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Abstract: We study risk-minimization for a large class of insurance contracts. Given that the
individual progress in time of visiting an insurance policy’s states follows an IF-doubly stochastic
Markov chain, we describe different state-dependent types of insurance benefits. These cover single
payments at maturity, annuity-type payments and payments at the time of a transition. Based on
the intensity of the IF-doubly stochastic Markov chain, we provide the Galtchouk-Kunita-Watanabe
decomposition for a general insurance contract and specify risk-minimizing strategies in a Brownian
financial market setting. The results are further illustrated explicitly within an affine structure for
the intensity.
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1. Introduction

The management of an insurance portfolio’s risk is one of the core challenges in actuarial science.
While the classic form of risk mitigation is based on reinsurance contracts, in some cases it is also
possible to hedge claim payments by appropriately trading in different assets. This particularly
applies if the assets are correlated to the insurance contract’s benefits or their (conditional) probability
of occurrence. Practical examples in this direction are unit-linked life insurance products, where
benefits depend on the performance of the assets, or unemployment insurance products, where the
occurrence of a claim payment may depend to some extend on economic and financial conditions of
the markets. Moreover there is an ongoing discussion about the introduction of so called longevity
bonds which would establish the possibility for life insurance companies and pension funds to
hedge parts of their longevity risk, see [1], [2] or [3]. Due to their unsystematic risk part, most
insurance claims are not hedgeable completely through a self-financing trading strategy which
particularly means that a hybrid market, consisting among others of financial and insurance markets,
is incomplete. A reasonable method for optimally choosing an investment strategy is then important
to cover at least parts of the risk.

In the present paper we choose the risk-minimization approach and determine hedging
strategies in the sense of this criterion for insurance contracts in a very general setting. This
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quadratic hedging approach bases on the results in [4] for European type payments and to [5] for
payment processes. In most cases, the risk-minimizing strategies can be derived from the well known
Galtchouk-Kunita-Watanabe (GKW-) decomposition, see [6] or [7].

Similar to the works of [8], [5] or [9-11], we describe an insured person’s progress of sojourning
different states of an insurance policy as a right continuous stochastic process with finite state space
K = {1,..,N}, 1 being a.s. the initial state. More specifically, we adopt the class of F-doubly
stochastic Markov chains as introduced in [12], see Appendix A and the comments therein. This
family of processes has several properties which make them very suitable for applications in credit
risk and insurance market modeling. Being a sub-class of F-conditional Markov chains, they
extend the classic notion of Markov chains by including a reference filtration IF which in our case
represents additional market information. In this way we are able to take in consideration the
influence of external risk factors and economic and financial conditions on transition probabilities
of an insured person’s progress. In particular, IF-doubly stochastic Markov chains behave like
time inhomogeneous Markov chains, if we know all the information concerning the underlying
risk factors. This corresponds to the intuition that the transition probabilities would be completely
specified, if we would dispose of full knowledge on the underlying economic and financial situation.
Another important feature is that, if we specify the information as given by the filtration G := FX VT,
where FX is the natural filtration of the IF-doubly stochastic Markov chain X, then we have that
predictable representation theorems and the so-called hypothesis (H)!, or immersion property, hold.
These properties play a fundamental role in order to compute the optimal strategy for insurance
contracts according to the risk-minimization method.

Furthermore, IF-doubly stochastic Markov chains may admit matrix-valued stochastic intensity
processes. This allows to investigate more flexible models compared to the results e.g. in Meller
[5] where a (classical) Markov chain with deterministic intensity matrix function is considered. One
further advantage is that I'-doubly stochastic Markov chains with intensity are fully characterized
by some martingale properties, which can be used for the estimation of the underlying intensity
processes, see Biagini ef al. [13].

Well known examples of F-doubly stochastic Markov chains are reduced form or intensity based
models in the case that hypothesis (H) is satisfied. Here, the state space consists of two states with
the second state being absorbing such that there can only occur one transition in time. There exist
many works on quadratic hedging for these models particularly in the context of credit risk or life
insurance theory, see e.g. [14], [15-17], [1,2,18,19] or [20]. In particular, the present paper extends
these works to a multi-state framework where several subsequent transitions, driven by F-adapted
stochastic intensity processes, are considered. This general setting allows to investigate a larger class
of insurance contracts, e.g. income protection insurance contracts with the states “healthy”, “sick”
and “deceased”, and to include the influence of market conditions and external risk factors on the
insured person’s progress.

Given an F-doubly stochastic Markov chain, we propose a general insurance contract, defined
by three different types of insurance benefits: state-dependent payments at maturity, state-dependent
annuity-type payments, and (transition-dependent) payments at the time of a transition from one
state to another. This definition covers a large set of currently adopted insurance policies. In
particular, we illustrate the definitions for pure endowment, term insurance, general life annuity
and payment protection insurance contracts. Similar to the results in [21], who applied F-doubly
stochastic Markov chains in the context of hedging rating-sensitive financial claims, we obtain
the GKW-decomposition for the payment process of general insurance contracts with respect to a
particular F-martingale. In this context, we generalize and complement the proofs in [21] in order to
adapt the results for the risk-minimization approach which is not investigated there.

1 For the definition and further comments on hypothesis (H), see Proposition A.4 and the text below.
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Given that the reference information I is generated by an N-dimensional Brownian motion W,
we then introduce a financial market model, driven by W. In this setting we infer risk-minimizing
hedging strategies for insurance contracts with deterministic payment structure with respect to the
assets on the financial market. Similarly to the work in [2] we then assume a general affine structure
for the intensity of the underlying IF-doubly stochastic Markov chain and obtain explicit formulas
for the strategies and their residual risk processes. We apply these results in the specific example of
an income protection insurance, where we assume that the intensities follow a (multi-dimensional)
Ornstein-Uhlenbeck process. We discuss the resulting expected cumulative payment, which may be
considered as a fair premium in the interpretation of [22] and [23], as a function of the time horizon,
the payment amounts and the underlying interest rates.

The paper is organized as follows. In Section 2 we introduce the notion of general insurance
contracts and discuss several examples. In Section 3 we prove our main results for the risk
minimization of this kind of contracts in full generality. The risk minimizing strategies are then
further illustrated within a general affine specification for the intensities and in a numerical example
in an Ornstein-Uhlenbeck framework. We conclude the paper with Appendix A and B, where we
summarize important results and concepts of risk-minimization and F-doubly stochastic Markov
chains for the reader’s convenience.

2. General insurance contracts

We now introduce the notion of general insurance contracts and provide some well known
examples of actuarial practice.

In the same notation as in Appendix A, let (Q), G, G, P) be a filtered probability space with G =
FX V I for some IF-doubly stochastic Markov chain X with state space K = {1,..., N}. We assume
P(Xp = 1) = 1. The following definition of general insurance contracts is based on the definitions for
payment processes on rating sensitive claims as given e.g. in [21] or [20]. The definition also covers
the concepts of insurance contracts as given in [5] or [9].

Definition 1. A general insurance contract is given by the quadruple (X; A;Y;Z), where X = (X;)c(o,7)
is an TF-doubly stochastic Markov chain, A = (A},.., AN )telo,7] is an F-adapted, N-dimensional
process of finite variation, Y = ( vyl ., YN ) is an Fr-measurable, N-dimensional random vector, and
Z = (Zi)se)o,r) With Z; = [Zi’k} is an F-adapted, N x N-dimensional process with zeros on the

jkek
diagonal.

The different elements of a general insurance product’s quadruple are interpreted as follows.
The process X is the insured person’s progress in time of sojourning in the states j € K, considered by
the insurance policy. The N-dimensional process A characterizes the cumulative state-dependent
payment streams which are continuously paid up to maturity. For example, one can take A; =
Ct — Py, t € [0, T] with C; = (C},...CN)T representing the cumulative state-dependent claim payments
(e.g. annuities) and P; = (P},.., PN) the cumulative state-dependent insurance premiums up to
maturity. Both processes, P and C are then taken to be IF-adapted, cadlag and increasing. The
vector Y characterizes state-dependent “extra” claim payments at maturity T and the process Z the
“immediate” claim payments at the transition times from one state to another.
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For every general insurance contract (X;A;Y;Z) the cumulative payment process D =
(Dt>t6[0,T] is given by

Dy = YTHT]l{t:T}+/ H;dAer/ (ZTH,_)TdH,
J[0,] 10,£]

N[ . N —
-y Y]H]T]I{t:T}—i—/ HldAL + Z/ 7R ant | (1)
= 0.4] 1/
]

with H{, j € K, as defined in (48) and counting processes N{k from (49). Note that D is of finite
variation. We now provide some well known examples of insurance contracts.

Example 1. A pure endowment is an insurance contract which guarantees to the insured person some
fixed payment if she is alive at maturity. For the sake of simplicity, we only consider the payment to
be equal to 1.

We set £ = {1,2} with 1 being the state “alive” and 2 the absorbing state “deceased”. A pure
endowment contract is then given as the quadruple (X;0; (1,0)T;0) or (X; —P;(0,1)T;0) if premium
payments are considered, respectively.

Example 2. A term insurance is an insurance contract which guarantees the heirs of an insured person
some fixed payment at the time of decease. For the sake of simplicity, we only consider the payment
to be equal to 1.

Again, we set L = {1,2} with 1 being the state “alive” and 2 the absorbing state “deceased”. Then
a term insurance contract is given as the quadruple (X;0;0;Z) or (X; —P;0; Z) if premium payments

. . . 01

are considered, respectively, with Z := 0 ol
Example 3. A general annuity as defined in [2] is an insurance contract which guarantees the insured
person an I'-progressively measurable, non-negative continuous rate payment (ct);c[,7] as long as
she is alive. The state space is again I = {1,2} with 1 being the state “alive” and 2 the absorbing state

“deceased”. Then a general annuity contract is given as the quadruple (X; ( f]o f csds, 0) ;0;0)

or (X; (f}o,t] csds, 0) tTe

T
te[0,T]
01 P;0;0) if premium payments are considered, respectively.
Example 4. A payment protection insurance (PPI) is an insurance contract which is usually offered as
an add-on product to some payment obligations, e.g. a loan. In the case of an insured event, the
insurance company takes over the respective instalments of the payment obligation for the insured
person or her heirs. Generally, the insured events are “disability”, “unemployment” and “decease”.
Hence, the state space for PPI products is given as K = {1,2, 3,4} with “2” being the state “disabled”,
“3” the state “unemployed”, “4” the absorbing state “deceased” and “1” the state where no insured
event is present.

Then a PPI contract is given as the quadruple (X;(0,C? C?, Cf)tTE 0,1)7 (0,Y,Y,Y)T;0) or
(X; (0, Ctz, Ct3, Cf‘)tTe 01~ P;(0,Y,Y,Y)T;0) if premium payments are considered, respectively.

As the underlying payment obligation usually stipulates fixed instalments ¢, ..., cx at some given
payment dates 0 < T7 < ... < Tx = T, the processes Cﬁ, i = 2,3,4, are generally given as C;' =
Y o<ty

Moreover, some payment obligations also contain a so-called balloon rate B at the end of the
contract, which has to be paid on top of the usual instalment. If there exists a balloon rate and it is

insured, then we set Y = B, if there exists no balloon rate or it is not insured, then we set Y = 0.
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Remark 1. 1) The extra claim payment could also be included in the continuous claim payments.
For the reader’s convenience, however, we explicitly separate continuous and extra claim
payments.

2) The main concepts of premium payment are

- a single premium P, where the complete price for the insurance contract is
paid at its beginning. In this case, the vector P would be given as P =
(P]l{t>0}/P]1{t>0}r P]l{t>0}):€[0T

- periodically paid premiums. Here, Lhe insurance price is paid according to periodically
paid premiums p; at a priori specified dates 0 = Tp < T; < ... < Ty, < T. Moreover, some
insurance policies consider premium freedoms which allow the insured person to intermit
premium payments while sojourning (some) insured states. In this case, we have for each
vector entry Piic{1,.,N}, of P

L
Pl = { Dk

depending on whether state i is guarantees premium freedom or not.

3. Risk-minimization for general insurance contracts

Aim of this paper is to provide the risk minimizing strategy for a general insurance contract

by applying the approach presented in Appendix B. Risk minimization provides hedging strategies
which perfectly replicate the claim. Since the market is incomplete, these strategies may not be
self-financing and a readjustment (or cost) is needed to achieve perfect replication. According to
this method we choose then the optimal strategy, i.e. the strategy with minimal cost.
For this sake, we first consider a general setting and then focus on a deterministic payment structure
and an underlying market which is driven by some N-dimensional Brownian motion. These results
are then further specified within a general affine setting for the different entries of the matrix-valued
intensity.

3.1. Martingale decomposition for payment processes of general insurance claims

We consider the payment process D in (1). Let S° denote the market’s discounting factor, which
will be further specified in Section 3.2. If f 0,1] sﬂd |D|, < oo, we get by (59) that the discounted

cumulative payment stream D= (Dl‘)te[O,T] is given as

YTHT

p>

S

N Y]H] ik
2 57 Lo- T}+/ —H’d I+ Z/ ANt | @)
- (=

We further assume the underlying IF-doubly stochastic Markov chain X to admit an intensity ¥ =
ik . .
(19} i kex) rc(o,7) @ introduced in A.5.
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Assumption 2. For every general insurance contract (X;AY;Z), let

N\ 2
E[<§>]<oo, jeK 3)
T

SZB%}E (/[Os]s dA]) <o, jek, @)

= /]O,T] (/[ ]@dA >2|¢Xll,j|du <o, jek, 5)
_ Z]k

I /]O,T]< ) Py (u )du] <o, jkek,j#k, ©)
- " )

E </]OT] 50 Pixlw)du >]<oo, jkek,j#k, )

where H{, t € [0, T] is defined in (48).

Note that (3), (4), (6) and (7) ensure that the discounted payment stream D generated by the
general insurance contract (X; A;Y; Z) is square integrable.

We remark that the following Lemma is given similarly in [21, Theorem 16.38] under the
assumption the local martingale M, defined in (50), is square integrable and the processes A and
Z are bounded. Here, we generalize their proof to the case where A and Z satisfy the conditions of
Assumption 2.

For notational convenience, we introduce the process G = (Gt)c[o,7] = (G,...,GN) T with

N
. . .
Gl = [Z¥]];, = ) Z/"piu(t), jeK,te(0T]. 8)
k=1
ki

Lemma 3. Let (X;A;Y; Z) be a general insurance contract, satisfying Assumption 2, then

o | Y H]T i g4l Z]k
E{DT—Dt‘gt}:]l -|—/ —HdA —I—Z/T] 50 gt
N Yip;i(t,T)
=L HiLE L% ]Sopu(fudf\]u+2/ =3 A, )y () | F
=oA (=
P(t, T)Y P(t,u) P(t,u) !
=F dA Gud H;, 9
St +/Ml Si ”+/1m sg | ©)

where the conditional transition probability process P = P(s,t) = [p; (s, t)]i]. e 0 <5 <t < Tis defined
in A.1.

Proof. We proof the theorem by investigating the different conditional expectations separately.
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First note that because Y is taken to be Fr-measurable and S° to be IF-adapted, by (44) we get for

every j € K

Yi H]

dE

where Q} =FrV .7-'tX.

’gt

50 pl]

;/é iHﬁE H;16:] | g

50 ZHtplj (t,T) ’gt]

T i=

7

tT)‘]-'t

Next, by (51) of Theorem A.7, we get for j, k € K, j # k that

zf"
7 S

J,

Z7k
F= s

/t 58 ulp]k )

Note that because of (56) and (6), the integral-process with respect to M/* is a square integrable

G-martingale. Hence, for every j, k € IC, j # k,

we have

ZL jk _ ZLk i
| fo SN 10| =B | [, gy st
[ Zlf
NG Higyu ‘gfl du
zk
= ]tT]E E | =% Hjll«’]k ’gt‘| ’gt‘|
:Z’k
N 7t
=L Hi /]t - S0 Piilt ¥k (w) ‘ ft] du

ik

Zy
/]]Sopl](tu)tp]k du’}"t],

11 by the conditional version of Fubini’s theorem, the definition of F-doubly stochastic Markov chains

and hypothesis (H).
Finally, for every j € K and for fixed ¢
Proposition A.9 we get

j
|:/t HllsgdA |gt:|

182

with

L == E[ALH) | G,

€ [0, T] we define Al = ftu] Sodsz u € [t,T]. By

B[ [ HlaAl|e]
ALHL— AH] - / A e,
i t,T

9

u—

A]TH]T - /]t 1 Al_dH], | gt] =L -1,

=1 Al ]u .
b UM}A - |gt}
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Since At is Fr-measurable, it follows by the hypothesis (H) that
L =B [AE[H]|G] 6] = ZH;E [&rpijit o) | 7]

Again by the conditional version of Fubini’s theorem, hypothesis (H) and with the Kolmogorov

] Ut Al _am l,+/ Ay, i(u du‘gt}

- [ E ALZH’;wk,]-w)\gt du
J4T) =1

forward equation (47) it follows that

12—1EL ]A] dH.,
t,T

=E

e :Zl Higp(u)du | G
- K
= ./]t,T] E A]Lﬁ Z E [HZ | ét} P, (u) ‘ gt] du
K .
:gHiftT (szktulpk] >‘]—}]du
_ZHt /t Au_ (Zplktulpk] )du‘ft]
- ;HflE [ /m A _dpij(tu) | th} .

Hence, by integration by parts and since p(t, -) is continuous, we get

K 1. .
L—-1L = Z H;E ATpi,j(t/ T) — /]t - Ajuidpi,j(t, 1/[) | Ft:|
i1 i .

K . r_ .
= Z H;E Atpi,j(t,t) + /]t 1 pi,j(t,u)dA]u |./—"t:|

K ., ,
Y HIE| [ pyudal |7
= L]t ]

This completes the proof. 0

Now we are ready to provide the Galtchouk-Kunita-Watanabe decomposition for payment
processes of general insurance contracts.

Theorem 4. Let (X,A,Y,Z) be a general insurance contract, satisfying Assumption 2, with discounted
payment process D, defined in (2). Then the GKW-decomposition of the square-integrable discounted value

process UP = (UP )eelo,T) With uP =FE [DT | Qt} is given as

up =up + /]O,t] aldm, + . /]O,t] BrdM,, (10)

where M is given by (50), m = (m;) (o 1) is a square-integrable F-martingale, given by

P(0,T)Y P(0, 1) P(0, u
S(])- +/[O,T} Sg dAu+/}O,T] SO ud ‘ft ’ (11)

m; =
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and a, B are G-predictable RN -valued processes defined by

F(t—,T)+ ZTH;_

a; =L, =QT(0,t)H;_, B, = <0 , (12)
t

with Hy = (H}, ..., HN), t € [0, T), defined by (48), Q(0,t), t € [0, T), defined in (52), F(t,T), t € [0,T],
defined by

P(t,T)Y P(t,u) P(t,u)
F(t,T) = SO | -2 / JA / Gydu| F, 13
( ) t S(% + 1] SB u+t It 58 udu ‘ t ( )

and ﬁOD = E[ﬁﬂ = m(T)Ho.

Proof. The statement and the proof of this theorem can be found in [21, Theorem 16.62]. The authors
there, however, prove Decomposition 10 only for t € [0, T). Because the integrals on the r.h.s. are not
all continuous, it is a priori not clear if the decomposition also holds for UZT). Here we refer to [24,
Theorem 4.2.3] for an extension of the proof of [21] to thecase t = T. O

3.2. Risk minimization for general insurance contracts with deterministic payment structure

In this section we focus on a more specific setting, where we specify the underlying financial
market and derive risk-minimizing hedging strategies for insurance contracts with deterministic
payment structures.

We start by specifying the underlying market. First of all, we assume the reference filtration
IF = F" to be the augmented filtration, generated by some N-dimensional Brownian motion W. For
computational reasons, particularly in the affine setting of the next section, we set the dimension N
of the Brownian motion equal to the number of states under consideration.

Consider then a financial market consisting of (d + 1) traded assets S = (SY,..., S‘f)tTE[O’T],
assumed to be F-adapted, non-negative stochastic processes. Let § = (SAtl,..., §?)IG[O,T] denote
the R9-valued stochastic process of the primary assets st .., S"’, discounted with the asset SY, i.e.
§§ = Si/SO, i = 1,..,d. Here SO is taken to be continuous with S? > 0 for all t € [0,T] and
shall generally represent the value of a self-financing portfolio on the primary assets. In the sequel,
we assume S to be a local (F,P)-martingale, which particularly implies that the market model is

arbitrage-free.

Remark 2. The requirement that S is a local martingale may appear restrictive. However it is always
satisfied if we choose S” to be the numéraire portfolio defined in [25], since we assume the underlying
financial market to contain only continuous asset price processes.

We could also start with a general situation where the discounted asset price processes are
given by semimartingales. In this case one has to assume some technical conditions to guarantee
the existence of the optimal strategy, see [26] and [27].

Here we prefer to avoid technical complications since our aim is to compute explicitly the
risk-minimizing strategy when it exists.

By the representation theorem with respect to Brownian motion it follows that there exists a
measurable map ¢ : [0, T] x RN — R¥*N, such that

S :§0+/] (5, S:)awWs
0,t
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Assumption 5. We assume that o(t,S¢) is a.s. left-invertible, i.e. that for almost every (w,t) €
Q x [0, T] there exists an F"-adapted N x d-valued matrix I't(w) such that T;g(t,S;) = Iy. This
particularly implies N > 4.

From now on we focus on discount factors and insurance contracts with deterministic payment
structure.

Assumption 6. 1) Y is a deterministic vector in RN,
2) The payment A = (Ay);¢[o,7] is of the form A; = fo s)ds for some bounded deterministic
functionv : [0, T] — RN.
3) Z:[0,T] — RN*N is a bounded deterministic matrix-valued function.
4) S%:[0,T] — R is a deterministic continuous function.

5) Foreveryj ke K,j#k C —supMGOT]E[(lPJk) ] < oo.

Assumption 6 particularly implies that the integrability conditions of Assumption 2 hold. Note
also that the insurance contracts, given in Examples 1, 2 and 4 all satisfy 1), 2) and 3) of Assumption
6. The assumption on SY being deterministic is applied very frequently in the literature, e.g if P is
assumed to be some risk-neutral probability measure and SY = ¢’ for some constant r > 0.

Remark 3. Here we assume constant interest rates for the sake of simplicity, since the focus of this
paper is primarily to evaluate the role of a multi-state progression of the insured person on the
risk-minimizing strategy. The following computations can be easily extended to the case of stochastic
interest rates if S is assumed to be independent of X. In more general models, the investigation of
dependency structures will become inevitable. This goes beyond the scope of the paper and is left to
further research.

Due to the representation theorem with respect to Brownian motion, for every u € [0, T]| and
every i,j € K, there exists some &7 (u,-) € L?(W) such that

E [p;;(0,u) | Fi] = E [p;;(0,u) +/ & (1, 5)dW . (14)

Similarly, because of Assumption 6 5), for every u € [0, T] and every i,j,k € K, j # k, there exists
some 0K (u,-) € L2(W) such that

E {Pi,j(ofu)llfﬁk ft} = [P”(O u lPu / 10,4 (6" (u, 5) AW . (15)

Theorem 7. Given Assumptions 5 and 6, the unique risk-minimizing hedging strategy § = (&;)e(o1]/
characterized in B.5 for a general insurance claim (X; A;Y; Z), satisfying Assumption 6, is given as

i o (u, £)vd / ”olfr Hau)T:, (16
Z/O] Y i T+ f soc u, mu+2 a0 wha)r, )
k#]

& =UpP — Dy — ]S (17)

where Ty is the left-inverse of the volatility matrix (t,S;) and UP = (UP Jtelo,] is the discounted value
process of the cumulative payment process D.
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Proof. Because of Assumption 6, the i-th component m' of the martingale m in Equation (11) is given
as

. Yl 1
my = 2 <TIE [pi,j(0,T) | Ft] +/ —E [pi,j(0,u) | Fi] vidu
S 0,T] Si

N ]k
+k_21/]o,n 0 E |pi (0, )yl | Fi] du>
k#j
N Yj ij
:Jg(ng iy O]+ 01) S9 B [pi(01) V”du—i_ Z/ 01 SO Pz] (0, u)yl ] )
Y] y
+Z(@] c<TsﬂW+[Mw0Atwu s ol
zf"

ik
Z /OT S(B[ ]IOu]( )01] (M,S)dwsdu> .
k#]

By Assumption 6, Fubini’s theorem and the It6 isometry it then follows for every i,j € K that

1 . A 2
J— L] ] < 2 l] 2
. [/JO,T] /]O,T] (53 Loaq )18 (u'S)HUu) duds| = Ky /]O,T] B [/o 10,T] 167w )l ds} au

2
=K? i W (1, 5) AW
1/]o,ﬂ </}0,T1§ (1:5) >

= K% /]O,T} E {(E [pi,j(O, u) |.FT] —E [pi,]-(O,u)])z} du

< KT < o0

du

237 for some constant Ky > 0.
Due to Assumption 6 5), we similarly have for every i,j, k € K, j # k that

2
zf" g
ik < E|: i,jk 2d:|
[/OT/OT]< 10, ()]0 (u,s)||> duds] Kz/m] /]OT] 1677 (1, ) | 2ds
i 2
= K? E ik (y, dw> d
2/10,7‘] _(/]O,T]o (v )IWs 1 !

_ 12 [ . 7k _ N 2

e /]O,T]E _(E (10wl | Fr| =B [pij0,0)]) }du
2 [ (i)

SszﬂEﬁ%)}w

< K3CT <

238 for some constant K, > 0.
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Therefore, we can apply the stochastic version of Fubini’s theorem, see [28], and obtain

Jk
:ﬁ(é [pij(0,T)] +/ E [p;;(0,u)] v du+z/OT] S]o [P,J(O u)lp]k] du)
B k#]
+]~NZl/]0,t](§0i 1/](T,s)—|—/[S’T] Slgérzr](u S du+ Z/ u ez]k u S)du)dws,

k#]
This finally implies
N ik .
;:2( Tglf / &ty du+2/ S0 Dau) s
k#]
230 The result then follows immediately with Theorem A.7 and the results of Theorem B.5. [

200 3.3. Risk minimization for general insurance contracts with deterministic payment structure under an affine
2a1 specification for the intensities

242 In the same setting as in Section 3.2, we now specify the risk-minimizing hedging strategies,
2a3  computed in Theorem 7 within a general affine setting for the intensities. In addition to Assumption
2as 2 we also consider

Assumption8. 1) Forevery 0 < t < u < T and every j,k € K, j # k, we assume the entries
pjx(t,u) of the transition matrix P(t, 1) are of the form

pj,k(tr u) =1—e" ftu Kb{fkdv , (18)

245 where /¥ are the respective entries of the intensity matrix ¥.
2) Foreveryu € [0,T] and every j,k € K, j # k, 1,0{;" is of the form

Wi = (05T, + ok, (19)

where b/* € RN, ¢k € R and # = (M), an RN-valued affine process as specified e.g. in
[29, Section 3 and Appendix A] or [30]. Here, u is a Markov process with respect to ", given
as the strong solution to the SDE

du, = 6(t, p,)dt + o (t, p, )dW;, (20)

where for t € [0,T],x € RN and i,j € {1,.., N}

5(t,x) = d°(t) + (d*(t))Tx (21)
lo(t,x)er(t,%)T]i; = [VO(1)]i + (V! (1)) x (22)
246 with coefficient functions d°,d!, V0 and V!, taking values in RN, RNXN RN*N and RN*NxN/

247 respectively.
3) The process u is such that

Ci= sup Effjn,[?) < co. 23)
uel0,T]
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This particularly implies that for every j, k € K, j # k, we have

sup E[(p})?] < co. (24)
u€l0,T]

With these assumptions and under some technical conditions, presented in [30], we obtain for
every 0 <t <u < Tandeveryi,jc K withi # j that

E [pij(t,u) | Fi] =B[1—e I R AN HOR AT (25)
N N u i
E(pii(tu) | 7] =B =Y piy(tu) | F) =1- Y B[l —e ['¥%| 5
i =
J# J#i
N g
—2-N+Y el (D+(Bil () Twy (26)
j=1
J#i

Similarly, we obtain for every 0 <t <u < T and everyi,j k € Kwithi #j,j#k
B [, 09l | 7] = (1= e 5 Wl 7| =8 [yl 5] - e F g 7

=R+ B R (G () + (B () T,)

- e O G ) + By @)
' i N u gl .
E [pj/j(t, u)ll){[k | ft} 2(2 — N)E {l[]{;k | ft} + Z E |:e Jt 1/’{1 dullJ{{k | ft:|
Z
o g »
=(2 = N)em OO G (1) + (B (1))
o ol (0)+ B (1) (7 Sk
+ Y et OFBCWTR (RIS (1) + (Bl (1) Ty) - 28)
=1
I#]

Forevery0 <t <u <T and every combination of i,j,k,I € K, considered in equations (25),
(26), (27) and (28), the functions a;;, B/ solve the ODEs

api/

B (1) = bl — a1 (1)TBL (1) — 3 (B (1) TV (0B (1), 29)
UL 1) = o — (e — (B OV B, 30

with terminal conditions oc;’j (u) = 0and ,Blu] (u) = 0, whereas the functions @, Bu solve the ODEs

B (t) = ~a (178, ()~ LBV (0B (1), &y
(1) = —a(0)7B, (1) — 2 (B, )TV (OB, (1) @

2as  with terminal conditions &, (1) = 0 and Bu(u) =0.
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The functions & ,Bu , @ and ﬁu , k,1 € K, corresponding to &, and ﬂu or to ocu and ﬁ” for
i,j € K as considered in equatlons (25), (26), (27) and (28), then solve the ODEs

dﬁk'l ~k1 ~ ~k

T (1) = —a (7B, () — BV (0B (1), (33)

k] _ ~

T (1) =~ (TR (1)~ (B, () B (1) 64
with terminal conditions @ (1) = ¥ ﬂu ( ) = b and

dﬁkl Kl . Kl

Fu () = (1B () — (B ()™Y' (0B (), 35)

dak! 0/ 15k 072k

(1) = —d(1)TB, (1) — (B (1) TV (B, (1) (36)

~ =k,
2 with terminal conditions @l (1) = ¢/, B, (u)= b*,
Note that with these specifications, we obtain by (20) that for every 0 < t < u < T and every

ijek,i#j
E [pi;(0,u) | Fi] =1— ¢~ vdop {e_ I ft} — 1 — ¢ o ¥ ol (0)+ (B (0) Tk,
1 _ o )+ (BI(0) Ty _ /O Lo I3 o a5+ (B ()T, (o(s, 1)) TR (5) AW,
and

N w i N Qi i ij
E [p1(0,0) | ) =1~ Y B[ — e e | 7 —a o N Y e ol g0

i=1 j=1
j#i j#i
=2 - N+ Z( o (0)+(BY (0))Tmy / = owi;fdveatf(s>+<ﬁ2f<s>>ws(g(s,ys))rﬁgi(s)dws>.
j=1
J#

Moreover, as every martingale with respect to the Brownian filtration F" is continuous, we have for
0 <u<t<Tthat

E [pi,j(O,u) |]:t} = p,»,j(O, u) = lim E [p,’,j((), u) |]:w]
1 L (0)+(BY(0))TH _ Jo v do el ()+ (B ()T, TRi

lim (1 o [T (05, 1,)) B (5)AW)
1 — o O+ (B (0) Ty _ /0 e J5 #d0 el )+ B )M (g (5,1 ) ) TBE () AW,

and

E[pss(01)| ] = pis(01) = lim E [p;;(0,1) | Fo

—2-N+ 2( BT [ e el B 05, ) B 5)aW, )

j=1
j#i
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Hence, for arbitrary u, t € [0, T], we obtain

E [p;(0,u) | Fi] = +/ 01 (5, 1)1 0, (5) AW, (37)
E [pii(0,1) | 1] = ch(u) + [ 8406110, (5)aW. )
where for u,s € [0, T] and every i,j € K, i # j
¢ () =1 — ot O+ BT ©O)hy
ﬁ;’j(s u) = —p f()s ]dv ”‘itj ) (ﬁil’j(s))TFs (g‘(s’ys))TﬁZj(s) ,
C2( ) =2 N+ Ze’xu (ﬁu( ))TFO ,
1
=
Ze Ji 0ol )+ B )TH (5, 1)) TR s)
yo

Similarly we get for 0 <t < u < T and every i,j,k € K withi # j, j # k that
B [pi;(0,w)pi | 7] = B [yl | e h#éom {e_ Ji' ooyt | 7,
_ = » _ iy ot ij i, ~jk
_ O+ BT G (1) 4 (B (1) T,) — e I W o O+ By w1k (1) 1 B (1)) Tw,)
_ pe _ ~ik ij " ~ik
OB (0) + (B (0 DTh) = SO+ B O @ (0) + (B (0))Tho)
~ ~ik
+/ [+ BT (s, 0, )T (@ (5) + (B, ()H)B.(5) + B (5))
e i ool BN G (5) 4 (B (9)Th,) (05, )R )
e Jo Wil () + (B ) TH (g, ys>)TE{,’k(s>}dws
and
B[00l | 7] = @ - N [l | 7] + e hitéem {e_ Ji ok | 7,
17
= (2= N)eR O+ RO (0) + (B (0))Thg) + Ze OO0 @ (0) + (B (0))Thy)
7

+ [ = N[O B s, )T (@) + B 6T B() + B 5)

N s i y ; ) . )

+ 3 e o ol )+ B 6N @K (5) 1 (B (5)) T (0 (5, ) TR )
1=
=

o Jo a0l )+ B )R (g, w))B () }dWS.

Note that by Jensen’s inequality and Assumption 8 4), we get for every 0 < f < u < T and every
i,j,k € K with j # k that

E[E[p; (0, u)pl | Fi2] < E[E[p;;(0,u)(pl")? | F]] < E[($L)? < C.
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Finally, with the same limit-arguments as above, we obtain for arbitrary u,t € [0, T] and every i, ],k €
IC with i # j, j # k that

ik b ik

E [pi; 00yl | 7] = ca(u) + [ 075 (s) 10, (5)aW: (39)
ik f ik

E |:p],](0/u)l/;u |]:t:| - C4(1/l) +/0 194 (S/u)]l[o,u] (S)dws ’ (40)

where for u,s € [0, T],i,j,k € Cwithi #j,j #k

(1) = O+ BUO)TH T (0) + (B (0))Tpag) — e O+ BT O @l (0) + (B (0))Thy),
i,j, @, (s)+(B,, (s ~Jy 2k B i

95 (u,5) = { o)+ BUTH (g (s, 1)) T (@ () + (BL (5)) Ty )Bu(5) + Bl (s))

e ol BT o s,0) )7 (@1 0)+ (BB )+ B O)) |

ca() := (2 — N O+ B0 o (& (0) + (BL (0))Thy)

N af/7(0)+( f:l(o))T ~j.k ik

+ § etu B Ko (Dcu' (0) + (ﬁu (0))1-#0) ’
=1
=

0 (u,5) = { (2 = MBI 50,7 (50 + B ()T )B5) + B )

o o 3 vl o ol (5)+ (Bl (o)) Ak Bk 1(s) + B
+ Yol vbingl o BT o )7 (@) + B 0)WIBL ) + B )
I=1
I#]

We can now apply these results to compute explicitly the risk minimizing strategy as given
in Theorem 4 and more specifically by Theorem 7 in the Brownian setting in consideration. From

Equations (37), (38), (39) and (40) it follows immediately that the processes &/ (u,-) and 8"/*(u, ),
i,j,k € K, j # k, of (14) and (15) are given as

E(u,t) = 07 (u,t), & (ut) = O (ut),
0" (u,t) = 87" (u, ), 0K (u,t) = 01 (u,t) .
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Moreover, with equations (25), (26), (27) and (28) the i-th component Fi(t,T), i € K, of F(t,T) in
(13) is given as

, 0
Fi(LT) =5, ((;))

TSOt
s
1/[

N T So(f

Y'E [pii(

Z

t .
t T |]:t T Y'E [p,’/]‘(i’, T) ‘]:t]
:1
9&1
t
plltu)‘ft d”+z u pl](t“)‘]:t]yj( )d

J#z
)

+ 1 [ S 2 WE [0y | 7] du

N TS0 ik

+ ; Z/ SO(u)Z' (u)E [Pi,j(tlu)llij'k(u) I]-'t] du

=lk=171
j#i K
_ S i w4, T)+BV (1,T) - MO W (4,T)+B7 (1,T) 1,
=0t )Y(Z N+]Zl f)+z Y- )
j#i J#z
T 80t S () 4B '
_ ot (tu)+BY (tu)-p i
. S0 (2 N+];e f)v(u)du
j#i
0 i .
+Z TS f (u)+ﬁ{’(u)-uu)vf(u)du

J#l

z s
k;éI

SOt

{<2 N BB B Gk (1) + B (1 u) - py)

N ; . i
+ Y et B e Gk (1 ) + B (1 ) 'Ih)}d”

=1
14
TSOf K (uyd B, ik i
P10 [ szt Bem @) 4 B0 -
j=1k=1 ()
j#i k#j

B @i (1) + B (1) - ) }d”

and can hence be expressed explicitly in terms of u.

3.4. Application: The Expected Cumulative Payment in an Ornstein-Uhlenbeck Framework

Fi(t,T) from the previous section and the connection established through equation (9).

(41)

In this section, we illustrate in a specific example how the expected (discounted) cumulative
payment E[Dr] from Lemma 3 can be calculated by using the explicit expression of the components

In the

following, we regard a specific insurance product, namely an income protection insurance, and for
simplicity we assume that the corresponding process X of the insured person can only take the
three states K = {1 = healthy,2 = sick/unfit for work,3 = death}, where state 3 is absorbing. The
corresponding transitions are illustrated in Figure 1. Hence, for b € R3, /K € R from (19) we set

|

=0and ¢* = 0 for (j, k)

¢7:=1{(1,2),(21),(1,3),(23)}.
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Figure 1. Possible transitions for an insured person’s process in an income protection insurance with
the three states K = {1 = healthy, 2 = sick/unfit for work, 3 = death} with absorbing state 3.

In the following, we assume a specific form for the Markov process p from (19), namely a simple,
3-dimensional Ornstein-Uhlenbeck (OU) process with corresponding SDE

du, = ap,dt +cdWy, po=Ec R’

Note that for the OU process it is well-known that condition (23) for the expectation is fulfilled. A
major drawback, though, of choosing this process for the intensity is the undesirable feature that
it can become negative with positive probability. However, [31] provide calibrated parameters for
which the probability of negative values for p turns out to be negligible. For this reason, we choose
similar parameter values and set

0.0003 0 0
a=(0.07,0.11,0.09)7,0 = 0 0.0007 0 and ¢ =(0.1,0.1,0.1)T.
0 0 0.0005

Hence, equations (21) and (22) simplify and yield to

5(t,x) = (d)Tx
[o(t, ) (8, %) = [VO);

l,] 7
with
a0 0 o2 0 0
dl=]| 0 a 0 and V= 0 o3 0
0 0 a3 0 0 o3

As a consequence of these assumptions, the ODEs (29)-(36) substantially simplify and can be explicitly
solved, see e.g. [32]. For example, for every 0 < t < u < T and every choice of (i,j) € Z, the ODEs
(29) and (30) now are given by

gt . y
i (1) = vl — '),
dzx;’j

S (1) = ¢ — (B ()R (1),

with terminal conditions zxi{j (u) = 0and ﬁluf (u) = 0. For the k-th components of ﬁlu] (t),ie. ® ;] (1),
one obtains the explicit solutions

gy (1) = - (1 — exp(dl (11— t)) . ke {1,253},
kk
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and

— 2 (1 exp(dlyu—1))

it =t +3 £ T

1
+—— (1 —exp(2di(u—1) ] .
1

a, )
Similarly, the ODEs of the remaining equations (31)-(36) can be derived.

Next, we need to specify all remaining parameters, i.e. b/*,c/* for (j,k) € Z, the components
A,Y, Z of the quadruple (X;A;Y;Z) and the discounting factor Sy. For simplicity, we set Sp = et
with a constant interest rate r and choose

[6V]

2
b2 =b> =|3| b =[1]|,b’=|2], = =1,"=01,7=02.
1 2

[68)

We have chosen the components of b/ * to be equal in order to emphasize the general dependence of
the process 1p{’k in (19) on u, and not on the specific linear combination.
Furthermore, similar to Example 2, we set

0 0 z
Z:=10 0 z|, Y=0, and A;=C—P;, t€]0,T].
0 0O

with C; and P; representing the cumulative state-dependent claim payments (e.g. annuities) and
insurance premiums up to maturity, respectively, and z the “immediate” claim payment if the insured
person dies. More precisely, we assume monthly equal insurance premiums and claim payments
equal to 1, if the insured person is in the states 1 (healthy) or 2 (sick/unfit for work), respectively, and
which are paid at the end of each month in a proportional way. Let the payment dates 0 < T7 < T <
... denote the final day of each month, i.e. T; = ﬁ, then we set

1/At
v(t) = | —1/At
0

with At = 1/12and A = [, v(s)ds.

Clearly, with these specifications Assumption 6 is fulfilled. Finally, assuming that the insured
persons process X starts in the state 1 (healthy) at t = 0, one obtains H] = (1,0,0). Based on the
explicit result for F (0, T) from equation (41), now we are able to calculate the expected (discounted)
cumulative payment E[Dr] from Lemma 3 in t = 0, depending on the claim payment amount z,
which is payed when the insured person dies, and on the constant interest rate r. The corresponding
integrals involved in equation (41) are approximated using the integrate function in the statistical
software program R ([33]).

Figure 2 illustrates the expected cumulative payment E[D7] as a function of the claim payment
amount z, a time horizon of one year (T = 1) and three different values of the constant interest rate
r. In Figure 3, the expected cumulative payment E[Dr] are displayed against the time horizon T, for
three different values of the claim payment amount z and for a constant interest rate r = 0.1.

Acknowledgments: The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no [228087].
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Figure 3. Expected (discounted) cumulative payments E[ﬁT] as a function of the time horizon T (in
years) and three different claim payment amounts z and for a constant interest rate r = 0.1.
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4. Conclusion

In this paper we consider pricing and hedging of general insurance contracts by means of risk
minimization. We model the individual progress in time of visiting an insurance policy’s states by
using IF-doubly stochastic Markov chains. In this way we are able to consider a multi-state setting to
describe different types of insurance benefits and to include the influence of market conditions and
external risk factors on the evolution of the insured person among the policy’s states as well as on
the insurance benefits, when they are linked to some financial performance. We explicitly provide the
risk-minimizing strategy for an insurance contract in a Brownian financial market setting and specify
it within an affine structure for the intensity. The results are illustrated by a numerical example, which
shows how this technical setting can actually be easily implemented.
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Appendix A. F-doubly stochastic Markov chains

In this section we introduce briefly to some basic properties of IF-doubly stochastic Markov
chains, which we are going to use in the sequel. Main references are [12] and [21].

On a probability space (Q2, G, P), let X = (Xt)¢[o,1) be a right-continuous stochastic process with
state space K := {1,..., N}. We denote by X the filtration generated by X, i.e. FX = o(X(u) : u < t)
for all t € [0, T], and consider the filtration G to be the enlargement of IFX through some reference
filtration T, i.e. we assume G; = ]-"tX V Fi for all £ € [0, T]. Further, we set G = ]-"tX VvV Fr, t €10,T)
and assume that all filtrations satisfy the usual conditions of completeness and right-continuity, see
[28].

Definition A.1. A process X = (X¢);¢[o,) is called an IF-doubly stochastic Markov chain with state
space K, if there exists a family of stochastic matrices

P(s,t) = [pjx(s,)]jkex, 0<s<t<T,

such that

(1) the matrix P(s, t) is Fy-measurable, and P(s, .) is progressively measurable,
(2) forevery j, k € K we have

Lix—yP(Xe = k | Gs) = Lyx _jypjx(st) - (42)
The process P is called the conditional transition probability process of X.

By definition A.1 we can see that the class of IF-doubly stochastic Markov chains contains
Markov chains, compound Poisson processes with integer-valued jumps, Cox processes as in [34]
and processes of rating migration as in [35]. The adjective “double” refers to the fact that there are
two sources of uncertainty in their definition. We remark that an IF-doubly stochastic Markov chain
is a different object than a doubly stochastic Markov chain which is a Markov chain with a doubly
stochastic transition matrix. Furthermore, in [12] it is shown that F-doubly stochastic Markov chains
are a subclass of F-conditional G = FX V IF Markov chains. In particular, F-doubly stochastic Markov
chains behave like time inhomogeneous Markov chains conditioned on Fr, i.e. if we know all the
information concerning the underlying risk factors.

Definition A.2. We say that a state N € K is an absorbing state, if pN,]-(s, f)=0forall0<s<t<T
and all j € K with j # N.

Proposition A.3. Let X be an F-doubly stochastic Markov chain with transition matrices P(s, t), then for
every 0 < s <t <u < T we have

P(s,u) = P(s,t)P(t,u) as. (43)

Proposition A.4. If X is an F-doubly stochastic Markov chain, then for every bounded, Fr-measurable
random variable Y and for each t € [0, T|, we have

E[Y |G| = E[Y | F]. (44)

Property (44) is well-known in the context of survival analysis and credit risk as hypothesis (H) or
immersion property. According to Proposition A.4, F-martingales remain martingales with respect to
the enlarged filtration G. If we think of a martingale as a process describing a fair game, this property
means that the additional information contained in G does not change the valuation of processes
which are considered fair by taking in account only the information IF.
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Another property, which makes the class of F-doubly stochastic Markov chains interesting for
applications is that they may admit matrix-valued stochastic intensity processes in the following
sense.

Definition A.5. An IF-doubly stochastic Markov chain X with state space K is said to have an
intensity, if there exists an F-adapted matrix-valued stochastic process ¥ = (¥)c(o ) with ¥; =

{ {k} such that
jkek

/!

1) ¥ is integrable, i.e.

9l |ds < oo . (45)
/]O/T} ]GZ]C ’
2) ¥ satisfies the following conditions:
>0 VikeK,j4k o =—Y 9l vieK teloT], (46)
k#j
P(v,t) -1 = /] ]‘I’(u)P(u,t)du Vo <t (Kolmogorov backward equation),
ot
P(v,t) -1 = /] ] P(v,u)¥(u)du Vo <t (Kolmogorov forward equation). (47)
0t

A process ¥, satisfying the above conditions, is called an intensity of the F-doubly stochastic Markov
chain X.

Theorem A.6. Let ({Ivft)te[o,ﬂ be an F-adapted N x N matrix-valued stochastic process, satisfying the
conditions (45) and (46) of Definition A.5. Then there exists an F-doubly stochastic Markov chain X with
intensity (¥+)e(o1)-

Forje K, let

Hl:=1T(x,_py, t€[0,T], (48)

be the indicator function for X, being in state j at time ¢ and denote by H; = (H},..., HtN )T the
corresponding N-variate vector. Moreover, for j, k € K, j # k, let NIk = (Nik)te[o,T] with

N ;:/] ]Hfde{g: Y H,_AHE, (49)
0,t

O<u<t

define the counting processes of the jumps of X from state j to k up to time ¢, t € [0, T].

The following theorem provides a martingale characterization of F-doubly stochastic Markov
chains and is the core connection of the theory of IF-doubly stochastic Markov chains and the counting
process theory, underlying for example several estimation schemes for intensity processes, see [13].

Theorem A.7. Let X = (X;)ic(o,1) be a stochastic process with state space K and ¥ = (¥1)ic(o1) be a
matrix-valued process, satisfying (45) and (46) of Definition A.5. The following conditions are equivalent:

i) X is an IF-doubly stochastic Markov chain.
ii) The process M = (Mt),c[o,1) with
M, = H; — /] IHd, (50)
J1o,t

is a G-local martingale.
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iii) Forj,k € K, j # k, the processes M/¥ = (M{k)te[O,T] with
M= NF - /]O t] HiplF du (51)

337 are G-local martingales.
iv) The process L = (Lt)c(o,1) with

Li:=Q(0,t)TH;,
is a G-local martingale. Here Q(O, t) is a unique solution to the random integral equation
dQ(0,t) = —¥:Q(0,t)dt, Q(0,0) =1, (52)
Note that then
Li = Hy+ /M QT(0,u)dM,, t€0,T]. (53)
ss Remark A.l. 1) For every t € [0, T], the matrix Q(0,t) is the unique inverse matrix of P(0, ).

330 More generally, for 0 < s < t < T, we denote by Q(s, t) the unique inverse matrix of P(s, t). The
340 existence and further properties of the family Q(s, t) is given in [12].

It follows immediately from (43) that for every 0 < s < t < u < T, we have
P(t,u) = Q(s,t)P(s,u). (54)
341 2) As the processes M, L and Mk, j.k € K,j # k, are G-adapted, they are also G-local martingales.
Corollary A.8. For every j, k € KC, j # k, and for every t € [0, T| we have
(M), = NI, (55)

(M) = [ Higa (56)

Moreover, with M] H fOt YN 11pu’/deu je K, tel0,T], wehave

Z

M= Y (AHD? = Y (N + NI,
0<s<t k=1
=
(M), = 2 / HEpe () du — / Hl,(u (57)
(=

2 Proof. Equalities (55) and (56) follow directly by the definition of M/ in (51).

Moreover, we observe that ( f 10,4 Yrex HE l/)u ) 0] is a continuous finite variation process.
te

It follows that ’

M= ¥ a2 = Y (NN

0<s<t k=1
k#j
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as ZO<S§(AH£)2 counts the jumps of X into and out of the state j up to time t. As
IVES : i
( f]O,t] Hyyy, du)te[O,T] is the compensator of N/* it follows that

N

My =Y ([ Hyas [ gl
W ,_X:l('/]o,t] WA f P
k7]

N . .

= HF k’]du—/ H il du ,
)y /M bpitau— [ iyl
k#j

where the last equality follows from (46). This ends the proof. [
Proposition A.9. Let X be an F-doubly stochastic Markov chain with intensity and jump times 1y := 0 and
T=inf{g_1 <t <T:X; # XTk—l}' (58)

Then every jump time T, k > 1, avoids F-stopping times, i.e. P(tx = 0) = 0 for every F-stopping time o,
provided that T, < coa.s..

The following proposition is the crucial result in order to compute the risk-minimizing strategies
for general insurance claims which we provide in Section 3.

Proposition A.10. Let X be an IF-doubly stochastic Markov chain. Then the local martingale M, given in
(50), is orthogonal to every TF-local martingale N, in the sense that for each i € K, the product M'N is a
G-local martingale.

Proof. First note that M is a finite variation local martingale. Its sequence (‘?,i) k>0 of jump times with
Tl :=0and
0

To=inf{t >7 _|Mi_ #Mi}, k>1,

is a subsequence of the jump times (7;) >0 of X, as given by (58). As the jump times of the cadlag local
martingale N are IF-stopping times, the processes M' and N have almost surely no common jumps
due to Proposition A.9.

This implies that for all ¢ € [0, T] we have

[M',N]; = MoNg+ Y AMIAN; =0
0<s<t

and ends the proof. [

Remark A.2. It is easily seen that hazard-rate models, as applied frequently in the context of credit
risk or life insurance, are particular examples of IF-doubly stochastic Markov chains, provided they
satisfy hypothesis (H). A thorough description of this relation is given in [24].

Appendix B. Risk-minimization for payment processes

The following survey of risk-minimization for payment processes is borrowed to some extend
from [1], as well as [22]. As in the foregoing sections, we provide the results with respect to a general
numéraire process S” such that one could also consider e.g. the P-numéraire portfolio as discount
factor, see [25]. The results base on the proofs, given in [4] for the case of European type contingent
claims and in [5], [36] and [37, Chapter 4] for the case of payment processes.



369

370

371

373

374

375

Version May 27, 2016 submitted to Risks 25 of 28

In the market model, defined in Section 3.2, we would like to find a hedging strategy for
a G-adapted, square integrable payment process D = (f)t)te[o,T]r representing the cumulative
discounted payments up to time t, t € [0, T].

Note that if an undiscounted cumulative payment stream D = (D¢)¢[o 1) is a stochastic process
of finite variation and we have f[O,T] Slgd |D|, < oo with |D| denoting the absolute variation process of

D, then D is given as

~ 1

D; = —dD,, . 59
t [O,t] 58 u ( )

Definition B.1. If |, [0,7T] S%d|D\u < oo, then the value process U = (UP )te[o,T] of a payment process
D is defined as

up := sy [Dr|G/] = sPE [/ Lap,

- gt] . (60)

Since the market is not necessarily complete, it is in general not possible to find a self-financing
hedging strategy that perfectly replicates the discounted cumulative payment process D. In this
context, the idea of risk-minimization is to relax the self-financing assumption, allowing for a wider
class of admissible strategies, and to find an optimal hedging strategy with “minimal risk” within
this class of strategies that perfectly replicate D.

For the local martingale S, we denote

1
2

LZ(S) = {é’ = (g},..., §d)tTE[O,T] ¢ is G-predictable, (IE {/[0 . ng[S]ng) < oo} ) (61)

It is well known that for every & € L?(S), the process ( J 0,4 ¢l dg)t o] is a square integrable
) e,

martingale.
In the following we now explain how to find the risk-minimizing strategy and explain in what
sense this strategy is optimal. We begin with some definitions.

Definition B.2. An L%-strategy is a pair ¢ = (&,&°), such that & € L%(5) and &° is a real-valued
G-adapted process, such that the discounted portfolio value process

V=gl +dl, teloT],
is right-continuous and square integrable.

For an [?-strategy @ the discounted (cumulative) cost process C? is defined as
co = 17;?—/} 148,40y tefoT)
0t

describing the accumulated costs of the trading strategy @ during [0, ], including the payments Dj.
Note that \7;’) should therefore be interpreted as the discounted value of the portfolio ¢, held at time
t after the payments D; have been made. In particular, ‘7;’) is the discounted value of the portfolio
upon settlement of all liabilities, and a natural condition is then to restrict to 0-admissible strategies,
satisfying

\7%0 =0 P-as.
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The risk process of @ is given by the conditional expected value of the squared future costs
RY =E[(C] - CI)*|Gi], te[oT), (62)

and is taken as a measure of the hedger’s remaining risk. We would like to find a trading strategy
that minimizes the risk in the following sense.

Definition B.3. An L2-strategy @ = (&,¢0) is called risk-minimizing for the discounted payment
process D, if for any L2-strategy ¢ = (E, &) such that ‘71? = ‘77? = 0 P-a.s., we have

RY <R? P-as, te[0,T],
i.e., @ minimizes pointwise the risk process introduced in (62).

The key to finding the strategy with minimal risk in our setting is the so-called
Galtchouk-Kunita-Watana decomposition.

Definition B.4. Given a square integrable martingale U € M? and the local martingale S, the
Galtchouk-Kunita-Watanabe decomposition for U with respect to S is given as

ﬁt:aﬁ/] (O7ds 1f, re o) (63)
0,t

where 8Y € [2(S) and LDisa square integrable martingale null at 0 which is strongly orthogonal to

the space Z2(S) of all integral processes ( f[o P! d§>t o) with ¢ € L2(S).
) clo,

It is well known that the set Z2(S) is a closed stable subset of M2, the set of all square integrable
martingales, zero at 0.

Due to Jensen’s inequality and the fact that D is square-integrable, the discounted value process
ub = LSI—S) is a square-integrable martingale and may be decomposed according to (63).

Theorem B.5. For every (discounted) square integrable payment stream D, there exists a unique 0-admissible
risk-minimizing L?-strategqy @ = (&,&0), given by

Gy = gtDI
¢! :=UP —Di — (&7)7St,
with discounted portfolio value process

V¢ = E[Dr |G/ — Dy = B[Dr | Go] + /]O & dS,+ 1P — b,

discounted optimal cost process
C! =E[Dr|Go] +LP =C§ +LP,

and minimal risk process
RY = B[(LP — LY)*[ G,

t € [0, T], where Cﬁ and LD are given by (63) for the square integrable martingale UP.

Proof. See [26] for the single payoff case or [5] and [36] for the extension to the case of payment
streams. [l
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Note that the approach, described above, relies heavily on the fact that the discounted asset
prices are local martingales under the measure P. In a more general setting, when the vector of
discounted asset is a semimartingale under IP, one has to apply the local risk-minimization technique,
see [36] or [37, Chapter 4]. For more information on (local) risk-minimization and other quadratic
hedging approaches we refer to the survey paper of [26].
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