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Abstract. We develop the HJM framework for forward rates driven by affine
processes on the state space of symmetric positive semidefinite matrices. In

this setting we find an explicit representation for the long-term yield in terms

of the model parameters. This generalises the results of [40] and [6], where
the long-term yield is investigated under no-arbitrage assumptions in a HJM

setting using Brownian motions and Lévy processes respectively.

1. Introduction

Long-term interest rates are particularly relevant for the pricing and hedging
of long-term fixed-income securities, pension funds, life and accident insurances,
or interest rate swaps with a very long time to maturity. Thus, the modeling
of long-term interest rates is the topic of several contributions which however do
not provide a unique definition of long-term interest rates or yield. In Section 4
we provide a brief discussion on the different conventions concerning the time to
maturity defining the concept of long-term yield in the literature. Several studies
address the topic from a more mathematical or a more macroeconomic point of view.
The macroeconomic approach is focused on identifying the macroeconomic factors
influencing the long-term yield. For example the paper [43] examines the impact of
monetary and fiscal policies on long-term interest rates and rejects the hypothesis
that long-term interest are overly sensitive to short-term rates. The article [32] also
studies the impact of macroeconomic news and monetary policy surprises on long-
term yields and presents evidence that these factors have significant effects on short-
term as well as on long-term interest rates. The work [36] describes a joint model
of macroeconomic and yield curve dynamics where the continuously compounded
spot rate is an affine function dependent on macroeconomic state variables. With
the help of this model the influence of macroeconomic effects on the long-term yield
can be measured. The finding of a model that jointly characterises the behaviour
of the yield curve and macroeconomic variables as well as state results for the
short-term and long-term interest rates is also the subject of [2] and [19]. In [2] a
vector autoregression model is used to describe the relationship between interest
rates and macroeconomy, whereas [19] uses a latent factor model with the inclusion
of macroeconomic variables to model the yield curve. In [41] the yield curve is
modeled by a three-factor model, where the interest rates can be described with
the help of three underlying latent factors which are employed in order to explain
the empirical result of falling long-term yields.

Mathematical approaches consider the long-term yield as an interest rate with
time to maturity tending to infinity. In the textbook [10] as well as in [6], [40], and
[54], the long-term yield is defined as the limit of the continuously compounded
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spot rate. In this paper we adopt this definition. The respective form of the long-
term yield then depends on the chosen interest rate model, whereas there can be
made some universal statements concerning the asymptotic behaviour of yields in
an arbitrage-free market, independent of the chosen setting.

One of the most important results concerning the asymptotic behaviour of yields
is that in an arbitrage-free market, long-term zero-coupon rates can never fall, as
first stated in [22], consequently referred to as DIR-Theorem. This result was made
rigorous by [46]. An alternative proof using a different definition of arbitrage can be
found in [51]. Then, [37] provided a generalisation of the proof of the DIR-Theorem,
where they assume the existence of an equivalent martingale measure and omit
some measurability conditions. The assumption of the existence of an equivalent
martingale measure is relaxed in [39]. Finally, [28] generalised the theorem by
dropping the requirement of the existence of the long-term yield, and showed that
the limit superior of zero-coupon rates and forward rates never fall. From these
results the general behaviour of the long-term yield has been clarified. However
only a few studies have contributed to find explicitly the form for the long-term
yield in specific models.

Since it is very important to investigate the concrete structure of the long-term
yield for several applications, our aim here is to provide an explicit representation of
the long-term yield in an HJM framework driven by a general affine process on S+

d .
Concrete computations of the long-term yield as limit of the standard yield have
been done in [10], [40], [53], [54] in a Brownian motion setting and more recently
in [6] in a general Lévy setting. In [6] an explicit form for the long-term yield is
provided that takes into account the impact of jumps on the long-term behaviour.
In this paper our setting presents the main advantage that the forward curve can
be described by taking account of a rich interdependence structure among factors.
This provides a flexible way of describing the impact of different risk factors and
of their stochastic correlations on the long-term yield. Under some integrability
and measurability conditions on the parameters, we are able to obtain an explicit
form of the long-term yield, which results to be independent of the underlying
probability measure. This extends a result of Section 2.2 in [40] to a multifactor
setting including jumps. Moreover, we prove that in our context jumps in the
dynamics of the yield do not impact the long-term behaviour.

In order to model the long-term yield, we first provide an extension of the clas-
sical Heath-Jarrow-Morton framework to a setting where the market is driven by
semimartingale taking values on the cone S+

d of positive semidefinite symmetric
d × d matrices. This class of stochastic processes has appealing features and is
increasingly studied in finance research, in particular for modelling multivariate
stochastic volatilities in equity and fixed income models, cf. e.g. [5], [16], [17], [18],
[30], [47], and [50]. It allows to model a whole family of factors which share non-
linear links among each other, providing a more realistic description of the market.
In many situations, the presence of stochastic correlations among factors does not
come at the cost of a loss of analytical tractability, as these processes are affine, in
the sense of [13]. The class of affine processes on S+

d , i.e. stochastically continuous
Markov processes with the feature that the Laplace transform can be represented
as an exponential-affine function, was introduced to applications in finance by [29]
and [30] in the form of Wishart processes, a particular affine process first described
by Bru in [9]. Theoretical background to affine processes on S+

d can be found,
among other publications, in [12], [13], [14], [20], [27], [31], and [45]. A first appli-
cation of Wishart processes for short rate modelling is given in [26], while a Libor
model using matrix-valued affine processes is constructed in [15]. Here we consider
for the first time an affine HJM framework on S+

d , where we develop formulas for
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forward rates, short rates, and continuously compounded spot rates as well as de-
termine the HJM condition on the drift. Note also that we allow for general affine
processes on S+

d , i.e. we admit jumps. This setting provides a flexible and concise
way of taking into account the influence of a large number of factors on interest
rates dynamics and represents a further contribution in capturing the dependence
structure affecting the interest rates evolution. Moreover, in the final examples, we
show that in this setting we can originate affine multidimensional realisations for
the forward rate in the sense of [11, Def. 3].

An interesting aspect of our study is the use of a matrix-valued driver, whose
elements are stochastically correlated among each other. Our choice for such rich
multi-dimensional dynamics is open for different economic interpretations which
are beyond the scope of the present contribution. Let us remark however that we
view our specification as beneficial in two possible contexts. First it provides an
alternative way to capture the intrinsic multivariate and dynamic nature of the risk
factors’ dependence structure influencing the yield curve. Secondly, if we extend
our view to the post-crisis interest rate market, i.e. to a multiple curve interest rate
setting, it can be used in the description of positive spreads among different curves
to take into account the impact of credit and liquidity/systemic risk. Furthermore
in the special case of a Wishart process as driving factor we are able to provide the
correlation structure in a concise way, since the Wishart dynamics automatically
guarantee that the elements of the driving process are stochastically correlated.

We note that in our setting jumps can be only of finite variation in the multi-
dimensional case and the diffusion part can only allow a square-root dependence
on the driving process. However both of these model assumptions are not in the
end as restrictive as they may appear. Jumps of infinite variation would produce
an infinite long term rate as shown by Theorem 3.6 in [6]. Furthermore our setting
also allows for negative interest rates since the forward rate given in (3.1) as well
the associated short rate in (3.12) are shifted square root processes, which may
turn negative because of the presence of the drift shift. Shifted models are com-
monly adopted in the industry in a negative interest rate environment as a tool to
accomodate negative rates while keeping most implementation and computational
aspects unchanged. A prominent example in this sense is the nowadays widespread
adoption of the shifted Black model, see [8], as a quoting mechanism for European
Swaptions by ICAP, see the VCAP page on the Thomson Reuters Eikon platform.
The economic intuition behind the adoption of such shifted models is that in a
negative interest rate market the probability of an interest rate increase is higher
with respect to a decrease.
A further advantage of our framework is that it can be implemented in spite of the
fact that we use a relatively complicated state space. There are different imple-
mentation strategies for Wishart based interest rate models. Firstly, our examples
show that we can produce time-inhomogeneous affine models for the short rate. It
is hence possible e.g. to compute bond prices by means of an exponentially affine
formula, where the coefficients are solutions of matrix Riccati differential equations
with time-varying coefficients. These solutions can be numerically evaluated. For
the time-homogeneous case, see [26]. Secondly, we can apply Monte Carlo methods
in conjunction with the discretization of SDEs. In particular, it is possible to dis-
cretize the dynamics of the instantaneous forward rate (3.1) or, equivalently, the
dynamics of the zero-coupon bond in Proposition 3.1. Such discretizations only
require the availability of sampling schemes for Wishart process which are studied
e.g. in [1].
Explicit results on asymptotic behaviour of the long term yield are also of wide
interest, especially they could be relevant for the literature on long-term risk, see
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in particular the recent contribution [33]. In [33] the goal is to provide a term
structure of risk prices by changing the investment horizon. Our explicit results
could be then used to provide analytical expression for the growth-rate risk in the
limit.

The paper is structured as follows. In Section 2 we present the main properties
of affine processes on S+

d as well as features that are important in the course of
this paper. Then, in Section 3 analytical expressions for different interest rates are
developed under the HJM framework with an affine process X on S+

d as stochastic
driver of the forward rate. In Section 4 we provide an explicit representation of the
long-term yield in the HJM framework on S+

d and finally Section 5 considers some
concrete examples.

2. Affine Processes on S+
d

Affine processes were initially studied by [21] and later fully characterised by [20]
on the state space Rm+ × Rn with m,n ∈ N. The theoretical framework for affine

processes on the state space S+
d , can be found in extensive forms in [13] and [44].

In this section, we state, for the reader‘s convenience, the results of these works
which are used in the course of this paper as well as the basic required notations.
In general, for the stochastic background and notation we refer to [49]. Let d ∈ N.
Then,Md denotes the set of all d× d matrices with entries in R, Sd is the space of
symmetric d×d matrices with entries in R, and S+

d stands for the cone of symmetric
d× d positive semidefinite matrices with entries in R which induces a partial order
relation on Sd:

For x, y ∈ Sd it is x � y if y − x ∈ S+
d .

The space Sd is endowed with the scalar product A ·B := Tr
[
A>B

]
for A,B ∈ Sd,

where Tr [A] denotes the trace of the matrix A, and the norm induced by this scalar
product.

Throughout this paper, given A ⊆Md, B(A) denotes the Borel σ-algebra on A
and b(A) the Banach space of bounded real-valued Borel-measurable functions f
on A with norm ‖f‖∞ = supx∈A |f(x)|.

Let (Ω,F , (Ft)t≥0 ,Px) be a filtered probability space with the filtration (Ft)t≥0

satisfying the usual conditions of completeness and right-continuity and X :=
(Xt)t≥0 a stochastic process on this probability space. For x ∈ S+

d , Px is a prob-

ability measure such that Px(X0 = x) = 1. Given t > 0, Xt− := lims↑tXs, we
define

∆Xt := Xt −Xt− , (2.1)

the jump at t, ∆X0 ≡ 0.
Next, we define the transition probabilities for all t ≥ 0 as:

pt : S+
d × B

(
S+
d

)
→ [0, 1] , (x,B) 7→ Px(Xt ∈ B) .

Further, let (Pt)t≥0 be a semigroup such that

Ptf(x) :=

∫
S+
d

f(ξ) pt(x, dξ) = Ex[f(Xt)] , x ∈ S+
d , (2.2)

where f ∈ b
(
S+
d

)
.

We consider a time-homogeneous Markov process X with state space S+
d , i.e.

the Markov property holds for all A ∈ B
(
S+
d

)
, x ∈ S+

d , and s, t ≥ 0 (cf. Definition
17.3 in [42]):

Px(Xt+s ∈ A | Fs) = pt(Xs, A) Px - a.s.

Next, we want to define the characteristics of an affine process on S+
d (cf. Definition

2.1 in [13]).
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Definition 2.1. A Markov process X with values in S+
d is called affine if the

following two properties hold:

(i) It is stochastically continuous, i.e. it holds for all t ≥ 0 and all ε > 0:

lim
s→t

Px(‖Xs −Xt‖ > ε) = 0 .

(ii) Its Laplace transform has exponential-affine dependence on the initial state,
i.e. the following equation holds for all t ≥ 0 and u, x ∈ S+

d :

Pte
−Tr[ux] (2.2)

=

∫
S+
d

e−Tr[uξ] pt(x, dξ) = e−φ(t,u)−Tr[ψ(t,u)x] , (2.3)

for some functions φ : R+ × S+
d → R+ and ψ : R+ × S+

d → S+
d .

From the stochastic continuity of X the weak convergence of the distributions
pt(x, ·), t ≥ 0, follows directly, i.e. it holds for all t ≥ 0 (cf. Satz 5.1 in [4]):

lim
s→t

ps(x, ·) = pt(x, ·) .

Note, that due to the non-negativity of X the Laplace transform is well-defined
and can be used to characterise an affine process. Further, in consequence of the
stochastic continuity of the process according to Proposition 3.4 in [13], the process
X is regular in the sense of Definition 2.2 in [13].

As well we assume that the affine Markov process is conservative, that means
that the process will remain almost surely on the state space S+

d all the time.

Definition 2.2. The affine process X is called conservative if for all t ≥ 0 the
following condition holds:

pt
(
x, S+

d

)
= 1 ,

i.e. Xt ∈ S+
d Px-a.s.

Now, we are able to introduce the so-called admissible parameter set which
generalises the concept of Lévy triplet to the setting of affine processes on S+

d

(cf. Definition 3.1 in [44]).

Definition 2.3. An admissible parameter set (α, b,B,m, µ) consists of

(i) a linear diffusion coefficient α ∈ S+
d ,

(ii) a constant drift term b ∈ S+
d which satisfies

b � (d− 1)α ,

(iii) a Lévy measure m on S+
d \{0} to represent the constant jump term∫

S+
d\{0}

(‖ξ‖ ∧ 1) m(dξ) <∞ , (2.4)

(iv) a linear jump coefficient µ : S+
d \ {0} → S+

d \ {0} which is a σ-finite measure
and satisfies ∫

S+
d\{0}

(‖ξ‖ ∧ 1) µ(dξ) <∞ , (2.5)

(v) a linear drift B : S+
d → S+

d that satisfies the condition

Tr[B(x)u] ≥ 0 for all x, u ∈ S+
d with Tr[xu] = 0 .

Theorem 2.1. Suppose X is a conservative affine process on S+
d with d ≥ 2.

Then X is regular and has the Feller property. Moreover, there exists an admissible
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parameter set (α, b,B,m, µ) such that φ : R+ × S+
d → R+ and ψ : R+ × S+

d → S+
d

in (2.3) solve the generalised Riccati differential equations for u ∈ S+
d

∂tφ(t, u) = F (ψ(t, u)) , φ(0, u) = 0 , (2.6)

∂tψ(t, u) = R(ψ(t, u)) , ψ(0, u) = 0 , (2.7)

with

F (u) := Tr[bu]−
∫
S+
d\{0}

(
e−Tr[uξ] − 1

)
m(dξ) , (2.8)

R(u) := −2uαu+B>(u)−
∫
S+
d\{0}

(
e−Tr[uξ] − 1

)
µ(dξ) . (2.9)

Conversely, let (α, b,B,m, µ) be an admissible parameter set and d ≥ 2. Then there
exists a unique conservative affine process X on S+

d such that the affine property

(2.3) holds for all t ≥ 0 and u, x ∈ S+
d with φ : R+×S+

d → R+ and ψ : R+×S+
d →

S+
d given by (2.6) and (2.7).

Proof. Cf. Theorem 2.4 of [13] and Theorem 4.1 of [44]. �

Besides the admissible parameter set, we need to define the matrix variate Brow-
nian motion for the representation of the affine process X (cf. Definition 3.23 in
[48]).

Definition 2.4. A matrix variate Brownian motion W ∈Md is a matrix consisting
of d2 independent, one-dimensional Brownian motions Wij , 1 ≤ i, j ≤ d.

Remark 1. By (3.3) of [44] we obtain that in the case of d ≥ 2, the affine process
X has only jumps of finite variation, i.e for all t ≥ 0∫ t

0

∫
S+
d\{0}

‖ξ‖ µX(ds, dξ) <∞ . (2.10)

Now, we can state the following representation of X.

Theorem 2.2. Let X be a conservative affine process on S+
d , d ≥ 2, with ad-

missible parameter set (α, b,B,m, µ), where Q ∈ Md such that Q>Q = α. Then
there exists a matrix Brownian motion W ∈ Md such that X admits the following
representation:

Xt = x+

∫ t

0

(b+B(Xs)) ds+

∫ t

0

(√
XsdWsQ+Q>dW>s

√
Xs

)
+

∫ t

0

∫
S+
d\{0}

ξ µX(ds, dξ) ,

(2.11)
where µX(ds, dξ) is the random measure associated with the jumps of X, having the
compensator

ν(dt, dξ) := (m(dξ) + Tr[Xt µ(dξ)]) dt . (2.12)

Proof. Cf. Theorem 3.4 in [44]. �

Note, that it is possible to choose Q this way since Q>Q ∈ S+
d for all Q ∈ Md

due to Theorem 2.2 (ix) in [48].

Remark 2. If in Theorem 2.2 we have b = δα with δ ≥ 0, B(z) = Mz + zM>

with M ∈Md, and there are no jumps, the process X is a Wishart process, cf. [9].

Throughout this paper we consider X to be a conservative, regular, affine process
on the state space S+

d with d ≥ 2, hence X can be represented by equation (2.11).
Furthermore, the linear drift coefficient B is of the form

B(z) = Mz + zM> +G(z) , z ∈ S+
d , (2.13)
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where M ∈ Md and G : Sd → Sd is linear satisfying G
(
S+
d

)
⊆ S+

d to encompass a
wider range of affine processes (cf. (2.30) in [13]).

Note, that in the case of X being not conservative, all subsequent calculations
and the consequential results are still valid, as long as another set of admissible
parameters is used with an additional constant killing rate term c ∈ R+ and an
additional linear killing rate coefficient γ ∈ S+

d . In the case of d = 1, the process
X can also have jumps of infinite activity. Therefore, the parameter set has to
be extended by a truncation function for compensating the infinite variation part
of the jumps. The most general admissible parameter set, encompassing the case
of X being not conservative on a state space with dimension d = 1, is stated in
Definition 2.3 in [13].

3. Affine HJM Framework on S+
d

We now provide a HJM framework to model the forward curve using affine
processes on S+

d in the setting outlined in Section 2.
By a T -maturity zero-coupon bond we mean a contract that guarantees its holder

the payment of one unit of currency at time T , with no intermediate payments. The
contract value at time t ≤ T is denoted by P (t, T ) and the bond market satisfies
the following hypotheses: (1) there exists a frictionless market for T -bonds for
every maturity T ≥ 0; (2) P (T, T ) = 1 for every T ≥ 0; (3) for each fixed t, the
zero-coupon bond price P (t, T ) is differentiable with respect to the maturity T .

The money market account is βt := exp
(∫ t

0
rs ds

)
with rt denoting the short rate

at time t. We set ∆2 := {(t, T ) ∈ R+ × R+, t ≤ T} and assume the forward rates
f : Ω×∆2 → R to evolve for every maturity T > 0 according to

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T ) ds+

∫ t

0

Tr[σ(s, T ) dXs] , 0 ≤ t ≤ T, (3.1)

where X is an affine conservative process with representation (2.11) for a given
initial value x ∈ S+

d . Since we fix the initial value X0 = x, from now on we write P
for Px. We impose the following conditions on the drift α : Ω×R+ ×R+ → R and
the volatilities σij : Ω× R+ × R+ → R, i, j ∈ {1, . . . , d}:1

Assumption 1.

• α := α(ω, s, u) : (Ω×R+×R+,F⊗ B(R+)⊗ B(R+)) → (R,B(R)) is jointly
measurable.
• For all T ≥ 0: ∫ T

0

∫ T

0

|α(s, u)| ds du <∞ P-a.s.

• For all s, u ∈ R+ and a.e. ω ∈ Ω: σ(s, u) ∈ S+
d , i.e. σ(s, u) is a symmetric

positive semidefinite d× d matrix.
• σij := σij(ω, s, u) : (Ω×R+×R+,F⊗B(R+)⊗B(R+)) → (R,B(R)) are

jointly measurable for all i, j ∈ {1, . . . , d}.
• For all T ≥ 0: (α(s, T ))s∈[0,T ] and (σ(s, T ))s∈[0,T ] are adapted.

• For all T ≥ 0:

sup
s,u≤T

‖σ(s, u)‖ <∞ P-a.s.

• For all i, j ∈ {1, . . . , d} : σij : R+ × R+ → R is càglàd in both components.

1For α and σ we write the shortened version α(s, T ) := α(ω, s, T ) and σ(s, T ) := σ(ω, s, T ).
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Due to Assumption 1 the forward rate process is well-defined in (3.1). Note that
other integrability conditions can be chosen to guarantee that the integrals in (3.1)
are well-defined. In this case the results of the paper will also apply under technical
modifications of the proofs.

Proposition 3.1. If X is a conservative affine process and Assumption 1 holds,
then for every maturity T > 0 the zero-coupon bond price follows a process of the
form

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T ) (rs +A(s, T )) ds

+ 2

∫ t

0

P (s, T ) Tr
[
Σ(s, T )

√
Xs dWsQ

]
+

∫ t

0

P (s−, T )

∫
S+
d\{0}

(
eTr[Σ(s,T ) ξ] − 1

) (
µX − ν

)
(ds, dξ) , (3.2)

for t ≤ T , where

Σ(s, T ) := −
∫ T

s

σ(s, u) du (3.3)

is the T -bond volatility and

A(t, T ) := −
∫ T

t

α(t, u) du− F (−Σ(t, T ))− Tr[R(−Σ(t, T ))Xt] , (3.4)

where F and R are given by (2.8), (2.9) respectively.

Proof. The proof can be found in the appendix. �

Note that from Assumption 1 it follows that −Σ(t, T ) ∈ S+
d for all t, T ≥ 0

since σ(t, T ) ∈ S+
d and it is easy to show that

∫ T
t
σ(t, u) du ∈ S+

d . Therefore all

necessary integrals are finite with respect to µX , ν, and the compensated jump
measure

(
µX − ν

)
, since X has jumps of finite variation and is regular due to

Theorem 2.1. From this it also follows that F (−Σ(t, T )) and R(−Σ(t, T )) exist.

Remark 3. The bond-price process P (t, T ) , 0 ≤ t ≤ T , can be rewritten the fol-
lowing way:

P (t, T ) = P (0, T ) +

∫ t

0

P (s, T ) (rs + C(s, T )) ds+

∫ t

0

P (s−, T ) Tr[Σ(s, T ) dXs]

+

∫ t

0

∫
S+
d\{0}

P (s−, T )
(
eTr[Σ(s,T ) ξ]−1−Tr[Σ(s, T ) ξ]

)(
µX− ν

)
(ds, dξ) ,

(3.5)

with for all 0 ≤ t ≤ T

C(t, T ) := A(t, T )−Tr[Σ(t, T ) (b+B(Xt))]−
∫
S+
d
\{0}

Tr[Σ(t, T ) ξ] (m(dξ) + Tr[Xtµ(dξ)]) ,

(3.6)

where A(t, T ) is defined in (3.4).

Proof. Representation (3.5) follows by (3.2), (2.11), and (3.6).
Note that due to Proposition 1.28 of Chapter II in [38] we are able to combine

the measures µX(ds, dξ) and ν(ds, dξ) to
(
µX− ν

)
(ds, dξ), since the affine process

X has only jumps of finite variation (cf. (2.10)) and Assumption 1 guarantees that
all integrals above are finite. �

As an immediate consequence of representation (3.2) for the bond price, we
obtain the following corollary.
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Corollary 3.1. For every maturity T > 0, the discounted zero-coupon bond price
follows a process of the formula

P (t, T )

βt
= P (0, T ) +

∫ t

0

P (s, T )

βs
A(s, T ) ds+ 2

∫ t

0

P (s, T )

βs
Tr
[
Σ(s, T )

√
Xs dWsQ

]
+

∫ t

0

P (s−, T )

βs

∫
S+
d\{0}

(
eTr[Σ(s,T ) ξ] − 1

) (
µX − ν

)
(ds, dξ) , (3.7)

for all t ≤ T .

Proof. This follows directly from the definition of the money market account and
Proposition 3.1. �

We now investigate the restrictions on the dynamics (3.1) under the assumption
of no arbitrage. Let Q ∼ P be an equivalent probability measure. By Theorem

3.12 of [7] there exists γ ∈ Md with
∫ t

0
‖γs‖2 ds < ∞ for all t ≥ 0 such that

W ∗t = Wt −
∫ t

0
γs ds, t ≥ 0, is a matrix variate Brownian motion under Q and an

Ft ⊗ B([0, t])⊗ B
(
S+
d

)
measurable function K : Ω× R+ × S+

d \ {0} → R+ with∫ t

0

∫
S+
d\{0}

|K(s, ξ)| ν(ds, dξ) <∞ P-a.s.

for all t ≥ 0, such that µX has the Q-compensator

ν∗(dt, dξ) := K(t, ξ) ν(dt, dξ) . (3.8)

Furthermore, for all t ≥ 0

dQ
dP

∣∣
Ft

= Lt

with

logLt =

∫ t

0

γs dWs −
∫ t

0

‖γs‖2 ds+

∫ t

0

∫
S+
d\{0}

logK(s, ξ)µX(ds, dξ)

+

∫ t

0

∫
S+
d\{0}

(1−K(s, ξ)) ν(ds, dξ) . (3.9)

Definition 3.1. Let Q ∼ P. Then Q is an equivalent local martingale measure
(ELMM) for the bond market if for all T > 0 the discounted bond price process
P (t,T )
βt

, t ∈ [0, T ], is a Q-local martingale.

Theorem 3.1 (HJM drift condition on S+
d ). A probability measure Q ∼ P with

Radon-Nikodym density (3.9) is an ELMM if and only if

α(t, T ) = −Tr
[
σ(t, T )

(
b+B(Xt) + 2

√
Xt γtQ

)]
− 4 Tr

[
Qσ(t, T )Xt Σ(t, T )Q>

]
−
∫
S+
d
\{0}

Tr [σ(t, T ) ξ] eTr[Σ(t,T ) ξ]K(t, ξ) (m(dξ)+Tr[Xsµ(dξ)]) (3.10)

for all T > 0, dt⊗ dP-a.s.
In this case, the Q-dynamics of the forward rates f(t, T ) , 0 ≤ t ≤ T , are of the
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form

f(t, T ) = f(0, T ) +

∫ t

0

{
4 Tr

[
Qσ(s, T )Xs

∫ T

s

σ(s, u) du Q>
]

−
∫
S+
d
\{0}

K(s, ξ) Tr[σ(s, T ) ξ]
(
eTr[Σ(s,T ) ξ]−1

)
(m(dξ)+Tr[Xsµ(dξ)])

}
ds

+

∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ]
(
µX− ν∗

)
(ds, dξ)

+ 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dW

∗
s Q
]
. (3.11)

Proof. The proof can be found in the appendix. �

Theorem 3.1 shows that the important property of the classical HJM framework,
established in [35], that the forward rates are only dependent on the volatility in
an arbitrage-free market, still holds in the framework of affine processes on S+

d .
Next, we want to investigate how the short rate process rt, t ≥ 0, can be repre-

sented in the current framework.

Corollary 3.2. Suppose that f(0, T ), α(t, T ) and σ(t, T ) are differentiable in T for
all t ≥ 0, ∂Tα(t, T ) is jointly measurable, adapted, and càglàd in t, and ∂Tσ(t, T )
is jointly measurable, adapted, and càglàd in t. Further, it holds for all t ≥ 0 that∫ t

0

|∂uf(0, u)| du <∞ ,

as well as ∫
R+

∫
R+

|∂Tα(t, T )| dt dT <∞ .

Then, the short rate process (rt)t≥0 is of the form

rt = r0 +

∫ t

0

φ(u) du+

∫ t

0

Tr[σ(u, u) dXu] , (3.12)

where

φ(u) := α(u, u) + ∂uf(0, u) +

∫ u

0

∂uα(s, u) ds+

∫ u

0

Tr[∂uσ(s, u) dXs] .

Proof. Representation (3.12) is a consequence of the theorem of Fubini for inte-
grable functions (cf. [42], Chapter 14, Theorem 14.16), the stochastic Fubini theo-
rem (cf. [49], Chapter IV, Theorem 65) and the characterisation of the short rate
process that holds for all s ≥ 0

ru := f(u, u)
(3.1)
= f(0, u) +

∫ u

0

α(s, u) ds+

∫ u

0

Tr[σ(s, u) dXs] . (3.13)

�

We now calculate the yield process

Y (t, T ) := − logP (t, T )

T − t
, 0 ≤ t ≤ T, (3.14)

for T > 0 in the HJM framework for affine processes on S+
d . We recall that the

term “yield curve” is used differently in the literature. For example, in [8] it is a
combination of simply compounded spot rates for maturities up to one year and
annually compounded spot rates for maturities greater than one year. In this paper
we will refer to the function T 7→ Y (t, T ) as yield curve in t, see also Section 2.4.4
of [24].
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Note that if f : Rn → Sd for some n, d ∈ N, then it is for a, b ∈ R, x ∈ Rn:

Tr

[∫ b

a

f(x)
>
∂xf(x) dx

]
=

1

2

(
‖f(b)‖2 − ‖f(a)‖2

)
. (3.15)

Lemma 3.1. Let 0 ≤ t < T and let X be an affine process as in (2.11). Under
Assumption 1 and the ELMM Q the yield for [t, T ] can be expressed in the compact
form

Y (t, T ) = Y (0; t, T ) + 2

∫ t

0

Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t
Q>
]
ds

+

∫ t

0

∫
S+
d\{0}

eTr[Σ(s,T ) ξ] − eTr[Σ(s,t) ξ]

T − t
ν∗(ds, dξ)

−
∫ t

0

∫
S+
d\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t
µX(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdW

∗
sQ

]
(3.16)

with the continuously compounded forward rate for [t, T ] prevailing at 0 given by

Y (0; t, T ) :=
1

T − t

(∫ T

t

f(0, u) du

)
(3.17)

and

Γ(s, t) := Σ(s, t)XsΣ(s, t) (3.18)

for all s, t ≥ 0.

Proof. Let 0 ≤ t < T . Note that for 0 ≤ s ≤ t ≤ T it holds

∫ T

t

σ(s, u) du
(3.3)
= − (Σ(s, T )− Σ(s, t)) . (3.19)

Further, for some a, b, s ≥ 0 it is

∫ b

a

Tr
[
Qσ(s, u)Xs Σ(s, u) Q>

]
du

(3.3)
= −

∫ b

a

Tr
[
Q∂uΣ(s, u)Xs Σ(s, u) Q>

]
du

= −
∫ b

a

Tr

[(
QΣ(s, u)

√
Xs

)>
∂u

(
QΣ(s, u)

√
Xs

)]
du

(3.15)
= −1

2

(∥∥∥QΣ(s, b)
√
Xs

∥∥∥2

−
∥∥∥QΣ(s, a)

√
Xs

∥∥∥2
)

(3.18)
= −1

2
Tr
[
Q (Γ(s, b)− Γ(s, a))Q>

]
. (3.20)
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Then by applying the Fubini theorems, the yield for [t, T ] is

Y (t,T ) =
1

T − t

(∫ T

t

f(t, u) du

)
(3.11)

=

∫ T

t

f(0,u)

T − t
du− 4

T − t

∫ T

t

∫ t

0

Tr
[
Qσ(s, u)XsΣ(s, u)Q>

]
ds du

+
1

T−t

∫ T

t

∫ t

0

∫
S+
d\{0}

Tr[σ(s, u) ξ]
(
µX− ν∗

)
(ds, dξ) du

− 1

T−t

∫ T

t

∫ t

0

∫
S+
d\{0}

Tr[σ(s, T ) ξ]
(
eTr[Σ(s,T ) ξ] − 1

)
ν∗(ds, dξ) du

+
2

T−t

∫ T

t

∫ t

0

Tr
[
σ(s, u)

√
Xs dW

∗
sQ
]
du

(3.17)
= Y (0; t, T )− 4

T − t

∫ t

0

∫ T

t

Tr
[
Qσ(s, u)XsΣ(s, u)Q>

]
du ds

− 1

T−t

∫ t

0

∫ T

t

∫
S+
d\{0}

∂u Tr[Σ(s, u) ξ]
(
µX− ν∗

)
(du, dξ) ds

+
1

T−t

∫ t

0

∫ T

t

∫
S+
d\{0}

∂ue
Tr[Σ(s,u) ξ] ν∗(du, dξ) ds

− 1

T−t

∫ t

0

∫ T

t

∫
S+
d\{0}

∂u Tr[Σ(s, u) ξ] ν∗(du, dξ) ds

+
2

T−t

∫ t

0

Tr

[∫ T

t

σ(s, u) du
√
Xs dW

∗
sQ

]
(3.19)

=
(3.20)

Y (0; t, T ) + 2

∫ t

0

Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t
Q>
]
ds

+

∫ t

0

∫
S+
d\{0}

eTr[Σ(s,T ) ξ] − eTr[Σ(s,t) ξ]

T − t
ν∗(ds, dξ)

−
∫ t

0

∫
S+
d\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t
µX(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
Xs dW

∗
sQ

]
.

�

Corollary 3.3. By (2.12), (3.8), and (3.16) we obtain that

Y (t, T ) = Y (0; t, T ) +

∫ t

0

{
2 Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t
Q>
]

+

∫
S+
d\{0}

M(s, t, T, ξ)K(s, ξ)

T − t
(m(dξ) + Tr[Xsµ(dξ)])

}
ds

−
∫ t

0

∫
S+
d\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t
(
µX− ν∗

)
(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdW

∗
sQ

]
(3.21)

with

M(s, t, T, ξ) := eTr[Σ(s,T ) ξ] − eTr[Σ(s,t)ξ] − Tr [(Σ(s, T )− Σ(s, t)) ξ] . (3.22)
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Proof. Let 0 ≤ t < T . Then, we have

Y (t, T )
(3.16)

= Y (0; t, T ) + 2

∫ t

0

Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t Q>
]
ds

+

∫ t

0

∫
S+
d
\{0}

eTr[Σ(s,T ) ξ] − eTr[Σ(s,t) ξ]

T − t ν∗(ds, dξ)

−
∫ t

0

∫
S+
d
\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t µX(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdW

∗
sQ

]
= Y (0; t, T ) + 2

∫ t

0

Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t Q>
]
ds

+

∫ t

0

∫
S+
d
\{0}

eTr[Σ(s,T ) ξ] − eTr[Σ(s,t) ξ] − Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t ν∗(ds, dξ)

−
∫ t

0

∫
S+
d
\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t

(
µX− ν∗

)
(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdW

∗
sQ

]
(2.12)

=
(3.22)

Y (0; t, T ) +

∫ t

0

{
2 Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t Q>
]

+

∫
S+
d
\{0}

M(s, t, T, ξ)K(s, ξ)

T − t (m(dξ) + Tr[Xsµ(dξ)])

}
ds

−
∫ t

0

∫
S+
d
\{0}

Tr [(Σ(s, T )− Σ(s, t)) ξ]

T − t

(
µX− ν∗

)
(ds, dξ)

− 2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdW

∗
sQ

]
.

�

4. Long-Term Yield in an Affine HJM Setting on S+
d

The expression “long-term yield” is subject to different interpretations in the
literature. For instance, the European Central Bank understands the market yields
of government bonds with time to maturity close to 10 years as long-term interest
rates (cf. [23]), whereas in [52] also high-grade bonds with time to maturity longer
than 20 years are examined to investigate long-term yields. In [54] it is pointed
out that for the valuation of some financial securities yield curves with maturities
up to 100 years are necessary. Here we interpret “long-term yield“ as the yield
with time to maturity going to infinity. This approach, adopted by [6], [10], [22],
[40], is useful for modelling interest rates within a long-time horizon because the
asymptotic behaviour can give information about the shape of the yield curve in the
long run where only few empirical data is available. Here we study the asymptotic
behaviour of the long-term yield in the affine HJM setting, introduced in Section
3.

Throughout this section in the setting outlined in Section 2 we assume directly

that P is an ELMM for P (t,T )
βt

, t ∈ [0, T ], for all T > 0. More precisely, X is

a conservative affine process on S+
d , d ≥ 2, with representation (2.11), (2.12) on

(Ω,F , (Ft)t≥0 ,P) and the yield takes the form (3.21), where we write ν instead of
ν∗ for the sake of simplicity.

Assumption 2. Let Σ(s, t) be defined as in (3.3) for all 0 ≤ s ≤ t and W a
matrix variate Brownian motion. There exists a progressively measurable process
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w ∈ L(W ) with values in S+
d such that for every i, j ∈ {1, . . . , d}, wij is a càdlàg

process with
1√
t

∣∣∣Σ(s, t)ij

∣∣∣ ≤ wij(s) P-a.s. (4.1)

for all 0 ≤ s ≤ t and t 6= 0.

Definition 4.1. The long-term yield (`t)t≥0 is the process defined by

`t := lim
T→∞

Y (t, T ) , (4.2)

where Y (t, T ) , t ∈ [0, T ], is the yield process for T ≥ 0 given by equation (3.14).

Definition 4.2. If the forward rate process is defined as in (3.1), the long-term
drift µ∞(t) , t ≥ 0, is the process on Md given by

µ∞(t) := lim
T→∞

Γ(t, T )

T − t
= lim
T→∞

Γ(t, T )

T
P-a.s. (4.3)

for all t ≥ 0, where Γ(t, T ) , t ∈ [0, T ], is introduced in (3.18) for every T ≥ 0.
Furthermore, the long-term volatility σ∞(t) , t ≥ 0, is the process on Md given by

σ∞(t) := lim
T→∞

Σ(t, T )

T − t
= lim
T→∞

Σ(t, T )

T
P-a.s. (4.4)

for all t ≥ 0, where Σ(t, T ) , t ∈ [0, T ], is introduced in (3.3) for every T ≥ 0.

Here we are supposing that the limits (4.2), (4.3) and (4.4) are well-defined. The
long-term yield can be characterised as an integral of µ∞ and σ∞ by using the
following results.

Proposition 4.1. Let 0 ≤ t ≤ T . The long-term yield at 0 is

lim
T→∞

Y (0; t, T ) = lim
T→∞

Y (0, T ) = `0 P-a.s.

Proof. Cf. Proposition 3.3 of [6]. �

Proposition 4.2. Under Assumption 1 and 2, it holds for all t ≥ 0:

lim
T→∞

2

t∫
0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
Xs dWsQ

]
= 2

t∫
0

Tr
[
σ∞(s)

√
Xs dWsQ

]
, (4.5)

where σ∞(s) , s ≥ 0, is the long-term volatility process defined by equation (4.4),
Σ(s, t), s ≥ 0, is defined for all t ≥ 0 as in (3.3), and the convergence in (4.5) is
uniform on compacts in probability (ucp).

Proof. Fix t ≥ 0. By Assumption 1 we have that for all compact intervals [a, b]
with 0 ≤ a < b

sup
t∈[a,b]

∣∣∣∣∫ t

0

Tr
[
2QΣ(s, t)

√
Xs dWs

]∣∣∣∣ <∞ P-a.s.

Consequently on every compact interval [a, b]

1

T
sup
t∈[a,b]

∫ t

0

Tr
[
2QΣ(s, t)

√
Xs dWs

]
T→∞−→ 0 P-a.s.

Therefore
1

T

∫ t

0

Tr
[
2QΣ(s, t)

√
Xs dWs

]
T→∞−→ 0 in ucp. (4.6)

Next, we define HT := HT
s , s ≥ 0, with

HT
s := 2

QΣ(s, T )
√
Xs

T
. (4.7)
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Then for T →∞ : HT
s → 2Qσ∞(s)

√
Xs a.s. for all s ≥ 0.

Since we investigate long-term interest rates it is sufficient to impose long times of
maturity, say T ≥ 1. Due to Assumption 2, we then have that for all 0 ≤ s ≤ T
with T ≥ 1∥∥HT

s

∥∥ (4.7)
=

2

T

∥∥∥QΣ(s, T )
√
Xs

∥∥∥
=

2

T

(
Tr
[√

Xs Σ(s, T )Q>QΣ(s, T )
√
Xs

])1/2

=
2

T

 ∑
i,j,k,l,m,n

√
Xij,s Σ(s, T )jkQ

>
klQlm Σ(s, T )mn

√
Xni,s

1/2

(4.1)

≤ 2

T

 ∑
i,j,k,l,m,n

√
T
√
Xij,s wjk(s) Q>klQlm

√
T wmn(s)

√
Xni,s

1/2

=
2√
T

 ∑
i,j,k,l,m,n

√
Xij,s wjk(s) Q>klQlm wmn(s)

√
Xni,s

1/2

≤ 2

 ∑
i,j,k,l,m,n

√
Xij,s wjk(s) Q>klQlm wmn(s)

√
Xni,s

1/2

= 2
(

Tr
[√

Xs w(s) Q>Qw(s)
√
Xs

])1/2

= 2
∥∥∥Qw(s)

√
Xs

∥∥∥ =: h(s) .

Further, we have w ∈ L(W ) due to Assumption 2 and we know from Theorem 2.2

that
√
X ∈ L(W ). By using Theorem 16 in Chapter IV, Section 2 of [49] it follows

h ∈ L(W ). Then, applying the dominated convergence theorem for semimartingales
(cf. Theorem 32 in Chapter IV, Section 2 of [49]), we get:∫ t

0

Tr

[
2
QΣ(s, T )

√
Xs

T
dWs

]
T→∞−→ 2

∫ t

0

Tr
[
σ∞(s)

√
Xs dWsQ

]
in ucp. (4.8)

It follows due to Lemma 5.8 of [25], (4.6), and (4.8):

2

∫ t

0

Tr

[
Σ(s, T )− Σ(s, t)

T − t
√
XsdWsQ

]
T→∞−→ 2

∫ t

0

Tr
[
σ∞(s)

√
Xs dWsQ

]
in ucp.

�

Proposition 4.3. Under Assumption 1 and 2, it holds for all t ≥ 0:

lim
T→∞

2

t∫
0

Tr

[
Q

Γ(s, T )− Γ(s, t)

T − t
Q>
]
ds = 2

t∫
0

Tr
[
Qµ∞(s)Q>

]
ds, (4.9)

where µ∞(s) , s ≥ 0, is the long-term drift process defined by equation (4.3), Γ(s, t),
s ≥ 0, is defined for all t ≥ 0 as in (3.18), and the convergence in (4.9) is in ucp.

Proof. Fix t ≥ 0. Since the process Γ(s, t) , s, t ≥ 0, is continuous in t for all fixed s
and càdlàg in s for all fixed t it follows by (4) of Section 2.8 in [3] that Γ(s, t) , s ≥ 0,
is bounded on all compact intervals [a, b] with t ∈ [a, b] and 0 ≤ a < b for a.e. ω ∈ Ω,
i.e.

sup
t∈[a,b]

∣∣∣∣∫ t

0

Tr
[
QΓ(s, t)Q>

]
ds

∣∣∣∣ <∞ P-a.s.
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Consequently on every compact interval [a, b]

1

T
sup
t∈[a,b]

∫ t

0

Tr
[
QΓ(s, t)Q>

]
ds

T→∞−→ 0 P-a.s.

Therefore

1

T

∫ t

0

Tr
[
QΓ(s, t)Q>

]
ds

T→∞−→ 0 in ucp. (4.10)

Let us define GT := GTs , s ≥ 0, with

GTs := 2
QΓ(s, T )Q>

T
. (4.11)

Then for T →∞ : GTs → 2Qµ∞(s)Q> a.s. for all s ≥ 0.
By Assumption 2 we have that for all i, j ∈ {1, . . . , d} and 0 ≤ s ≤ T :

Γ(s, T )ij
(3.18)

= (Σ(s, T )XsΣ(s, T ))ij =
∑
k,l

Σ(s, T )ikXkl,sΣ(s, T )lj

(4.1)

≤
∑
k,l

√
T wik(s)Xkl,s

√
T wlj(s) = T (w(s)Xsw(s))ij . (4.12)

Therefore we have that for all 0 ≤ s ≤ T∥∥GTs ∥∥ (4.11)
=

2

T

∥∥QΓ(s, T )Q>
∥∥

=
2

T

(
Tr
[
QΓ(s, T )Q>QΓ(s, T )Q>

])1/2
=

2

T

 ∑
i,j,k,l,m,n

Qij Γ(s, T )jkQ
>
klQlm Γ(s, T )mnQ

>
ni

1/2

(4.12)

≤ 2

T

 ∑
i,j,k,l,m,n

Qij T (w(s)Xsw(s))jkQ
>
klQlm T (w(s)Xsw(s))mnQ

>
ni

1/2

= 2
(
Tr
[
Qw(s)Xsw(s)Q>Qw(s)Xsw(s)Q>

])1/2
= 2

∥∥Qw(s)Xsw(s)Q>
∥∥ =: g(s) ,

where g is a càdlàg process. It follows
∫ t

0
g(s) ds <∞ for all t ≥ 0 by (4) of Section

2.8 in [3] and we can apply the DCT for progressive processes (cf. Corollary 6.26
in Chapter 6 of [42]). By using Lemma 5.8 of [25] and (4.10) we obtain (4.9). �

Proposition 4.4. Under Assumption 1 and 2, it holds for all t ≥ 0:∫ t

0

∫
S+
d\{0}

Tr[(Σ(s, T )−Σ(s, t)) ξ]

T − t
µX(ds, dξ)

T→∞−→
∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ) ,

(4.13)
where σ∞(s) , s ≥ 0, is the long-term volatility process defined by equation (4.4),
Σ(s, t), s ≥ 0, is defined for all t ≥ 0 as in (3.3), and the convergence in (4.13) is
in ucp.
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Proof. Fix t ≥ 0. First, notice that∣∣∣∣∣
∫ t

0

∫
S+
d\{0}

Tr[Σ(s, t) ξ]µX(ds, dξ)

∣∣∣∣∣ ≤
∫ t

0

∫
S+
d

|Tr[Σ(s, t) ξ]|µX(ds, dξ)

≤
√
t

∫ t

0

∫
S+
d\{0}

1√
t
‖Σ(s, t)‖ ‖ξ‖µX(ds, dξ)

(4.1)

≤
√
t

∫ t

0

∫
S+
d\{0}

‖w(s)‖ ‖ξ‖µX(ds, dξ)

≤
√
t sup
u∈[0,t]

‖w(u)‖
∫ t

0

∫
S+
d\{0}

‖ξ‖ µX(ds, dξ) .

Define q(t) :=
√
t supu∈[0,t] ‖w(u)‖Zt with

Zt :=

∫ t

0

∫
S+
d\{0}

‖ξ‖ µX(ds, dξ) , t ≥ 0 .

Note that Zt, t ≥ 0, is a well-defined càdlàg process by (2.10). Then for all compact
intervals [a, b] with 0 ≤ a < b it is

sup
t∈[a,b]

|q(t)| = sup
t∈[a,b]

∣∣∣∣∣√t sup
u∈[0,t]

‖w(u)‖Zt

∣∣∣∣∣ ≤ √b sup
t∈[a,b]

sup
u∈[0,t]

‖w(u)‖ sup
t∈[a,b]

Zt

=
√
b sup
u∈[0,b]

‖w(u)‖ sup
t∈[a,b]

Zt <∞

because of (4) of Section 2.8 in [3] applied for the càdlàg processes ‖w(t)‖ , t ≥ 0,
and Zt, t ≥ 0. Consequently on every compact interval [a, b]

1

T
sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, t) ξ]µX(ds, dξ)
T→∞−→ 0 P-a.s.

Therefore
1

T

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, t) ξ]µX(ds, dξ)
T→∞−→ 0 in ucp. (4.14)

Due to Assumption 2 we have for s, t ≤ T and T ≥ 1 that

|Tr [Σ(s, T ) ξ]|
T

≤ 1

T
‖Σ(s, T )‖ ‖ξ‖

(4.1)

≤ 1√
T
‖w(s)‖ ‖ξ‖ ≤ ‖w(s)‖ ‖ξ‖ =: j(s, ξ) .

We first show that the process j is integrable with respect to the random measure
µX on [0, t]× S+

d \{0} for all t ≥ 0:∫ t

0

∫
S+
d\{0}

j(s, ξ)µX(ds, dξ) =

∫ t

0

∫
S+
d\{0}

‖w(s)‖ ‖ξ‖ µX(ds, dξ)

≤ sup
u∈[0,t]

‖w(u)‖Zt <∞

due to (4) of Section 2.8 in [3] applied for the càdlàg process ‖w(t)‖ , t ≥ 0, and by
(2.10). We have with the DCT and (4.4) that for all fixed t ≥ 0∫ t

0

∫
S+
d
\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)

T→∞−→
∫ t

0

∫
S+
d
\{0}

Tr[σ∞(s) ξ]µX(ds, dξ) P-a.s. (4.15)

Then, by (4.15) applied for t = b and by (4.17) from Lemma 4.1, it follows that

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)

T→∞−→ sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)
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P-a.s. and therefore in probability. Hence by [49], page 57

lim
T→∞

∫ t

0

∫
S+
d\{0}

Tr [Σ(s, T ) ξ]

T
µX(ds, dξ) =

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ) in ucp.

(4.16)
By using (4.14) as well as (4.16) it follows (4.13). �

Lemma 4.1. With Σ(t, T ) , t ≥ 0, defined as in (3.3) and σ∞(t) , t ≥ 0, as in (4.4)
it holds for 0 ≤ a < b∣∣∣∣∣ sup
t∈[a,b]

∫ t

0

∫
S+
d
\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)− sup

t∈[a,b]

∫ t

0

∫
S+
d
\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)

∣∣∣∣∣
≤
∫ b

0

∫
S+
d
\{0}

∣∣∣∣Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

∣∣∣∣µX(ds, dξ) . (4.17)

Proof. Let 0 ≤ a ≤ b. Then, we have

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)− sup

t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)

= sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ] + Tr[σ∞(s) ξ]

)
µX(ds, dξ)

− sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)

≤ sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

)
µX(ds, dξ) . (4.18)

Furthermore

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)− sup

t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)

= sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)

− sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[σ∞(s) ξ]− Tr[Σ(s, T ) ξ]

T
+

Tr[Σ(s, T ) ξ]

T

)
µX(ds, dξ)

≥ − sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[σ∞(s) ξ]− Tr[Σ(s, T ) ξ]

T

)
µX(ds, dξ)

= inf
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

)
µX(ds, dξ) . (4.19)

Hence, it follows from (4.18) and (4.19) that∣∣∣∣∣ sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]

T
µX(ds, dξ)− sup

t∈[a,b]

∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ)

∣∣∣∣∣
≤

∣∣∣∣∣ sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

)
µX(ds, dξ)

∣∣∣∣∣
∨

∣∣∣∣∣ inf
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

)
µX(ds, dξ)

∣∣∣∣∣
≤ sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

∣∣∣∣Tr[Σ(s, T ) ξ]

T
− Tr[σ∞(s) ξ]

∣∣∣∣µX(ds, dξ) .

�
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Proposition 4.5. Under Assumption 1 and 2, it holds for all t ≥ 0:

lim
T→∞

∫ t

0

∫
S+
d\{0}

eTr[Σ(s,T ) ξ] − eTr[Σ(s,t) ξ]

T − t
ν(ds, dξ) = 0 , (4.20)

where Γ(s, t), s ≥ 0, is defined for all t ≥ 0 as in (3.18), and the convergence in
(4.20) is in ucp.

Proof. Fix t ≥ 0. We note that the left-hand side of (4.20) is equal to

lim
T→∞

1

T

(∫ t

0

∫
S+
d
\{0}

(
1−eTr[Σ(s,t) ξ]

)
ν(ds, dξ)−

∫ t

0

∫
S+
d
\{0}

(
1−eTr[Σ(s,T ) ξ]

)
ν(ds, dξ)

)
.

(4.21)

Hence we study the limit (4.21) and we introduce for all u ∈ S+
d

F̃ (u) :=

∫
S+
d\{0}

(
e−Tr[uξ] − 1

)
m(dξ) , (4.22)

R̃(u) :=

∫
S+
d\{0}

(
e−Tr[uξ] − 1

)
µ(dξ) . (4.23)

Then, we can write due to (2.12), (4.22), and (4.23) that∫ t

0

∫
S+
d\{0}

(
1−eTr[Σ(s,t)ξ]

)
ν(ds, dξ) = −

∫ t

0

(
F̃ (−Σ(s, t)) + Tr

[
R̃(−Σ(s, t))Xs

])
ds.

The process F̃ (−Σ(s, t)) + Tr
[
R̃(−Σ(s, t))Xs

]
, s ∈ [0, t] , is càdlàg for all t ≥ 0

since F̃ and R̃ are continuous functions and X is càdlàg. Due to this and (4) of
Section 2.8 in [3] we get that for all compact intervals [a, b] with a, b ≥ 0

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
1−eTr[Σ(s,t) ξ]

)
ν(ds, dξ) <∞ P-a.s.

Consequently on every compact interval [a, b]

1

T
sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

(
1−eTr[Σ(s,t) ξ]

)
ν(ds, dξ)

T→∞−→ 0 P-a.s.

Therefore

1

T

∫ t

0

∫
S+
d\{0}

(
1−eTr[Σ(s,t) ξ]

)
ν(ds, dξ)

T→∞−→ 0 in ucp. (4.24)

Next, we use the inequality

1−eTr[Σ(s,T ) ξ] = 1−e−Tr[−Σ(s,T ) ξ] ≤ 1∧Tr[−Σ(s, T ) ξ]
(4.1)

≤ 1∧
√
T Tr[w(s) ξ] (4.25)

which holds for all ξ ∈ S+
d and a.e. ω ∈ Ω, to see that for all 0 ≤ s ≤ T with T ≥ 1,

and for a.e. ω ∈ Ω

1− eTr[Σ(s,T ) ξ]

T

(4.25)

≤ 1

T
∧ 1√

T
Tr[w(s) ξ] ≤ 1 ∧ Tr[w(s) ξ] ≤ 1 ∧ ‖w(s)‖ ‖ξ‖ =: i(s, ξ) .

Since we investigate long-term interest rates it is sufficient to impose long times of
maturity, say T ≥ 1.
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Then, we show that the process i is integrable with respect to the random measure
ν on [0, t]× S+

d :∫ t

0

∫
S+
d
\{0}

i(s, ξ) ν(ds, dξ) =

∫ t

0

∫
S+
d
\{0}

i(s, ξ)
(
1{‖w(s)‖≤1} + 1{‖w(s)‖>1}

)
ν(ds, dξ)

=

∫ t

0

∫
S+
d
\{0}

i(s, ξ)1{‖w(s)‖≤1} ν(ds, dξ)

+

∫ t

0

∫
S+
d
\{0}

i(s, ξ)1{‖w(s)‖>1} ν(ds, dξ)

≤
∫ t

0

∫
S+
d
\{0}

1{‖w(s)‖≤1} (1 ∧ ‖ξ‖) ν(ds, dξ)

+

∫ t

0

∫
S+
d
\{0}

1{‖w(s)‖>1} ‖w(s)‖ (1 ∧ ‖ξ‖) ν(ds, dξ)

(2.12)

≤
∫ t

0

∫
S+
d
\{0}

(1 ∧ ‖ξ‖) ν(ds, dξ)

+

∫ t

0

‖w(s)‖1{‖w(s)‖>1} ds

∫
S+
d
\{0}

(1 ∧ ‖ξ‖)m(dξ)

+ Tr

[∫ t

0

‖w(s)‖1{‖w(s)‖>1}Xs ds

∫
S+
d
\{0}

(1 ∧ ‖ξ‖)µ(dξ)

]

≤
∫ t

0

∫
S+
d
\{0}

(1 ∧ ‖ξ‖) ν(ds, dξ)

+

∫ t

0

‖w(s)‖ ds
∫
S+
d
\{0}

(1 ∧ ‖ξ‖)m(dξ)

+ Tr

[∫ t

0

‖w(s)‖Xs ds
∫
S+
d
\{0}

(1 ∧ ‖ξ‖)µ(dξ)

]

< ∞ P-a.s.

because of (2.4), (2.5), and (4) of Section 2.8 in [3] applied for the càdlàg processes
X and ‖w(t)‖Xt, t ≥ 0.
Then by the DCT we have that for all t ≥ 0∫ t

0

∫
S+
d\{0}

eTr[Σ(s,T ) ξ]−1

T
ν(ds, dξ)

T→∞−→ 0 P-a.s. (4.26)

With the same argument as in Proposition 4.4, we then obtain that for 0 ≤ a < b

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

1−eTr[Σ(s,T ) ξ]

T
ν(ds, dξ) ≤

∫ b

0

∫
S+
d\{0}

1−eTr[Σ(s,T ) ξ]

T
ν(ds, dξ) ,

since ν is given by (2.12).
This converges to 0 by (4.26) applied for t = b. Therefore a.e. ω ∈ Ω

sup
t∈[a,b]

∫ t

0

∫
S+
d\{0}

1−eTr[Σ(s,T ) ξ]

T
ν(ds, dξ)

T→∞−→ 0 ,

i. e. by [49], page 57∫ t

0

∫
S+
d\{0}

eTr[Σ(s,T ) ξ]−1

T
ν(ds, dξ)

T→∞−→ 0 in ucp. (4.27)

The result (4.20) follows then by (4.21), (4.24), and (4.27). �

We are now ready to state the main result of this section.
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Theorem 4.1. Under Assumption 1 and 2, the long-term yield is given by

`t = `0 + 2

∫ t

0

Tr
[
Qµ∞(s)Q>

]
ds, t ≥ 0, (4.28)

with Tr
[
Qµ∞(s)Q>

]
≥ 0 for all 0 ≤ s ≤ t if it exists in a finite form.

Proof. By Lemma 3.1, Proposition 4.1, Proposition 4.2, Proposition 4.3, Proposi-
tion 4.4, and Proposition 4.5, the long-term yield can be written in the following
way:

`t = `0 + 2

∫ t

0

Tr
[
Qµ∞(s)Q>

]
ds− 2

∫ t

0

Tr
[
σ∞(s)

√
Xs dWsQ

]
−
∫ t

0

∫
S+
d\{0}

Tr[σ∞(s) ξ]µX(ds, dξ) , t ≥ 0,

whereas the convergence is uniformly on compacts in probability. However if 0 <
‖σ∞(t)‖ < ∞ for some t ∈ [0, T ], by (4.4) we have Σ(t, T )ij ∈ O(T − t) for all

i, j ∈ {1, . . . , d}. Then we get for all t ≥ 0

Tr
[
Qµ∞(t)Q>

] (4.3)
=
∑
i,j,k

Qij lim
T→∞

Γ(t, T )jk
T − t

Q>ki

(3.18)
= lim

T→∞

1

T − t
∑

i,j,k,l,m

Qij Σ(t, T )jlXlm,t Σ(t, T )mkQik

=∞ P-a.s.

That is a contradiction to the existence of the long-term yield. Hence representation
(4.28) holds if the long-term yield exists in a finite form. Moreover, we have for all
t ≥ 0

Tr
[
Qµ∞(t)Q>

] (4.3)
= lim

T→∞

1

T − t
Tr
[
QΓ(t, T )Q>

]
(3.18)

= lim
T→∞

1

T − t
Tr
[
QΣ(t, T )Xt Σ(t, T )Q>

]
= lim

T→∞

1

T − t

∥∥∥√Xt Σ(t, T )Q>
∥∥∥2

≥ 0 P-a.s. (4.29)

This concludes the proof. �

It follows immediately that (`t)t≥0 is a non-decreasing process. This is a well-
known result, which was shown for the first time in 1996 by Dybvig, Ingersoll and
Ross in [22] and generally proven in [37]. Our main contribution is to compute
explicitly the form of the long-term yield in dependence of the model’s parameters.
In particular, we obtain that the drift µ∞ is given by a stochastic process which
depends on (the limit of) the volatility and on X. This implies that the representa-
tion (4.28) of ` remains the same under a change of equivalent probability measures.
This result can be proven by applying the convergence results of Propositions 4.4
and 4.5 to the yield expressed in the form (3.21), which provides the form of Y
under a change of equivalent probability measures. In this way we extend a result
of [40] and [6] to a multifactor setting.

To conclude we now discuss some conditions on the volatility process σ(t, T ) that
guarantee the existence of the long-term drift µ∞.

Proposition 4.6. Let σ(t, T ) ∈ O
(

1√
T−t

)
for every t ≥ 0, i.e. σ(t, T )ij ∈

O
(

1√
T−t

)
for all i, j ∈ {1, . . . , d} P-a.s. Under the setting outlined in Section
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3, we get

Tr
[
Qµ∞(t)Q>

]
<∞ P-a.s.

Proof. Let t ≥ 0 and σ(t, T ) ∈ O
(

1√
T−t

)
. Then

Tr
[
Qµ∞(t)Q>

] (4.29)
= lim

T→∞

1

T−t

∥∥∥√Xt Σ(t, T )Q>
∥∥∥2

(3.3)
= lim

T→∞

1

T−t
∑

i,j,k,l,m

Qij

T∫
t

σ(t, u)jkdu Xkl,t

T∫
t

σ(t, u)lmdu Q
>
mi

< ∞ P-a.s.

�

Proposition 4.7. Let σ(t, T ) ∈ O
(

1
T−t

)
for every t ≥ 0 P-a.s. Under the setting

outlined in Section 3, we get

µ∞(t) = 0

and therefore (`t)t≥0 is constant.

Proof. Let t ≥ 0 and σ(t, T ) ∈ O
(

1
T−t

)
, i.e. for all i, j ∈ {1, . . . , d} it is σ(t, T )ij ∈

O
(

1
T−t

)
. Then, we get for all i, j ∈ {1, . . . , d} that Σ(t, T )ij ∈ O(log(T − t)) and

therefore for all i, j, k, l ∈ {1, . . . , d} that

lim
T→∞

1

T − t
Σ(t, T )ij Σ(t, T )kl = 0 P-a.s. (4.30)

Hence, for all i, j ∈ {1, . . . , d} it is

µ∞(t)ij
(4.3)
= lim

T→∞

Γ(t, T )ij
T − t

(3.18)
= lim

T→∞

1

T−t
∑
k,l

Σ(t, T )ikXkl,tΣ(t, T )lj
(4.30)

= 0 P-a.s.

By (4.28) this yields `t = `0 for all t ≥ 0, i.e. (`t)t≥0 is constant. �

The following table summarises the results regarding the convergence behaviour
of the long-term yield for all t ≥ 0.

Long-term drift Long-term volatility Long-term yield Volatility curve

Tr
[
Qµ∞(t)Q>

]
=∞ 0 < ‖σ∞(t)‖ <∞ infinite σ(t, T ) ∼ O(1)

Tr
[
Qµ∞(t)Q>

]
=∞ 0 < ‖σ∞(t)‖ <∞ infinite σ(t, T ) ∼ O(T−t)

Tr
[
Qµ∞(t)Q>

]
= 0 ‖σ∞(t)‖ = 0 constant σ(t, T ) ∼ O

(
1

T−t

)
0<Tr

[
Qµ∞(t)Q>

]
<∞ ‖σ∞(t)‖ = 0 non-decreasing σ(t, T ) ∼ O

(
1√
T−t

)
5. Examples

In this section we present two examples for the long-term yield driven by an affine
process on S+

d under two different volatility specifications. Detailed calculations of

this example can be found in [34]. Consider the affine process on S+
d defined as

dXt := aIddt+
√
XtdWt + dW>t

√
Xt (5.1)

for t ≥ 0, a ≥ (d− 1), W a d-dimensional matrix Brownian motion, and Id denot-
ing the d-dimensional unit matrix. Here we model directly under the equivalent
martingale measure Q, i.e. we assume ν = ν∗ = 0 and W = W ∗ which implies
γ ≡ 0.
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By Theorem 3.1 the Q-dynamics of the forward rate are given by

f(t, T ) = f(0, T )+4

∫ t

0

Tr [σ(s, T )Xs (−Σ(s, T ))] ds+2

∫ t

0

Tr
[
σ(s, T )

√
Xs dWs

]
. (5.2)

In the sequel we use the following lemma.

Lemma 5.1. Let (Xt)t≥0 be defined as in (5.1), σ as in Assumption 1 and f ∈
C1(R). Then, it holds for all 0 ≤ t ≤ T :

2

∫ t

0

f(s) Tr
[
σ(s, T )

√
Xs dWs

]
= −

∫ t

0

f(s) (Tr[Xs ∂sσ(s, T )] + aTr[σ(s, T )]) ds

+ f(t) Tr[σ(t, T )Xt]− f(0) Tr[σ(0, T )X0]

−
∫ t

0

f ′(s) Tr[σ(s, T )Xs] ds .

Proof. The proof can be found in [34]. �

We choose σ(t, T ) as a deterministic symmetric positive semidefinite d×d matrix
in the following two different ways

(i)

σ(t, T ) :=

{
σe−β(T−t) for T ≥ t ,
0 for T < t ,

(5.3)

(ii)

σ(t, T ) :=

{
σ 1√

T−t for T > t ,

0 for T ≤ t .

with σ ∈ S+
d , σij ∈ R for all i, j ∈ {1, . . . , d}, and β > 0. Note that this example

could be easily extended by considering a stochastic specification of σ to allow for
more realistic classes of forward rate volatilities.

Case (i): Assumption 1 is obviously fulfilled and Assumption 2 follows for 0 ≤ s ≤ t
from

1√
t

∣∣∣Σ(s, t)ij

∣∣∣ =
|σij |√
t

∫ t

s

e−β(u−s) du ≤ 2
√
t− s
β
√
t
|σij | ≤

2

β
|σij | =: wij(s) .

Then, by Lemma 5.1 we get for the forward rate

f(t, T )
(5.2)
= f(0, T ) + 4

∫ t

0

Tr [σ(s, T )Xs (−Σ(s, T ))] ds+ 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dWs

]
(3.3)
= f(0, T ) +

4

β

∫ t

0

(
e−β(T−s) − e−2β(T−s)

)
Tr
[
σ2Xs

]
ds

+ 2

∫ t

0

e−β(T−s) Tr
[
σ
√
Xs dWs

]
(5.1)
=

(A.3)
f(0, T ) +

4

β

∫ t

0

(
e−β(T−s) − e−2β(T−s)

)
Tr
[
σ2Xs

]
ds

− β
∫ t

0

e−β(T−s) Tr[σXs] ds+ e−β(T−t) Tr[σXt]

− e−β T Tr[σX0]− a

β
Tr[σ]

(
e−β(T−t) − e−β T

)
.

If we put

h0(t, T ) := f(0, T )− e−βT Tr[σX0]− a

β
Tr[σ]

(
e−β(T−t) − e−βT

)
,
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h(t, T ) :=

 − 4
βσ

2e−2βT

−βσe−βT + 4
βσ

2e−βT

e−β(T−t)σ

 ,

and

Zt :=

∫ t0 e2βsXs ds∫ t
0
eβsXs ds
Xt

 , (5.4)

we get

f(t, T ) = h0(t, T ) + h(t, T ) · Zt = h0(t, T ) + Tr
[
Z>t h(t, T )

]
.

Note that in this setting we obtain an affine d-dimensional realisation for the forward
rate as in Definition 3 of [11] with h0(t, T ) and h(t, T ) being Ft-measurable processes
and Z an affine process.

Furthermore, the short rate process (rt)t≥0 has the form

rt
(3.12)

= r0 − Tr[σX0] +

∫ t

0

φ(u) du+ Tr[σXt] .

with φ as in (3.13), since
∫ t

0
Tr[σ(u, u) dXu] = Tr[σ (Xt −X0)] for all t ≥ 0 by (5.3).

By Theorem 3.1 we get that

rt
(3.10)

= f(0, t) +
1

β

(
1− β − e−βt

)
Tr[σX0]− a

β

(
1− e−βt

)
Tr[σ] + Tr[σXt]

− β
∫ t

0

e−β(t−s) Tr[σXs] ds−
4

β

∫ t

0

(
e−2β(t−s) − e−β(t−s)

)
Tr
[
σ2Xs

]
ds ,

hence the short-rate process r is a Markov process with respect to Z, defined in
(5.4).
The yield has the following form

Y (t, T )
(3.16)

= Y (0; t, T ) +
2

(T − t)β2

∫ t

0

((
e−β(T−s) − 1

)2

−
(
e−β(t−s) − 1

)2
)

Tr
[
σ2Xs

]
ds

− 1

T−t

(∫ t

0

(
e−β(T−s) − e−β(t−s)

)
Tr[σXs] ds+

1

β

(
1− e−β(T−t)

)
Tr[σXt]

)
− 1

(T−t)β

((
e−βT −e−βt

)
Tr[σX0] +

aTr[σ]

β

(
e−β(T−t) −eβT +e−βt −1

))
.

Then, the long-term drift for t ≥ 0 is

µ∞(t)
(4.3)
= lim

T→∞

Γ(t, T )

T

(3.18)
= lim

T→∞

1

β2T

(
e−β(T−t) − 1

)2

σXt σ = 0 , (5.5)

and we get by Theorem 4.1 that

`t
(4.2)
= `0 + 2

∫ t

0

Tr[µ∞(s)] ds
(5.5)
= `0 ,

i.e. (`t)t≥0 is constant, as expected since σ(t, T ) ∼ O
(

1
T−t

)
.

Case (ii): Assumption 1 is again fulfilled obviously and Assumption 2 follows for
0 ≤ s ≤ t since

1√
t

∣∣∣Σ(s, t)ij

∣∣∣ = 2 |σij |
√
t− s√
t

= 2 |σij |
√

1− s

t
≤ 2 |σij | =: wij(s) .
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The forward rate for 0 ≤ t ≤ T is

f(t, T )
(5.2)
= f(0, T ) + 4

∫ t

0

Tr [σ(s, T )Xs (−Σ(s, T ))] ds+ 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dWs

]
(3.3)
= f(0, T ) + 8

∫ t

0

Tr
[
σ2Xs

]
ds− 1

2

∫ t

0

(T−s)−
3
2 Tr[σXs] ds

+
1√
T−t

Tr[σXt]−
1√
T

Tr[σX0]− 2aTr[σ]
(√

T −
√
T−t

)
and the yield for [t, T ] has the following forms

Y (t, T )
(3.16)

= Y (0; t, T ) + 8

∫ t

0

Tr
[
σ2 Xs

]
ds+

1

T−t

∫ t

0

(
1√
T−s

− 1√
t−s

)
Tr[σXs] ds

+
2 Tr[σXt]√

T−t
−

2
(√

T−
√
t
)

Tr[σX0]

T−t +
4

3
aTr[σ]

(√
T−t− T

√
T − t

√
t

T−t

)
.

Then, the long-term drift for t ≥ 0 is

µ∞(t)
(4.3)
= lim

T→∞

Γ(t, T )

T

(3.18)
= lim

T→∞

4 (T − t)σXtσ

T
= 4σXt σ , (5.6)

and we get with Theorem 4.1 that

`t
(4.2)
= `0 + 2

∫ t

0

Tr[µ∞(s)] ds
(5.6)
= `0 + 8

∫ t

0

Tr[σXs σ] ds .

Appendix A

Here we provide the proofs of Proposition 3.1 and Theorem 3.1. The results
follow by applying the Fubini theorem for integrable functions (cf. Theorem 14.16
in Chapter 14 of [42]) and the stochastic Fubini theorem (cf. Theorem 65 in Chapter
IV of [49]). For further details on the following computations, we refer to [34].

Proof of Proposition 3.1. Let us introduce for every maturity T > 0 the quantity

Z(t, T ) := −
∫ T

t

f(t, u) du , (A.1)

for all 0 ≤ t ≤ T . From the dynamics of the forward rate (3.1) we deduce that for
all T > 0

Z(t, T )
(A.1)
= −

∫ T

t

f(0, u) du−
∫ T

t

∫ t

0

α(s, u) ds du−
∫ T

t

∫ t

0

Tr[σ(s, u) dXs] du ,

(A.2)
for all 0 ≤ t ≤ T . By combining (2.11), (3.3), (A.2), and (3.13), we derive the
following identity

Z(t, T )
(A.2)
= Z(0, T )+

∫ t

0

f(0, u) du−
∫ T

t

∫ t

0

α(s, u) ds du−
∫ T

t

∫ t

0

Tr[σ(s, u) dXs] du

(3.13)
= Z(0, T ) +

∫ t

0

rs ds−
∫ t

0

∫ T

s

α(s, u) du ds−
∫ t

0

∫ T

s

Tr[σ(s, u) du dXs]

(2.11)
=

(3.3)
Z(0, T ) +

∫ t

0

rs ds−
∫ t

0

∫ T

s

α(s, u) du ds

+

∫ t

0

Tr
[
Σ(s, T )

(√
Xs dWsQ+Q>dW>s

√
Xs

)]
+

∫ t

0

Tr[Σ(s, T ) (b+B(Xs))] ds+

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]µX(ds, dξ) .
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Note that in general for A,B ∈Md with A symmetric, i.e. A ∈ Sd, it holds

Tr
[
A
(
B +B>

)]
= Tr[AB] + Tr

[
AB>

]
= Tr[AB] + Tr

[
(BA)

>
]

= Tr[AB] + Tr [BA] = 2 Tr[AB] . (A.3)

Therefore, we get due to σ(s, t) ∈ Sd for all s, t ≥ 0 that

Z(t, T )
(A.3)
= Z(0, T )+

∫ t

0

rs ds−
∫ t

0

∫ T

s

α(s, u) du ds+2

∫ t

0

Tr
[
Σ(s, T )

√
Xs dWsQ

]
+

∫ t

0

Tr[Σ(s, T ) (b+B(Xs))] ds+

∫ t

0

∫
S+
d\{0}

Tr[Σ(s, T ) ξ]µX(ds, dξ) .

(A.4)

Note that for all 0 ≤ t ≤ T

∆Z(t, T ) = Tr [Σ(t, T ) ∆Xt] . (A.5)

With the help of (A.4) and the fact that

〈Wlm,Wru〉s =

{
s if l = r and m = u,
0 else,

(A.6)

we can calculate the quadratic variation of Z for all T > 0 as follows

〈Z( · , T )〉ct =

〈
Tr

[∫ ·
0

Σ(s, T )
√
Xs dWsQ

]〉
t

(A.6)
= 4

∫ t

0

Tr
[
QΣ(s, T )Xs Σ(s, T )Q>

]
ds .

(A.7)

Further, we see that due to equation (2.27) of [13] for all u ∈ S+
d and a process Y

on S+
d it holds

Tr
[
B>(u)Y

]
= Tr[B(Y )u] , (A.8)

where B is defined according to (2.13) and therefore for all 0 ≤ t ≤ T and α = Q>Q∫ t

0

Tr[Σ(s, T ) (b+B(Xs))] + 2 Tr
[
QΣ(s, T )Xs Σ(s, T )Q>

]
ds

+

∫ t

0

∫
S+
d\{0}

(
eTr[Σ(s,T ) ξ] − 1

)
ν(ds, dξ)

(2.12)
=

(A.8)
−
∫ t

0

Tr
[
−Σ(s, T ) b− 2 Σ(s, T )αΣ(s, T )Xs +B>(−Σ(s, T ))Xs

]
ds

+

∫ t

0

∫
S+
d\{0}

(
e−Tr[−Σ(s,T ) ξ] − 1

)
m(dξ) ds

+

∫ t

0

Tr

[
Xs

∫
S+
d\{0}

(
e−Tr[−Σ(s,T ) ξ] − 1

)
µ(dξ)

]
ds

(2.9)
=

(2.8)

∫ t

0

(−F (−Σ(s, T ))− Tr[R(−Σ(s, T ))Xs]) ds . (A.9)

Now, we apply Itô’s formula on P (t, T ) := exp(Z(t, T )) for every maturity T > 0
(cf. Definition 1.4.2 of [8]) and obtain the following representation, where we use
Proposition 1.28 of Chapter II in [38] to combine the measures µX(ds, dξ) and
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ν(ds, dξ), since the affine process X has only jumps of finite variation (cf. (2.10)).

P (t, T ) = P (0, T ) +

∫ t

0

P (s−, T ) dZ(s, T ) +
1

2

∫ t

0

P (s, T ) d 〈Z( · , T )〉cs

+

∆Z(s,T )6=0∑
0<s≤t

[
eZ(s,T ) − eZ(s−,T ) −∆Z(s, T ) eZ(s−,T )

]
(A.5)
=

(A.7)
P (0, T ) +

∫ t

0

P (s−, T ) dZ(s, T )

+ 2

∫ t

0

P (s, T ) Tr
[
QΣ(s, T )Xs Σ(s, T )Q>

]
ds

+

∆Xs 6=0∑
0≤s≤t

[
eZ(s,T ) − eZ(s−,T ) − Tr[Σ(s, T ) ∆Xs] e

Z(s−,T )
]

(A.4)
=

(2.1)
P (0, T ) + 2

∫ t

0

P (s, T ) Tr
[
Σ(s, T )

√
Xs dWsQ

]
+

∫ t

0

P (s, T )

(
rs −

∫ T

s

α(s, u) du

)
ds

+

∫ t

0

P (s, T ) Tr[Σ(s, T ) (b+B(Xs))] ds

+

∫ t

0

P (s−, T )

∫
S+
d
\{0}

Tr[Σ(s, T ) ξ] µX(ds, dξ)

+ 2

∫ t

0

P (s, T ) Tr
[
QΣ(s, T )Xs Σ(s, T )Q>

]
ds

+

∆Xs 6=0∑
0≤s≤t

[
e∆Z(s,T )P (s−, T )−P (s−, T )−Tr[Σ(s, T ) ∆Xs]P (s−, T )

]
(A.5)
=

(A.9)
P (0, T ) +

∫ t

0

P (s−, T ) (rs +A(s, T )) ds+ 2

∫ t

0

P (s, T ) Tr
[
Σ(s, T )

√
Xs dWsQ

]
+

∫ t

0

P (s−, T )

∫
S+
d
\{0}

(
eTr[Σ(s,T ) ξ] − 1

)(
µX − ν

)
(ds, dξ) .

Assumption 1 guarantees that all integrals above are finite. �

Proof of Theorem 3.1. By using (3.7) we see that the discounted bond price
process under Q is

P (t, T )

βt

(3.8)
= P (0, T ) +

∫ t

0

P (s, T )

βs

(
A(s, T ) + 2 Tr

[
Σ(s, T )

√
Xs γsQ

])
ds

+ 2

∫ t

0

P (s, T )

βs
Tr
[
Σ(s, T )

√
Xs dW

∗
s Q
]

+

∫ t

0

∫
S+
d\{0}

P (s−, T )

βs

(
eTr[Σ(s,T ) ξ]−1

) (
µX− ν∗

)
(ds, dξ)

+

∫ t

0

∫
S+
d\{0}

P (s−, T )

βs

(
eTr[Σ(s,T ) ξ]−1

)
(K(s, ξ)−1) ν(ds, dξ)

(A.10)
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for all 0 ≤ t ≤ T . Since P (t,T )
βt

, t ≤ T , has to be a local martingale under Q, the

drift in (A.10) must disappear, i.e. for all 0 ≤ t ≤ T

0
(2.12)

=

∫ t

0

P (s, T )

βs
A(s, T ) ds+ 2

∫ t

0

P (s, T )

βs
Tr
[
Σ(s, T )

√
Xs γsQ

]
ds

+

∫ t

0

∫
S+
d
\{0}

P (s−, T )

βs

(
eTr[Σ(s,T ) ξ]−1

)
(K(s, ξ)−1) (m(dξ)+Tr[Xsµ(dξ)]) ds.

It follows for all 0 ≤ t ≤ T that

A(t, T ) = −2 Tr
[
Σ(t, T )

√
Xt γtQ

]
−
∫
S+
d\{0}

(
eTr[Σ(t,T ) ξ]−1

)
(K(t, ξ)−1) (m(dξ)+Tr[Xtµ(dξ)])

dt⊗ dP-a.s.
Consequently we get for all 0 ≤ t ≤ T by Satz 6.28 in [42]

α(t, T )
(3.4)
= −∂TA(t, T )− ∂TF (−Σ(t, T ))− ∂T Tr[R(−Σ(t, T ))Xt]

(A.3)
= −Tr

[
σ(t, T )

(
b+B(Xt) + 2

√
Xt γtQ

)]
−4 Tr

[
Qσ(t, T )Xt Σ(t, T )Q>

]
−
∫
S+
d\{0}

Tr [σ(t, T ) ξ] eTr[Σ(t,T ) ξ]K(t, ξ) (m(dξ)+Tr[Xtµ(dξ)])

dt⊗ dP-a.s.
Hence, P (t,T )

βt
, t ≤ T , is a Q-local martingale if and only if equation (3.10) is

fulfilled dt⊗ dP-a.s. Equation (3.10) represents the HJM condition on the drift in
the affine setting on S+

d . Then, the forward rate under Q follows a process of the
form

f(t, T )
(3.1)
=

(2.11)
f(0, T ) +

∫ t

0

α(s, T ) ds+

∫ t

0

Tr
[
σ(s, T )

(
b+B(Xs) + 2

√
Xs γsQ

)]
ds

+

∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ] µX(ds, dξ) + 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dW

∗
s Q
]

(3.10)
= f(0, T )− 4

∫ t

0

Tr
[
Qσ(s, T ) Xs Σ(s, T ) Q>

]
ds

−
∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ] eTr[Σ(s,T ) ξ]K(s, ξ) ν(ds, dξ)

+

∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ] µX(ds, dξ) + 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dW

∗
s Q
]

(3.3)
= f(0, T ) + 4

∫ t

0

Tr

[
Qσ(s, T )Xs

∫ T

s

σ(s, u) du Q>
]
ds

+

∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ]
(
µX− ν∗

)
(ds, dξ)

−
∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ]
(
eTr[Σ(s,T ) ξ] − 1

)
ν∗(ds, dξ)

+ 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dW

∗
s Q
]

(2.12)
= f(0, T ) +

∫ t

0

{
4 Tr

[
Qσ(s, T )Xs

∫ T

s

σ(s, u) du Q>
]

−
∫
S+
d
\{0}

K(s, ξ) Tr[σ(s, T ) ξ]
(
eTr[Σ(s,T ) ξ]−1

)
(m(dξ)+Tr[Xsµ(dξ)])

}
ds
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+

∫ t

0

∫
S+
d
\{0}

Tr[σ(s, T ) ξ]
(
µX− ν∗

)
(ds, dξ)

+ 2

∫ t

0

Tr
[
σ(s, T )

√
Xs dW

∗
s Q
]
,

where we have used again Proposition 1.28 of Chapter II in [38]. �
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Robert Stelzer, TU Munich, 2008.

[49] Philip Protter. Stochastic Integration and Differential Equations. Springer, 2nd edition, 2005.

[50] A. Richter. Explicit Solutions to Quadratic BSDEs and Applications to Utility Maximization
in Multivariate Affine Stochastic Volatility Models. Stochastic Processes and their Applica-

tions, 124(11):3578–3611, 2014.
[51] K. Schulze. Asymptotic Maturity Behavior of the Term Structure. Bonn Econ Discussion

Papers, University of Bonn, June 2008.
[52] R. J. Shiller. The Volatility of Long-Term Interest Rates and Expectations Models of the

Term Structure. The Journal of Political Economy, 87(6):1190–1219, 1979.

[53] Y. Yao. Term Structure Modeling and Asymptotic Long Rate. Insurance: Mathematics and

Economics, 25:327–336, 1999.
[54] Y. Yao. Term Structure Models: A Perspective from the Long Rate. North American Actu-

arial Journal, 3(3):122–138, 2000.



LONG-TERM YIELD IN AN AFFINE HJM FRAMEWORK ON S+
d 31

(F. Biagini) Department of Mathematics, LMU University

Theresienstrasse 39, D-80333 Munich, Germany.

Secondary Affiliation: Department of Mathematics, University of Oslo, Norway.
E-mail address: francesca.biagini@math.lmu.de

URL: http://www.mathematik.uni-muenchen.de/personen/professoren/biagini/index.html

(A. Gnoatto) Department of Mathematics, LMU University

Theresienstrasse 39, D-80333 Munich, Germany

E-mail address: alessandro@alessandrognoatto.com

URL: http://www.alessandrognoatto.com
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