Hedging mortality claims with longevity bonds

Francesca Biagini* Thorsten Rheinlinder’
Ludwig-Maximilians Universitat Miinchen Technische Universitat Wien

Jan Widenmann
Ludwig-Maximilians Universitat Miinchen

October 10, 2012

Abstract

We study mean-variance hedging of a pure endowment, a term insurance, and general
annuities by trading in a longevity bond with continuous rate payments proportional
to the survival probability. In particular, we discuss the introduction of a gratification
annuity as an interesting insurance product for the life insurance market. The optimal
hedging strategies are determined via their Galtchouk-Kunita-Watanabe decomposi-
tions under specific, yet sufficiently general model assumptions. The results are then
further illustrated by assuming a general affine structure of the mortality intensity
process. The optimal hedging strategies as well as the residual hedging error of a
gratification annuity and a simple life annuity are finally investigated with numeri-
cal simulations, which illustrate the nice features of the gratification annuity for the
insurance industry.

1 Introduction

A life market for both traded mortality and longevity securities offers interesting risk
transfer alternatives to more traditional actuarial schemes and has recently been gaining
more and more attention, see e.g. Blake et al. [11]. The possibility of risk mitigation on
the one hand, as well as diversification chances on the other creates a good potential for
a liquid market. Yet, there are also some critical points of view, see e.g. Norberg [22].
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The respective securities typically involve a publicly accessible longevity index from which
the mortality intensities for a wide range of age cohorts can be read.

In the present paper we consider two basic life insurance contracts, namely a pure endow-
ment, i.e. a contract which pays out one unit if the insured person is alive at a pre-specified
maturity, and a term insurance, i.e. a payment of one unit in case the insured person dies
before the maturity of the contract. Moreover, we consider general annuities, paying out
continuous rates as long as the insured person is alive. In this context, we specify a new
type of (insurance) contract which we call a gratification annuity. This insurance contract
would pay increasing annuity rates, proportional to the mortality probability of the in-
sured person’s own age cohort, inferred from the aforementioned longevity index. Broadly
speaking, a policyholder gets gratified for being healthier or for belonging to a sicker age
cohort than was originally expected. The concept of the gratification annuity may also be
interesting because it allows for diversifying unsystematic insurance risk while transferring
important parts of the systematic insurance risk to the policyholder, see also Norberg [21]
and Wadsworth et al. [26] in this context. Therefore, the authors are convinced that such
type of insurance contracts could be interesting for the life insurance market. Moreover,
the description of new insurance products which are related to mortality risk can be fruitful
with regard to the ongoing discussion on the introduction of government-issued longevity
bonds as e.g. in Blake et al. [12].

Faced with the stochastic claims, the issuing institution is interested to hedge its risk ex-
posure by purchasing a (coupon based) longevity bond on the financial market. This is an
instrument which has continuous rate payments proportional to the survival probability,
again inferable from a longevity index. Such kind of bonds have recently been discussed
and recommended to be introduced to the markets, see e.g. Blake et al. [12], and have
originally been proposed by Blake and Burrows [9] for hedging purposes. The combined
position in one of the claims and the bond resembles various types of mortality swaps,
see Dahl et al. [16] for a related concept, where the floating leg (realized mortality) is ex-
changed versus a fixed leg (related to some mortality projection). For a detailed overview
of the securitization of mortality risk we refer to Barrieu and Albertini [3], as well as Blake
et al. [10].

In the present paper we study mean-variance hedging of the respective claims by trading in
the longevity bond. Regarding hedge effectiveness, this method provides solutions which
are optimal by means of expected quadratic error, see e.g. Schweizer [25]. We study a
general setting, where the filtration G, describing the complete information of an insurance
company, is generated by both the individual life history H of the insured person and a
Brownian reference filtration F, to which the hazard process is adapted to, and provide
the Galtchouk-Kunita-Watanabe (GKW) decompositions of the claims and the longevity
bond, and hence the optimal hedging strategies. The main mathematical problem within
these model specifications is that in general the considered securities do not amount to
so-called simple claims, and it is a priori not clear how to find martingale representations,



instrumental in the design of the GKW decompositions.

The mean-variance approach (coinciding in our case with local risk minimization) has
already been applied to the hedging of financial insurance derivatives in several works
such as Barbarin [2], Dahl and Mgller [15], Dahl et al. [16], Mgller [19] or Mgller [20].
However there are some fundamental differences with respect to our paper that we would
like to emphasize. First of all we use general techniques in order to determine the GKW-
decomposition (the Follmer-Schweizer decomposition respectively) for a given derivative
as we follow the approach of Bielecki and Rutkowski [6] instead of computing the decom-
positions directly with respect to the underlying fundamental martingales as in Dahl and
Mgller [15], Dahl et al. [16], Mgller [19] and Mgller [20]. Moreover, our method allows to
shorten the computations considerably and works in a general setting without assuming
restrictive model assumptions. The results are also obtained without requiring the inde-
pendence of the filtrations F and H.

Furthermore, our computations do not require the existence of a mortality intensity, but
hold also under the more general hypothesis that the hazard process I' is continuous and
increasing. This is due to the fact that we can apply Corollaries 5.1.1 and 5.1.3 as well as
Proposition 5.1.3 of Bielecki and Rutkowski [6], since in our setting G = F VvV H, 7 is totally
inaccessible and hypothesis (H) holds (Lemma 6.1.2 of Bielecki and Rutkowski [6]).
Regarding the hedging of life insurance contracts with longevity bonds, similar results can
also be found in Barbarin [2] and Barbarin [1], where the zero-coupon longevity bond is
modeled in a Heath-Jarrow-Morton framework. In contrast, we consider coupon paying
longevity bonds in an intensity-based framework. This setting allows for more explicit
results which can be investigated with the help of numerical simulations.

Finally another difference of our paper with respect to Dahl and Mgller [15], Dahl et al.
[16], Mpller [19] and Mgller [20] is that we do not restrict ourselves to the case of a specific
affine model for the mortality rate such as the CIR model, but we compute the optimal
strategy in a general affine framework for the mortality intensity dynamics.

The optimal hedging strategies are first calculated for a single life status and then gener-
alized to hedging strategies for a whole portfolio of insured persons following the work of
Biffis and Millossovich [8].

We note that our decompositions could also be derived from the results in e.g. Barbarin
[2] or Blanchet-Scalliet and Jeanblanc [13] for pure endowments, in Barbarin [2] for term
insurance and in Barbarin [2] or Biagini and Cretarola [4] for general annuities. In our
setting, however, we work under specific but still very general model assumptions which
allow to compute the GKW-decompositions explicitly. In particular, the setting allows to
illustrate the results for an affine specification for the mortality intensity process. This
assumption is very popular in the literature about modeling mortality intensities and has
been suggested for example in Biffis [7], Biffis and Millossovich [8], Dahl and Mgller [15],
Dahl et al. [16] or Schrager [24]. Here, we can relate the optimal hedging strategies to the
solutions of well known Riccati ODE’s and analyse the results with numerical simulations.



These simulations are carried out for two specifications of the mortality intensity, following
in the first case an Ornstein-Uhlenbeck process and in the second case a Feller process.
Both processes are considered to be non mean-reverting, an assumption suggested by Lu-
ciano and Vigna [18] or Blake et al. [10]. In this context, we compare the optimal hedging
strategies and their residual hedging-error for a gratification annuity and a simple life
annuity. The results show that the gratification annuity possesses nice properties, which
could make such a product interesting for the life insurance market.

The paper is organized as follows. Section 2 establishes the modeling framework which
is used for obtaining the optimal hedging strategies for both a single life status in Sec-
tion 3.1 and insurance portfolios in Section 3.2. The specifications to affine models of the
stochastic mortality intensity are provided in Section 4. In Section 5 we show numerical
illustrations of the optimal hedging strategies and their residual hedging errors at time
t = 0 for a gratification annuity and a simple life annuity.

2 Preliminaries

Let (Q,F,P) be a probability space, T' > 0 some fixed maturity. The time of decease
7 > 0 of a person is modeled as a totally inaccessible random time with P(7 > t) > 0 for
any t € [0,T]. Let Hy = Ir<¢) be the counting process of decease and H the filtration
generated by H. We suppose that our probability space supports also the augmented
natural filtration F of some Brownian motion W. Let G = HVF. We assume the following
martingale invariance property, often referred to as Hypothesis (H): every F-martingale
remains a martingale in the larger filtration G. In particular, W is a martingale in G, and
then by Lévy’s characterization a Brownian motion. The survival probability process G
associated to 7 is supposed to fulfill

Gi:=P(r>t| F)=1eTt.

The F-adapted process I' can hence be interpreted as the stochastic hazard process of
the random time 7. Because 7 is assumed to be totally inaccessible (and therefore avoids
any F-stopping time) the process I' is continuous and due to Hypothesis (H) it is also
increasing, see e.g. Coculescu et al. [14].

The counting process martingale M associated with the one-jump process H is given as

t
Mt:Ht—/(l—Hu)dFu.
0

Note that the focus of our study is on mortality and we therefore work for simplicity with
a fixed constant short rate r. More generally, one could assume that the short rate is
a stochastic process, independent of the mortality. For an adept study of this, see Dahl
et al. [16].

We assume that an insurance company can sell the following products at time t = 0:



o A pure endowment with present value
CPe = efrTH{T>T} = eirT(l — HT).

Here one unit of cash will be paid to the policyholder, given that the insured person
is still alive at maturity 7.

e A term insurance with present value
ti —rT —rT
C"=e ]I{TST} =€ HT,

where one unit is paid at the event of decease, given that this happens before ma-
turity.

o A general annuity with present value
T
oY = / e " (1 - Hy,) Yy, du, (1)
0

where Y is a positive, bounded, F-adapted stochastic process. Here, the insured
person receives general annuity payments as long as she is alive with at a rate given
by Y.

In particular, we introduce a new insurance product, which we call gratification an-
nuity, where Y; = 1 — Gy, t € [0,T]. As G can be inferred from the longevity
index which itself bases on realized mortality of some representative group, such an
instrument rewards an insured person’s higher longevity (e.g. due to healthier life
style) as was originally expected.

In order to compare this product’s characteristics numerically to an existing insur-
ance product, we furthermore consider a simple life annuity, where Y; = 1 for all
te0,7].

We now assume that it is possible to trade on the financial market in an instrument called
a longevity bond which has present value

t
Bt:/ e "Gy du.
0

The payment, generated by this (coupon based) bond, has also the form of an annuity
where the declining rate is given by the survival probability for the age cohort of the insured
person. It does not depend on her individual life history, in contrast to the payouts of the
considered claims. The (discounted) value process associated with the longevity bond is
thus given by the conditional expectation

Qt} .

T
Vi=F [/ e "Gy du
0

b}



Here we have implicitly assumed that P is some pricing measure, reflecting the market
price of risk. Our goal is now to hedge the risk exposure from having sold either a pure
endowment, a term insurance or a general annuity by trading dynamically in the longevity
bond with value process V.

Let us first collect some technical notations and assumptions: we assume

e'T € L*(P). (2)

The spaces L?(W), L?(M) consist of all predictable @, v such that

T T
E[/ egds]<oo, E[/ ¢§dr5]<oo.
0 0

The space O of admissible strategies consists of all predictable 9 such that
T
E [/ §§d<v>s] < 0.
0

If 9 € ©, then fo 95 dVy is a square-integrable martingale.

3 Dynamic hedging with longevity bonds

3.1 Single life status

We start the analysis of optimal hedging strategies by considering a single life status. We
shall use the mean-variance hedging approach, see Schweizer [25] for an overview: for a
given discounted claim C € L?(P), we want to solve

T 2
(C—C—/ ﬁSdVS>
0

where we minimize over all constants ¢ and ¥ € ©. It results that the fair price in this
framework is given by ¢ = E [C], and the optimal hedging strategy ¥* € © can be found
via the Galtchouk-Kunita-Watanabe (GKW) decomposition

min F/
c,¥

)

t
E{O\gt]=c+/ﬂ:dvs+vh 3)
0

where V1 is a martingale strongly orthogonal to V' (i.e. VV" is a local martingale). Tt
follows by the uniqueness of the GKW decomposition and strong orthogonality that once
we have found a decomposition as in (3) in the sense that the terms on the r.h.s. are local
martingales, then they are automatically square-integrable martingales.



The decomposition (3) of the martingales associated to the various claims can be found
by simple algebra once we have established representations of the martingales F [C| G ]
and V in terms of stochastic integrals with respect to the Brownian motion W and the
counting process martingale M.

To establish these representation formulas, we define

Lt = (1 — Ht)ert

and note that Hy = 0 and Ly = 1, moreover L; = 0 for ¢ > 7. By Proposition 5.1.3,
equation (5.28), of Bielecki and Rutkowski [6], L is the stochastic exponential of (—M)
and satisfies the equation

st = —Lt, th

Definition 1 A simple claim is a random variable of the form (1 — Hp) Z for some in-
tegrable Fp-measurable random variable Z and T > 0. We define the (Fi)-martingale U
and the predictable process 1 by

t
U= B[ 72| ] = B[e 2] +/ by AW, (4)
0

where the second equality follows from the martingale representation theorem with respect
to a Brownian filtration.

For simple claims, a martingale representation can then be found by integration by parts
as in the proof of Proposition 5.2.2 in Bielecki and Rutkowski [6]:

Proposition 2 Let X = (1 — Hr)Z, T >0, be a simple claim. Then
t t

E[X|G|=FEl[e 7] +/ CSWdWSJr/ M am,
0 0+

where (V' = gLy and (M = —L,_U,.

Obviously, the pure endowment CP¢ is a simple claim. However, both term insurance as
well as general annuities have to be dealt with differently.

A general representation result, see Bielecki and Rutkowski [6] Proposition 5.2.2, can be
obtained by approximating Gr-measurable random variables in L?(P) by simple claims
and by using that the spaces of stochastic integrals of admissible integrands in L?(W), or
L?(M) respectively, are closed in L?(P). The result then states that each square-integrable
(G¢)-martingale N can be written as

TAL

TN
Nt:NO+/ (!VdWs“‘/ C;;]V[dMsa
0 0+

for admissible integrands ¢V and ¢M. Tt does not, however, give any information how to
calculate the integrands for claims which are not simple.



Proposition 3 The GKW-decomposition for a pure endowment CP¢ is
t t
Bl (- tn) | G) =+ [ ol aw.+ [ o, )
0 0+

where the predictable integrands o'V and o™ are given as

O‘L/V = wsLsf s (6)

oM = UL, .

and c’* = F [e*’”Te*FT].
Here v corresponds to the integrand in (4) for the choice Z = e~ 7.

Proof. C? is a simple claim with Z = e™"T. Hence, Proposition 2 yields the result. m

We turn now our attention to term insurance. For completeness, we provide its Galtchouk-
Kunita-Watanabe decomposition in our setting. The results could also be derived by
applying some results of Barbarin [2] to our setting.

Let us first observe that by martingale representation, there exists a constant ¢’ and
X € L*(W) such that

T t
E [/ e e T dr, ’ ]-"t] =" +/ Xu AWy, (7)
0 0
Proposition 4 The GKW-decomposition for a term insurance C is

plermm|a = [ aws [ g, ®)
where
BY = Ls_xs, ®)
BM = g=rlsnt) _p, (c” + /O 5 Xu AW,y — /0 e T dFu> :
Proof. We write
E[e " Hr| G| = HiE [¢""Hr | G| + (1 — Hy) E [e”""Hr | G (10)

and find the canonical decompositions of the two terms on the r.h.s. into a local martingale
and a finite variation part separately.



Since HiHT = H;, and H:e™"" is Gi-measurable, we get for the first term by integration
by parts

HE [e " Hr | G| = Hie™"™ = Hye "7
t t
=0+ / H,_ defr(s/\f) +/ efr(s/\‘r) dH,
0 0
t
=0+ / e "GN dM, + X} (11)
0
where
t t
X! = / e "A(1 — Hy)dD = / e (1 — Hy)dry .
0 0
Note that we used that Hs = 0 on [0,7), and that Hs = My + Tsa-.

For the second term of the r.h.s in (10), we get by Corollary 5.1.3 of Bielecki and Rutkowski
[6] that

T
(1-H)E[e"Hy|G]=(1-H)E [/ e selt T dT
t

T
=L,F [/ e e s dr }—t} .
t

Again by integration by parts as well as the martingale representation (7),

T T t
L.E { / e e s dFS‘ ]-'t] = I <E [ / e e s dFs‘ ]—"t} — / e e s dl“s>
t 0 0

g

t t
:Cm+/ ¢deS+/ vedM, + X2, (12)
0 0+
where
¢s = Ls—Xs,
i S S
Ve = —Lg_ <th +/ Xo AW, —/ e ey dI‘v> ,
0 0
and
t
X} = —/ Lee e edly = — X}
0
The result now follows by combining (11) and (12). ]



Now we turn to a general annuity. As stated in the introduction, the following decomposi-
tions could also be derived by applying results in Barbarin [2] or Biagini and Cretarola [4]
to our setting. Here they are computed explicitly under our specific model assumptions.

By martingale representation, for each u € [0,T] there exists a constant ¢! and a pre-
dictable process (6 ,)sepo,r] € L*(W), with 6 ; = 0 if s > u, such that

E [e_mYue_F“

tAw
]:c§+/ 0y, dW,
:c§+/ 02 0. (5) dWs. (13)

We set ¢¥ = fOT c¥ du < co. Note that the IN 93;8]1[07“](3) dWy are bounded martingales,
uniformly in u.

Proposition 5 The GKW-decomposition of a general annuity CY is

EUOTeT“( H,)Y,du ]—c +/deW +/ oMMy, (14)

where the predictable integrands are given as

=L, / oy, du, (15)

py:_Ls_/ <c3f+/ Givde> du .
s 0

Proof. By Equation (5.13) of Bielecki and Rutkowski [6], we have for u € (¢,T]

E[e ™1~ H,)Ya| G| =0 —H)E[e"Y, e T | F
=LiE [e ™Ye | B

For u € [0,t] we have

Ele™(1-H,)Yy| G| =0—H,)E[e ™Y, ]| F]
= L,E [e™Y,e ™| F.

Hence, for every u € [0, 7] we have

Ele™(1—H,)Y,| G] = LunE [e ™Yy T | F]
=L{E [e ™Y, | F],

10



where L" is the process L stopped at time u € [0,7]. By integration by parts and (13),

t t
LB [ ™Yoe ™ | F) =t [ ouedWet [ wodd, (16)
0 0+

where
Qbu,s =L, eisl[o,u](‘g%

Vus = —Lg_ (dj + /O RITIC) de> Lo, (5)-

By Fubini, as well as the Ito-isometry,
T T T T
E[/ / qbﬁsduds] :/ E U ¢§sds] du
0o Jo ' 0 0 ’
T T 2
/ E (/ Gu,s dWS> du
0 0
T

<Cl>

where, by Lemma 10 (see Appendix),

T
Cy = sup / (Z)u,s AW
0<u<T 0

T rT T T
E[/ / uisdudrs} :/ EU y;isdl“s] du
0 0 0 0
T T 2
/ FE (/ Vu7de5) ] du
0 0

2
< oQ.
L2

Moreover,

< 02T7
where, by Lemma 11 (see Appendix),
T 2
Cy = sup / Uy,s dM < 0.
0<u<T [|Jo 12

11



Hence we may apply the stochastic Fubini theorem (see Protter [23], Theorem IV.65) to
get from (16)

o] - Bl moni oy

T t
:/ (Cu ¢ude +/ Vude> d
=c +/ / Du,s du dW +/ / Uy,s du dMg

—=c +/deW +/ oM dM,

T
E [/ e "™ (1—-H,)Y,du
0

where the predictable integrands p"', p™ are as desired. [

We have already introduced a new type of insurance product, namely a gratification an-
nuity, which we think of as an interesting insurance product for the life insurance mar-
ket. In order to compare this product to an existing annuity, we also derive the GKW-
decomposition of a simple life annuity. The results are given in the following corollary.

Corollary 6 The GKW-decompositions of a gratification annuity

T
coe — / e (1 — Hy)(1 — Gu) du
0

and a simple life annuity

T
cle = / e "1 — Hy)du
0

t
] =9 4 / dWs+/ M dm, (17)
0+

t
gt] :cla+/0 oW AW + i oM dM, (18)
+

are

E[/OT e (1 — Hy) (1 — Ga) du

E[/OT e (1 — Hy,) du

where the predictable integrands are given as

/ 62 du, (19)

M= _L, / <cga+ / 09°, de> du (20)
s 0

12



and

T
A (21)

T S
A / <c§j+ / oL, de) du (22)
s 0

and the processes 03" and 0!* as well as the constants c9* and c'* are given through the
martingale representations (13) for the respective choice of Y.

Proof. The results are straightforward applications of Proposition 5 with the positive,
bounded and F-adapted processes Y with YV; =1 — G; and Y; = 1, t € [0, T, respectively.
]

Finally, we turn to the longevity bond. By martingale representation, for each u € [0, T
there exists a constant k, and a predictable process (5u,5>s€[0,T]7 with &, s = 0 for s > u,
such that

uNt
Y S
0
t
=k, + / gu,sH[O,u}(S) dWs. (23)
0

We set ¢ = fOT ky du.

Proposition 7 The GKW-decomposition of the longevity bond is

T
Vi=F {/ e "G, du
0

t
gt] =C+/ Es AW,
0

where the predictable integrand £ is given as

T
& = / gu,s du. (24)

Proof. The discounted survival probability e™"*G,, is bounded and JF,-measurable for
every u € [0,T]. Due to Hypothesis (H) we then get

uNt
E[e™Gy| Gl = E[e ™Gy | Fi] = ko + / bune AW,
0

t
=k, + / £u75]1[07u](8) dWs.
0

13



Since G is bounded by one, we have that the fo Su,s1j0,u] (s) dWy are bounded martingales,
uniformly in u. We can again apply stochastic Fubini to get

T
E {/ e "Gy du
0

T
gt] —/ FE [e*T“Gu‘ Qt] du
0

t
:c+/ &s dW
0

where the predictable integrand £ is given as

SSZ/STéSu,st-

This ends the proof. ]

Summing up, the various discounted claim payoffs allow for a representation

T T
C=c"+ / W aw, + / M anm,
0 0+

CW  CM
bl

where the integrands e as well as the constant ¢ are claim-specific and have

been obtained in the foregoing propositions. Moreover, the longevity bond, which serves
as hedging instrument, has representation

t
Vt:c—i—/ ¢sdW, .
0

As we have seen, the integrands ¢“W, €M ¢ can all be computed and therefore be
considered as known quantities. Our goal is now to find the Galtchouk-Kunita-Watanabe
decomposition

t
E[C| G :cC+/ 95 AV, + Vi, (25)
0
where V1 is a square-integrable martingale, strongly orthogonal to V with decomposition
t
‘/tL = / GSC7M dMs
0+

Here ¢ + fg 192’0 dV,, can be interpreted as the part of the risk that can be perfectly
replicated by means of our optimal hedging strategy 9", and V,* as the part of the risk
that is totally unhedgeable.

The integrand 9*C in the Galtchouk-Kunita-Watanabe decomposition (25) is determined
uniquely by the equation

9CE =SV (26)

14



Here, uniqueness is understood modulo the following equivalence relation: if ¢,¢ € O,
then

T
O~ if /O(ﬁt—w)Qd[V]t:o.

In particular, the predictable process ¥* € O gives the unique mean-variance hedging
strategy of the claim by trading in the underlying longevity bond.

3.2 Insurance Portfolio

For an insurance company it is important to hedge the risk of a whole insurance port-
folio rather than the risk of a single insurance contract. Following ideas of Biffis and
Millossovich [8], we extend the results of the previous subsection to hedging strategies for
an insurance portfolio.

Let 1P = {x1,....,xn ), 1% = {y1, ..., ym }, I¥ = {21, ..., zx} denote the set of insured persons
having purchased coverage through pure endowment, term insurance and/or general annu-
ity respectively. For either of those sets we consider a finite counting measure oP¢, o', o
on (IP¢,P(IP¢)), (I, P(I)), (IY,P(IY)), respectively, allowing the insurance company
to weight the risk exposures of the different insured persons to the overall portfolio risks
differently.

For every z € I', we consider its random time of decease 7* with distribution driven by
the continuous, increasing and F-adapted hazard process (Ff)te[o’T], see Section 2. We
write HY = Irecyy, Gf = P(7% > t|F) = e 1% as well as LY = (1 — H)e!" and
M = Hf = [y(1— Hy)dIs.

Of course, the insurance company is aware of each single life status x € I" of its port-
folios and we have to expand the filtration setting of our probability space. Denoting
by H” the natural filtration, generated by the processes (Hf)te[o’T], we assume the in-
surance company’s complete “portfolio”-information to be represented by the filtrations
G =FV \V,cr H*. In this context we extend the martingale invariance property (Hy-
pothesis (H)) to the filtrations G', i.e. we assume every F-local martingale to be also a
G'-local martingale.

By C"* we denote the single life (discounted) payoffs of pure endowment, term insurance
and general annuity, associated with x € I' . The weighted, discounted portfolio payoffs

15



chre CPt and CPY up to time T are then given as

n

CPre =y Ot g (wy) = > e " (1= Hy) 0(as)

i=1 i=1
m

obti — Z CtYi Q Z —r7Yi Hél«j Qti(yj) ’
j=1

k k
= Z Yz oY Z/ U1 — HAOYA du oY (7)
=1

In order to apply the results of Section 3.1 for a single life status to the weighted, discounted
portfolio payoffs, we assume the following conditional independence relation.

Assumption 8 We assume that the family (%), is conditionally independent given
Fr.

With the presence of the general weighting functions o', we also have to adopt additional
integrability conditions. For every z € I we denote by ¢, x* and 6 the predictable
processes of the respective martingale representations (4), (7) and (13), related to x.
Analogously we write ¢*P¢, ¢®t oY oW oM pgeW o peM e Woand p®M for the
constants and integrands in the Galtchouk-Kunita-Watanabe decompositions (5), (8) and
(14), related to x.

Now we are ready to provide the Galtchouk-Kunita-Watanabe decompositions in analogy

to the previous subsection.

Proposition 9 The Galtchouk-Kunita- Watanabe decompositions of the weighted, discounted
portfolio payoffs of pure endowments, term insurances or general annuities are given as

t n t
E [Cp’pe | Gi°] = cPpe —i—/ oW aw, + Z/ %M gPe () dME
0 . 0+
E [CP,ti } gtz Ptl / BPW dW + Z/ Bwa tz ) Myj
E [CP,Y‘ gtY] — CP’Y / P,W dW +Z/ ZL,M Y Zl dMZl
0

Ppe __ n x;,pe Pti _ m iti . Ppe __ k z1,Y . .
where ¢P¢ = 300 cPoPe, BN = 3T VPt PP = BT ¢*t and the predictable inte-
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P,W’ ,BP’W

grands « and pPW are given as

PW walez Qpe xz> ,
pEW = Z LY XY o(y;),
j=1

k T
ﬁwzip?/emma@x
=1 S

respectively.

Proof. We illustrate the proof only for the weighted, discounted portfolio payoff of pure
endowments, as the proofs for term insurances and general annuities are identical. We

have
5| e onta | o

_ S B[O 6] ()

[CPpe ‘ gpe _

=1
=Y B[0P FovHT o (a) (27)
=1
n t
= Z ( / =W aw, +/ oM dM;“) 0P (x;)
=1 0+

n oot
=cy +/ ZOKT“W 0P (x;) dWy + Z/ oM AN gPe (a4)
i=1 04

_C4+/ ol dw +2/ a2t M AMT P ()

where (27) follows by Assumptlon 8. Note that as M* and W are orthogonal martingales
for all x € 1P, so are ) ;- , f0+ aZtM gre () dMZ¥ and W. [ |

4 Affine Models

In this section we assume the hazard process I' to be absolutely continuous with respect
to the Lebesgue measure, i.e. to be of the form I'y = fot s ds. The stochastic intensity
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process u = (Mt)te[o,T] is assumed to be F-progressively measurable, non-negative and
affine. Moreover, we assume

C := sup E[,ui] < 0. (28)
u€[0,T]

The derivation of the hedging strategies then boils down to solving well known Riccati
ODEs.
In more detail let p follow the dynamics

{ dpg = 0(t, pe)dt + o (t, p)dWy
Ho = [

for some @t > 0, where the drift function § as well as the instantaneous variance function

o? are assumed to have affine dependence on y, i.e.

5(t7 Ht) = d()(t) +di (t):ut )
o (t, i) = vo(t) + vi(t)p

with the deterministic functions dy, d1, vg and v; being bounded and continuous.
It is then a well known fact, see Biffis [7], that for u € (¢, T] we have

I

B e J s

;t] = Cul)HBut)m

where the functions a,, and 3, solve the following ODEs

{ (1) = 1= di(D)5(1) — For (D)

=

S

£
I

{ do (1) — —‘do(t)ﬂu(t) — 3v0(t) 35 (1) (29)

Similarly, for u € (¢,7] we have

9

B |2 s

E] — edu (t) +Bu (t)ut

where the functions &, and Bu solve the ODEs of the following form

{ B () = 2 — dy (£)Bult) — bor (1) B2(1)
0,

{ 8o () = —do(t)Bu(t) — Svo(t)B2(t)

joN
IS
—
£
Il
e
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Finally for u € (t,T] we have
E [e_ I ns dsluu ‘ ‘7:4 — eu(®)+Bult)p (@u(t) + Bu(t),ut) )

Here the functions «,, £, are again solutions to (29) and &, and Bu are derived by
differentiating (29) with respect to u and hence solve the following ODEs.

{ dz;tu () = —d1 (t) Bu(t) — vi(t)Bu(t) Bu(t)

BU(U) =1,
{ D () = —do(t)Bu(t) — vo(t) Bu(t) Bu(t)
Ay (u) = 0.

Note that the non-negativity of p and assumption (28) depend on the model parameters.
In particular they are satisfied for the Cox-Ingersoll-Ross process. We refer to Duffie et al.
[17] for an extensive study of affine models.

Based on this insight, we get for every u € (¢, T

E e e | 7] = e e E [e_ Ji psds

‘Fti| — e_rue_rt eau (t)—"_ﬁu (t)lu’t

t
— o TUeu(0)+Bu(0)E +/ e e s eulS)TBus g (§)or(s, pus)dWs 4+ X7
0
where
t 1
Xt3 = e_m/ e () FBuls)us =T (asau(s) + 1505 Bu(8) + Bul(s)d(s, ps) + 5/33(“)02(& M) — ,US> ds
0

is of finite variation and has to vanish as the conditional expectation on the lLh.s is a
square integrable continuous martingale.
For u € [0,t] we note that

E [efme*ru } ]:t} = e e T = ]i/r(n E [eimeiru | ]:v]

_ li}n e TU <eau(0)+6u(0),u + / e s eau(s)+ﬁu(s)ysﬁu(8)a(s’ ,U«s)dWs>
v (7 0

—eTUeu(0)+Bu(0)E 4 /u efmefrseo‘“(s)Jrﬁ“(S)“s/Bu(s)a(s, 115)dWs
0

where we have used the fact that F-martingales are continuous. This shows that for
arbitrary u € [0, 7] we have

tAu
E [e_me_r“ | ]_-t} — o TUeu(0)4B8u(0)F / e—me—rseozu(s)JrBu(s)us/gu(S)U(S7 1s)dW
0

t
= e e (OFA(0F +/ e Tte e eI B (5 (s, 1) 0, (5) AW -
0
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From this we can directly infer the processes 1, 8¢ and &, of the martingale representations
(4) (for the special case Z = e~"T), (13) (for the case of a simple life annuity with
Y; =1,t € [0,T]) and (23) respectively to be

Vs = e*TTe*FSO—(S,Ms)eaT(s)+ﬁT(S)N55T(S) (30)
and
qujfs = u,;s = eimeiFSU(Sa MS)eau(S)+Bu(s)Hsﬁu(S)H[O,u] (s). (31)

Similarly we get for u € [0, T

A~

=:cy

+ /0 e e g (5 1) (Buls) + (Guls) + Bu()ias) Bu(s)) Ty (s) AWV

=m(u,s)

(32)
Note that for all u € [0,7] and all ¢t € [0,T], we get by (28) that

E [E [e—QTue—QFuluz ‘ J—_'t]]
=F [6727”“6721—‘“,[1,12‘] <FE [ui} <C.

Hence, ( fg n(u, s)dWs) is a square-integrable martingale. Moreover note that due to the

It6 isometry and Fubini’s theorem, we have by (28) that

E [/OT /OTn(u, s)Qduds} :/OTE ;/OTn(u,s)2ds} du
:/OTE _(/OTn(u,s)dWS>2] du

= /OTE (E [e*’"“efru,u” .7-"T] — cu)ﬂ du

S/O E [pz] du

<CT <0,
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since ¢, > 0 for all u € [0,T].
Hence, we may apply the stochastic Fubini theorem and (32) to obtain

T
E {/ e e Tudry,
0

- /OT er“{e‘““’*ﬁ“@“ (6 (0) + Bu(0)7)

t . .
+ /0 e oo HBul)is g (5 4, ) (,Bu(s) + (@u(s) + ﬂu(s)us) Bu(s)) ]I[07u](s)dW5}du

T
Ft] :/ E [e*’”“e*F“uu‘ .7-}] du
0

; - )
_ / o710 (0) 4+ (0) (au(o) + Bu(O)ﬁ) du
0

- /Ot /T e T c0u()FBuldits o (5 1y ) (Bu(s) + (&u(s) - Bu(s)us) 6u(s)) dudWs .

From this we can infer the process y of the martingale representation (7) to equal

T
o= e s, ) [ e (5, 4 (au(s) + Auls)ne) Buls) du. (33
Finally, we have for u € (¢,T):

Ele™(1-Ge | F]=e"eE {e* Ji' prodv

77"“’671_} eau (t)+5u (t),LLt

J—_-t} _ efruefﬂth [672 ftu o dv

g

—u (eaum)wu(om . edu(o>+5u(o>n)

—e

t - -
+ / e*’"“efrsa(s, ) <6au(8)+6u(8)usﬁu(8) _ estedu(S)Jrﬁu(S)us/@u(s)) AW, + le,
0
where

t
X} = e~ s g () FBuls)ps Osouy(8) + 1505 Pu(8) + Bu(5)d(s, ps) + 1/83 U)U2(57MS) — s | ds
t 0 2

t B - _ _ 1 -~
_/ e~ s ghul)Huls)ps (asdu(s) + HsasﬁU(s) =+ 6“(8)5(87 ths) + 5/85(3)‘72(& [hs) — 2Ms> ds
0

is of finite variation and has to vanish.
For u € [0,t] we get by the same limit arguments as above

e (1= Gy)e T = e <eau(0)+5u(0)ﬁ — eau(o>+5u<o>n)

+ / e e o (s, ps) (ea“(s)+ﬂ“(s)“sﬁu(5) - e_rseau(s)+5u(8)us5u(5)) W
0

21



Hence we get for arbitrary u € [0, T:
B [e—ru (1 _ Gu) e Tu ‘ }—t] — e TU (eau(O)—I—ﬁu(O)ﬁ _ e&u(o)‘f'/éu(o)ﬁ)

t A ~
+ / e—'r‘ue—rso.(s, ,U/S) <eau(3)+ﬁu(5)usﬁu(s) — e_Fsedu(s)—hB“(s)usﬁu(S)) H[O,u}(s)dWS y
0

from which we infer the process 67" in the martingale representation (13) (for the special
case of a gratification annuity with Y; =1 — Gy, t € [0,T]) to be

93?8 _ e_rue_FsO’(S,,us) (eau(s)-‘rﬁu(s)ﬂsﬁu(s) _ e—Fse&’u(s)""ﬁu(s)“sgu(s)) ]I[O,u](s) . (34)

By (30), (31), (33), (34) as well as (6), (9), (19), (21) (24) and (26), we hence obtain the
optimal hedging strategies 9¥*P¢, 9*¥ 19%9% and 9*'@ for pure endowment, term insurance,
gratification annuity and simple life annuity respectively as

e T L, ot B g ()

9rPe — !
ST emruean@1 o 5, (s) du
» L. fST o~ 0u(8)+Bu(s) s (Bu(s) + (@U(S) + Bu(S)Ns) ﬁu(S)) du
B — fsT e~rueu(s)+Bu(s)us B, (s) du |
LS* fST e_ru (6au(8)+5u(5)ﬂsﬂu(8) _ e—Fs 66u(8)+5u(5)ﬂs§u(s)) du
Vot = -
fST e—rueau(5)+ﬂu(5)#8ﬂu($) du ( )
ﬁz’la = Ls— : (36)

5 Risk study

In this section we perform a risk study for gratification and simple life annuities. Based
on numerical simulations we first compare exemplary paths of the optimal mean-variance
hedging strategies as well as surfaces for their residual hedging error. Then we compare
the systematic risk parts of both annuities. Remember that both annuities are general
annuities with Y; =1 — Gy and Y; = 1, t € [0, 71, in (1), respectively.

As in the previous section, we assume the hazard process to be absolutely continuous with
respect to the Lebesgue measure and the implied intensity to follow an affine process.
There exist several works which estimate different types of affine processes to existing life
tables, see e.g. Biffis [7], Dahl and Mgller [15] or Luciano and Vigna [18]. For our risk
study we particularly focus on affine mortality intensities, following a non mean-reverting
Ornstein-Uhlenbeck process and a non mean-reverting Feller process, respectively. Both
processes are introduced and suggested to be suitable for mortality intensities in Luciano
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and Vigna [18]. More explicitly, for the Ornstein-Uhlenbeck process we set dy = v1 = 0 and
for the Feller process dg = v9 = 0. In both cases, we find explicit solutions of the Riccati-
ODEs, given in the previous section. For the non-mean-reverting Ornstein-Uhlenbeck
process, we get for t € [0, u):

_ L g (34 2dy(u—t) + e2di(u—t) _ god1 (uft))
=1 (1-e"0), = Ad3 ’
3 2 - ~ vo(3 + 2d1 (u — t) + 20 () _ geh(u=t))

utzf 1—6d1(u t) s aut: 0 :
Butt) = 7 ( ) (t) ;
3 dq (u— N U0(26d1(u_t) — e2di(u—t) _ 1)
ﬁu(t) =e 1( t)’ au(t) = Qd%
For the non-mean-reverting Feller process, we get for ¢ € [0, u]:
2(67(“‘ t) — 1)
Bu(t) = 7 o(t) = 0,
( ) ( 7) (67 u—t) ) _ 2,}, ( )
~ 4(ev(u t) _ ) )
ult) = : W) =0,
A 4~2e7(u—1)
Bu(t) = = Gut) = 0,

(v = d1)(e7®=H) — 1) 4 29)*

where v = \/d? + 2v1 and § = \/d? + 4v;.

Note that with the lack of the mean-reversion property, both processes, in contrast to
their mean-reverting analogues (the Vasicek and the Cox Ingersoll Ross model), are of
exponential structure as is illustrated in Figure 1. Here and for the following illustrations,
the parameters are taken from Luciano and Vigna [18]. Note that the non-mean-reverting
Ornstein-Uhlenbeck process does a priori not show the property of non-negativity. Yet,
with an appropriate choice of the model parameters, one can set the probability that the
process reaches negative values very small. In particular this is true for the parameters
found in Luciano and Vigna [18]. We also respect this issue when we vary some of the
model parameters for the illustrations. This way, we still consider the non-mean-reverting
Ornstein-Uhlenbeck process as suitable for our results, a common assumption in the lit-
erature, see e.g. Schrager [24] or Luciano and Vigna [18].

Based on the simulated paths of the mortality intensity and the affine model parameters,
we have numerically generated the optimal mean-variance hedging strategies according to
the formulas (35) and (36) respectively for the Ornstein-Uhlenbeck and the Feller process.
Figures 2 and 3 show exemplary paths of the strategies for gratification and simple life
annuities with maturities 7' = 5 and T" = 30. Note that the strategies which jump to
zero before the maturity show that the insured person died at that time. Hence, the
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(a) Non-mean-reverting Ornstein-Uhlenbeck process (b) Non-mean-reverting Feller process

Figure 1: Exemplary paths of a non-mean-reverting Ornstein-Uhlenbeck and a non-mean-
reverting Feller process.

optimal hedging strategies intrinsically offer a reasonable property: if the insured dies
before maturity, there is no further necessity to keep a position in the hedging instrument
for this contract.

A remarkable difference between the gratification annuity and the simple life annuity is
that for both maturities, the insurance company has initially to go short in the longevity
bond in order to hedge the risk exposure of a gratification annuity, whereas it has to go
long in the longevity bond to hedge the risk exposure of a simple life annuity. This is
due to the fact that every rate-payment of the gratification annuity is inferred from the
mortality intensity, too.

More explicitly, we remark that selling an insurance product means to have a short position
in the respective instrument for the insurance company. The rate payments of a single life
annuity only depend on the individual survival process 1 — H whereas the rate payments
of a gratification annuity depend on both the individual survival process 1 — H and the
mortality rate 1 —G. The short position in the life annuity therefore yield high overall rate
payments with a high realized survival of the insured person. That is why the insurance
company has to go long in a longevity bond, as this means to receive higher rate payments
with a higher survival rate in the reference portfolio of the longevity index, which can
be assumed to be a good proxy for the realized survival process of the insured person.
On the contrary, the short position in a gratification annuity means to suffer from both a
lower survival rate of the reference portfolio and a higher realized survival of the insured.
For a young insured, i.e. at the beginning of the insurance contract, the suffering from a
lower survival rate in the reference portfolio dominates the suffering from a higher realized
survival of the insured and the insurance company has to go short in a longevity bond
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in order to cover these rate payments'. Only for large maturities and when the insured
person gets older, the suffering from her higher realized survival dominates the suffering
from lower survival rates in the reference portfolio and a long position in the longevity
bond has to cover these long term rate payments.

Another important issue besides the determination of the optimal hedging strategies is the
quantification of the residual hedging error. With the mean-variance hedging approach we
have found self-financing trading strategies, which do not perfectly replicate the insurance
claim C', but yield a value process whose final outcome is optimally close to C in the
L?-norm. However, this value process, although optimal, could still be too far away from
the claim and the hedging strategy therefore less reasonable for the insurance company.
In order to measure the residual hedging risk of the optimal strategy 9*¢, we introduce
the (residual) hedging error process R, given by

T 2
(c —“ —/ ﬁZ’CdVS>
0

where ¢© = E[C] is the necessary amount to initiate the hedging scheme.
For our simulations, we only consider Rg . By using the results of Section 3, we hence

need to simulate
T
( / &M dMS>
0

T 2
<C—c0— / ﬂj’CdVS>
0

TAT TAT
= E [/ (6507M)2dF5] =E U (eso’M)Qusds} ,
0 0

where €©M denotes the integrand with respect to M in the GKW-decompositions of C.
Figure 4 and Figure 5 show the residual hedging errors Ry for a gratification annuity and
a simple life annuity, where the maturity 7" and the initial mortality intensity level pug
are varying. For both products, the results are again calculated with a mortality intensity
following a non-mean-reverting Ornstein-Uhlenbeck process or a non-mean-reverting Feller
process, respectively.

For both insurance products, the hedging error increases with increasing maturity, which
is not surprising. The remarkable feature, however, is that the residual hedging error of a
gratification annuity is considerably lower than the hedging error of a simple life annuity.
The levels of Ry are lower for all considered combinations of maturity and initial mortality
intensity under both affine specifications of the mortality intensity. This is due to the fact
that the rate payments of the gratification annuity and the longevity bond both depend
on the survival rate G, whereas the rate payments of the single life annuity only depend

RS =E

gt] ) te [OaT} )

2

RS =E =E

B [ / T(evaVd[M]s]

!Note that the longevity bond offers rate payments G.
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on the individual survival process 1 — H. Hence there is a higher correlation between
the rate payments of the gratification annuity and the longevity bond than between the
rate payments of the single life annuity and the longevity bond. As parts of the mortality
risk are forwarded to the insured person through the gratification annuity’s rate payments
hence yields a good performance of the gratification annuity’s optimal hedging scheme.
On the contrary, the residual hedging error for existing insurance products like a simple
life annuity suggests to consider their optimal hedging strategy rather carefully, especially
for longer maturities.

Another point of interest in the context of an insurance claim’s risk is the investigation of
its systematic and unsystematic parts, see e.g. Norberg [21]. The systematic part of an
insurance claim’s risk can be understood as the part which is due to common risk drivers
and its consequences for the insurance company cannot be reduced through diversification.
The unsystematic part of an insurance claim’s risk can be understood as the part that is
due to the insured person’s individual characteristics. Its consequences for the insurance
company can be reduced through diversification.

Note that in the setting of the present paper, the GKW-decompositions of the different
insurance claims intrinsically cover the separation of systematic and unsystematic risk: as
we have G = F V H and F is generated by W, every claim C' can be represented as

T T
C=c +/ W aw, +/ &M d,
0 0+

TV
systematic risk unsystematic risk

As the Brownian motion W is the unique ”external“ risk driver for all insurance claims,
the stochastic integral with respect to W can be considered as the systematic part. The
martingales M, however, vary for different insured persons and the integrals with respect
to M can therefore be considered as the unsystematic part.

As the effects of the unsystematic part diversify through pooling, we now want to compare
the systematic risk of a gratification annuity and a simple life annuity. In particular, we
can measure the systematic risk SR through

(/OT e dWs>2] —E [/OT (CW)? ds} .

In our particular affine framework of this section, equations (31) and (34) show that the
systematic risk of the simple life annuity is lower or equal than that of the gratification
annuity, if Bu(s) <0,Vs € [0,T],u € [s,T]. This is particularly the case for the mortality
intensity pu, following an Ornstein-Uhlenbeck or a Feller process, as well as for most models
of practical interest. This is due to the fact, that the gratification annuity is exposed to
systematic risk in both directions: a structural change in the systematic risk drivers affects
both, the insurance company’s pool of policyholders and the age cohort from which the

SR=E
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rate payments are inferred. A structural decrease in the underlying mortality intensity
would e.g. lead to lower claim payments with respect to the insurance portfolio on the
one hand, but also to higher annuity rates on the other. While a portfolio of simple life
annuities would benefit from a structural decrease in the mortality intensity, a portfolio of
gratification annuities could also suffer from it. Still, the gratification annuity inherits an
advantageous feature from its payout structure: the most common systematic risk expo-
sures of life insurance companies or pension funds are due to increasing longevity. Here,
a gratification annuity relaxes the exposure, as increasing longevity leads to lower rates.
The results hence show, that the systematic risk of a gratification annuity is higher than
that of a simple life annuity, existing on the markets, because the gratification annuity is
exposed to risk in any direction. Yet, for the most important systematic risk exposure,
increasing longevity, the gratification annuity transfers parts of the systematic risk to the
policyholders. For a more thorough investigation of systematic risk in an even more gen-
eral setting, we refer to Biagini and Schreiber [5].

The investigation of the systematic risk is important under the assumption that no longevity
bond is available. With the presence of longevity bonds on the market, however, we have
seen that the complete systematic risk of the insurance claims can be secured. Here, the
remaining risk due to hedging errors is considerably lower for the gratification annuity
than for a simple life annuity.

Besides the nice “marketing” feature that the insured person gets gratified if she is healthier
as was originally expected, the gratification annuity therefore shows a better risk behavior
than other insurance products, already existing on the life market, given the presence of
longevity bonds. Moreover we have seen that the insurance company must initially hold
a short position in the longevity bond in order to hedge a gratification annuity. This,
however, means lower initial overall costs to hedge all longevity products of an insurance
company.

All these advantageous features can constitute incentives for insurance companies to in-
troduce gratification annuities as a new life insurance product.
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Figure 2: Exemplary paths of the optimal hedging strategies for a simple life annuity and
a gratification annuity with maturity T' = 5.
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Figure 3: Exemplary paths of the optimal hedging strategies for a simple life annuity and
a gratification annuity with maturity 7" = 30.
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Figure 4: Residual hedging error Ry for a simple life annuity with mortality intensity, sim-
ulated with a non-mean-reverting Ornstein-Uhlenbeck process and a non-mean-reverting
Feller process.
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Figure 5: Residual hedging error Ry for a gratification annuity with mortality inten-
sity, simulated with a non-mean-reverting Ornstein-Uhlenbeck process and a non-mean-
reverting Feller process.
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6 Appendix

Lemma 10 We have

< 0. (37)
2

sup
0<u<T

T
/ Pu,s AW
0

Proof. First note that since (1 — Hs—) <1,

T T
B[ 10 douas] <] [ o goueas].

0

hence by the Ito-isometry, (37) holds if

T 2
(/0 GFSQU,SH[O,u](S) dWS> ] < 0. (38)

Since by (13) the [, Ou,sl[0, (8) AW are bounded martingales, uniformly in u, we have by
integration by parts that for each u € [0, 7]

E

T T T prs
/0 €0 slo.u)(5) AWs | = e /0 OusTo. (5) dWS_/o /0 Oupljo.u) (v) AWy e’

< 2Ce'T,
where the constant C' is independent of u. Therefore (38) follows from assumption (2),
namely that e!'” € L2(P). ]
Lemma 11 We have -
sup / Va,s AM s < 0. (39)
0<u<T [|Jo L2

Proof. As i
Vu,s = —Ls— <cu +/ eu,vH[O,u} (v) dWU> H[O,u](s)v
0

and ¢, + fo Ouv1j0,4 (v) dW, are bounded martingales, uniformly in w, it follows that the
vy, are bounded as well by some constant C' independent of u. Therefore

E [/OT Visd(M)s] < C’E[(M)q] ,

and by the Ito-isometry and the definition of the angle bracket (i.e. predictable compen-
sator), (39) holds if and only if

E[(M)y] = E[Tra] < E[Dr] < o0,

which is implied by (2). ]
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