamm did converge)

5 Concluding Remarks

An algorithm for the fitting of GAMMs with high-dimensional predictor
structure was proposed and examined. It works much more stable than ex-
isting approaches and allows a selection of influential variables from a set of
variables including irrelevant ones. Also the form of the single functions can
be estimated more adequately.

An alternative boosting scheme is available in the mboost package (see
Hothorn et al., 2010 and Bühlmann and Hothorn, 2007). It provides a variety
of gradient boosting families to specify loss functions and the corresponding
risk functions to be optimized. The gamboost function also allows to model
heterogeneity in repeated measurements, but, in contrast to the presented
approach, fits a fixed parameter model.
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Fig. 1. Boxplots of msef for gamm∗ (left), bGAMM EM(middle) and bGAMM REML
(right) for p = 5, 10, 15, 20, 50 (∗ only those cases, where gamm did converge)
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Fig. 2. First three smooth functions computed with the gamm model (left), the
bGAMM EM model (middle) and the bGAMM REML model (right) for p = 5, σb = 0.4
for the cases where the gamm function did converge.
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