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Abstract

In this paper we employ Malliavin calculus to derive a general stochastic maximum prin-
ciple for stochastic partial differential equations with jumps under partial information.
We apply this result to solve an optimal harvesting problem in the presence of partial
information. Another application pertains to portfolio optimization under partial obser-
vation.
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1 Introduction

In this paper we aim at using Malliavin calculus to prove a general stochastic maximum
principle for stochastic partial differential equations (SPDE’s) with jumps under partial in-
formation. More precisely, the controlled process is given by a quasilinear stochastic heat
equation driven by a Wiener process and a Poisson random measure. Further the control
processes are assumed to be adapted to a subfiltration of the filtration generated by the
driving noise of the controlled process. Our paper is inspired by ideas developed in Meyer-
Brandis, Oksendal & Zhou [14], where the authors establish a general stochastic maximum
principle for SDE’s based on Malliavin calculus. The results obtained in this paper can be
considered a generalization of [14] to the setting of SPDE’s.

There is already a vast literature on the stochastic maximum principle. The reader is e.g.
referred to [2, 3, [1, @O 20, 17, 2I] and the references therein. Let us mention that the au-
thors in [2], 20], resort to stochastic maximum principles to study partially observed optimal
control problems for diffusions, that is the controls under consideration are based on noisy
observations described by the state process. Our paper covers the partial observation case in
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[2, B, 20], since we deal with controls being adapted to a general subfiltration of the under-
lying reference filtration. Further, our Malliavin calculus approach to stochastic control of
SPDE’s allows for optimization of very general performance functionals. Thus our method
is useful to examine control problems of non-Markovian type, which cannot be solved by
stochastic dynamic programming. Another important advantage of our technique is that we
may relax the assumptions on our Hamiltonian, considerably. For example, we do not need
to impose concavity on the Hamiltonian. See e.g. [I7, [1]. We remark that the authors in [I]
prove a sufficient and necessary maximum principle for partial information control of jump
diffusions. However, their method relies on an adjoint equation which often turns out to be
unsolvable.

We shall give an outline of our paper: In Section 2 we introduce a framework for our partial
information control problem. Then in Section 3 we prove a general (sufficient and necessary)
maximum principle for SPDE’s by invoking Malliavin calculus. See Theorem [ In Section
4 we use the results of the previous section to solve a partial information optimal harvest-
ing problem (Theorem |§[) Further we inquire into a portfolio optimization problem under
partial observation. The latter problem boils down to a partial observation problem of jump
diffusions, which cannot be captured by the framework of [14].

2 Framework

In the following, let {B;}o<s<7 be a Brownian motion and N(dz,ds) = N(dz,ds) — dsv(dz)
a compensated Poisson random measure associated with a Lévy process with Lévy measure
v on the (complete) filtered probability space (2, F, {F}q<i<p, P). In the sequel, we assume
that the Lévy measure v fulfills o
/ 22v(dz) < oo,
Ro

where Rg := R—{0}.
Consider the controlled stochastic reaction-diffusion equation of the form
dr(t,z) = [Lr(t, 2) + b(t,z, D¢, ), VoD(t, z), u(t, ), w) | dt
+o(t,x,T(t,z), V. I'(t, ), u(t, z),w)dB(t)
+/9(t,x,F(t, ), VoI (t,2),u(t, x), z,w)N(dz, dt), (2.1)
(t,x) € [0,% x G

with boundary condition



Here L is a partial differential operator of order m and V, the gradient acting on the space
variable x € R” and G C R" is an open set. Further

bt,z,v, 7 u,w) ¢ [0, T]x GXxRxR"xU xQ —R
o(t,x, v, u,w) 0, T]x G xRxR"xUxQ—R
0, x,v, v u,z,w) = [0,T]x GXxRXR"xU xRy x 2 — R
) © G—R
n(t,x) (0,T) x 0G — R
are Borel measurable functions, where U C R is a closed convex set. The process
u:[0,T]xGxQ—U

is called an admissible control if (2.1)) has a unique (strong) solution I' = I'") such that u(t, x)
is adapted with respect to a subfiltration

ECF,0<t<T, (2.2)

and such that
T
E[/ [T ). dede+ [ oG T, 0) o] < oo
0 G G

for some given C' functions that define the performance functional (see (2.3 below)

f @ 0, TfxGXxRxUxQ—R,
g : GXRxOQ—R.

A sufficient set of conditions, which ensures the existence of a unique strong solution of ,
is e.g. given by the requirement that the coefficients b, o, 8 satisfy a certain linear growth and
Lipschitz condition and that the operator L is bounded and coercive with respect to some
Gelfand triple. For more general information on the theory of SPDE’s the reader may consult
e.g. [6], [11].

Note that one possible subfiltration & in ([2.2)) is the d-delayed information given by
& =Fus+; 120
where 0 > 0 is a given constant delay.

The o-algebra & can be interpreted as the entirety of information at time ¢ the controller
has access to. We shall denote by A = Ag the class of all such admissible controls.

For admissible controls u € A define the performance functional

:E[/OT/Gf(t,x,I‘(t,x),u(t,:v),w)dxdt—|—/Gg(x,F(T,:L‘),w)dx O (23)

The optimal control problem is to find the maximum and the maximizer of the performance,
i.e. determine the value J* € R and the optimal control u* € A such that

J* = sup J(u) = J(u¥) (2.4)
ucA



3 A Generalized Maximum Principle for Stochastic Partial
Differential Equations with Jumps

In this Section we want to derive a general stochastic maximum principle by means of Malli-
avin calculus. To this end, let us briefly review some basic concepts of this theory. As for
definitions and further information on Malliavin calculus see e.g. [16] or [7].

3.1 Some Elementary Concepts of Malliavin Calculus for Lévy Processes

Suppose that B; is a Brownian motion on the filtered probability space
(9(1)7 FO, {Ft(l)}ogtSP P(l)),

where {]:t(l)}ogth is the P() —augmented filtration generated by B, with F(1) = ]-':(Fl).
Analogously, assume a stochastic basis

(O, FO {7 Yocicr PY)
associated with the compensated Poisson random measure N (dt, dz).

Let us recall the chaos representation property of square integrable functionals of B, and
N(dt,dz):

(i) If F € L2(FW, PM) then
F=> 10(fn) (3.1)

n>0

for a unique sequence of symmetric f,, € L?(A"), where ) is the Lebesgue measure and
T tn to
IV (fn) = n!/ / - ( Fulty, - ,tn)dB(t1)> dB(ty) - dB(t,), n€N
0 Jo 0

the n-fold iterated stochastic integral with respect B;. Here Ir(Ll)( fo) := fo for constants
Jo-

(ii) Similarly, if G € L2(F®, P()), then

G =3 I (), (3.2)
n>0
for a unique sequence of kernels g,, in L?((Axv)™), which are symmetric w.r.t. (t1,21), - , (tn, 2n)-

Here 17(12) (gn) is given by

T tn t2 ~ ~
IT(L2)(gn) :n'/ / / / (/ / g’n(tluzl;”' 7tn7zn)) N(dt1,d2}1)N(dtn,d2’n)7
0 Rp 40O Ro 0 Ro

n € N.



It follows from the It isometry that

IF2apiy = St Il 20

n>0

and

||GHi2(p(2>) => 0l gnllZ2(rnuymy

n>0

Definition 1 (Malliavin derivatives D; and D ;)

(i) Denote by ]D)g % the stochastic Sobolev space of all F € L*(FM, PM) with chaos expansion

(-) such that
HFHD<1> = nnl[|fall72m) <

n>0

Then the Malliavin derivative Dy of F' € ]D>§12) in the direction of the Brownian motion

B is defined as
an fn 1

n>1
where ﬁl_l(tl, L ;tn—l) = fn(tl, cee ,tn—l, t).

(ii) Similarly, let ]D)( ) be the space of all G € L*(F?), PR)) with chaos representation
satisfying

HGHD(2> = nnd{lgall72 () < 00
n>0

Then the Malliavin derivative Dy , of G € D%) in the direction of the pure jump Lévy
pProcess ny 1= fOT fRo zN (dt,dz) is defined as

Dt .G = an gn 1

n>1
where gn—1(t1, 21, tn-1,2n-1) := gn(t1, 21, ytn—1, 2n—1,1t, 2).

A crucial argument in the proof of our general maximum principle (Theorem rests on
duality formulas for the Malliavin derivatives D; and D, . [16], [8]:

Lemma 2 (Duality formula for D; and D, .)

(i) Require that o(t) is ]:t( )_adapted with Epq) [fo dt} < oo and F € Dg% Then

By [F [ ott180)] = B | [ ctt0 ]



(ii) Assume that ¥(t, z) is ft@)—adapted with Ep2) [fOT fRo V2(t, 2) v(dz) dt} < oo and G €
]D)gZ% Then

T N T
Epe [G /0 [ e z)N(dt,dz)] — Epo [ /0 [ w2 DGude) dt] .

In the following we shall confine ourselves to the stochastic basis
(Q,]—", {}—t}ogth7P>>
where Q = QW x Q@ F = FO x 7@ 5, = 7V x ¥ p = p() x p?),

We remark that we may state the duality relations in Lemma [2] in terms of P.

3.2 Assumptions

In view of the optimization problem ([2.4]) we require the following conditions

1. The functions b, o, 0, f, g are contained in C' with respect to the arguments I' € R
and u € U.

2. For all 0 <t <r < T and all bounded & ® B(R)—measurable random variables «, the
control
Ba(s, ) = a - xjs(s), 0<s < T, (3.3)
where [, 7] denotes the indicator function on [t,T], is an admissible control.

3. For all u, 8 € A¢ with 8 bounded there exists a § > 0 such that

u+yp € A¢ (3.4)
for all y € (—4,0),
and such that the family
gf(t T I’u+y5(t x),u(t,z) +yp(t,x) w)ifu"'yﬁ(t x)
0"}/ ) ) 9 b ) b K dy )

+qmmI”W@@m@@+W@@wW@@}
du ye(—65)

is A X P x y—uniformly integrable;

0 d
g@wmwwwwwwW”Wﬂm}
{ Oy dy ye(—6,5)

is P x p—uniformly integrable.



4. For all u, 8 € Ag with 8 bounded the process

Yt z) = YO(t,z) = jyr(wﬁ) (t,2)

y=0
exists and
d  b(utys)
LY (t,z) = —LT\“"97)(t, )
d
Yy y=0
V.Y (t,x) = ivxlﬂ(wyﬂ) (t, )
d
Y y=0

Further suppose that Y (¢, z) follows the SPDE

Y(t,z) :/0 LY (s,z) + Y(s,:n)aib(s,:n,f‘(s,:n),V,J‘(S,:E),u(s,m),w)

+ VoY (s,2)Vyb(s, 2, T(s,z), VoI'(s, ), u(s, ), w)| ds
tr 0
+/0 _Y(s,x)a—va(s,m,I‘(S,LE),Vxl“(t,x),u(s,x),w)
+ V.Y (s x)VV/a(s z,D(s,z), V,I(t, ), u(s, z),w)] dB(s)
/ / [ (s x,T(s,2), V,I'(t,x),u(s, x), z,w)
+ V.Y (s ,:L‘)VV/G(S,x,F(s,x),VxF(t,a:),u(s,:r:),z,w)] N(dz,ds)

t 0
+/0 [ﬁ(s,x)mb(s,x,F(s,x),VxF(s,a:),u(ij),w) ds

+ / B(s, x)ga(s, x,I(s,2), V,I'(t,x),u(s, z),w) dB(s)

/ /ﬁ (s,z,T'(s,x), V I'(t, x),u(s, ), z,w) ]\Nf(dz,ds),
(t,x) €]0,T] x G, (3.5)
with
Y(0,7) =0,z € G,
Y (t,x) =0, (t,z) € (0,T) x 0G
where V, = (821,~ ,%) , V= <3%?i’ ,8%) and
V= () = (e )



5. Suppose that for all u € Ag¢ the processes
K(t,x) '—ﬁg(x I(T,x)) + /T 2f(s z,I(s,x),u(s,z)) ds
b * a’y b ) t a’y ) b ) ) )
0 T d
DiE(t,2) =Dy g g(o.D(T) + [ Di (5 fs.. Do), uls,2) ) ds
Iy t v

T
D K(t,x) ::D,;Zgg(x,I’(T, x)) +/ Dy, <8f(s,x,F(s,x),u(s,x))> ds
O ¢ 20
H0(87 x’ ’Y? 7/7 u) ::K(S7x)b(87 x?V? 7/7 u7w) + DSK(S7 x)a—(87 x? 77 7’7’“’7 w) (3'6)

+ / Dy K (5,2)8(s, 2,7, 4, 2,w) v(d2)
R

Z(t, s,z) = exp {/t Foir <a: ocTr) } , (3.7)

T
p(t,z) :=K(t,z) + /t {;YHO(S’ z,I(s,z), ViI'(s,z),u(s,z)) + L*K(s, z)

+ Vi (VyHo(s,2,T(s,2), VoI'(s,3),u(s, 2))) } Z(t, s, ps¢(x)) ds
Q(t7 .’L’) ::Dtp(ta 'T)
r(t,z,z) =Dy p(t,x); t€[0,T], z€ Ry, z€G.

are well-defined and where ¢, ; and 90752 are defined as before.

Assume also that
T
E [/0 /G{\K(t,x)] (\LY(t,x)\ + ’Y(t, :z:);yb(t,x,F(t, x), V. I'(t, z),u(t,z),w)
+ 'ﬁ(t, w)%b(t,x,f‘(t, x), fo(t,x),u(t,:r),w)‘
+| VoY (t,2)Vyb(t, ,T(t, x), VoI (t, 2), u(t, z),w))|)

+ DK (t, z)| (

Y (t,) g olt, T x>,vzr<t,m>,u<t,:n>,w>\

+ }sz(t, iL‘)VyO’(t, xz, F(ta l’), VIF(ta .T}), u(t7 .ZL‘),CL))‘

+ ‘B(t, z)aaua(t, z,I(t,z), Vo I'(t, ), u(t, x),w)D

# [ 100kt (¥ 0) 200Dt ), V.0 0) 1 0),2,0)

+ }VxY(t,x)VyG(t, z,[(t, z), Vo I' (¢, ), u(t, x), z,w)‘

+ ‘ﬁ(t, x)%@(t,x,f‘(t, x), Vi L(t,x),u(t,x), 2, w) > v(dz)

+ ‘B(t, x)%f(t, x,T(t, z), u(t, x))‘} dt dx}

< Q.



Here L* is the dual operator of L. Further, the densely defined operator V} stands for
the adjoint of V,, that is

(9, fo)LQ(G;Rn) = (V;gvf)LQ(G;R) (3.8)
for all f € Dom (Vy;),g € Dom (V%). For example, if g = (g1,...,9n) € C{°(G;R™),
then V3g = %.

g=1 "
Let us comment that DK (t,z) and D , K (t,x) in [5| exist, if e.g. the coefficients b, o, 6

fulfill a global Lipschitz condition, f is independent of « in (1| and the operator L is the
generator of a strongly continuous semigroup. See e.g. [16], [19] and [, Section 5].

3.3 A probabilistic representation of Y (¢, )

The proof of our maximum principle (Theorem [4)) necessitates a certain probabilistic repre-
sentation of solutions of the SPDE ({3.5). Compare [12] in the Gaussian case. To this end,
we need some notations and conditions.

Let m € N, 0 < § < 1. Denote by C™9 the space of all m-times continuously differentiable
functions f : R™ — R such that

D f(z) — DO
1 s 3= W e + Z sup D% f(x) f ()] < o0

6
|a|l=m zyeK.ay ”‘T - y”
for all compact sets K C R™, where
”f”mK = sup ( ” H + Z sup ’Daf )‘
1<|al<m T€K
For the multi-index of non-negative integers o = (a1, - -+ , ag) the operator D% is defined

as

olal
(Bz1)or - (9zd)a

D =

where |af := Z?Zl Q.
Further introduce for sets K C R™ the norm

gl ssac = gl + D DS Dyall5 -

|a|=m
where
9(,9) = 9 y) = g(a,y) + (@' y)
sup 0 A
acyx/,y/eK Hl’ -z H Hy -y H
etyx 2y
and 93]
N g(z,y
lgllmm.z := sup + Y sup [DYDSg(x,y)l.

vyek (1412 +[lyl) eyeK

1<]|al<m



We shall simply write [|gl|7., 5 for [lgl17 520 -
Define

El<t7x) = 88/b<t7xar(t7 x)a V;,;F(t,:n),u(t,m),w),z = 17 N

i

oi(t,x) = ;,J(t,x,f’(t,x),le“(t,x),u(t, z),w),i=1,--,n

aﬁ(t7 x) = ;/G(t,x,F(t,a}),VIF(t,x),u(t,x),z,w),i = 17 N

i

b*(t,z) = ;b(t’ z,D(t,z), V. I'(t, x), u(t,z),w)
o (t,x) = ;yo(t,m,F(t,:p),fo(t,x),u(t,x),w)

0 (t,xz,z) = 680(@ z,D(t,z), VI (t, x),u(t,z), z,w)
Y

by(t, z) := ﬁ(s,x)%b(t,x,I‘(t,x),VxF(t,a:),u(t,:n),w)

ou(t,x) == B(s, :r);ua(t, z,[(t,z), VoI (¢, ), u(t, z),w)

Set
Fy(z,dt) :=bi(t,z) dt + 5;(t,x)dB(t), i=1,---,n

Foii(x,dt) :=b"(t,x)dt + o™ (t,x) dB(t) + / 0*(t, z, z) N (dt, dz)
Ro

Foia(z,t) :—/0 bu(s,:c)ds—i—/o ou(s,z)dB(s)

Define the symmetric matrix function (A% (x,y, s)1<i j<n+2 given by

Aij(mvyvs) :51(8,.%) ’ 5j(5,y), Zv] = 17 e, N,
Aim-i-l(l., n 3) :51.(87 1.)0*(57
(

), i=1,---,n
Ai’””(x,y, s) =04(s,x)oyu(s ) =

Y
7y)7 t=1,---,n
and

AT 2.y, 5) =07 (5,2)
x

r,y,8) =0 (s,7)

z,y, S) :UU(S, CC) ) O'u(S, y)

An+1,n+2( .

An+2,n+2(

We make the following assumptions:

D1 (%Q(t,aj,f‘(t,x), V. I'(t,x),u(t,x), z,w) =0, gi(t,x) =0, i=1,---,n.

D2 o*(t,x),0%(t,z,2), o;(t,x), i =1,---,n are measurable deterministic functions.

10

(3.9)
(3.10)
(3.11)
(3.12)
(3.13)
(3.14)

(3.15)

(3.16)



D3 Zntz foT HAij N "S)HZLM ds < 0o and

i,7=1
L Bt 1075 s 1005 s < o e

for some m > 3 and 6 > 0.

D4 There exists a measurable function (z — S(r, 2)) such that

/ ! 6
|De6* (4,2, 2) — D36" (1,2, 2)| < Blr,2) o — 2
and
1B(r, 2)|P v(dz) < o0
Ro
forall p>2/|a| <2,0<t<T and z,x with ||| <, x/H <r.

D5 There exist measurable functions «(z) < 0 < §(z) such that
—1<a(z) <0 (t,x,z) < B(z) for all ¢z, z

and

[ 1P v + /R (a(2) — Tog(1 + a(=)))""2 (dz) < oo for all p > 2.

In the following we assume that the differential operator L in Equation (3.5) is of the
form
Lou = L{u+ LPu,

where ,
1 o . 0“u ou
1), . = ij
Ly 2i]z:1a (x,S)a 1Oz "‘Zz:b SCS&E +d(z,s)u
and

d%u - , 1 ou
L2, - = AU Abmtl 0. :
Vu le (x,x, ) I ]—i-;( (m,w,s)—i-QCZ(x,s)) o

1
+§ (D(x,s) + A" (2,2, 8)) u

where d(z, s) is a function that fulfills condition D9 below and

0AY .
Cj([E,S) ::ZW(IJ/’S) _ y 121,-~~7n,
7j=1 Y=z
n 8Ai,n+1
D(.’L‘,S) T ]Z:; Tyi(x’y’ S) y—r

We require the following conditions:

11



D6 Lgl) is an elliptic differential operator.

D7 There exists a non-negative symmetric continuous matrix function (a(x,y, s))1<i j<n
such that a"(z, z,s) = a"(x, s). Further it is assumed that

Z “aij(-’s)“m+l+6 S K for all s
4,7=1

for a constant K and some m > 3, § > 0.

D8 The functions b;(x,s),7 = 1,--- ,n are continuous in (z, s) and satisfy

> 11bi-s )|y < C for all s
i—1

for a constant C' and some m > 3, § > 0.

D9 The function d(x, s) is continuous in (z, s) and belongs to C™9 for some m > 3, § > 0.
In addition a¥ is bounded and d/(1 + ||z||) is bounded from the above.

D10 The functions b*,c* and d* are uniformly bounded.

We now derive the announced representation of a solution Y (¢, z) of Equation . Let
X(z,t) = (X1(z,t),---, Xn(x,t)) be a C¥Y—valued Brownian motion, that is a continuous
process X (t,-) € C*7 with independent increments (see [12]) on another probability space
(Q, F, P). Assume that this process has local characteristic a® (z,y, t) and m(z,t) = b(z, t) —
¢(x,t), where the correction term c(z,t) is given by

1 [t da¥
C’L(x7t):2/0 Z (9xﬂ (x,y,s)

J=1

ds, i=1,---,n.
y=z

Then, let us consider on the product space (2 x ﬁ, FxF , P x ﬁ) the first order SPDE

ov(zx,s)

ozt

(o) =3 | (itarods) + e, cas)

+ /0 (d(z, s)ds + Fpi1(x,0ds))v(z, s) + Fnia(z,t), (3.17)

where odt stands for non-linear integration in the sense of Stratonovich (see [12]). Using the
definition of X (x,t) the equation (3.17) can be recast as

Jv(zx,s)
oz’

v(x,t) :/0 Lsv(z,s)ds + ZY,L-*(JI,dS)

i=1
nt ov(x, s t
+Z/0 Fl(ZL‘,dS) a(wl )+/0 Fn+1(1},d8)7}($,5)
i=1

+ Fn+2(x7t)7 (318)

12



where Y*(z,t) = (Y{"(x,t),..., Y, (x,t)) is the martingale part of X (¢,z). So applying the
expectation £ to both sides of the latter equation gives the following representation for the
solution to (3.5)) (See also the proof of Theorem 6.2.5 in [12]):

Proposition 3 Under the above specified conditions we obtain the following probabilistic
representation
Y(t,z) = Ep[v(z,t)] . (3.19)

In order to use representation (3.19)) in the proof of our general stochastic maximum principle
for SPDE’s (Theorem 3) we proceed to develop an expression for v(x,t). Let ¢s; be the
solution of the Stratonovich SDE

pst(x) =2 —/ G(psr(x),odr),

where G(z,t) := (Xi(x,t) + Fi(z,t), -, Xn(x,t) + Fy(z,t)). Then by employing the proof
of Theorem 6.1.8 and Theorem 6.1.9 in [I2] with respect to a generalized It6 formula in [4]
one obtains the following representation of v(t,x) :

v(z,t)

-~

:/Ot exp {; /: o*(r, prr(x))2dr + /St b (1, ot () dr + o™ (r, prr(z)) dB(r)
N / t /R (log(1+ 6" (1, (1), )) = 0°(r ur(0), 2)) dr
+/: /RO log(1 + 0" (r, 1 (), 2) N(dr, dz)} X
0

(B(s,x) 8ub(t,:c,f‘(t,x), V.I(t ), u(t,z),w)ds

+08(s, )

8ua(t, x,T(t,x), V,I'(t,x),u(t,z),w) o dB(s)> , (3.20)

where d denotes backward integration and where the inverse flow ¢, = <p;tl solves the
backward Stratonovich SDE

) t t
o () = + / bi(r, i () dr + / Gi(r, prp (@) 0 dB(r), i=1,...,n.

For later use, we end this subsection to consider the case with general boundary condition
f(z), that is

Y(0,z) =f(z), x € G,
Y(t,x) =0, (t,z) € (0,T) x 0G,

holds, where f € C™9.
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Then, v(z,t) is described by

ov(z, s)

oxt

v(x,t) =f(x) + / Lsv(z,s)ds + Z Y (z,ds)

0 i=1

not ov(x, s t
+Z/0 Fl($ad5) 0(331 )+/0 Fn+1(m,ds)v(:1:,s)
i=1

+ Fn+2(x7t) ’

and using the same reasoning as above we obtain:

v(z,t)

=exp {; /0 o*(r, gpt7r($))2dr + /0 b*(r, orr(x)) dr + o™ (r, prr(2)) dB(r)
—i—/o /]R (log(1 4 0™ (7, @tr(x), 2)) — 0" (r, 01, (), 2)) dr
[ ou(148° 0. 2) N@nan)  x Siprato)

-~

+ /0 exp {; /s o*(r, cptyr(q:))2dr + /s b (r, orr(x)) dr + o™ (r, prr(x)) dB(r)
+ /R (log(1 + 0*(r, prr(x),2)) — 0% (r, prr(x),2)) dr

t ~ ~
+/ / log(1 + 6*(r, t.r(x), z) N(dr, dz)} X
s JRg
0

(ﬂ(s, x)%b(t, x,[(t,z), Vo I'(t, z),u(t,z),w)ds

—&-ﬂ(s,x)ia(t,x,f‘(t,x), V.IL(t,z),u(t,z),w) o ng(s)) , (3.21)

3.4 A general stochastic maximum principle for a partial information con-
trol problem

We are now ready to state a general stochastic maximum principle for our partial information
control problem ([2.4)). To this end we introduce the general Hamiltonian

H:0,T]xGxRxR"xUxQ—R
by
H(t,x, v,y u,w) = ft,z,v,u,w)+ p(t,2)b(t, x,v,7,u,w) + Dep(t, z)o(t, x, v, u,w)
+/RDt,Zp(t,:L‘)G(t,x,%'y',u,z,w) v(dz). (3.22)

We then have

14



Theorem 4 Retain the conditions[1{3. Assume that U € Ag is a critical point of the per-
formance functional J(u) in , that is

d _ .
@J(U+yﬁ)

=0 (3.23)
y=0

for all bounded B € Ag. Then

E [EQ [ /G ;Lfl(t,x,f(t,x),vzf(t, ), a(t, x))dm]

Et] =0 ae in (t,z,w), (3.24)

where

~

L(t,z) = T@(,2),
H(t,x, v, u,w) = fltz,7,u,w) + Bt 2)b(t, z,7,7,u,w) + Dip(t, x)o (t, 2,7, 7, u, w)

+/ Dy .p(t, 2)0(t, z, v, u, z,w)v(dz),
R

with

~

0 - T o ~
K(t,z) = —gx,I'(T,z),w +/ —f(s,2,T'(s,2),u(s,x),w)ds,
(ha) = Frol@P(Ta)w)+ [ 5 fenT0).as0).0)
where Qs s the solution of the of the Stratonovich SDE
t o~
‘ps,t(l') =T — / G(@s,r(x)a Od?‘),

with G(z,t) :== (X1(z,t) + Fi(2,t), -+, Xp(x, 1) + Fp(z,1)),

t
Dst(x) ::13—/ G(psr(z),odr),
Ei(z,dt) :=b;(t,z)dt + i(t,z)dB(t), i=1,---,n

Fopi(z,dt) :==b"(t, ) dt + 5 (t, ) dB(t) + | 0*(t,x,z)N(dt,dz)
Ro

t t
Frio(x,t) ::/ byu(s,x) d8—|—/ ou(s,z)dB(s)
0 0

bi(t,z) = 8i{b(t,x,f(t,x),vxf(t, @)t 2),w), i=1,,n
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and

E'L(tvx) = a—y,o’(t,x,f(t,x),fo(t,a:),ﬂ(t,x),w), 1= 17 LN

7

bult,) = 2 0(t, 2, F(t, 2), VoI (b, 2), At ), 2,w), i =1, 1m

b (t,z) = aib(t, 2, T(t, 2), VoI (¢, 2), i(t, z), w)

~

o (t,x) = aaa(t, 2, T(t,2), VoI (¢, 2), (L, z), w)

0% (t, 2, 2) = ﬁe(t,m,f(t,x),vxf(t,x),a(t,x),z,w)

)

bu(t, x) = ﬁ(s,x)ib(t,x,f(t, ), Vo I(t,2),4(t, z),w)

ult, ) = Bs,2) ot . T, ), VD0, 2), (1, 2) ),

Z(t,s) :==exp { / Fuss (Bor@), odr) } :

Remark 5 We remark that in Theorem []] the partial derivatives of H and Hy with respect
to u, v, and ' only refer to differentiation at places where the arguments appear in the

coefficients of the definitions (3.6)) and (3.22)).

Proof. Since u € Ag is a critical point, there exists for all bounded § € Ag¢ a § > 0 as in
(3.4). We conclude that

0

d .
d@ﬂ“‘*’?ﬂ)

~

o B UOT/G (aa,yf(syﬁf,f(s,x),a(s,x),w)yb’(s’x)

g f(s,x,f(s,x),ﬂ(s,x),w)ﬁ(s,a:)) dxds—i—/ ;g(x,f(T,x),w)?ﬁ(T,x) dx |,
G

Y
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where Y78 is defined as in |Z| with v = @ and fulfills

YA(t,z) = LY/B(S z) + YP(s, m)gb( D(s,x), Vo L'(s,z), (s, z))
0 Oy

—l—Vx}A”B(s,x)Vyb(s, 2, D(s, ), VoI (s, 2), (s, x)) ds

t
+ [ {W(s,x)io(s,x,r(s,x>,vxr<t,x>,a<s,x>>
0

VY (s, 2)Vyo(s, 2, T(s,2), VoI (L, z), (s, 33)): dB(s)

/ / [Yﬂ 79(5 2. T(s, 2), Vol (1, 2), (s, 2), 2)

+V,.YP(s™ ,x)v,yle(s,x,f(s,x),vxf(t,x),a(s,x),z)} N(dz,ds)
+/ [ﬂ(s x)aib(s,x,f(s,x) V.I(s, ), a(s, x))} ds
/ B(s,x) (s,2,T(s,2), VoI'(t, 2), (s, ) dB(s)

/ /ﬁ 79 (5,2, T(s, 2), Val\(t, 2), (s, 2), =) N(dz,ds)  (3.25)
(t,z) € [0,T] x G
with

Y30,2) = 0,2€G
Y3(t,z) = 0, (t,z) € (0,T) x IG.

Using the short hand notation %f(sw, L(s,z),d(s,z),w) = (.hf(s x),

. o
f(s T F(s x),u(s, z),w) = %f(s,a:) and similarly for ag, gg, gﬁ, gg, gz, gg and gz, we

can write
9 = o6
E ag(z, (T, x)YP(T, x)dx

= /E [887 (z, (T, z))YP(T, ar)] dx

- / E[aag(x,f(T,x)) < /0 ' [L?ﬁ(t,xH;b(t,x)?ﬁ(t,x)

+V Y (t, 2)— 0 -b(t,x) + Bt x)ﬁb(t x)] dt

oy ou

TTo S8 0 0
—i—/o [o(t 2, YO (t,z) + V,YP(s, az)a’y o(t,x) + %U(t m)ﬁ(t,x)] dB(t)

/ /RO [9 (t,2,2) + V.Y P(s, )aile(t,x,z) + iﬁ(t,x,z)ﬂ(t_,x)] N(dtjd,z)ﬂ dx
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Then by the duality formulas (Lemma [2)) we get that
E {/G gyg(x,f(T, o)YP(T, z) dx}
T
- /G E [ /O <§;g(x,f(T, ) {Lf/ﬁ (t,2) + ;yb(t, V8L 2)
+Vb(t, 2)V,Y (t,z) + 88ub(t’ x)p(t, a:)}
+D, <§yg(w,f(T,x))> [;a(t,x)?ﬂ(t,x) + Vyo(t,2)V.YP(t, )
+aaua(t,x)ﬁ(t,az)] + /RO {Dt,z (ig(x,f(T, x))) [i@(t,x,z)?ﬁ(t_,x)
+V,0(t, x, VL YP (1, 2) + %9(75, x,2)B(t, az)] } I/(dZ)) dt] dx. (3.26)

Further we similarly obtain by duality and Fubini’s theorem that

U /ftxyﬁt:pdxdt]
- U /ftm </ {LYB(S,w)—i—éib(s,:c)f/B(S,x)

+ b(s,x) (s,2) + Vyb(s,x )VIY(S,m)} ds

ou

_l’_

; 887 (s,x) Yﬁ (s,2) + Vyo(s,x)Vy y? (s,z)+ ;ua(s x)ﬂ(s,x)}dB(s)
o {a
_ /GE[/O ( { ) | LV (s, 2) —bsaz)Yﬁ(sx)—FV/b(sa:)VY(sx)

—l—aab(s,a:)ﬂ(s,a:)} + D (88 f(t, x)) [;a(s,x)Yﬁ(s,x) +V7/a(s,m)V$Yﬁ(s,x)

b o)) + [ D (5 10.2)) [ 5200629770,

=]

V. 0(s, 2, 2) VYA (t, 2) + 880(3 z, 2)B(t, )} (dz)}ds> dt} dx

18
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_ /GE [/OT { (/T 887f(t x)dt) [Ly% )+ ;b(s £)PP(s,2) + Voyb(s, z,) VoY (5, 2)

+aaub(8 z) } </ Dy—f(t,x dt> {ia(s,x)}/}g(s,x) + Vo (s, )V, Y P (s, 2)
+aaua(s,x) ] /RO< S Dsz dt> [iﬂ(s,x,z)?ﬁ(s,x)

V. 0(s, 2, 2)V, Y P (L, ) + a—e(s x, 2)B(t, )} (dz)}ds] da

Changing the notation s — ¢, this becomes

_ /GE [/OT { </tT aif(s, x)ds) [m?ﬁ(t, z) + ;yb(t,x)?ﬂ(t,x)

+2b(t, :l:)ﬂ(t, LZZ) + Vyb(t, z, )va(tv .CU):|

du
</ Dt ) [sa(t 2)YP(t,2) + Vyo(t,x)V,Y P (t, z)

+8u o(t, z)B( ] /RO (/ th z)ds ) [;G(t,x,z)?ﬁ(t,x)

VL 0(t, 2, 2)V Y P (t, ) + a—&(t x,2)B(t, )] (dz)} dt] dz (3.27)

Thus by the definition of K (t,x) and combining with (3.23)-(3.27) it follows that

[/ / { {LYﬁ(t x) + aab(t 2)YP(t, ) + Vyb(t, 2)V, Y P (t, 2)

—b(t z)B(t, )} + DK (t, x) [;ya(t,x)Y’B(t,x) +Vyo(t,z)YO(t, z)

du
9 . 9 s
+ aua(t,x)ﬁ(t,x)] + /R 0 {Dt,zK(t,az) [%e(t, 2, 2)VP(r, 2)
V0t , 2) VY P (r,x) + aieos, x,2)B(t, w)} } v(dz)
—i—%f(t, x,T(t, z),u(t, z),w)B(t, ZL‘)} dtd:n} =0 (3.28)

We observe that for all 8 = B, € Ag of the form Ba(s,z) = ax[4n)(s) for some t,h €
(0,T), t+ h <T as defined in (3.3)

f/ﬂ“(s,x):O, 0<s<t,zed.

Then by inspecting (3.28]) we have that
A1 + A2 + A3 + A4 =0 (329)
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where
A, = E / / {IA((S x)=—b(s,x) + D I?(s x)=—o(s,x)
' L/G Jt oy ’ oy

+ /DS Zl?(s,x)aﬁ(s,x,z)u(dz)}?ﬁa(s,x) ds dm}
R 2l

r h
Ay = E_/G/j—|r {X(S’x)aaub(s’x)+DSI?(S’$)6(9UJ(S’$)
Do (s,0) 20 dz)+ 2 dsd
b [ DuRs0) ot (0 + g (5.) bads ]
T
_ 7 7B

As E[/G/t K(s,z)LY (ij)da:dt]
T ¢ o N

Ay = E[/G/t {K(s,x)(wb(s,:x)+D3K(5,:L')V7/J(s,:x)

+ /D&ZI?(S,JJ)V,\/Q(S,CC,Z) V(dz)}vx}?ﬁa(s,x) dsda:}
R

Note by the definition of Y7 with Y#=(s,2) = Y(s,z) and s > t + h the process Y (s, z)
follows the following SPDE

dY (s, z) = {L?ﬁa(s, z) 4+ Y (s, :E)(iyb(s, z) 4 VoY (s, x)Vb(s, :U)} ds

‘ {?ﬁ%s—,wids,x) +vx?ﬁws—,x)w@’@}dB“)

+/ {?ﬁa(s,x)gyﬁ(s,x,z)—i-vx?ﬁa(s,x)V,y/G(s,m,z)}N(dz,dr)
Ro

Using notation (3.9)-(3.16) and assumption D1 we have

dY (s,z) =LY P (s,z) + YP(s™, z) {b*(s, z)ds +o*(s,z)dB(s) + [ 0%(s,z,z) N(dz, dr)}

Ro

+Zlaaxz ?50 (S_, {E) {E(s, :L') ds + &i(& :L') dB(s)} , (330>

for s > t + h with initial condition Y (¢t + h,z) # 0 at time ¢ + h. Equation (3.30) can be
solved explicitly using the stochastic flow theory of the preceding section.

Let us consider the equation (see p. 297/298 in [12])

nay) = /0 e (9) Fo (0, (), odr) + /0 " Fosa(go, (), odr).
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Then

t+h t+h
nely) = /O 10 () Fos1 (0. (), odr) + /O Fpsa(o,(z), odr)

S
+ / 10 (y) Fus1 (0, (), odr) + / Foia(i00, (2), odr)
t+h t+h

—en(y) + / 1) Fu (g (2),odr) 0.
t+
So it follows that

S
1) = wnt)esp{ [ Fuaon (0,00 |
t+
Thus, from (3.21)) we derive

08) = 0D ympunter = Oy 50 [ a0}

= v(psttn(x),t+ h)exp {/;h Frti1(ps (), oc?r)} ) (3.31)

Therefore, using representation (3.19) together with (3.31]), we obtain that

V(sr) =Eo [oleum@lt - ep{ [ Fus(our(o).odn ]

+h
=B [0(poren(@) t+ M) Z(E+ by, 000 (2)) . (3.32)

where Z(t,s,x), s >t is given by ({3.7]). For notational convenience, we set

Q=P.
Put
ﬁo(s, v,y ,u) = I?(s, 2)b(s,z, 7,7, u) + DSI?(S, x)o(s,z,7v,7,u)
+ / Dy R (s, 2)0(s,2,7,7, 2 u) v(d2) (3.33)
R
Then

E [/G /tT gyﬁg(s,x)?(s,x) ds dx] .

Differentiating with respect to h at h = 0 we get

t+th 5 N
d A = iE {/ / 2lr{()(s,ac)Y(s,;zc) ds dx}
h=0 h=0

% 1
[ / /M 9 s, ) (s,x)dsdxho. (3.34)
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Since Y (t,x) = 0, we see that

t+h 5
/ / —Hg (s,2)Y (s,2) dsdx] = 0. (3.35)
h=0
Therefore by we get
d —~ - ~
el [/ / —HO s,x)Eq [v (t+h, Psin(z)) Z (t+ h,s,g@s,r(:z:))} ds d:n}
/ / [ Ho(s,z)Eq [v (t+h,@s,t+h(x))2(t+h,s,@,r(x))ﬂ ds dx
h=0
/ / Ho 5.2)Bq [0 (L + . Burin(@) Z (15,50, (@)] | dsd.
dh h=0
(3.36)
By (3.18)
t+h n t+h B
t+h, :/ Lsv(z,s)ds + Y (x,d ‘
v( x) t v(z, s)ds ; t (z 3)5’%Z
n t+h v t
ds) 22 Foii(z,d
" ;/ Fa.ds) 3 + [ Pua(o.dopo
t+h B b
— — B . .
ta /t { b, ) dr -+ 5-o(r, ) d (r)} (3.37)
Then, by and (3.37),
d
7A1 = Ain+ A2+ A, (3.38)
',
where
~ t+h
Aiq —/ / [ Ho (s,x2)Eq [Z (t,s,Psr(x)) x {/ Lgv(z,r)dr
t
—i—/ Foii(x,dr)o(x, 7‘)}” dsdz, (3.39)
h=0
/ / ah |: HO 5 li)EQ [Z (twsa(aos,r(x)) X
t+h B B
a/ { b(r, prnr(2)) dr + —o(r, cth,r(a:))dB(r)}” dsdz, (3.40)
ou ou h—0

Al _// [ Ho(s, z)Eq [Z(t,s,@sﬂ,(a:)) X

n t+h i} o0 n t+h v
{Z Y, (:L’,dT‘)%(l‘,T‘) —I—Z/ Fi(m,dr)axi(x,r)}”h_o dsdzx. (3.41)

=17t =11
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Since )A/(t, x) = 0 we have that v(¢,z) = 0 and then
A1 =4:13=0.

By the duality formula and applying Fubini’s theorem repeatedly, A; 2 becomes

// [ [/:Hl{aaub(raSDHh,r(Cﬁ))I(t,s,x)

+8 o(r, prpn,(x)DrI(t, s :r)}”h_o dsdx,

- / B [ [a{ ottt pronsle)t,5.2)

+% o(t, print(w ))th(t,S,x)}” dsdx,
where I(t,s,x) = 8@]?[ (s, )Z(t“g,@s,t(x))_
This implies that

iAl

—A
dh 1,2

/ / Eq E :a{ib(t,cpt,t(x))l(t,s,x)

70(75 ort()) D (L, s,x)}” ds dz.

(3.42)

/ / Eo E :a{aaub(t,x)l(t,s,x)+aaua(t,x)DtI(t,s,x)}”dsda:, (3.43)

where the last equality follows from the fact that @;;(x) = . Moreover, we see that

d
|

Then, using the adjoint operators L* and V3 (see (3.8)) we get

r T
A3 = E // K(s,x)LYﬁa(s,a:)dxdt}
GJt

- T
= F // L*K(S,SL‘)Yﬂa(S,I)dl‘dt],

Ay = E // K (s,2)V.yb(s, ) + DK (s,2)V.yo (s, z)

+ /DS7ZK(8,$)V7/9(S,$,Z)I/(dz)}vx?ﬂa(5,$) dsdaz]
R

_ E[/G/tTV;Z <V7/ﬁ0(s,x))?ﬁa(s,x)dsdx].

23
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Differentiating with respect to h at h = 0 gives

d d t+h =N -
—A = —F L*K Y dsd
o 3 T [/G/t (s,2)Y(s,x)ds m] .
d PN o
—F [/ / L*K(s,z)Y (s,z)ds dx] , (3.45)
G Jt+h h=0
d d t+h N N
— Ay = —E [/ / v vaHo(s,x)) Y (s,z)ds dx]
/ / /HO (s £C)> ?(s,x) ds dl’:| . (3.46)
t+h h=0
Using the same arguments as before, it can be shown that
iA —//TE -E- gb(t;v)](tsz:)—l—8 o(t,x)DiIi(t, s, x) -dsdw
dh 3 - ol Q i _Ot ou ; 1\t 9, ou ti1 ] ’
(3.47)
dA //TE -E- ab(t:v)](tsq:)+8a(txDItsx -d5d$
el — o “
dh 4 o) 21 1M ou 2 ou f2( | ’
(3.48)

where I (t, s, ) = L*K (s, 2) Z(t, s, wst(x)) and Iz(t, s, z) =V <V,y/flo(s,x)) Z(t, s, 0st(x)).
Therefore, differentiating (3.29) with respect to h at h = 0 yields

U

o [E [a /G {;Z ft,2)+ (f{(t, ) + /t ' (£(t5.2) + Ii(t.5.2) + Ig(t,s,a:))ds> aab(t,a:)

+D; (I?(t,x) + /tT (I(t,s,x) + Lt s, z) + Iz(t,s,x)>ds> aaua(t,a:)} dx” =0.
(3.49)

By the definition of p(t, z), we have
N T
p(t,x) = K(t,x) —I—/ <I(t, s,x) + I (t, s,2) + Io(t, s,m))ds.
t
We can then write (3.49)), as
Eg [E [/ 88 {f(t,x,F,ﬂ,w) +p(t,2)b(t, z, T, T, 0, w) + Dip(t,z)o(t,x, T, TV, 4, w)
G ou

—I-/ Dt,zp(t,x)ﬁ(t,x,F,F’,ﬂ,z,w)u(dz)}ada:”
R
= 0.

Since this holds for all bounded & —measurable random variables «, we conclude that

Eo [E [/ Qﬁ(f,x,f(t,x),vwf(t,m),a(m))dm
G 8’&

St” =0 a.e. in (t,z,w),
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means

E [EQ [/G aé;ﬁ(t,x,f(t,x),fo(t,x),ﬁ(t,x))da:}

Et] =0 a.e. in (t,z,w),

which completes the proof. m

4 Applications

In this Section we take aim at two applications of Theorem M| : The first one pertains to
partial information optimal harvesting, whereas the other one refers to portfolio optimization
under partial observation.

4.1 Partial information optimal harvesting

Assume that T'(¢, x) describes the density of a population (e.g. fish) at time ¢ € (0,7") and at
the location x € G C R?. Further suppose that I'(¢, z) is modeled by the stochastic-reaction
diffusion equation

dl'(t,z) = [;Af(t,x)+b(t)1“(t, z) — c(t)] dt + o ()T (¢, x) dB(t)
+ / o(t, z)r(t,x)ﬁ(dz,dt), (t,z) € [0,T] x G, (4.1)
where A= Z 5is the Laplacian,

with boundary condition

ro,z) = &x),r€d,
I(t,x) = n(tz), (t,z) € (0,T) x 0G.

where b, o, 0, ¢ are given processes such that D1-D10 in Section are fulfilled.

The process ¢(t) > 0 is our harvesting rate, which is assumed to be a &—predictable admis-
sible control.

We aim to maximize both expected cumulative utility of consumption and the terminal size
of the population subject to the performance functional

[// (s dsd:c+/§FC)Tx)dx], (4.2)

where U : [0,4+00) — R is a C! utility function, ¢((s) = ((s,z,w) is an F;—predictable
process and £ = {(w) is an Fp—measurable random variable such that

E [/Gg(t,x)mx] < oo and E [€?] < oo,
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We want to find an admissible control ¢ € Ag¢ such that

sup J(c) = J(¢). (4.3)
cEAge

Note that condition [1| of Section is fulfilled. Using the same arguments in [2] it can be
verified that the linear SPDE ([4.1)) also satisfies conditions Using the previous notation,
we note that in this case, with u = ¢,

f(t7 €L, F(t7 x)a C(t)v w) = C(‘S’ w)U(C(t)); g(l'a F(tv fL‘), w) = g(w)F(C) (t7 :L’)

Hence
K(t,z) = 067 (2. T(T, 2), w / 5o s T s,) s, ). ) ds = ).
Ho(t, 2,7, ) =€(w) (b(t, 2}y — ) + Di(@)o(t) + / Dy €(w)0(t, =)y v(dz) di,
I(t,s,z) = (b(t,m)g( )+ Dyf(w / Dy &(w (dz)) x Z(t, s, Pst(z)),

Li(t,s,z) =Ia(t,s,x) =0,
Z(s,t,x) =exp {/ts Fnﬂ(:v,oc?r)} ,
Fpy1(z, dt) =b(t) dt + o(t) dB(t) + /R 0(t, z)N(dt, dz).
0
In this case we have ¢ ;(xz) = x since K(s,z) = {(w) if follows that L*K(s,z) = 0, in

addition, Hy does not depend on +" and then Vi (V,Y/Ho(s, z,I(s,x), V,I'(s,z),u(s, x))) =0.
Therefore

plt.e) =€) + [ ' (060.20) + DigG)ot) + [ Drotl)0lt, wtds)) 20,1 Gus(w)

(4.4)
and the Hamiltonian becomes

H(t,z,v,¢) = ¢()U(c) + p(t, x) (b(t, )L (¢, z) — c(t)) + Dep(t, x)o (1)
+ /R Dyp(t, )0(t, 2)v(dz). (4.5)

Then, ¢ € A¢ is an optimal control for the problem if we have:
0 = E[EQ[/ & H(t,2, (0, ), ())dw] a]
= FE [EQ [/ {¢)U'(e(r)) —p(t,m)}dm] Et]

= U'(&1)) |:E@|:/Ct$dx:| Et}— [Q

We have proved a theorem similar to Theorem 4.2 in [14]:

/G p(t, z) dx]

&
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Theorem 6 If there exists an optimal harvesting rate ¢(t) of problem , then it satisfies

the equation
St} =F [EQ [/ p(t, x) dx]
G

4.2 Application to optimal stochastic control of jump diffusion with partial
observation

U'(e(0) E {EQ [ /G C(t2) d:z:] 54 . (4.6)

In this Subsection we want to apply ideas of non-linear filtering theory in connection with
Theorem [ to solve a portfolio optimization problem, where the trader has limited access
to market information (Section . As for general background information on non-linear
filtering theory the reader may e.g. consult [2]. For the concrete setting that follows below
see also [13] and [15].

Suppose that the state process X (t) = X (®(t) and the observation process Z(t) are described
by the following system of SDE’s:

dX (1) =a(X (1), u(t)) dt + B(X (1), u(t)) dB (1),

dZ(t) =h(t, X (t)) dt + dBZ(t) + [ & Nx(dt,d§), (4.7)
Ro

where (BX(t); B4(t)) € R? is a Wiener process independent of the initial value X (0), and
N, is an integer valued random measure with predictable compensator

u(dt, d€,w) = \(t, Xy, &) dt v(dE),

for a Lévy measure v and an intensity rate function (¢, x, &), such that the increments of Ny
are conditionally independent with respect to the filtration generated by B;X. Further u(t)
is a control process which takes values in a closed convex set U C R and which is adapted to
the filtration G; generated by the observation process Z(t). The coefficients oo : R x U — R,
B:RxU —R A: Ry xXRxRy — R and h: Ry Xx R — R are twice continuously
differentiable.

In what follows we shall assume that a strong solution X; = Xt(u) of 1’ if it exists, takes
values in a given Borel set G C R. Let us introduce the performance functional

T
J(u) = E [ / f<X<t>,Z<t>,u<t>>dt+g<X<T>,Z<T>>} ,

where f: G xR xU — R, g: G x R — R are (lower) bounded C* functions. We want to
find the maximizer u* of J, that is

J* =supJ(u) = J(u"), (4.8)
ueA

where A is the set of admissible controls consisting of G,—predictable controls u such that
(4.7) admits a unique strong solution.
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We shall now briefly outline how the optimal control problem for SDE’s with partial
observation can be transformed into one for SPDE’s with complete information. See e.g. [2]
and [13] for details. In the sequel we assume that A(t,z,&) > 0 for all ¢,z,£ and that the
exponential process

M, = exp{/oth(X(s))dBZ(s)—;/thz(X(s))ds

0
t ¢
+ / / log A(s, X (s),&)Nx(ds, d§) +/ / [1—A(s,X(s),&)]ds l/(df)} ; >0
0 RQ 0 RO
is well defined and a martingale. Define the change of measure
dQ' = MrdP

and set
Nr = M;!

Using the Girsanov theorem for random measures and the uniqueness of semimartingale
characteristics (see, e.g. [10]), one sees that the processes (4.7) get decoupled under the
measure Q' in the sense that system (4.7)) transforms to

dX (1) = (X (), u(t)) dt + B(X(t),u(t)) dBX(t),
dZ(t) =dB(t) + dL(t),

where Z(t) is a Lévy process independent of Brownian motion BX(t), and consequently
independent of X (¢), under @’. Here

B(t):BZ(t)—/O h(X(s))ds

is the Brownian motion part and

L(t) = /0 [ envtar.ag)

is the pure jump component associated to the Poisson random measure N (dt, d§) = Ny (dt, d§)
with compensator given by dsv(d§). Define the differential operator A = A, ,, by

2
Ag(x) = Aud(z) = a(x,u)%(a:) + %ﬂz(x,u)%(x)

for ¢ € C3(R). Hence A, is the generator of X (t), if u is constant. Set

o, 1) = %ﬂQ(x,u). (4.9)

Then the adjoint operator A* of A is given by
.. 0 d¢ 0 (0a 9
o= 2 (o) Fw) + 5 (Fwwew) - - aewola). @410
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Let us assume that the initial condition X (0) has a density py and that there exists a unique
strong solution ®(¢, ) of the following SPDE (Zakai equation)

dD(t, 7) = A*D(t,x) dt + h(z)D(t, ) dB(t) + / AL 2, &) — 1Dt ) N(dt,de),  (4.11)
Ro
with
®(0,z) = po(x).

Then ®(t,z) is the unnormalized conditional density of X (t) given G, and satisfies:

Pold(X(0)NIG] = [ o) (t.a)ds (4.12)
for all ¢ € Cp(R).

Using (4.12]) and (4.11)) under the change of measure @’ and the definition of the performance
functional we obtain that

T
J() = E[/ f<X<t>,Z<t>,u<t>>dt+g<X<T>,Z<T>>]
r T
{ /0 f<X<t>,z<t>,u<t>>dt+g<X(T>,Z<T>>}NT]
r prT
- By || f<X<t>,Z<t>,u<t>>Ntdt+g<X(T>,Z<T>>NT}

ropT
= Egy /0 Eq [f(X(t), Z(t),u(t))N; | G dt + Eq [g(X(T), Z(T))Nr | Qt]]

— By :/OT/Gf(x,Z(t),u(t))(I)(t,x)dmdt—l—/g(m,Z(T))(I)(T,x)dx].

G

The observation process Z(t) is a Q'-Lévy process. Hence the partial observation control
problem (4.8) reduces to a SPDE control problem under complete information. More pre-
cisely, our control problem is equivalent to the maximization problem

supF UOT/Gf(x,Z(t),u(t))@(t,x) dxdt+/

g(x, Z(T))®(T, x) d:v] , (4.13)
G

where ® solves the SPDE (4.11). So the latter problem can be tackled by means of the
maximum principle of Section 2.
For convenience, let us impose that a in (4.9)) is independent of the control, i.e.

a(z,u) = a(x).

Denote by A; the set u € A for which (4.11) has a unique solution. Consider the general
stochastic Hamiltonian (if existent) of the control problem (4.13)) given by

H(ta z, ¢7 qb,,U,CU) = f(twra Z(t>7u)¢ +p(t,$)b(t,$, ¢a ¢,a U) + Dtp(ta $)h(l’)¢)

+ . Dy .p(t,x)[\(t, x, &) — 1o v(dz), (4.14)
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where bt 6.0 ) — <zll2x‘;($) . a(x,U)) ¢+ <ZZ(UC) - a(x,u)> ¢

and where p(t,x) is defined as in with
9(x, ¢, w) = g(z, Z(T))¢
and p
Lib(a) = alw) S5 (x), € CR(R).

Assume that the conditions (I)-(5]) in Section 3.2 are satisfied with respect to (4.13)) for
controls u € A;. Then by the general stochastic maximum principle (Theorem |4)) applied to
the partial information control problem (4.8) we find that

E [EQ [/G;Lﬁ(t,x,i,a,ﬂ,w) dx

QtH =0, (4.15)
if 4 € Ay is an optimal control.

4.3 Optimal consumption with partial observation

Let us illustrate the maximum principle by inquiring into the following portfolio optimization
problem with partial observation: Assume the wealth X () at time ¢ of an investor is modeled
by

dX (t) = [uX (t) — u(t)] dt + o X (t) dB*(t),0 <t < T,

where m € R, # 0 are constants, B (t) a Brownian motion and u(t) > 0 the consumption
rate. Suppose that the initial value X (0) has the density po(x) and that wu(t) is adapted to
the filtration G; generated by the observation process

dZ(t) = mX(t)dt +dB?(t) + [ €Nx(dt,d€), Z(0) =0,
Ro

where m is a constant. As before we require that (BX(t), B(t)) is a Brownian motion
independent of the initial value X (0), and that N is an integer valued random measure as
described in . Further, let us restrict the wealth process X (¢) to be bounded from below
by a threshold ¢ > 0 for 0 <t <T'. The investor intends to maximize the expected utility of
his consumption and terminal wealth according to the performance criterion

J(u) = E [/OT “:ft) dt +0X"(T)| ,r e (0,1), 6> 0. (4.16)

So we are dealing with a partial observation control problem of the type (4.8) (for G = [(, 0)).
Here, the operator A in (4.11]) has the form

A9(x) = 50%a*(x) + [z — ] (z), (4.17)
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(where / denotes the differentiation which respect to ) and hence

A°9(w) = 50%20"(2) — [ — ') — o). (4.18)

Therefore the Zakai equation becomes
1
do(t,z) = [202:1;2@”(75, z) — [pz — u) ' (t,z) — pu®(t,z)| dt + x®(t, z) dB(t) (4.19)

+/ (¢, 2, &) — 1)®(t, 2) N(dt, d€),
Ro

®(0,2) =po(z), = >,
q)(tao):()v tE(O,T),

where N (dt,d¢) is a compensated Poisson random measure under the corresponding measure

Q’'. Since L¢ = 5023522 Y () is uniformly elliptic for > ¢ there exists a unique strong
solution of (4.19). Further one verifies that condition of Section is fulfilled. See [2].
So our problem amounts to finding an admissible @& € Ay such that

Ji(a) = sup Jy(u), (4.20)
ucAy

where

EQ/[ O(t,x da:dt—i—/&a:”(IJTx)da:}.

Our assumptions imply that condition of Section E 2{ holds. Further, by exploiting the
linearity of the SPDE (4.19)) one shows as in [3] that also the conditions (2)-(4) in Section
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are fulfilled. Using the notation of (4.14)) we see that

F o, 2(t),u()) =1

g(x, Z(T)) =bx",

1 0?
L*®(t,x) 2702332—2@(@:0),

2 ox
T, r
K(t,z) =02 (T) + / “7@

Ho(t,z,¢,¢',u) = [(—pz — u)¢/(t, 2) — po(t, 2)] K(t,x) + DK (t, v)x¢

+ ® Dt,zK(ta .%’) [A(tv T, 5) - 1]¢V(d§)

ds,

I(t,s,z) = <—MK(5, x) + DsK(s,x)x +
Z(t7 S, @S,t(x))v

1 0?2 N
Li(t,s,x) =s0%a® 5 K (s,2) x Z(t, s, Ps1(x)),
X

D, Ki(s,z)[A(s,z,§) — 1]1/(d£)> X
Ro

2 0
aft,5,2) =5 [(—pr — w) K (s, )] 200, 5, Gue(0))

Z(t,s,x) =exp {/S Fhi1 (gg, oc/l\r>} ,
t

Fpi1(z,dt) =pdt + 2dB(t) +/ (2, &) — 1] N(dt, d€),
Ro
Fi(z,dt) = F(z,dt) = — [pz —u]dt, i=1,--- ,n.

In this case we have ps¢(2z) = 2+ [° G(ps,r(x), odr), where G(z,t) = X (x,t) + F(t,z). Then

T
p(t,x) = K(t,z) + /t (Il(r, s,x) + Ix(r, s, x) + I3(r, s, m))dr. (4.21)

So the Hamiltonian (if it exists) becomes

T 4 [ — ) (4 2) — ot )] it )

+Dtp(ta $)$¢ + R Dt,zp(tv .’E)[/\(t, €, g) - 1]¢ V(d€>

H(t,x,¢,¢ ,u) =

Hence, if @ is an optimal control of the problem (4.8) such that the Hamiltonian is well-
defined, then it follows from (4.15)) and (4.12) that
i

— Ey [EQ [ /G {w—l(t)@(t,x) + &(t,2)p(t, x)}daz}

0 ~ o~
0 = EQ/ [EQ |:/GauH(t,l‘,(I),(I),u)d$:|

o]
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Thus we get
By [Eg [ @ (ha)lt.x) de] | G

Using integration by parts and (4.12) implies that

ur_l(t) =

1

Eq [Eq [ Jo ®(t,2)p(t,2) dz| 6]\ ™
. Ey B [ Jo®(t,2)dz)| 6]
Eq [Eq | [ 8 2)p(t,2) da| 6] w1
Eq |[Eq | Jo ®(t,)de| G1]|
Eq [ o ()5t a)dz| 6] T\ ™
Eq | Jo®(t,2) dz| G|

= Eq [/(t, X(£)N,| G\ 7
B <E [ Eq [Ni] G4 D
= Eq[E[F(t.X1)|G]].
So if u* (¢) maximizes then u*(¢) necessarily satisfies
w(t) = EqlE[7(HX()]G]]7
= E[EQ[p(t,X(1)][G] " (4.22)

w(t) =

Theorem 7 Suppose that u € Ag, is an optimal portfolio for the partial observation control
problem
u’(t)

T
sup E[/ dt+0XT(T)] ,r€(0,1), 6>0,
0

’LLG.Agt r
with the wealth and the observation processes X (t) and Z(t) at time t given by
dX(t) = [uX (t) — u(t)] dt + e X (t)dB*(t),0 <t < T,
dZ(t) =mX (t)dt + dB?(t) + | ENx(dt,dE).
Ro
Then

wi(t) = E[Eg [Pt X(1)]|G]7™ . (4.23)

Remark 8 Note that the last problem cannot be treated within the framework of [17), since
the random measure Ny(dt,d§) is not necessarily a functional of a Lévy process. Let us also
mention that the SPDE mazimum principle studied in [17] does not apply to our optimal
consumption with partial observation problem. This is due to the fact the corresponding
Hamiltonian in [17] fails to be concave.
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