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Abstract

Asset price bubbles are commonly defined as the difference between the mar-
ket value of an asset and its fundamental value. In this work, we study the
two main stages characterizing the evolution of an asset price bubble: a first
phase when the bubble takes place and blows up, and a second period when
the burst of the bubble can affect financial institutions, leading to a crisis.
Networks play an essential role in our analysis: we study how an investors
network influences the evolution of the bubble through trading effects via con-
tagion between investors, and in which way a bubble alters the structure of
a banking network due to preferential attachment mechanisms in investments
between financial institutions.
The first part of the thesis is devoted to the analysis of the first phase of the
evolution of a bubble. In our approach, we follow the so called martingale
theory of bubbles, recently developed starting from the assumption of absence
of arbitrage. However, we slightly move the focus of the analysis: whereas
the classic martingale theory of bubble spotlights the fundamental price of an
asset, assuming that the market price is exogenously given, we start from a
constructive model given by Jarrow et al. [2012], where the fundamental value
is exogenously given and the market price can deviate from it due to illiquidity
effects. This makes it possible to directly model the fast increase of the market
value commonly observed when a bubble takes place. We embed this model in
the martingale theory of bubbles, finding a flow of equivalent local martingale
measures for the market wealth of the asset such that the fundamental wealth
is justified as the expectation of discounted future earnings.
In particular, we model the dynamics of the bubble as influenced by a con-
tagion mechanism spreading among investors within a financial network. We
show that the spread of contagion strongly depends on some characteristics of
the network. In this way, the structure of the network affects the evolution of
the bubble, through the impact of the trades on the price due to the illiquidity
effects mentioned above.
On the other hand, we study the effects on the economy of the burst, and show
how a bubble can influence the structure of a banking network. We consider
a banking network represented by a system of stochastic differential equations
coupled by their drift. We assume a core-periphery structure, and that the
banks in the core hold a bubbly asset. The banks in the periphery have not
direct access to the bubble, but can take initially advantage from its increase
by investing on the banks in the core. Investments are modeled by the weight
of the links, which is a function of the robustness of the banks. In this way,
a preferential attachment mechanism towards the core takes place during the
growth of the bubble. We then investigate how the bubble distort the shape

vii



of the network, both for finite and infinitely large systems, assuming a non
vanishing impact of the core on the periphery. Due to the influence of the
bubble, the banks are no longer independent, and the law of large numbers
cannot be directly applied at the limit. This results in a term in the drift
of the diffusions which does not average out, and that increases systemic risk
at the moment of the burst. We test this feature of the model by numerical
simulations.
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Chapter 1

Introduction

1.1 Motivation

Financial bubbles are defined as deviations of the market price of an asset
from its intrinsic value, usually computed as the expectation of the sum of the
discounted future income generated by the asset. They are typically charac-
terized by a sensational price increase followed by a crash, often leading to a
financial crisis.
Such dramatic episodes have regularly taken place through the last centuries,
from the so called Dutch tulip mania (1634-1637), until the very recent bitcoin
bubble: among the most famous economic bubbles we mention for example the
Mississippi bubble (1719-1721), originated by the rise and fall of the Compag-
nie des Indes, the South See bubble (1720), when the company’s share price
increased from about 120 pounds in January to 775 pounds in August, the
Roaring Twenties stock market bubble in the US, the Japanese housing bub-
ble (1970-1989), the Dot-Com bubble (1997-2002), the United States housing
bubble of 2002-2006 and the China stock and property bubble (2003-2007).
The Tulip mania is the earliest bubble in recorded history, and one of the
most striking examples of an extraordinary increase of the price of an asset,
far away from its commonly perceived value. After having been introduced
to Europe in the 16th century from the Ottoman Empire, tulip bulbs became
a sort of fashionable status symbol among the Dutch population, giving rise
soon to a speculative furor: in 1636 formal futures markets were created where
contracts to buy bulbs at the end of the season were bought and sold, and
at the peak of the bubble, the price of tulip bulbs increased twenty-fold from
November 1636 to February 1637. The burst of the bubble took place when
some prudent people decided to sell and crystallize their profits: as it often
happens, a domino effect of progressively lower and lower prices took place as
everyone tried to sell while not many were buying. The price began to dive,
causing people to panic and sell regardless of losses.
Although some studies of the last decades assert that the prices of tulip bulbs
were far more rational than was commonly perceived (see for example Garber
[2000]), already in 1841 the Scottish journalist Charles Mackay named the
mechanism behind the Tulip boom with the expression Madness of crowd:
this term would had been used a lot of times again in the history of bubbles
to describe the fever spreading among (often unskilled) investors making the
prices increase.
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Such an expression could be associated to the above mentioned Dot-Com bub-
ble, a well known example of the diffusion of a speculative mania among in-
vestors taking place after a technologic innovation. At the end of the 1990s,
the rapid development of the Internet stimulated a huge interest and excite-
ment among population in the US: many investors were eager to invest, at
any valuation, in any company that had one of the Internet-related prefixes
or a “.com” suffix in its name. Due also to the low interest rates of 1998-99
that helped to increase the availability of funding (see Weinberger [2016]), an
unprecedented amount of personal investing occurred during the boom (the
press reported the phenomenon of people quitting their jobs to engage in full-
time day trading, Kadlec [1999]), leading to to the biggest bubble of the 20th
century.
A few examples can clearly illustrate the huge over-valuation of some little
companies, that captured people’s attention due to the internet mania. The
book retailer Books-a-Million saw its stock price lift from around $3 per share
on November 25, 1998 to an intra-day high of $47 five days later, before going
down again to $3 by 2000, while the price per share of the public company
e.Digital rose from $0.06 per share in January 1999 to a high of $24.50 one
year later. Another extreme example is the one of Geeknet, a provider of built-
to-order Intel systems: the first day after its initial public offering, when the
price was initially set at $30 per share, ended at a valuation of $239.25 per
share.
After some time, the failure of many Internet firms to produce real earnings
eventually caused a new pessimistic feeling among investors. This inversion
in the mood of the market, together with other economic factors, made the
bubble burst, with an extremely high speed. InfoSpace, whose stock reached
at the peak a price $1, 305 per share, suffered such an intense loss that, by
2002, the price had declined to $2 per share. Similarly, VerticalNet was valued
at $1.6 billion after its initial public offering, despite only having $3.6 million
in quarterly revenue, and Lycos, purchased by Terra Networks for $12.5 billion
in 2000, was sold in 2004 for $95.4 million.
The consequences of such crashes on the economy are an extremely critical
issue. During the 20th and the beginning of the 21st century, various bub-
bles led after the burst to financial crisis often extended far beyond the region
where the bubble took place.
One of the most famous cases is given by the Roaring Twenties bubble. Pro-
pelled by new technologies that made possible mass production of consumer
goods such as automobiles and radios, the bubble ended dramatically with the
Stock Market Crash of October 29, 1929, giving rise to the Great Depression.
This was the longest, deepest, and most widespread depression of the 20th
century: between 1929 and 1932, worldwide gross domestic product fell by an
estimated 15%, industrial production drop by −46% in the US and −41% in
Germany, and unemployment increased more than six times in the US and
more than two times in Germany and France.
Asian markets have shown several episodes of bubbles followed by serious fi-
nancial crisis in the last decades. Two main examples are the Asian financial
crisis in 1997, originated by the financial collapse of the Thai baht, which
heavily involved the economies of countries as South Korea and Indonesia,
and the Chinese stock bubble of 2007, whose burst caused a 9% loss of the
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Shanghai Stock Exchange, followed by a drop of 416 points of the Dow Jones
Industrial Average.
Another famous example is the Financial crisis of 2007-2008, triggered by the
burst of the US housing bubble, which peaked in 2007.
From the examples described above, three main points of investigation about
bubbles can be identified: which are the mechanisms that first trigger and then
fuel the bubble, by which event the burst of the bubble can be determined,
and which are the consequences on the economy of the burst of the bubble,
that is, how the financial system reacts to the crash following the burst. The
purpose of the present work is to provide an insight on the first and on the
third question, examining the two main phases characterizing the boom and
bust cycle typical of financial bubbles.

1.2 Overview of the thesis

The building up phase of a bubble is analyzed in Chapters 2, 3 and 4 of the
thesis. In particular, Chapters 2 and 3 are devoted to the study of a coher-
ent mathematical framework for bubbles. One of the main approaches in this
sense is given by the martingale theory of bubbles as introduced by Cox and
Hobson [2005] and Loewenstein and Willard [2000] and mainly developed in
Jarrow and Protter [2009, 2011], Jarrow et al. [2007, 2010, 2011] and Biagini
et al. [2014]. In this setting a Q-bubble is defined as the difference between the
market wealth W of a given financial asset and its fundamental wealth WF ,
given by the expectation of future discounted dividends under an equivalent
local martingale measure Q. As we specify in Chapter 2, defined in this way
the bubble is a non-negative local martingale under Q, and it is strictly posi-
tive if and only if it is not a uniformly integrable martingale under Q. Since
WF , as an expectation, is a uniformly integrable martingale, the bubble is
strictly positive if and only if W is not a uniformly integrable martingale.
In Biagini et al. [2014], a continuous flow R = (Rt)t≥0 in the space of martin-
gale measures is considered, moving from an initial measure Q under which
W is a uniformly integrable martingale (and then no bubble is perceived) to
a measure R under which W is no more a uniformly integrable martingale
(and then the bubble is fully perceived) via convex combinations of Q and
R, which put an increasing weight on R. Conditions are given on the flow R
under which the bubble perceived under R is an initial local submartingale
that then turns into a supermartingale before it falls back to its initial value
zero.
In Chapter 2, after having introduced the model, we enlarge the framework of
Biagini et al. [2014] relaxing the conditions on R: we show that under these
new assumptions the bubble has a Doob-Meyer decomposition such that in
general the local submartingale property is lost, but we are nonetheless able
to find some specific examples under which the perceived bubble is still a local
submartingale under R.
In order to investigate a bubble on the side of price formation, however, one
should draw the attention from the fundamental value to the market value of
the asset. The formation of asset price bubbles has been thoroughly inves-
tigated from an economical point of view in many contributions, see Abreu
and Brunnermeier [2003], Allen and Gale [2000a], Choi and Douady [2011a,b],
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DeLong et al. [1990], Earl et al. [2007], Föllmer [2005], Harrison and Kreps
[1978], Kaizoji [2000], Miller [1977], Scheinkman and Xiong [2003, 2013], Ti-
role [1982], Xiong [2012], Zhuk [2013]. Different causes have been indicated as
triggering factors for bubble birth, such as heterogenous beliefs between inter-
acting agents (as in Föllmer [2005], Harrison and Kreps [1978], Scheinkman
and Xiong [2003], Scheinkman and Xiong [2013], Xiong [2012], Zhuk [2013]),
a breakdown of the dynamic stability of the financial system (see Choi and
Douady [2011a], Choi and Douady [2011b]), the diffusion of new investment
decision rules from a few expert investors to larger population of amateurs
(see Earl et al. [2007]), the tendency of traders to choose the same behavior as
the other traders’ behavior as thoroughly as possible (see Kaizoji [2000]), the
presence of short-selling constraints (see Miller [1977]). Moreover, in Biagini
and Nedelcu [2015], the formation of a bubble is explained in the valuation of
defaultable claims as caused by the trading activity of investors, overestimat-
ing the safety of the claim under certain circumstances.
On the other hand, an alternative model is given by Jarrow et al. [2012],
where the market value is endogenously determined by the trading activity
of investors, and studied through the analysis of the liquidity supply curve.
In this setting a bubble is still defined as the difference between the market
wealth W and the fundamental wealth WF , however it does not always coin-
cide with the Q-bubble under a given equivalent martingale measure Q.
A natural question, which we address in Chapter 3, is then if it is possible to
embed such a constructive model, where the fundamental price is exogenous
and the market price endogenous, in the martingale theory of bubbles. In
order to do this, one should determine a suitable flow of ELMMs for W under
which WF is justified from a fundamental point of view. In particular, given
a liquidation time T for the financial asset, we look for a flow (Qt)t∈[0,T ) of
ELMMs for the market wealth W such that the fundamental value of the asset
is given as the expectation of the future discounted cash flow. Our main result
is then that we can explicitly determine the form of such a flow of ELMMS
in a liquidity driven model under very general assumptions. This require a
consistent technical effort, mostly devoted to guarantee the martingale prop-
erty of the chosen flows of (eventual) probability densities. In this way, we are
able to directly connect the impact of the underlying macro-economic factors
to the shift of the resulting pricing measure, which may change over time.
As an application of our method, in Chapter 4 we focus on the mechanism
underlying the formation of a bubble in a financial network, and compute the
generating flow of ELMMs. In particular, we study how the interaction of
market participants in a financial network can produce the herding behavior
and the speculative fever underlined in the historical examples given in Section
1.1, and ultimately affect asset price formation and the consequent birth of a
bubble.
We provide numerical simulations to investigate how different networks gen-
erate different contagion mechanisms and lead to bubbles with different evo-
lutions. In particular, it turns out that in more heterogenous networks (i.e.
networks with a more right skewed degree distribution) contagion spread faster
at the beginning, so that the bubble builds up faster and bursts sooner: the
nodes with high degree, which in average get infected faster, contribute with
an higher weight in the more right skewed distributions.
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In Chapter 5 we focus on the second phase of the cycle of a bubble, as we
study the consequences of the burst in a financial system. Specifically, we
are interested in examining how the financial distress following a shock can
propagate within a banking system: the main question is in which extent a
loss suffered by a bank can propagate to other banks holding shares of the
first one.
In particular, we analyze the so called financial robustness of banks, defined
here, as done by Battiston et al. [2012] and Hull and White [2001], as an in-
dicator of agent’s creditworthiness or distance to default. For this purpose,
we consider a banking network represented by a system of stochastic differen-
tial equations coupled by their drift. We model the weight of the links as a
function of the robustness of the banks, so that the attractiveness of a node
depends on its “fitness”, as in the preferential attachment model of Bianconi
and Barabàsi [2001]. We assume a core-periphery structure, and suppose that
the banks of the core happen to hold a bubbly asset. We see that, due to the
preferential attachment model introduced above, the bubble causes a distor-
tion in the network: the banks holding the bubble have a bigger influence on
the system, since they are attracting investments of other institutions due to
their perceived robustness. For this reason, they are not only the most ex-
posed to the crash deriving from the burst of the bubble, but also the biggest
propagators of a possible shock.
Supposing that the number of banks holding the bubble remains constant, but
that their impact on the periphery does not vanish when the total number of
the banks goes to infinity, we also study the case of large networks: due to the
influence of the banks in the core, the institutions of the system share a com-
mon stochastic source produced by the bubble, so that they are not pairwise
independent, and the classic law of large numbers cannot be applied. We are
anyway able to compute the system at the limit, and we see that the influence
of the bubble, through the action of the banks in the core, ultimately results
in a term which does not average out in the drift of the diffusions: because
of this term, also the banks of the periphery are indirectly affected when the
bubble bursts.
This results in a riskier system, as shown in simulations where we investigate
how the burst of a bubble impacts the structure of the network, and ultimately
the systemic risk.





Chapter 2

Martingale theory of bubbles

2.1 Motivation

A bubble takes place if there is a discrepancy between the market price of an
asset and its fundamental value. The market price is the amount that the
marginal buyer is willing to pay for the asset. In order to have a market which
excludes arbitrage opportunities, one assumes that there exists a probability
measure Q, equivalent to the so called real world probability measure P , that
turns the market price process into a local martingale. Such a measure Q is
called an equivalent local martingale measure (ELMM). In this way, the prob-
lem of fair pricing of contingent claims is reduced to take expected values with
respect to the measure Q, and the fundamental value of the asset is defined
as the expected sum of future discounted dividends under Q.
The classical theory of mathematical finance only considers finite horizon mod-
els. In this framework, the presence of financial bubbles is excluded in an
arbitrage-free market, since there is no difference between the market price,
the arbitrage-free price, and the fundamental price, as stated by Harrison and
Kreps [1978].
However, the modern theory of mathematical finance, introduced by the pa-
pers of Delbaen and Schachermayer [1994, 1998], where the correct formulation
for the absence of arbitrage is formulated in full generality, goes beyond these
limitations and permits the existence of bubbles in terms of strict local martin-
gales. This analysis was first introduced in 2000 by Loewenstein and Willard
[2000], in the framework of the “no free lunch with vanishing risk” hypothe-
sis. In the work of Cox and Hobson [2005], a bubble is defined to be a price
process which, when discounted, is a strict local martingale under the risk-
neutral measure, and it can take place as a result of a feedback mechanism.
The authors also show that, in the presence of a bubble, put-call parity fails,
the price of an American call exceeds that of a European call and call prices
are no longer increasing in maturity for a fixed strike.
An important contribution in the context of the martingale theory of bubbles
is provided by the work of Jarrow et al. [2007], where bubbles are analyzed
in the framework of a complete market, i.e. under the assumption that only
an equivalent martingale measure Q exists. The authors prove that an asset
maturing at a stopping time T can have three types of bubbles: a strictly pos-
itive bubble is always a local martingale, and in particular if P (T < ∞) < 1
it can also be a uniformly integrable martingale, if P (T < ∞) = 1 but T
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is not bounded it can be a martingale, but not uniformly integrable, and if
T is bounded it is a strict local martingale. Nonetheless, since the bubbles
of the first type are not interesting from an economic point of view (because
they represent a permanent gap between an asset’s fundamental value and its
market price), a strictly positive bubble as it is commonly defined, is a local
martingale under Q but not a uniformly integrable martingale.
However, in the case of a complete market, since only one equivalent local
martingale measure exists, just two possibilities are given: either no bubble
appears at all, or a bubble is already present at the beginning. This is a strong
modeling withdraw, since it contradicts economic intuition.
Thus, incomplete markets have been taken into consideration by the same
authors in Jarrow et al. [2010]. Since more than one ELMMs exists, the fun-
damental value of the asset, and then the bubble, depends on the measure
taken into consideration. The idea is that the market “chooses” different lo-
cal martingale measures across time, giving rise to a shift of local martingale
measures: this correspond to regime shifts in the underlying economic funda-
mentals (because of new technologies, changes in beliefs or risk aversion). In
this way, the birth and the evolution of a bubble are determined by a flow of
different ELMMs that gives rise to a corresponding shifting perception of the
fundamental value of the asset. For example, it can be that at the beginning
the bubble is a uniformly integrable martingale under the selected measure
Q1, and has therefore value zero, and then another ELMM Q2 is chosen so
that the bubble is no more uniformly integrable: in this way, the bubble takes
place during the passage from Q1 to Q2. At every time, the martingale mea-
sure selected by the market is computed as the one consistent with the prices
of derivatives, and the switches are supposed to happen only at given stopping
times.
On the other hand, Biagini et al. [2014] consider the continuos case, i.e. they
model the slow birth of a perceived bubble as given by a continuos shift in the
space of ELMMs, and they give conditions under which the bubble starts as
a local submartingale and vanishes continuously as a supermartingale. This
property is particularly nice since it shows the two commonly observed phases
of a bubble: an increase (in expectation) followed by a decrease (again, in
expectation).
In this chapter, we first introduce the model and the results of Biagini et al.
[2014], and then we relax the assumptions. It can be seen that, in general, the
bubble is no more a local submartingale at the beginning of its life. However,
we give some examples of flows for which the local submartingale property
still holds.

2.2 The setting

Consider a risky asset generating an uncertain cumulative cash flow, modeled
as a non-negative and adapted right-continuous process D = (Dt)t≥0 on a
filtered probability space (Ω,F , (Ft)t≥0, P ) that satisfies the usual hypothesis
1.

1A filtered probability space (Ω,F , (Ft)t≥0, P ) satisfies the usual hypothesis if F0 contains
all the P -null sets of F and the filtration (Ft)t≥0 is right-continuous, i.e. Ft = ∩u>t,
0 ≤ t <∞, see Protter [2005].
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The market price of the asset is given by the non-negative, adapted càdlàg
process S = (St)t≥0, while the corresponding wealth process denoted W =
(Wt)t≥0 is defined by

Wt = St +Dt, t ≥ 0.

Denote by Mloc(W ) the class of all probability measures Q ≈ P such that
W is a local martingale under Q, by MUI(W ) the class of measures Q ≈ P
under which W is an uniformly integrable martingale and set MNUI(W ) =
Mloc(W ) \MUI(W ). It is assumed thatMloc(W ) 6= 0, so that arbitrages are
excluded.
Take a measure Q ∈ Mloc(W ). The fundamental price of the asset perceived
under Q is then defined as SQ = (SQt )t≥0 with SQt := EQ[D∞ − Dt|Ft]. On
the other hand, the fundamental wealth perceived under Q is WQ = (WQ

t )t≥0
with WQ

t := EQ[D∞|Ft] = SQt +Dt.
In this way, the bubble perceived under Q is βQ = (βQt )t≥0 with

βQt = St − SQt = Wt −WQ
t , t ≥ 0.

The bubble is positive, as can be seen from Lemma 2.3 in Biagini et al. [2014],
and in particular it is null under Q ∈ MUI(W ) and strictly positive under
R ∈MNUI(W ) (see Corollary 2.11 in Biagini et al. [2014]).
In order to capture the slow birth of a bubble starting from an initial value
0, in Biagini et al. [2014] the authors consider a flow R = (Rt)t≥0 in the
space Mloc(W ), describing a shifting system of predictions (Rt[·|Ft])t≥0. In
particular, they focus on a flow R that begins in MUI(W ) and then enters
the classMNUI(W ), via adapted convex combinations. In this way, the birth
of the bubble corresponds to the time when the flow enters in the subspace
MNUI(W ).
Specifically, they take the flow of conditional distributions

Rt[·|Ft] = ξtR[·|Ft] + (1− ξt)Q[·|Ft], t ≥ 0, (2.1)

with Q ∈ MUI(W ), R ∈ MNUI(W ) and ξ = (ξt)t≥0 adapted and càdlàg
process with values in [0, 1] and starting from ξ0 = 0. Such a flow puts weight
ξt on the predictions coming from the martingale measure R and the remaining
weight on the prediction under Q.
Then the bubble perceived under the flow of ELMMs, called the R− bubble
βR = S − SR, is given by

βRt = ξt(St − SRt ) = ξtβ
R
t , t ≥ 0. (2.2)

The model might have a microeconomic interpretation: the two martingale
measures Q and R could be seen as the views of two financial “gurus”, one
optimistic and one pessimistic, each one of them having a group of followers.
At the beginning, most of the investors follows the optimistic guru Q, but a
trigger event can happen so that some of them move to R. Afterwards, due to
contagion effects, more investors are attracted by the view of the pessimistic
guru, so that the proportion between the two groups shifts towards R. The
same does R, the weighted average of Q and R, depending on the present
weights of the two groups.



10 Chapter 2. Martingale theory of bubbles

2.3 The slow birth of the bubble as a local sub-
martingale

We present first the results proved by Biagini et al. [2014]. As in Biagini et al.
[2014], for the sake of simplicity we take the following

Assumption 2.3.1. Suppose that the filtration is such that all martingales
have continuous paths.

Remark 2.3.2. By Assumption 2.3.1 it can be seen, by stopping, that every
local martingale has continuous paths. In particular, since it is a local mar-
tingale under R, βR has continuous paths. This does not hold in general for
βR, that is in fact a local martingale under the flow R.
From Itô’s integration by parts, it holds

βRt = ξtβ
R
t =

ˆ t

0
βRs dξs +

ˆ t

0
ξs−dβ

R
s + [ξ, βR]t, t ≥ 0,

and it can be seen that βR is continuous if and only if ξ is continuous.

We restate now Proposition 3.5 of Biagini et al. [2014].

Proposition 2.3.3. If the process ξ is increasing then the R−bubble βR is a
local submartingale under R. If ξ remains constant after some stopping time
τ1, then after time τ1 the bubble βR becomes a (positive) local martingale, and
then a supermartingale.

If ξ is no longer increasing, suppose ξ to be a special semimartingale with
values in [0, 1], having canonical decomposition

ξ = M ξ +Aξ, (2.3)

with M ξ local R-martingale and Aξ predictable and finite variation.
Integration by parts for βR = ξβR yields

dβRt = (ξtdβRt + βRt dM
ξ
t ) + dARt , t ≥ 0,

where

ARt =
ˆ t

0
βRs dA

ξ
s + [ξ, βR]t, t ≥ 0, (2.4)

is a predictable finite variation process.
This case is examined in Proposition 3.6 of Biagini et al. [2014], that we report
here:

Proposition 2.3.4. Let the process ξ be as in (2.3). Then the R-bubble βR
is a local R-submartingale if and only if AR in (2.4) is an increasing process.
If ξ is a submartingale, then the local R-submartingale property for βR holds
whenever the process [ξ, βR] is increasing.

In particular, the authors in Biagini et al. [2014] take into consideration
the case when the flow R = (Rt)t≥0 is of the form

Rt = (1− λ̄t)Q+ λ̄tR, t ≥ 0, (2.5)
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where λ̄ = (λ̄t)t≥0 is a process taking values in [0, 1] and starting at λ̄0 = 0.

Our first goal is to prove the following Lemma and the subsequent Theorem
in the case when λ̄ is a continuous and adapted process. The same results are
given in Biagini et al. [2014] supposing λ̄ to be càdlàg and deterministic. The
proofs are similar to the ones in Biagini et al. [2014], nonetheless we report
them by completeness.

Lemma 2.3.5. Suppose that the flow R = (Rt)t≥0 is of the form

Rt = (1− λ̄t)Q+ λ̄tR, t ≥ 0, (2.6)

where (λ̄t)t≥0 is an adapted process taking values in [0, 1] and starting at λ̄0 =
0, and take the process MR = (MR

t )t≥0 with

MR
t = ER

[
dQ

dR

∣∣∣Ft] , t ≥ 0. (2.7)

Then the conditional distributions Rt[·|Ft] are of the form (2.1) where the
adapted process ξ = (ξt)t≥0 is given by

ξt = λ̄t

λ̄t + (1− λ̄t)MR
t

, t ≥ 0. (2.8)

Proof. Take Z positive and F-measurable, and At ∈ Ft for t ≥ 0: since λ̄
is adapted, for t ≥ 0 we have

ERt [Z1At ] = ER

[
dRt
dR

Z1At

]
= ER

[(
λ̄t + (1− λ̄t)MR

∞

)
Z1At

]
= ER

[
ER[

(
λ̄t + (1− λ̄t)MR

∞

)
Z|Ft]1At

]
= ER

[(
λ̄tER[Z|Ft] + (1− λ̄t)ER[MR

∞Z|Ft]
)

1At
]

= ER
[(
λ̄tER[Z|Ft] + (1− λ̄t)MR

t EQ[Z|Ft]
)

1At
]

= ERt

[
dR

dRt
|Ft
(
λ̄tER[Z|Ft] + (1− λ̄t)MR

t EQ[Z|Ft]
)

1At

]
. (2.9)

Comparing (2.1) and (2.9) we have

ξt = λ̄t

λ̄t + (1− λ̄t)MR
t

, t ≥ 0,

since by (2.6) we have

dRt
dR
|Ft = λ̄t + (1− λ̄t)MR

t , t ≥ 0. 2

Theorem 2.3.6. Suppose λ̄ adapted, continuos and increasing, and that [WR,MR]
is an increasing and continuous process. Then the R-bubble βR is a local sub-
martingale under R with initial value βR0 = 0. After time τ1 = inf{t; λ̄t = 1},
βR is a local martingale under R, and therefore an R-supermartingale.
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Proof. The behavior of the bubble after time τ1 follows directly from
Proposition 2.3.3.
For what concerns the local submartingale property before τ1, let us prove
first that ξ is a submartingale under R.
We have ξt = g(MR

t , λ̄t), where

g(x, y) = y

y + (1− y)x

Observe that g is convex and decreasing in x and increasing in y.
We then have, by Jensen’s inequality, that

ξs = g(ER[MR
t |Fs], λ̄s) ≤ ER[g(MR

t , λ̄s)|Fs] ≤ ER[g(MR
t , λ̄t)|Fs] = ER[ξt|Fs],

0 ≤ s ≤ t, where the second inequality follows by the fact that g(MR, λ̄) is
increasing in λ̄ and λ̄ is itself increasing.
We have then proved that ξ is an R-submartingale, therefore by Proposition
2.3.4 it suffices to show that [ξ, βR] is increasing.
Applying Itô’s formula to ξ = g(MR, λ̄) we obtain by Assumption 2.3.1 that

ξt =
ˆ t

0
gx(MR

s , λ̄s)dMR
s +
ˆ t

0
gy(MR

s , λ̄s)dλ̄s + 1
2

ˆ t

0
gxx(MR

s , λ̄s)d[MR,MR]s,

t ≥ 0, where we have used the continuity of MR and λ̄ and the fact that λ̄ is
quadratic pure jump, and therefore [MR, λ̄]t = [λ̄, λ̄]t = 0.
Moreover, the integrals ˆ t

0
gy(MR

s , λ̄s)dλ̄s

(since λ̄ is increasing) and
ˆ t

0
gxx(MR

s , λ̄s)d[MR,MR]s

are quadratic pure jump, therefore we can write

ξt =
ˆ t

0
gx(MR

s , λ̄s)dMR
s + Vt, t ≥ 0,

where V is a quadratic pure jump process.
Thus, since βR is continuous by Assumption 2.3.1, we have

d[ξ, βR] = d

[ˆ t

0
gx(MR

s , λ̄s)dMR
s + Vt, β

R

]
= gx(MR

t , λ̄t)d[MR, βR]t, t ≥ 0,

and gx(MR
t , λ̄t) is negative because g(x, y) is decreasing in x. Moreover, since

W is a local martingale under Q, WMR is a local martingale under R, and
therefore [MR,W ] = 0.
Thus

[MR, βR] = [MR,W −WR] = −[WR,MR],

that is negative by assumption. Then [ξ, βR] is increasing, and the result fol-
lows. 2
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Under the hypothesis stated above, the bubble is described by a process
first increasing in expectation and then decreasing in expectation, fitting the
common thought of a bubble. Now we drop the monotonicity hypothesis on λ̄,
and we consider the case when it is a function F of some process c = (ct)t≥0.
One can think of c as an economic characteristic that influences the opinion
of investors, represented by λ̄.

Theorem 2.3.7. Assume that

λ̄t = F (ct), t ≥ 0,

where F ∈ C2(R+) and c = (ct)t≥0 is a continuous and positive stochastic
process satisfying

dct = ρctdt+ σctdB
c
t ,

with Bc = (Bc
t )t≥0 standard Brownian motion, and ρc = (ρct)t≥0, σc = (σct )t≥0

adapted processes possibly depending on c.
Then the process ξ defined in (2.8) has Doob-Meyer decomposition

ξt = M ξ
t +Aξt , t ≥ 0, (2.10)

with

M ξ
t =
ˆ t

0
gx(MR

s , λ̄s)dMR
s +
ˆ t

0
σcsgy(MR

s , λ̄s)F ′(cs)dBc
s, t ≥ 0, (2.11)

and

Aξt = 1
2

ˆ t

0
gxx(MR

s , λ̄s)d[MR,MR]s + 1
2

ˆ t

0
σcsgxy(MR

s , λ̄s)F ′(cs)d[MR, Bc]s

+
ˆ t

0

[
gy(MR

s , λ̄s)
(
ρcsF

′(cs) + 1
2(σcs)2F ′′(cs)

)
+ 1

2gyy(M
R
s , λ̄s)(σcsF ′(cs))2

]
ds,

(2.12)

t ≥ 0, where g(x, y) = y
y+(1−y)x .

Suppose moreover that the function F is monotone increasing, and that the
process c is a submartingale. Then λ̄ = F (c) is an R-submartingale. In this
case, if [WR,MR] and [βR, Bc] are increasing processes then [ξ, βR] is also
increasing.

Proof. We first compute the Doob-Meyer decomposition. Since the process
λ̄ = F (c) is continuous, we have

ξt =
ˆ t

0
gx(MR

s , λ̄s)dMR
s +
ˆ t

0
gy(MR

s , λ̄s)dλ̄s + 1
2

ˆ t

0
gxx(MR

s , λ̄s)d[MR,MR]s

+ 1
2

ˆ t

0
gxy(MR

s , λ̄s)d[MR, λ̄]s + 1
2

ˆ t

0
gyy(MR

s , λ̄s)d[λ̄, λ̄]s 0 ≤ t.

(2.13)

Applying Itô’s formula to λ̄, we obtain the expression

dλ̄t =
(
ρctF

′(ct) + 1
2(σct )2F ′′(ct)

)
dt+ σctF

′(ct)dBc
t , t ≥ 0, (2.14)
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and therefore we have

d[MR, λ̄]t = σctF
′(ct)d[MR, Bc]t, t ≥ 0, (2.15)

and
d[λ̄, λ̄]t = (σctF ′(ct))2dt t ≥ 0. (2.16)

Substituting (2.14), (2.15) and (2.16) in (2.13) we obtain (2.10)-(2.12). This is
a Doob-Meyer decomposition since Aξ is continuous and therefore predictable.
Now we prove that λ̄ is an R-submartingale: it holds

λ̄s = F (cs) ≤ F (ER[ct|Fs]) ≤ ER[F (ct)|Fs] = ER[λ̄t|Fs], 0 ≤ s ≤ t,

where the first inequality comes from the hypothesis that F is increasing and
c is an R−submartingale and the second one from the convexity of F .
Finally, by the continuity of βR and by (2.10)-(2.12), we obtain

[ξ, βR]t =
ˆ t

0
gx(MR

s , λ̄s)d[MR, βR]s+
ˆ t

0
σsgy(MR

s , λ̄s)F ′(cs)d[Bc, βR]s, t ≥ 0,

since Aξ is quadratic pure jump. The first term is increasing by the same
argument as in the proof of Theorem 2.3.6, whereas the second one is increas-
ing if and only if [Bc, βR] is increasing, since g(x, y) is increasing in y, F is
increasing and σ is positive. 2

Since λ̄ is just a submartingale under R and it is not increasing, it is not
possible to prove that ξ is also an R-submartingale, as required in Proposition
2.3.4 in order for the bubble to be a local submartingale. In the following,
however, we give some possible explicit expressions for ξ so that it is in fact a
submartingale under R.
In particular, we take λ̄ and ξ as increasing functions of the perceived bubble
βR defined in (2.2). By doing this, we model a coupled interaction between
the size of the bubble and the changes in the views of the market: when the
bubble is big, a self reinforcing mechanism leads investor to converge their
opinions towards the measure R, under which the presence of a bubble is fully
confirmed.

2.4 λ̄ as a function of the bubble βR

We start by modeling λ̄ itself as a function of βR, considering therefore λ̄t =
H(βRt ), t ≥ 0, for some increasing function H.
By (2.8) we have

ξt = H(βRt )
H(βRt ) + (1−H(βRt ))MR

t

= H(βRt ξt)
H(βRt ξt) + (1−H(βRt ξt))MR

t

, t ≥ 0,

(2.17)
with MR in (2.7).
The function H has to satisfy some features: in particular, one has to require
that λ̄t = H(βRt ) belongs to [0, 1] for all t ≥ 0. Moreover, H is supposed to
be increasing and such that, for big values of the bubble, λ̄ is close to 1: in
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this way, when the bubble is very high, most part of the weight in the flow
of martingale measures (2.6) is put towards the final measure R. We require
therefore limx→∞H(x) = 1. Analogously, since at time t = 0 we have βR0 = 0
and ξ0 = 0, we also ask H(0) = 0.
As an example of a function that fulfills the properties above in the first
variable, we consider H̄ : R+ × R+ → R, with H̄(x, y) = x

x+y . This function
is particularly interesting for our purposes because in this case, we can easily
find an explicit expression for ξ.
Specifically, we take λ̄ = H̄(βR, Y ), where Y is a positive and continuous
stochastic process.
Since βR = ξβR, we obtain the following

Theorem 2.4.1. Let ξ be as in (2.8) with λ̄ = ξβR

ξβR+Y , where Y is a strictly
positive stochastic process with continuos paths. Then we have

ξt =
(
βRt − YtMR

t

βRt

)
1{βRt ≥YtMR

t }
, t ≥ 0.

Proof From (2.17) we have

ξt = ξtβ
R
t

(ξtβRt + Yt)
(

ξtβRt
ξtβRt +Yt

+
(
1− ξtβRt

ξtβRt +Yt

)
MR
t

) = ξtβ
R
t

ξtβRt + YtMR
t

, t ≥ 0,

where the denominator is a.s. strictly positive, since ξ and βR are positive
and MR and Y are strictly positive. Therefore we find the equation

ξt(ξtβRt + YtM
R
t − βRt ) = 0, t ≥ 0, (2.18)

that has solutions ξt = 0 and ξt = βRt −YtMR
t

βRt
if βRt 6= 0.

Since ξ has to take values between 0 and 1, one can see the origin as an ab-
sorbing boundary and stop the process when it reaches zero, since ξt = 0 is a
solution of (2.18). 2

We consider now the bubble βR, that takes therefore the simple expression

βRt =
(
βRt − YtMR

t

)
1{βRt ≥YtMR

t }
, t ≥ 0.

Lemma 2.4.2. Let a stochastic process X defined in the filtered probability
space (Ω,F , (Ft)t≥0, P ) to be a local martingale. Then the process X1{X≥0}
is a local submartingale.

Proof. Let σ be a localizing stopping time for X, that is, such that the
stopped process Xσ = (Xσ

t )t≥0 with Xσ
t = Xt∧σ is a martingale.

Take s > 0 and t ≥ s. Since E[Xt∧σ1{Xt∧σ<0}|Fs] ≤ 0, it holds

E[(X1{X≥0})σt |Fs] = E[Xt∧σ1{Xt∧σ≥0}|Fs] = E[Xt∧σ|Fs]− E[Xt∧σ1{Xt∧σ<0}|Fs]
≥ E[Xt∧σ|Fs] = Xs∧σ ≥ Xs∧σ1{Xs∧σ≥0} = (X1{X≥0})σs .

We have then proved that if σ is a localizing stopping time for X, then
(X1{X≥0})σ is a submartingale. Therefore, X1{X≥0} is a local submartin-
gale with the same localizing sequence as X. 2

Thus we obtain that βR is a local submartingale under R if βR − YMR is
a local martingale under R. Since βR and MR are local martingales under R,
this is the case, for example, when Y is a local martingale and is independent
of MR.
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2.5 ξ as a function of the bubble βR

We now model directly the process ξ given in (2.1) without considering the
flow λ̄ in (2.6). In particular, we assume the process ξ to be an explicit function
of time, βR and MR, i.e. we take ξt = ψ(t, βRt ,MR

t ), t ≥ 0. In this way,

βRt = ξtβ
R
t = ψ(t, βRt ,MR

t )βRt , t ≥ 0.

We first apply Itô’s formula to the function ψ(t, x, y), and find

dξt =∂tψ(t, βRt ,MR
t )dt+ ∂xψ(t, βRt ,MR

t )dβRt + ∂yψ(t, βRt ,MR
t )dMR

t

+ ∂xyψ(t, βRt ,MR
t )d[βR,MR]t, t ≥ 0.

We thus write the Doob-Meyer decomposition for ξ as

ξt = M ξ
t +Aξt , t ≥ 0,

where MR = (MR
t )t≥0 with

M ξ
t = ∂xψ(t, βRt ,MR

t )dβRt + ∂yψ(t, βRt ,MR
t )dMR

t , t ≥ 0,

is a local martingale and Aξ = (Aξt )t≥0 with

Aξt = ∂tψ(t, βRt ,MR
t )dt+ 1

2∂xyψ(t, βRt ,MR
t )d[βR,MR]t, t ≥ 0,

is a continuous and finite variation process.
From Proposition 2.3.4 we have that ξ is a local R-submartingale if and only
if AR = (ARt )t≥0 is increasing, where

ARt =
ˆ t

0
βRs dA

ξ
s + [ξ, βR]t, t ≥ 0.

In our case,

ARt =
ˆ t

0
βRs ∂sψ(s, βRs ,MR

s )ds+ 1
2

ˆ t

0
βRs ∂xyψ(s, βRs ,MR

s )d[βR,MR]s

+
ˆ t

0
∂xψ(s, βRs ,MR

s )d[βR, βR]s +
ˆ t

0
∂yψ(s, βRs ,MR

s )d[βR,MR]s

=
ˆ t

0
βRs ∂sψ(s, βRs ,MR

s )ds+
ˆ t

0
∂xψ(s, βRs ,MR

s )d[βR, βR]s

+
ˆ t

0

(
∂yψ(s, βRs ,MR

s ) + 1
2β

R
s ∂xyψ(s, βRs ,MR

s )
)
d[βR,MR]s, t ≥ 0.

(2.19)

Therefore, if ξ does not depend on MR and it is an increasing function of the
time t and of βR it is a local submartingale under R.
We specify now some dynamics for MR and βR: considering that MR is a
martingale, for example, we can write

dMR
t = σ1(MR

t )dB̄1
t , t ≥ 0, (2.20)

where B̄1 is a standard Brownian motion and σ1 is such that there exists a
unique strong solution of (2.20) that is a positive martingale. In particular, a
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standard result (see for example Protter [2013]) tells that MR is a martingale
if and only if σ1 is such that

ˆ ∞
ε

x

σ2
1(x)

dx =∞ (2.21)

for ε > 0. Moreover, we suppose that βR satisfies

dβRt = σ2(βRt )d(ρB̄1
t +

√
1− ρ2B̄2

t ), t ≥ 0, (2.22)

where B̄2 is a standard Brownian motion that is independent on B̄1. Since
βR is a strict local martingale under R, the function σ2 is such that

ˆ ∞
ε

x

σ2
2(x)

dx <∞ (2.23)

for ε > 0.
Inserting (2.20) and (2.22) in (2.19), we obtain

ARt =
ˆ t

0
βRs ∂sψ(s, βRs ,MR

s )ds+
ˆ t

0
σ2

2(βRs )∂xψ(s, βRs ,MR
s )ds

+
ˆ t

0
ρσ1(MR

s )σ2(βRs )
(
∂yψ(s, βRs ,MR

s ) + 1
2β

R
s ∂xyψ(s, βRs ,MR

s )
)
ds, t ≥ 0.

Applying Proposition 2.3.4 we have therefore the following

Theorem 2.5.1. Let ξt = ψ(t, βRt ,MR
t ), t ≥ 0, with MR and βR satisfying the

SDEs (2.20) and (2.22) respectively. Then βR = ξβR is a local submartingale
under the measure R if and only if

Zt =βRt ∂tψ(t, βRt ,MR
t ) + σ2

2(βRt )∂xψ(t, βRt ,MR
t )

+ ρσ1(MR
t )σ2(βRt )

(
∂yψ(t, βRt ,MR

t ) + 1
2β

R
t ∂xyψ(t, βRt ,MR

t )
)
≥ 0,

(2.24)

for all t ≥ 0.





Chapter 3

Liquidity induced asset
bubbles via flows of ELMMs

3.1 Motivation

The martingale theory of bubbles, as introduced by the papers of Loewenstein
and Willard [2000] and Cox and Hobson [2005], and developed among the
others by Jarrow et al. [2007], Jarrow et al. [2010] and Biagini et al. [2014],
focuses on the concept of fundamental value: a bubble takes place if the fun-
damental value is not felt as fully justifying the price of the asset, i.e. if the
market chooses an equivalent local martingale measure that reflects a pes-
simistic view.
Since the focus is on the fundamental value, the market price being exoge-
nously given as a semimartingale, the martingale theory of bubbles as devel-
oped so far does not directly model the fast increase of the market price which
is commonly observed. This is the goal of constructive models for bubbles.
One interesting approach is given in this sense by the paper of Jarrow et al.
[2012], where the asset’s fundamental price process is defined exogenously and
asset price bubbles are endogenously determined by market trading activity.
Trades impact the market price of the asset through illiquidity effects, making
it diverging from the fundamental price.
In particular, a stock is traded through a limit order book so that limit or-
ders and market orders are possible. The firsts increase the supply of shares
available for trade, therefore increasing liquidity, whereas market orders are
executed against the best bid and ask limit orders, and they create a diver-
gence from the fundamental value. This divergence can last longer than an
instant, when the resiliency of the limit order book is weak and new market
orders are added before the limit order book is restored by the injection of new
limit orders. In this way, long-lasting bubbles can take place in the model.
Nonetheless, they are not permanent since they can burst when the resilience
is high or, in an example given in Jarrow et al. [2012], when the illiquidity
goes to infinity.

In this scheme, the fundamental value of the asset is an exogenously given
semimartingale, but it is not justified as the expectation of future cash flows.
Our goal in this chapter is then to embed this model in the framework of the
martingale theory of bubbles, i.e. to find a flow of ELMMs for the market value
W under which the fundamental value WF is justified as the expectation of
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future incomes. In this way, the shift of the pricing measure is directly related
to the trading activity of investors: whereas in Biagini et al. [2014] and in
Jarrow et al. [2010] the flow of equivalent local martingale measures reflects
a change on the perception of the fundamental value of an asset, here it is a
result of a change in the views of the market that directly impacts the price.
Note however that we do not obtain that WF is also a (local) martingale under
each measure of the flow, as thoroughly discussed in Remark 3.4.1.

3.2 The liquidity model

In this section we introduce the liquidity model described in Jarrow et al.
[2012]. It is derived from the paper of Roch [2011], where liquidity risk (i.e.
the risk that takes place when trading activity has an impact on prices) is
analyzed. As specified before, an asset is traded through a limit order book:
an investor can decide either to place a limit order, that is, an order to buy
or to sell the stock at a specific price when a second investor agrees with
that price, or a market order, immediately executed against the existing limit
orders.
The main point is that when buy market orders are executed they temporary
erode the limit order book, so that if a transaction is big enough one ends up
paying more than the initial price. The average price to pay per share for a
transaction of size x via a market order at time t is given by

St(x) = S̃t +Mtx, (3.1)

where S̃ and M are adapted processes. In particular, S̃t is the quoted (or
marginal) price at time t, and it is defined as the price per share for a purchase
or sale of an infinitesimal quantity of shares (x = 0) at time t.
The limit order book is described by a function ρt(z) standing for the density
of the number of shares offered at price z at time t, so that the total number
of shares offered between prices z1 and z2 is given byˆ z2

z1

ρt(z)dz.

As a result of a buy market order, limit orders in the limit order book are
executed starting with the cheapest to the most expensive until the total
number of shares ordered is reached. Therefore, an investor that buys x shares
at time t thorough a market order has to pay a total number of dollars equal
to ˆ zx

S̃t

zρt(z)dz,

where zx solves the equation ˆ zx

S̃t

ρt(z)dz = x.

Since the supply curve in expression (3.1) is supposed to be linear, its limit
order book density function equals ρt(z) = 1

2Mt
, so that zx = S̃t + 2Mtx. The

total dollars paid per x shares at time t is thus

1
2Mt

ˆ S̃t+2Mtx

S̃t

zdz = S̃tx+Mtx
2 = xSt(x). (3.2)
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This can be seen as the price impact of the trading of x shares. In this sense,
Mt is a measure of illiquidity, as a larger Mt brings a larger price impact.
In other words, the illiquidity causes a gap in the limit order book after a
buy market order is placed: after the purchase of ∆Xt shares, the best ask
price increases from S̃t to St + 2Mt∆Xt. In this way, immediately after the
trade, the limit order book density function is 0 for prices between S̃t and
S̃t + 2Mt∆Xt.
Of course, this gap does not endure forever: the negative correlation between
returns and the volume of incoming limit orders (see Rosenow and Weber
[2005]) indicate that shortly after a market order, investors add new limit
orders in the opposite direction. This is called resiliency effect, and it is
modeled by assuming that the gap in the density function partially disappears
immediately after a trade: a resiliency process Λ = (Λt)t≥0 taking values
between 0 and 1 is then introduced so that impact on the supply curve of a
trade of size ∆Xt is shifted to St + 2ΛtMt∆Xt. When Λt = 0, there is full
resiliency since the order book immediately recovers its previous shape after a
market order of any size, whereas if Λt = 1 there is no resiliency and the gap
remains.
In absence of other market orders, this price impact would decay to zero in
the long term, as market prices return to fundamental values. However, if
new market orders quickly enter before the price has time to decay again to
the fundamental value, these short-term price variations may accumulate and
result in a deviation from the fundamental wealth with a consequent bubble
birth.
Taking inspiration from this construction, we introduce our setting in the next
section.

3.3 The setting

Let (Ω,F , P ) be a probability space and T > 0 a random time on it, repre-
senting the maturity or liquidation time of the underlying risky asset as in the
setting of Jarrow et al. [2010]. We assume that (Ω,F , P ) is endowed with a
filtration F = (Ft)t∈[0,T ] satisfying the usual assumptions of completeness and
right continuity.
On (Ω,F ,F, P ) we have (B1, B2, B3, B4, N), where Bi = (Bi

t)t∈[0,T ], i =
1, 2, 3, 4 are standard F-Brownian motions and Nt = 1{τ≤t} is a jump process
with τ totally inaccessible stopping time with intensity process π = (πt)t∈[0,T ].
We assume that (B1, B2, B3, B4, N) are independent processes.
We follow the approach of Jarrow et al. [2012] and study how trading activ-
ity may impact prices and generate the formation and bursting of speculative
asset price bubbles. We consider a continuous time setting where a stock is
traded through a limit order book. The fundamental wealth or value of the
stock is given as a primitive of the model and represents the price process if
market orders have no quantity impact on the price. The market wealth equals
the fundamental value until market orders are executed. Market orders, which
deplete or fill in the limit order book, produce a variation in the price over a
small interval of time as described in Section 3.2.
More specifically, we consider a financial asset whose fundamental wealth
WF = (WF

t )t∈[0,T ] (associated to the cumulative dividend process (Dt)t∈[0,T ]
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and to the liquidation value F of the asset at time T ) is given by

dWF
t = WF

t (adt+ bdB1
t ), 0 ≤ t ≤ T, (3.3)

with WF
0 > 0, a ∈ R and b > 0.

We interpret τ as the time of birth of a bubble for this financial asset. The
bubble follows the dynamics

dβt = MtΛt(−kβtdt+ 2dXt + 2xWF
t dNt), 0 ≤ t < T, (3.4)

where X is the signed volume of market orders (buy market orders minus
sell market orders), x is the signed volume of market orders at τ and M =
(Mt)t∈[0,T ], Λ = (Λt)t∈[0,T ] are respectively a measure of illiquidity and the
resiliency. Moreover, in agreement with the approach of Jarrow et al. [2012],
k is the speed of decay, and it is strictly positive since the market price is
supposed to go back to the fundamental value in the long term.

We put βτ = 2xΛτMτW
F
τ for a given x > 0.

Remark 3.3.1. As in Jarrow et al. [2012], we assume that the supply curve
for the stock is linear, i.e. that the variation induced by a market order of
size y is proportional to y via the stochastic coefficients M and Λ. In this way

1
2MtΛt gives the depth of the order book at time t, i.e. the size of the order
required to change the price of an asset by one unit. This linearity assumption
is better justified in the case of frequently traded and large volume stocks, see
Blais and Protter [2010]. For less liquid companies, statistical analysis (see for
example Cetin et al. [2006]) shows that the supply is at best piece-wise linear.
For more details about the economical motivation of this setting, we refer to
Jarrow et al. [2012].

We consider that X satisfies the following dynamics

Xt = 0, for 0 ≤ t < τ,

dXt = µtdt+ σtdB
2
t , for τ ≤ t < T, (3.5)

where µ = (µt)t∈[0,T ] and σ = (σt)t∈[0,T ] are progressively measurable pro-
cesses that a priori can also depend on X itself or on the bubble β.
In Jarrow et al. [2012] the signed volume of market orders is modeled as in
(3.5) with µ ≡ 0 and σt = αβt. Here we introduce the drift µ in order to see
the influence of the network on the size of the bubble, as we specify in Section
4.
Here the fundamental wealth process WF is exogenously given, while the mar-
ket wealth process W = (Wt)t∈[0,T ] is endogenously determined as

Wt = WF
t + βt, 0 ≤ t < T.

At liquidation time T we have WT = WF
T : the asset is liquidated at time T

at the estimated firm’s value, i.e. at the fundamental value. In particular we
require in the sequel that there exists an equivalent local martingale measure
for W only on the open interval [0, T ), since around time T the liquidation
procedure is not subjected to market equilibrium mechanisms.

Assumption 3.3.2. (i)
´ T
τ µ2

sds <∞ a.s.
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(ii)
´ T
τ σ2

sds <∞ a.s. and
´ T
τ

1
σ4
s
ds <∞ a.s.

(iii) µ and σ are Itô processes such that there exists a unique solution of (3.5)
(see for example Theorem 7 in Protter [2005, chapter 5]);

(iv) M = (Mt)t∈[0,T ] is a positive and adapted process that satisfies the dy-
namics

dMt = µM (Mt)dt+ σM (Mt)dB3
t , 0 ≤ t ≤ T,

where µM and σM are such that there exists a unique solution of (3.6) ac-
cording to Theorem 7 in Protter [2005, chapter 5]. Moreover

´ b
a (σM )−4(x)dx <

∞ for every a, b such that 0 < a < b <∞.

(v) Λ = (Λt)t∈[0,T ] satisfies the dynamics

dΛt = µ′(Λt)dt+ σ′(Λt)dB4
t , 0 ≤ t ≤ T,

Λ0 ∈ (λ, 1), with µ′, σ′ that satisfy conditions Theorem 7 in Protter
[2005, chapter 5]. Furthermore µ′(λ) > 0, µ′(1) < 0, σ′(1) = 0, σ′(λ) =
0 a.s., so that we obtain λ ≤ Λt ≤ 1, a.s. for all t ∈ [0, T ].

(vi) π = (πt)t∈[0,T ] is bounded, i.e. |πt| ≤ Π <∞ a.s for all t ∈ [0, T ].

(vii) T is a bounded a.s. (possibly by a very large constant) F-stopping time
independent of (B1, B2, N) such that τ < T a.s.

(viii) Either σ does not depend on β, or σt = αβt, t ∈ [τ, T ], α > 0. In this
latter case, we suppose µt ≥ 0 for every t ∈ [τ, T ].

Note that we assume τ < T and T bounded a.s. for the sake of simplicity.
The following results still hold without these conditions by imposing some
integrability conditions on T . For example, it would be sufficient T <∞ a.s.,
EP [eT |Ft] <∞ and EP [T − τ |Ft] > 0 a.s. for t ∈ [0, T ].

Proposition 3.3.3. From the hypothesis on M it follows that
´ T

0 Mα
s ds <∞

a.s. for all α ∈ R.

Proof. Following the same argument as in Mijatovic and Urusov [2012b],
we have that

ˆ T

0
Mα
s ds =

ˆ T

0

Mα
s

(σM )2(Ms)
d[M,M ]s =

ˆ ∞
0

xα

(σM )2(x)L
x
Tdx, (3.6)

where LxT is the local time at T and the last equality follows by occupation
time formula (see for example Corollary 1 in Protter [2005, chapter 4]).
Then the integral is finite since, by the fact that 0 < Ms < ∞ a.s. for each
s ∈ [0, T ], we have that the occupation time LaT has compact support in (0,∞).
2

Remark 3.3.4. If σ does not depend on β, the bubble has the following explicit
expression:

βt =βτe−k
´ t
τ ΛsMsds +

ˆ t

τ
µsΛsMse

−k
´ t
s ΛuMududs+
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+
ˆ t

τ
σsΛsMse

−k
´ t
s ΛuMududB2

s , τ ≤ t < T. (3.7)

On the other hand, if σt = αβt, we have that

βt = eψt

(
βτ +

ˆ t

τ
ΛsMsµse

−ψsds

)
, τ ≤ t ≤ T, (3.8)

where

ψt = −2k
ˆ t

τ
ΛsMsds−2α2

ˆ t

τ
Λ2
sM

2
s ds+2α

ˆ t

τ
ΛsMsdB

2
s , τ ≤ t ≤ T. (3.9)

Note that the example given in Jarrow et al. [2012] is a particular case of (3.8)
when µ ≡ 0.

We now prove that, if σ does depend on β and in particular σt = αβt for
all t ∈ [τ, T ), then under the other hypothesis stated in Assumption 3.3.2 it
holds

´ T
τ σ2

sds < ∞ a.s. and
´ T
τ

1
σ4
s
ds < ∞ a.s., i.e. point (ii) of Assumption

3.3.2 is satisfied.

Proposition 3.3.5. Suppose that requirements (i), (iii), (iv), (v), (vi) and
(vii) of Assumption 3.3.2 are satisfied and that µt ≥ 0 for all t ∈ [τ, T ]. Then
the process σ = (σt)t∈[τ,T ] with σt = αβt fulfills point (ii) of Assumption 3.3.2.

Proof. Suppose by simplicity that τ = 0, so that the bubble is born at
time t = 0. We first prove that, a.s.,

´ T
0

1
σ4
t
ds <∞. From (3.8), we have that

ˆ T

0

1
σ4
t

ds = α−4
ˆ T

0

1
β4
t

dt = α−4
ˆ T

0
e−4ψt

(
β0 +

ˆ t

0
ΛsMsµse

−ψsds

)−4

dt

≤ α−4β−4
0

ˆ T

0
e−4ψtdt,

since the processes µ, M and Λ are positive. Then, since β0 > 0 and α > 0
by assumption, it suffices to prove that

´ T
0 e−4ψtdt < ∞ with probability 1.

From (3.9) and from the fact that µ, M and Λ are positive it follows

ˆ T

0
e−4ψtdt =

ˆ T

0
exp

{
8k
ˆ t

0
ΛsMsds+ 8α2

ˆ t

0
Λ2
sM

2
s ds− 8α

ˆ t

0
ΛsMsdB

2
s

}
dt

≤ exp
{

8k
ˆ T

0
ΛsMsds+ 8α2

ˆ T

0
Λ2
sM

2
s ds

}ˆ T

0
exp

{
−8α

ˆ t

0
ΛsMsdB

2
s

}
dt.

(3.10)

The first term in (3.10) is finite a.s. by Proposition 3.3.3 and because 0 ≤
Λt ≤ 1 for all t ∈ [0, T ] with probability 1.
By the properties of Brownian motion and by the hypothesis on α and Λ,
proving that the right term is finite a.s. is equivalent to prove that

ˆ T

0
exp

{ˆ t

0
MsdB

2
s

}
dt <∞, a.s.. (3.11)
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We have thatˆ T

0
exp

{ˆ t

0
MsdB

2
s

}
dt ≤ T sup

0≤t≤T
exp

{ˆ t

0
MsdB

2
s

}
= T exp

{
sup

0≤t≤T

ˆ t

0
MsdB

2
s

}
.

T is a.s. finite by Assumption 3.3.2, so it suffices to prove that sup0≤t≤T
´ t

0 MsdB
2
s <

∞ with probability 1.
It is well known (see for example Theorem 42 in Protter [2005, chapter 2])
that there exists a standard Brownian motion W̄ = (W̄s)s≥0 with filtration
G = (Gs)s≥0 such that

ˆ t

0
MsdB

2
s = W̄´ t

0 M
2
s ds
, a.s., 0 ≤ t <∞.

Therefore,

sup
0≤t≤T

ˆ t

0
MsdB

2
s = sup

0≤t≤T
W̄´ t

0 M
2
s ds

= sup
0≤t≤

´ T
0 M2

s ds

W̄t a.s.,

since M is a.s. continuos by Assumption 3.3.2.
Since

´ T
0 M2

s ds < ∞ a.s. by Proposition 3.3.3, and W̄ is continuous a.s. on[
0,
´ T

0 M2
s ds

]
, we have

sup
0≤t≤

´ T
0 M2

s ds

W̄t <∞,

which implies that (3.11) holds and
ˆ T

0
e−4ψtdt <∞ a.s.. (3.12)

Thus,
´ T

0
1
σ4
t
ds < ∞ a.s. as well. We now show that

´ T
τ σ2

sds < ∞, with
probability 1. Since it holds 0 ≤ Λt ≤ 1 for all t ∈ [0, T ] a.s., have that
ˆ T

0
σ2
sds = α2

ˆ T

0
β2
sds = α2

ˆ T

0
e2ψt

(
β0 +

ˆ t

0
ΛsMsµse

−ψsds

)2

dt

≤ α2
(
β0 +

ˆ T

0
ΛtMtµte

−ψtdt

)2 ˆ T

0
e2ψtdt

≤ α2

β0 +
(ˆ T

0
µ2
tdt

)1/2(ˆ T

0
M4
t dt

)1/4(ˆ T

0
e−4ψtdt

)1/4
2 ˆ T

0
e2ψtdt,

(3.13)

almost surely. The term in (3.13) is finite a.s. by point (i) of Assumption 3.3.2,
by Proposition 3.3.3 and by (3.12). It remains to show that

´ T
0 e2ψtdt < ∞,

a.s.. We have thatˆ T

0
e2ψtdt =

ˆ T

0
exp

{
−4k
ˆ t

0
ΛsMsds− 4kα2

ˆ t

0
Λ2
sM

2
s ds+ 4α

ˆ t

0
ΛsMsdB

2
s

}
dt

≤
ˆ T

0
exp

{
4α
ˆ t

0
ΛsMsdB

2
s

}
dt, a.s.,

since M and Λ are a.s. positive. The integral above is finite by (3.11) because
Λ belongs to [0, 1]. 2



26 Chapter 3. Liquidity induced asset bubbles via flows of ELMMs

3.4 Flow of equivalent local martingale measures

Let Mloc(W ) be the space of equivalent local martingale measures for W =
(Wt)t∈[0,T ). Given Q ∈Mloc(W ), a Q-bubble βQ is defined as

βQt = Wt − EQ[WT |Ft] (3.14)

in the approach of Jarrow et al. [2007] and Jarrow et al. [2010]. In particular
we have that the bubble introduced in (3.4) coincides with a Q-bubble if and
only if

WF
t = EQ[WT |Ft], t ∈ [0, T ) (3.15)

for some Q ∈Mloc(W ).
This is of course not possible in our setting. However we can find a flow
(Qt)t∈[0,T ) ⊆Mloc(W ) such that

WF
t = EQt [WT |Ft] = EQt [WF

T |Ft]. (3.16)

In this way the bubble described in (3.4) is the result of the shift in the pricing
measure induced by the change in the macro-economic and financial conditions
in the market.

Remark 3.4.1. We wish to point out the difference and relations between our
constructive approach and the martingale theory of bubbles as Jarrow et al.
[2007], Jarrow et al. [2010] and Biagini et al. [2014]. In our setting as well
as under the approach of Jarrow et al. [2012], the bubble β is defined as

βt = Wt −WF
t , (3.17)

where WF is a primitive of the model. According to the martingale theory
of bubbles as illustrated in Jarrow et al. [2007] and Jarrow et al. [2010], the
market wealth W is given a priori and for a given Q ∈Mloc(W ) the Q-bubble
process βQ is defined as in (3.14), which also implies that βQ is non-negative.
The two definitions coincide if the fundamental wealth process WF in (4.4) is
also a (local) Q-martingale for Q ∈ Mloc(W ), i.e. if (3.15) holds, otherwise
they differ.
In our setting as well as in Jarrow et al. [2012] (see Section 5), we have that
Mloc(W )∩Mloc(WF ) = ∅, so the bubble process cannot be a local martingale
under any equivalent local martingale measure Q ∈ Mloc(W ) for the wealth
process W and may also assume negative values. Hence the appearance of
negative bubbles is not in contrast with arbitrage theory in our approach.
However, while in the martingale approach the model is automatically arbitrage-
free because Mloc(W ) 6= ∅ is assumed a priori, in our “constructive” model
for bubbles we need to explicitly exclude arbitrage possibilities. Since in The-
orem 3.4.20 we show the existence of a flow (Qt)t∈[0,T ) ⊆ Mloc(W ), i.e. that
Mloc(W ) 6= ∅, we obtain that our market model is arbitrage-free, see also Re-
mark 3.4.21.
It is then a challenging question whether our constructive model can be in-
cluded in the more fundamental view of the martingale theory of bubble of
Jarrow et al. [2007] and Jarrow et al. [2010] by following Biagini et al. [2014].
To this purpose we investigate the existence of a flow (Qt)t∈[0,T ) ⊆ Mloc(W )
which can “fundamentally explain” the a-priori given fundamental wealth, i.e.
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such that (3.16) holds. This is not in contrast with our comments above since
now the measure Qt is not fixed all over the interval [0, T ), but it may change
in time. In fact (3.16) does not imply that WF is a martingale under Qt over
the interval [0, T ) because (3.16) holds t-wise and in general it is not true that

WF
s = EQt [WT |Fs]

for s 6= t, s, t ∈ [0, T ).

We now explicitly compute a flow (Qt)t∈[0,T ) ∈ Mloc(W ) justifying the
existence of the bubble in (3.4) from a fundamental point of view.
Let Q ∈Mloc(W ). Then the density process Z = (Zt)t∈[0,T ) of Q with respect
to P is given by

Zt = dQ

dP
|Ft = E

(ˆ ·
0
α1
sdB

1
s +
ˆ ·

0
α2
sdB

2
s +
ˆ ·

0
α3
sdÑs +

ˆ ·
0
α4
sdB

3
s +
ˆ ·

0
α5
sdB

4
s + Lt

)
t

,

0 ≤ t < T , where Ñt = Nt −
´ t∧τ

0 nsds, t ∈ [0, T ), L is a martingale strongly
orthogonal to (B1, B2, B3, B4, N) and the processes αi, i = 1, . . . , 5 are such
that for 0 ≤ s < T the following equality holds:

WF
s (a+bα1

s)+2ΛsMs

(
µs + σsα

2
s − kβs

)
1{s≥τ}+2πsxWF

s ΛsMs(α3
s+1)1{s<τ} = 0.

(3.18)
Since (3.18) does not involve α4, α5 or L, we put α4 ≡ α5 ≡ L ≡ 0.
We can split (3.18) as

bα1
s = −a− 2πsxΛsMs(α3

s + 1) for s < τ (3.19)

and

bα1
s = −a+ 2ΛsMs

WF
s

(
kβs − µs − σsα2

s

)
for s ≥ τ. (3.20)

We look for a flow of the form

Zt,s = dQt

dP
|Fs = E

(ˆ ·
0
αt,1u dB

1
u +
ˆ ·

0
αt,2u dB

2
u +
ˆ ·

0
αt,3u dÑu

)
s

, s ∈ [0, T ),

(3.21)
since (3.18) does not involve conditions on αt,4, αt,5 and αt,6. In particular, we
note that the laws of M , Λ and T are invariant under this change of measure.
If αt,1, αt,2 and αt,3 satisfy (3.19) and (3.20), the fundamental process under
Qt is given by

dWF
s

WF
s

= µ̃tsds+ bdB̃t
s, 0 ≤ s ≤ T, (3.22)

where B̃t denote the Qt-standard Brownian motion given by

B̃t
s = B1

s −
ˆ s

0
αt,1u du, 0 ≤ s ≤ T,

and

µ̃ts =

−2πsxΛsMs(αt,3s + 1) for s < τ,
2ΛsMs

WF
s

(
kβs − µs − σsαt,2s

)
for s ≥ τ.

(3.23)
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If the condition
EQt

[ˆ T

t
(WF

s )2ds

]
<∞ (3.24)

is satisfied, we have that (3.16) is equivalent to

EQt

[ˆ T

t
WF
s µ̃

t
sds
∣∣∣Ft
]

= 0,

that is

0 = EQt

[ˆ τ

t
WF
s πsxΛsMs(αt,3s + 1)ds+

ˆ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft
]

(3.25)

for t < τ and

EQt

[ˆ T

t
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft
]

= 0 (3.26)

for t ≥ τ .
To show the existence of the flow (Qt)t∈[0,T ) ⊆ Mloc(W ), we choose αt,2 and
αt,3 so that the integrals inside the conditional expectation in (3.25) and (3.26)
are zero almost surely. We show later on that a posteriori this choice ensures
as well that (3.24) holds.
For t ≥ τ , let

αt,2s = 1
ΛsMsσs

(
s− E[T |Ft] + t

2 + E2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

)
+kβs
σs
−µs
σs
, t ≤ s < T.

Note that such αt,2s is well defined since from Assumption 3.3.2 it holds Λs > 0,
Ms > 0, σs > 0 a.s. for every s ∈ [0, T ].
With this choice we have on {T > t} that

EQt

[ˆ T

t
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft
]

=EQt

[ˆ T

t

(
s− E[T |Ft] + t

2 + E2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

)
ds
∣∣∣Ft
]

=EQt

[(
T 2 − t2

2 − (T − t)E[T |Ft] + t

2 + (T − t)E2[T |Ft]− E[T 2|Ft]
2(E[T |Ft]− t)

) ∣∣∣Ft
]

=E[T 2|Ft]− t2

2 − (E[T |Ft]− t)(E[T |Ft] + t)
2 + E2[T |Ft]− E[T 2|Ft]

2 = 0,
(3.27)

since by Assumption 3.3.2 the law of T does not change under Qt.
For t < τ define

Ct,τ :=
ˆ τ

t
WF
s πsxΛsMs(αt,3s + 1)ds

and choose αt,2s to be such that

EQt

[ˆ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft
]

= −EQt [Ct,τ |Ft] ,
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i.e.

αt,2s = 1
ΛsMsσs

(
s−

EQt [Ct,τ |Ft]
E[T − τ |Ft]

− E[T + τ |Ft]
2 + E2[T |Ft]− E[T 2|Ft]

2E[T − τ |Ft]

− E2[τ |Ft]− E[τ2|Ft]
2E[T − τ |Ft]

)
+ kβs

σs
− µs
σs
, t ≤ s < T,

so that

EQt

[ˆ T

τ
ΛsMs

(
kβs − µs − σsαt,2s

)
ds
∣∣∣Ft
]

=EQt
[ˆ T

τ

(
s−

EQt [Ct,τ |Ft]
E[T − τ |Ft]

− E[T + τ |Ft]
2 + E2[T |Ft]− E[T 2|Ft]

2E[T − τ |Ft]

− E2[τ |Ft]− E[τ2|Ft]
2E[T − τ |Ft]

)
ds
∣∣∣Ft]

=E[T 2 − τ2|Ft]
2 − EQt [Ct,τ |Ft]−

E[T − τ |Ft]E[T + τ |Ft]
2 + E2[T |Ft]− E[T 2|Ft]

2

− E2[τ |Ft]− E[τ2|Ft]
2

=− EQt [Ct,τ |Ft],

and then (3.25) holds.
For s < t ∨ τ we set αt,2s = 0.
Summarizing:

αt,2s =
{

0 for s < τ ∨ t,
1

ΛsMsσs
(s− ηt,τ ) + kβs

σs
− µs

σs
for s ≥ τ ∨ t,

(3.28)

where

ηt,τ =
EQt [
´ τ
t∧τ W

F
s πsxΛsMs(αt,3s + 1)ds|Ft]
2E[T − τ ∨ t|Ft]

− E[T + τ ∨ t|Ft]
2 + E2[T |Ft]− E[T 2|Ft]

2E[T − τ ∨ t|Ft]

− E2[τ ∨ t|Ft]− E[(τ ∨ t)2|Ft]
2E[T − τ ∨ t|Ft]

. (3.29)

Remark 3.4.2. Note that from Assumption 3.3.2 and from the fact that the
integral in (3.29) is bounded, we have that ηt,τ is finite and Ft-measurable,
and that moreover E[ηαt,τ ] <∞ for all α ∈ R.

Choosing

αt,3s =

0 for s < t or s ≥ τ,
1

(Ms+1)(WF
s +1) − 1 for t ≤ s < τ,

(3.30)

and

αt,1s =


0 for s < t,

−a
b −

2
bπsΛs

Ms
Ms+1

1
WF
s +1 for t ≤ s < τ,

−a
b −

2
bWF

s
(s− ηt,τ ) for s ≥ τ ∨ t.

(3.31)

we have that (3.25) and (3.26) hold.

Now we give the following
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Proposition 3.4.3. Let αt,1, αt,2 and αt,3 be as in (3.28)-(3.31). Then

EQt

[ˆ T

t
(WF

s )2ds

]
<∞, t ∈ [0, T ].

Proof. From (3.23) and from the expressions of αt,1, αt,2 and αt,3 in (3.28)-
(3.31) we have that

µ̃ts =

−2πsxΛs Ms
Ms+1

1
WF
s +1 for s < τ,

1
WF
s

(ηt,τ − s) for s ≥ τ,

where ηt,τ is given in (3.29). Then from (3.22) it holds that under Qt

dWF
s =ψsds+ bWF

s dB̃
t
s for s < τ,

dWF
s =(ηt,τ − s)ds+ bWF

s dB̃
t
s for s ≥ τ,

where ψs = −2πsxΛs Ms
Ms+1

1
WF
s +1 .

Thus we have

WF
s =

ebB̃
t
s− b

2
2 s
´ s

0 ψue
−bB̃tu+ b2

2 udu for s < τ,

ebB̃
t
s− b

2
2 s
´ s

0 (ηt,τ − u)e−bB̃tu+ b2
2 udu for s ≥ τ.

Then

EQt

[ˆ T

t
(WF

s )2ds

]

=EQt
[ ˆ τ

t∧τ

(ˆ s

0
ψue

b(B̃ts−B̃tu)− b
2
2 (s−u)du

)2
ds

+
ˆ T

τ

(ˆ s

0
(ηt,τ − u)eb(B̃ts−B̃tu)− b

2
2 (s−u)du

)2
ds
]

≤EQt
[
4Π2x2

ˆ τ

t∧τ

(ˆ s

0
eb(B̃

t
s−B̃tu)− b

2
2 (s−u)du

)2
ds

+ (|ηt,τ |+ T )2
ˆ T

τ

(ˆ s

0
eb(B̃

t
s−B̃tu)− b

2
2 (s−u)du

)2
ds
]

≤
(

4Π2x2 + E
[
(|ηt,τ |+ T )4

] 1
2
)

EQt

[ˆ T

t∧τ

(ˆ s

0
eb(B̃

t
s−B̃tu)− b

2
2 (s−u)du

)4
ds

] 1
2

.

Since T is bounded and the first term is finite by Remark 3.4.2, it remains to
prove

EQt

[ˆ T

t∧τ

(ˆ s

0
eb(B̃

t
s−B̃tu)− b

2
2 (s−u)du

)4
ds

]
<∞. (3.32)

We have that

EQt

[ˆ T

t∧τ

(ˆ s

0
eb(B̃

t
s−B̃tu)− b

2
2 (s−u)du

)4
ds

]
= EQt

[ˆ T

t∧τ

(ˆ s

0
ebB̃

t
s−u−

b2
2 (s−u)du

)4
ds

]

= EQt

[ˆ T

t∧τ

(ˆ s

0
ebB̃

t
r− b

2
2 rdr

)4
ds

]
≤ EQt

[
(T − t ∧ τ)2

] 1
2 EQt

(ˆ T

0
ebB̃

t
r− b

2
2 rdr

)8
 1

2

.
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The first term is finite by Assumption 3.3.2 on T and τ , whereas

EQt

(ˆ T

0
ebB̃

t
r− b

2
2 rdr

)8
 ≤ EQt

[ˆ T

0
e8bB̃tr−4b2rdr

]
=
ˆ T

0
EQt

[
e8bB̃tr−4b2r

]
dr <∞.

Then (3.32) holds and we have the result. �
We have therefore proved that, if we take αt,1, αt,2 and αt,3 as in (3.28)-(3.31),
then (3.19), (3.20) and (3.16) are satisfied.
From now on we denote Zt,s := dQt

dP |Fs for all s ≥ t, and Zt,s = 1 for s < t.
Note that we have not yet used the hypothesis on µ and σ of Assumption 3.3.2
to derive (3.21). From now on we will need them to prove that (Zt,s)s∈[t,T ) is
a true martingale for each t ∈ [0, T ), i.e. that each Qt, t ∈ [0, T ), in (3.21)
belongs to ∈Mloc(W ).
Remark 3.4.4. By Assumption 3.3.2, as proved in Proposition 3.3.3, we
exclude that the integral

´ ·
0 M

2
s ds can explode in finite time. This is a difference

with respect to Jarrow et al. [2012], where the bubble bursts (i.e. βt = 0) at
inf{s

∣∣ ´ s
0 M

2
udu = +∞}.

In our model, however, the bubble can be zero, and also negative, even if the
liquidity is not zero: it can be seen that this can happen when the drift µ of the
signed volume of market orders in (3.7) becomes negative. In this approach,
therefore, whether or not the bubble is positive depends more on the attitude
of the investors than on the liquidity. In Section 4 we propose an example to
show how contagion between traders in financial networks can determine the
value of µ.

From now on, we fix t ∈ [0, T ). We begin the analysis by noticing that,
since [B1, N ] ≡ [B2, N ] ≡ 0,

Zt,s =E
(ˆ s

0
αt,1u dB

1
u +
ˆ s

0
αt,2u dB

2
u +
ˆ s

0
αt,3u dÑu

)
=E

(ˆ s

0
αt,1u dB

1
u +
ˆ s

0
αt,2u dB

2
u

)
E
(ˆ s

0
αt,3u dÑs

)
for s ∈ [0, T ).
Moreover

E
(ˆ s

0
αt,3u dÑu

)
≤ exp

{ˆ s

0

[
αt,3u −

1
2(αt,3u )2

]
dNu −

ˆ s

0
αt,3u πudu

}
·

·
∏

0≤u≤s
(1 + ∆(αt,3u Nu)) exp{∆(αt,3u Nu) + 1

2∆(αt,3u Nu)2}

≤2 exp
{3

2 +
ˆ s

0

[
|αt,3u |+

1
2 |α

t,3
u |2

]
dNu +

ˆ s

0
|αt,3u |πudu

}
≤2e3+TΠ,

since by (3.30) it holds |αt,3s | ≤ 1.
Then, taking (Z̄t,s)s∈[0,T ) with

Z̄t,s = E
(ˆ s

0
αt,1u dB

1
u +
ˆ s

0
αt,2u dB

2
u

)
(3.33)

we have
Zt,s ≤ 2e3+TΠZ̄t,s. (3.34)

We give the following
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Lemma 3.4.5. Let X, Y be two positive stochastic processes such that Yt ≤ Xt

a.s. ∀t ≥ 0, and let X be of class DL1. Then Y is of class DL as well.

Proof. By Theorem 11 in Protter [2005, chapter 1] we have that a family
of random variables (Uα)α∈A is uniformly integrable if and only if there exists
a function G defined on [0,∞), positive, increasing and convex, such that
limx→∞

G(x)
x = +∞ and supα E[G ◦ |Uα|] < ∞. Fix now t ≥ 0, and call

Jt = {τ : τ ≤ t stopping time}, U tX = {Xτ : τ ∈ Jt} and U tY = {Yτ : τ ∈ Jt}.
Since by hypothesis U tX is uniformly integrable, there exists a function G that
satisfies the properties stated before. We have that

G(Yτ ) ≤ G(Xτ ), a.s. for τ ∈ Jt,

and then that
E[G(Yτ )] ≤ E[G(Xτ )], τ ∈ Jt.

Thus
sup
τ∈Jt

E[G(Yτ )] ≤ sup
τ∈Jt

E[G(Xτ )] <∞.

Therefore U tY is uniformly integrable and Y is of class DL. 2

We have then the following

Proposition 3.4.6. (Zt,s)s∈[0,T ) in (3.21) is a martingale if (Z̄t,s)s∈[0,T ) is a
martingale.

Proof. Since a local martingale is a true martingale if and only if it is of
class DL, see Proposition 1.7 in Revuz and Yor [1999, chapter 4], we have that
if Z̄ is a true martingale then 2e3+TΠZ̄, being a martingale as well, is of class
DL. Thus, by Lemma 3.4.5 and by (3.34), Z is of class DL, and therefore by
Proposition 1.7 in Revuz and Yor [1999, chapter 4] it is a true martingale. 2

From now on, therefore, we will check the martingale property for (Z̄t,s)s∈[0,T ]
in (3.33).
We note that the Novikov condition is not satisfied since for example the
integrand αt,1 contains the term 1

WF with

WF
s = exp

((
µ− σ2/2

)
s+ σB1

s

)
,

and it can be seen that the expectation of the double exponential of the Brow-
nian motion under P is not finite. The same problem arises with the terms

1
Ms

and 1
σs

in (3.28).
Therefore, since the other terms are strictly positive and bounded, we can not
use Novikov condition.

To prove that Z̄ is a martingale we rely on some results provided by Mi-
jatovic and Urusov [2012a], by Blei and Engelbert [2009] and by Wong and
Heyde [2004]. We first need some preliminaries.
Consider the state space J = (l, r), −∞ ≤ l < r ≤ ∞ and a J-valued diffusion
Y = (Ys)s∈[0,T ) on some filtered probability space, governed by the SDE

dYs = µY (Ys)ds+ σY (Ys)dBs, 0 ≤ s < T, (3.35)
1A stochastic process X is of class DL if, for each t ≥ 0, {Xτ : τ ≤ t stopping time} is

uniformly integrable.
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with Y0 = x0 ∈ J , W Brownian motion and deterministic functions µY (·) and
σY (·), that from now on we will simply denote by µY and σY , such that

σY (x) 6= 0 ∀x ∈ J (3.36)

and
1
σ2
Y

,
µY
σ2
Y

∈ L1
loc(J), (3.37)

where L1
loc(J) denotes the class of locally integrable functions on J , i.e. the

measurable functions (J,B(J)) → (R,B(R)) that are integrable on compact
subsets of J .
Consider the stochastic exponential

E
(ˆ s

0
f(Yu)dBu

)
, 0 ≤ s < T, (3.38)

with f(·) such that
f2

σ2
Y

∈ L1
loc(J) (3.39)

and the auxiliary J-valued diffusion Ỹ governed by the SDE

dỸs =
(
µY (Ỹs) + f(Ỹs)σY (Ỹs)

)
ds+ σY (Ỹs)dB̃s, 0 ≤ s < T, (3.40)

where B̃ is a Brownian motion on some probability space (Ω̃, F̃ , P̃ ).
Put J̄ = [l, r] and, fixing an arbitrary c ∈ J , define

ρ(x) := exp
{
−
ˆ x

c

2µY
σ2
Y

(y)dy
}
, x ∈ J, (3.41)

ρ̃(x) := ρ(x) exp
{
−
ˆ x

c

2f
σY

(y)dy
}
, x ∈ J, (3.42)

s(x) :=
ˆ x

c
ρ(y)dy, x ∈ J̄ , (3.43)

s̃(x) :=
ˆ x

c
ρ̃(y)dy, x ∈ J̄ . (3.44)

Denote ρ = ρ(·), s = s(·), s(r) = limx→r− s(x), s(l) = limx→l+ s(x), and
analogously for s̃(·) and ρ̃(·).
Recall that by Feller’s test for explosions Ỹ exits its state space with positive
probability at the boundary point r if and only if

s̃(r) <∞ and s̃(r)− s̃
ρ̃σ2

Y

∈ L1
loc(r−), (3.45)

where L1
loc(r−) := {g|g : (J,B(J))→ (R,B(R)) such that

´ r
x g(y)dy <∞ for some x ∈

J}. Similarly, Ỹ exits its state space with positive probability at the boundary
point l if and only if

s̃(l) > −∞ and s̃− s̃(l)
ρ̃σ2

Y

∈ L1
loc(l+), (3.46)
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where L1
loc(l+) := {g|g : (J,B(J))→ (R,B(R)) such that

´ x
l g(y)dy <∞ for some x ∈

J} Moreover, the endpoint r of J is said to be good if

s(r) <∞ and (s(r)− s)f2

ρσ2
Y

∈ L1
loc(r−), (3.47)

or equivalently (see Mijatovic and Urusov [2012a]) if

s̃(r) <∞ and (s̃(r)− s̃)f2

ρ̃σ2
Y

∈ L1
loc(r−). (3.48)

Similarly, the endpoint l of J is said to be good if

s(l) > −∞ and (s− s(l))f2

ρσ2
Y

∈ L1
loc(l+), (3.49)

or equivalently if

s̃(l) > −∞ and (s̃− s̃(l))f2

ρ̃σ2
Y

∈ L1
loc(l+). (3.50)

We recall here Theorem 2.1 in Mijatovic and Urusov [2012a].

Theorem 3.4.7. Let the functions µY , σY , and f satisfy conditions (3.36),
(3.37) and (3.39), and let Y be a solution of the SDE (3.35).
Then the Doléans exponential given by (3.38) is a martingale for any T <∞
if and only if both of the following requirements are satisfied:

(a) condition (3.45) does not hold or conditions (3.47)-(3.48) hold;

(b) condition (3.46) does not hold or conditions (3.49)-(3.50) hold.

We now obtain the following

Proposition 3.4.8. Let S̄ = (S̄s)s∈[0,T ) be a geometric Brownian motion

dS̄s = µ0S̄sds+ σ0S̄sdBs, 0 ≤ s < T, (3.51)

where B is a Brownian motion, µ0 ∈ R and σ0 > 0.
Then the process

E
(ˆ s

0
(S̄u)−1dBu

)
, 0 ≤ s < T,

is a martingale.

Proof. We show that the requirements of Theorem 3.4.7 hold for Y = S̄,
with µY (x) = µ0x, σY (x) = σ0x and f(x) = x−1. Note that µY , σY and
f satisfy conditions (3.36), (3.37) and (3.39) with J = (0,∞). Then, taking
c = 1 for the functions (3.41)-(3.44) and first assuming 2µ0

σ2
0
6= 1, we have

ρ(x) = exp
{
−
ˆ x

1

2µY
σ2
Y

(y)dy
}

= x
−2µ0
σ2

0 , (3.52)

ρ̃(x) = ρ(x) exp
{
−
ˆ x

1

2f
σY

(y)dy
}

= x
−2µ0
σ2

0 exp
( 2
σ0

(1
x
− 1

))
, (3.53)
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s(x) =
ˆ x

1
ρ(y)dy = σ2

0
2µ0 − σ2

0
(1− x−γ0), (3.54)

s̃(x) =
ˆ x

1
ρ̃(y)dy = e

− 2
σ0

(
− 2
σ0

)−γ0 [
Γ̄
(
γ0,−

2
xσ0

)
− Γ̄

(
γ0,−

2
σ0

)]
,

(3.55)

with γ0 = 2µ0
σ2

0
− 1 and where Γ̄(a, z) =

´∞
z e−tta−1dt, a ∈ R+, z ∈ R, is the

incomplete Gamma function extended to all R.
Note that in (3.55) we have that

s̃(x) = e
− 2
σ0

(
− 2
σ0

)−γ0 [
Γ̄
(
γ0,−

2
xσ0

)
− Γ̄

(
γ0,−

2
σ0

)]
= e
− 2
σ0

( 2
σ0

)−γ0

(−1)−γ0

ˆ − 2
σ0

− 2
xσ0

e−t(−1)γ0−1|t|γ0−1dt

= −e−
2
σ0

( 2
σ0

)−γ0
ˆ − 2

σ0

− 2
xσ0

e−t|t|γ0−1dt ∈ R. (3.56)

We obtain that:

• in l = 0 we have

s̃(0) = −e−
2
σ0

( 2
σ0

)−γ0
ˆ − 2

σ0

−∞
e−t|t|γ0−1dt = −∞,

thus condition (3.46) does not hold and the first requirement of (b) in
Theorem 3.4.7 is fulfilled;

• if γ0 < 0 we have

s̃(∞) = e
− 2
σ0

( 2
σ0

)−γ0
ˆ 0

− 2
σ0

e−t|t|γ0−1dt =∞

then condition (3.45) does not hold and the first requirement of (a) in
Theorem 3.4.7 is fulfilled;

• if γ0 > 0 then s(∞) = σ2
0

2µ0−σ2
0

= C < ∞, and condition (3.47) holds
since

s(r)− s
ρσ2

0
= C

x−γ0x
2µ0
σ2

0

x4 = 1
x3 .

Therefore the second requirement of (a) in Theorem 3.4.7 is fulfilled.

So we have that if γ0 6= 0 the requirements of Theorem 3.4.7 are satisfied, and
thus Z is a martingale.
In the case γ0 = 0, i.e. µ0 = σ2

0
2 , we have that the process S̄ = (S̄u)u∈[0,T ) in

(3.51) takes the form S̄u = eσ0Bu , 0 ≤ u < T . We can thus apply the results
of Theorem 3.4.7 taking J = (−∞,∞), µY ≡ 0, σY ≡ 1, f(x) = e−σ0x and
c = 0 in (3.41)-(3.44). We have

ρ(x) = exp
{
−
ˆ x

0

2µY
σ2
Y

(y)dy
}

= 1,
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ρ̃(x) = ρ(x) exp
{
−
ˆ x

0

2f
σY

(y)dy
}

= exp
(
2(e−σ0x − 1)/σ0

)
, (3.57)

s(x) =
ˆ x

0
ρ(y)dy = x

s̃(x) =
ˆ x

0
ρ̃(y)dy = 1

σ0
e
− 2
σ0
(
Ei (2/σ0)− Ei

(
2e−σ0x/σ0

))
,

where Ei(z) = −
´∞
−z

e−u

u du is the exponential integral function that satisfies
limz→∞Ei(z) = ∞ and limz→0Ei(z) = −∞. Therefore s̃(∞) = ∞ and
s̃(−∞) = −∞, then the first requirements of (a) and (b) of Theorem 3.4.7 are
both satisfied and Z is a martingale. 2

Then we have immediately

Corollary 3.4.9. Under Assumptions 3.3.2, the process

E
(ˆ s

τ

1
WF
u

dB1
u

)
, τ ≤ s < T, (3.58)

is a martingale for every fixed T <∞.

To prove that Corollary 3.4.9 also implies that E
(´ s
τ α

t,1
u dB

1
u

)
is a martin-

gale, we need Theorem 4.1 in Blei and Engelbert [2009], that we report here
as a Proposition.

Proposition 3.4.10. Let H be a continuous local martingale. Then E(H) is
a martingale if and only if

lim
n→∞

Qs({As < n}) = 1 ∀s ≥ 0, (3.59)

where As = [H,H]s and dQs = E(HTs)dP , with Ts := inf{u ≥ 0 : Au > s}.

We now give

Proposition 3.4.11. In the setting of Section 3.3, the process

E
(ˆ s

0
|αt,1u |dB1

u

)
, 0 ≤ s < T,

with αt,1 in (3.31), is a martingale for each t ∈ [0, T ).

Proof. For s < τ we have

|αt,1s | =
a

b
+ 2
b
πsΛs

Ms

Ms + 1
1

WF
s + 1 ≤

a

b
+ 2
b

Π,

then E
(´ ·

0 |α
t,1
u |dB1

u

)
is a martingale up to time τ as it satisfies Novikov con-

dition, since
E
[
exp

(ˆ τ

0
(αt,1s )2ds

)]
≤ E

[
exp(c2τ)

]
with c = a

b + 2
bΠ.

Consider now s ≥ τ . In this case,

|αt,1s | =
a

b
+ 2
bWF

s

(s+ ηt,τ ) ≤ a

b
+ 2
bWF

s

(T + ηt,τ ), (3.60)
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with ηt,τ in (3.29). From Proposition 3.4.10 and Corollary 3.4.9 we have

lim
n→∞

Qs

({ˆ s

0

1
(WF

u )2du < n

})
= 1 ∀s ≥ 0,

where dQs = E
(´ Ts

0
1

(WF
u )2du

)
dP , with Ts := inf

{
u ≥ 0 :

´ u
0

1
(WF

r )2dr > s
}

.
From (3.60), we have that (3.59) holds also for

´ ·
τ |α

t,1
u |dB1

u, and then the result
follows. 2

We can now give

Proposition 3.4.12. Under Assumption 3.3.2, the process (Z1
t,s)s∈[0,T ) with

Z1
t,s = E

(ˆ s

0
αt,1u dB

1
u

)
, 0 ≤ s < T, (3.61)

with αt,1 in (3.31), is a martingale for each t ∈ [0, T ).

The proof follows by Proposition 3.4.11 and by the following

Lemma 3.4.13. Consider Hs =
´ s

0 YudBu and H̄s =
´ s

0 |Yu|dBu, 0 ≤ s < T ,
where Y is a stochastic process such that the stochastic integral is well defined.
Then E(H) is a martingale if and only if E(H̄) is a martingale.

Proof. We use again Proposition 3.4.10. Since [H,H]s =
´ s

0 Y
2
u du =´ s

0 |Yu|
2du = [H̄, H̄]s, property (3.59) holds for H if and only if it holds for H̄.

Hence we have the result. 2

We now want to prove that

E
(ˆ s

0
αt,2u dB

2
u

)
, 0 ≤ s < T, (3.62)

with αt,2 in (3.28), is a martingale as well, supposing for the sake of simplicity
τ = 0 since αt,2s = 0 for s ≤ τ .

To this purpose, we reformulate a result by Wong and Heyde [2004], which
Mijatović and Urusov [2011] have criticised not to hold in general. However,
in our context we are able to prove that the required condition is satisfied in
our formulation, as we show in the sequel.

Consider a continuous F-progressively measurable d-dimensional process
H = (Hs)s∈[0,T ) of the form

Hs = ξ(B·, s)ζs + ηs, (3.63)

where ξ ∈ C0(Rd+1,Rd), B is a d-dimensional progressively measurable Brow-
nian motion and ζ, η are d-dimensional stochastic processes independent of B.
Here the product between ξ and ζ is intended componentwise.

Define

τMH
N = inf

(
s ∈ [0, T ) : MH(t) :=

ˆ t

0
‖Hu‖2du ≥ N

)
,

with the convention that inf ∅ =∞, and then

τMH = lim
N→∞

τMH
N . (3.64)

Then we have the following
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Proposition 3.4.14. Let H be a F-progressively measurable d-dimensional
process as in (3.63), stopped at the explosion time τMH in (3.64). Assume
that the equation

Ys = ξ

(
B· +

ˆ ·
0
Yudu, s

)
ζs + ηs, s ∈ [0, T ), (3.65)

admits a unique solution Y = (Ys)s∈[0,τMY ), where τMY is the explosion time

τMY = lim
N→∞

τMY
N ,

where
τMY
N = inf

(
s ∈ [0, T ) : MY (s) :=

ˆ s

0
‖Yu‖2du ≥ N

)
. (3.66)

Thus, the stochastic exponential ZH = (ZHs )s∈[0,T ) with ZHs = E
(´ s

0 HudWu
)

satisfies
P (τMY > T ) ≤ E[ZHT ].

Hence ZH is a (true) martingale if P (τMY > T ) = 1.

Remark 3.4.15. The proof of Proposition 3.4.14 is analogous to the one of
Theorem 1 in Wong and Heyde [2004], where the authors consider the process
H̃s = ξ(B·, s), which corresponds in our case to choose ζt = 1, ηt = 0 for all
t ∈ [0, T ). In Wong and Heyde [2004], the authors state that equation (3.65)
always has a solution. However, the proof of this statement is not correct, as
noted by Mijatović and Urusov [2011]. This is the reason why here we suppose
that (3.65) admits a solution. We prove in Propositions 3.4.16 and 3.4.18 that
this Y exists and is unique.

Proof. Define Y N
t = Y

t∧τMYN

, with tMY
N in (3.66). Let F̃T be a σ-algebra

on Ω̃ := C0
(
(0, T ),Rd

)
. Consider a set A ∈ F̃T , and define the strict subset

of A
DA
N =

{
y ∈ C0

(
(0, T ),Rd

)
:
ˆ T

0
‖y(u)‖2du < N

}
∩A.

It holds

P (Y N ∈ DA
N ) = P

(
Y N ∈ A,

ˆ T

0
‖Y N

u ‖2du < N

)
= P (Y N ∈ A, τMY

N > T )

= P (Y ∈ A, τMY
N > T ), (3.67)

since Y = Y N on the set {τMY
N > T}.

Take now the process Z−Y N = (Z−Y Nt )t∈[0,T ), so that Z−Y Nt := Z−Y
t∧τMYN

=

E
(
−
´ t∧τMYN

0 YsdBs

)
, t ∈ [0, T ). Since Y N is bounded, it is possible to define

a new measure QYN ∼ P by

QYN (Y N ∈ A) = E[Z−Y NT 1{Y N∈A}],

for allA ∈ F̃T . Under this measure, Girsanov theorem implies that (BQN
t )0≤t≤T

with
B
QYN
t = Bt +

ˆ t

0
Y N
u du, 0 ≤ t < T,
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is a QYN -Brownian motion in Rd. On the set {T ≤ τMH
N } we have Yt = Y N

t for
all t ∈ [0, T ), and then

Yt = ξ

(
B
QYN· , t

)
ζt + ηt, 0 ≤ t < T. (3.68)

By (3.63) and (3.68) we have

P (Y N ∈ DA
N ) =EQYN [ZY NT 1{Y N∈DAN}] = EQYN [ZY NT 1{Y N∈A,τMYN >T}]

=EQYN [ZYT 1{Y ∈A,τMYN >T}] = EP [ZHT 1{H∈A,τMHN >T}]. (3.69)

Putting together (3.67) and (3.69), we have

P (Y ∈ A, τMY
N > T ) = EP [ZHT 1{H∈A,τMHN >T}] ≤ EP [ZHT ]. (3.70)

We can apply Lebesgue’s dominated convergence theorem and pass to the limit
as N →∞ the left hand side of (3.70). It follows

P (τMY > T ) ≤ EP [ZHT ],

as required. 2

We now prove that in our setting the assumption of existence (and unique-
ness) of a solution of (3.65) is satisfied when the process H is the bubble β
defined in (3.7).

Proposition 3.4.16. Let β be the bubble as in (3.7), i.e., in the case when
σ does not depend on β. Then there exists a unique solution to the equation
(3.65) when H = β in (3.63).

Proof. If we rewrite β in the form (3.63), we obtain that

ξ(B2
· , s) =

ˆ s

0
σuΛuMue

−k
´ s
u ΛrMrdrdB2

u, 0 ≤ s < T,

so that equation (3.65) has the form

Ys =β0e
−k
´ s
0 ΛuMudu +

ˆ s

0
µuΛuMue

−k
´ s
u ΛrMrdrdu+

ˆ s

0
σuΛuMue

−k
´ s
u ΛrMrdrdB2

u

+
ˆ s

0
σuΛuMue

−k
´ s
u ΛrMrdrYudu, 0 ≤ s < T. (3.71)

Differentiating both sides, we obtain the SDE

dYs = ΛsMs

[
((σs − k)Ys + µs)ds+ σsdB

2
s

]
, 0 ≤ s < T, (3.72)

Y0 = β0. By Theorem 7 in Chapter V.3 in Protter [2005], (3.72) has a unique
strong solution, which is the unique solution of (3.71). 2

We can now apply Proposition 3.4.14 in order to prove the following

Proposition 3.4.17. Let β be the bubble as defined in (3.7). Under Assump-
tion 3.3.2, the Doléans exponential

E
(ˆ s

0
βudB

2
u

)
, 0 ≤ s < T,

is a martingale.
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Proof. By Proposition 3.4.16, we can apply the result of Proposition 3.4.14.
The solution of (3.72) is given by

Ȳs =β0e
´ s
0 (−k+σu)ΛuMuds +

ˆ s

0
µuΛuMue

´ s
u (−k+σr)ΛrMrdrdu

+
ˆ s

0
σuΛuMue

´ s
u (−k+σr)ΛrMrdrdB2

u, 0 ≤ s < T. (3.73)

We first prove that Ȳs <∞ for each s ∈ [0, T ). We have
´ s
u (−k+σr)ΛrMrdr <

∞ a.s. for each s ∈ [0, T ) by the hypothesis on σ and Λ in Assumption 3.3.2
and by Proposition 3.3.3.
Thus by Theorem 2.4 of Mijatovic and Urusov [2012b] and by the fact that T
is bounded, we obtain

ˆ T

0
eα
´ s
u (−k+σr)ΛrMrdrdu <∞ (3.74)

for all α ∈ R, and then by the hypothesis on µ in Assumption 3.3.2, and again
by Proposition 3.3.3, we have

ˆ s

0
µuΛuMue

´ s
u (−k+σr)ΛrMrdrdu <∞, 0 ≤ s < T.

By (3.74) and by Assumption 3.3.2 it follows that the stochastic integral in
(3.73) does not explode before T , so we have that Ȳs <∞ for each s ∈ [0, T ).
We prove that this implies

´ T
0 Ȳ 2

s ds <∞. By the expression of Ȳ in (3.73) we
have

ˆ T

0
Ȳ 2
s ds =

ˆ T

0
Ȳ 2
s

1
M2
sΛ2

sσ
2
s

d[Ȳ , Ȳ ]s

(by the Kunita-Watanabe inequality)

≤
(ˆ T

0
Ȳ 4
s d[Ȳ , Ȳ ]s

)1/2(ˆ T

0

1
M4
sΛ4

sσ
4
s

d[Ȳ , Ȳ ]s

)1/2

(by the occupation time formula)

=
(ˆ ∞
−∞

a4LaTda

)1/2(ˆ T

0

1
M2
sΛ2

sσ
2
s

ds

)1/2

<∞ : (3.75)

the first integral is finite because the local time LaT has bounded support in
(−∞,∞), since Ȳ does not explode before T , and the second one is finite by
Assumption 3.3.2 and Proposition 3.3.3. Then the result follows by Proposi-
tion 3.4.14. 2

We can now exploit Proposition 3.4.17 to prove that E
(´ s

0 α
t,2
u dB

2
u

)
is a

martingale. Before doing this, we give the following

Proposition 3.4.18. Let (αt,2s )s∈[0,T ) be the process defined in (3.28), with β
as in (3.7) and σ independent of β. Then there exists a unique solution to the
equation (3.65) when H = αt,2 in (3.63).
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Proof. Since αt,2s = 0 for s ≤ t and

αt,2s = s− ηt,0
ΛsMsσs

− µs
σs

+ k
βs
σs
, t ≤ s < T,

equation (3.65) takes the form2

Ys = αt,2s + k

σs

ˆ s

t
σuΛuMuYue

−k
´ s
u ΛrMrdrdu, t ≤ s < T. (3.76)

Differentiating (3.76), we obtain for t ≤ s < T

dYs = dαt,2s + k

ˆ s

t

σuΛuMuYue
−k
´ s

u
ΛrMrdrdu · d

(
1
σs

)
+ k

σs
d

(ˆ s

t

σuΛuMuYue
−k
´ s

u
ΛrMrdrdu

)
= dαt,2s + (Ys − αt,2s )σsd

(
1
σs

)
+ kΛsMsα

t,2
s ds, (3.77)

Yt = αt,20 . Theorem 7 in Chapter V.3 in Protter [2005] together with Assump-
tion 3.3.2 imply that (3.77) has a unique strong solution, which is solution of
(3.76). 2

Proposition 3.4.19. Under Assumption 3.3.2, the process (Z2
t,s)s∈[0,T ) with

Z2
t,s = E

(ˆ s

0
αt,2u dB

2
u

)
, 0 ≤ s < T, (3.78)

with αt,2 in (3.28) is a martingale for each t ∈ [0, T ).

Proof. We first consider the case when σ does not depend on β. Initially,
we prove that E

(´ s
0 σuα

t,2
u dB

2
u

)
is a martingale. We have that σsαt,2s = 0 for

s ≤ t and

σsα
t,2
s = s− ηt,0

ΛsMs
− µs + kβs, t ≤ s < T, (3.79)

so that equation (3.65) takes the form

Ys = σsα
t,2
s + k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdrYudu, t ≤ s < T. (3.80)

Differentiating both sides of (3.80), we obtain

dYs = d(σsαt,2s ) + kΛsMs

(
(σs − 1)Ys + σsα

t,2
s

)
ds, t ≤ s < T,

which has a unique strong solution by Theorem 7 in Chapter V.3 in Protter
[2005]. Then we can apply Proposition 3.4.14 since also equation (3.80) admits
a (unique) solution, that we call Ỹ .

We have

Ỹs =σsαt,2s + k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdrỸudu

=s− ηt,0
ΛsMs

− µs + kβs + k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdrŶudu

2It is straightforward to adapt the results of Proposition 3.4.14 to the case when the
initial time is t > 0.
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+ k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdr(Ỹu − Ŷu)du,

=s− ηt,0
ΛsMs

− µs + Ŷs + k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdr(Ỹu − Ŷu)du, t ≤ s < T,

where Ŷ = kȲ with Ȳ in (3.73). Consequently, for D̄ = Ỹ − Ŷ , it holds

D̄s = s− ηt,0
ΛsMs

− µs + k

ˆ s

t
σuΛuMue

−k
´ s
u ΛrMrdrD̄udu, t ≤ s < T,

and then

D̄s =s− ηt,0
ΛsMs

− µs + k

ˆ s

t

(
u− ηt,0

Λu
− µuMu

)
σuΛuek

´ s
u ΛrMr(σr−1)drdu

≤ηt,0 + T

λMs
+ µs + k

ˆ s

t

(
ηt,0 + T

λ
+ µuMu

)
σuΛuek

´ s
u ΛrMr(σr−1)drdu, t ≤ s < T.

By Assumption 3.3.2 and by Proposition 3.3.3, with the same argument as in
the proof of Proposition 3.4.17, we have that

ˆ T

t
D̄2
sds =

ˆ T

t
|Ỹs − Ŷs|2ds <∞.

Then, since by Proposition 3.4.17 we have
´ T
t |Ŷs|

2ds <∞, we obtain
ˆ T

t
|Ỹs|2ds <∞. (3.81)

Now we prove that E
(´ s

0 α
t,2
u dB

2
u

)
is a martingale. By Proposition 3.4.18 can

apply the results of Proposition 3.4.14. Let Y be the (unique) solution of
(3.76). Then it holds

Ys = 1
σs

(
σsα

t,2
s + k

ˆ s

t

σuΛuMuỸue
−k
´ s

u
ΛrMrdrdu

)
+ 1
σs
k

ˆ s

t

σuΛuMu(Yu − Ỹu)e−k
´ s

u
ΛrMrdrdu

= 1
σs

(
Ỹs + k

ˆ s

t

σuΛuMu(Yu − Ỹu)e−k
´ s

u
ΛrMrdrdu

)
, t ≤ s < T.

We have

σsYs − Ỹs =Ψs + k

ˆ s

t
ΛuMu(σuYu − Ỹu)e−k

´ s
u ΛrMrdrdu, t ≤ s < T,

where (Ψs)s∈[t,T ) is given by

Ψs = k

ˆ s

t
ΛuMu(Ỹu − σuỸu)e−k

´ s
u ΛrMrdrdu, t ≤ s < T. (3.82)

It follows that Ds = σsYs − Ỹs satisfies

dDs = dΨs + kΛsMsΨsds, t ≤ s < T,

and so that it takes the form

Ds = Ψs + k

ˆ s

t
ΛuMuΨudu, t ≤ s < T.
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Since by Assumption 3.3.2 the process Ψ in (3.82) does not explode before T ,
Ds = σsYs − Ỹs <∞ a.s. for each s ∈ [t, T ].
Thus, with the same argument as in the proof of Proposition 3.4.17 it can be
proved that ˆ T

t
|σsYs − Ỹs|2ds <∞.

By (3.81) we then have ˆ T

t
|σsYs|2ds <∞.

Then by the integrability hypothesis on 1
σ4 in (ii) of Assumption 3.3.2 it holds

ˆ T

t
|Ys|2ds <∞.

The result then follows by Proposition 3.4.14.
In the case σt = αβt, it holds

αt,2s = 1
ΛsMsσs

(s− ηt,τ )− µs
σs

+ k

α
, t ≤ s < T,

with σs = αβs.
We first prove that E

(´ ·
0 |α

t,2
u |dB2

u

)
is a martingale. By the expression of

β in (3.8)-(3.9), and since the bubble is positive by the assumption µt ≥ 0
∀t ∈ [0, T ), we have that equation (3.65) has the form

Ys = |αt,2s |e−2α
´ s
0 ΛuMuYudu + k

α
, 0 ≤ s ≤ T. (3.83)

Differentiating (3.65), we find the SDE

dYs = d|αt,2s |
|αt,2s |

Ys − 2αΛsMsY
2
s ds, 0 ≤ s ≤ T, (3.84)

Y0 = |αt,20 | + k
α , so that we have only locally Lipschitz coefficients. However,

Theorem 38 in Chapter V.7 in Protter [2005] ensures the existence of a unique
solution of (3.84) up to an explosion time τY . Therefore, the assumption of
Proposition 3.4.14 is satisfied.

Moreover, since α,Λ and M are positive, and Y0 is positive as well, by
(3.83) we have

Ys = |αt,2s |+
k

α
0 ≤ s < T,

and
´ T

0 |Ys|
2ds <∞ by Assumption 3.3.2 and by Proposition 3.3.5. The result

then follows by Lemma 3.4.13. 2

We are now ready to state the main result of the Section:

Theorem 3.4.20. Under Assumption 3.3.2, Qt defined in (3.21) belongs to
Mloc(W ) for each t ∈ [0, T ).
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Proof The proof follows by the fact that taking αt,1 and αt,2 as in (3.31) and
(3.28), with µt, σt, M , Λ and π satisfying Assumption 3.3.2, then (Z̄t,s)s∈[0,T )
with

Z̄t,s = E
(ˆ s

0
αt,1u dB

1
u +
ˆ s

0
αt,2u dB

2
u

)
is a martingale with respect to time s.
This follows immediately from Proposition 3.4.12 and Proposition 3.4.19: (Z1

t,s)s∈[0,T )
in (3.61) and (Z2

t,s)s∈[0,T ) in (3.78) are martingales, so by Proposition 3.4.14
we know that H1 = αt,1 and H2 = αt,2 are such that the associated processes
Y 1 and Y 2 defined in Proposition 3.4.14 do not explode before T . Taking now
H = (H1, H2), the associated process Y = (Y 1, Y 2) does not explode before
T as well, and this concludes the proof. 2

Remark 3.4.21. Theorem 3.4.20 shows that our constructive model can be
included in the more fundamental view of the martingale theory of bubble of
Jarrow et al. [2007] and Jarrow et al. [2010]. To this purpose we need to admit
the possibility of shifting pricing views over time as suggested in Biagini et al.
[2014]. However we emphasize that our definition of bubble and the models
proposed in Section 3.3 and further investigated in Section 4 are independent
of any choice of Q ∈ Mloc(W ). This can be seen as an advantage of this
framework since the definition of Q-bubble could arise some criticisms (see
Guasoni and Rasonyi [2015]).
Note that Theorem 3.4.20 also implies that Mloc(W ) 6= ∅, hence that our
market model is arbitrage-free on [0, T ).



Chapter 4

Liquidity induced bubbles in
a network

4.1 Motivation

Different contributions show how contagion between investors and herding
behavior may play an essential role when a bubble grows up: euphoria and ex-
uberance can propagate among market participants, due to exchanges of ideas
(see Lux [1995]) or to the fact that investors may be attracted by the short
period earnings of acquaintances investing in the bubbly asset, as observed by
Bayer et al. [2016], where analyzing data from the housing bubble in L. A. in
the 2000s the authors note a strong contagion between neighbors.
Several works in the last years have been focusing on how some properties of a
network, like mean degree or degree heterogeneity, can influence the contagion
of failures and losses between banks during a financial crisis (see for example
Acemoglu et al. [2012], Allen and Gale [2000b], Amini et al. [2016], Cont et al.
[2013], Gai and Kapadia [2010], Newman et al. [2001], Watts [2002], Watts and
Strogatz [1998]). Some investigation has been proposed about how bubbles are
generated at the microeconomic level by the interaction of market participants
(see among others Lux [1995], Scheinkman and Xiong [2003], Scheinkman and
Xiong [2013], Tirole [1982], Zhuk [2013]). However, only a few studies have
been devoted to understand how the structure of a given financial network
can influence the spread of contagion between investors that generates a bub-
ble. In Lux [1995], for example, the author models the bubble as caused by a
self-organizing process of infection between traders, expressed by a system of
PDEs, leading to equilibrium prices that deviate from the fundamental value.
Nonetheless, he considers a world in which everybody is connected with every-
body, so that the network structure does not enter into play. We also cite the
works of Battiston [2015], where it is shown how bubbles can have an impact
on the structure of a banking network, and Bouchard et al. [2015], where the
authors describe the passage from a well-connected network with high global
confidence to a poorly connected network with low global confidence, produc-
ing a boom and bust cycle.
Our approach is however quite different. We consider an information net-
work of N investors who may be influenced by the trading activity of their
neighborhoods. In particular, we assume that the number N of traders in
the network is big enough to guarantee that our hypothesis on the linearity
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of the supply curve holds. Then, we model the trading contagion mechanism
between agents taking place from the time τ of the birth of the bubble, via
the dynamics of the signed volume of market orders introduced in Chapter 3.
The evolution of the signed volume impacts in turn the market price of the
asset and then the bubble as described in Chapter 3. Investors may place a
buy market order on the bubbly asset because they imitate neighbors in the
network that have successfully bought the asset as well, eventually leading to
some self-exciting herding effect.
We refer to some literature about information networks (see among others
Ozsoylev and Walden [2011], Ozsoylev et al. [2014], Walden [2014]) where in-
vestors share information with neighbors so that, as in Ozsoylev et al. [2014],
two traders linked together buy or sell the same stock at a similar point in
time.
Our analysis is based on some epidemiological studies, which describe how dis-
eases spread in social networks, or how computer viruses spread from computer
to computer. In particular, we here focus on the SIS (susceptible-infected-
susceptible) model, studied for example by Pastor-Satorras and Vespignani
[2001a,b] to analyze virus diffusion in a population. In the SIS model, every
node of the network represents an individual and each link is a connection
along which the infection can spread to others. Individuals can only exist in
two discrete states, namely, susceptible, or “healthy”, and infected. At every
time step, each susceptible node is infected with rate λ by an infected node, if
there is a connection between the two. At the same time, infected nodes are
cured and become again susceptible with rate δ. In this way, individuals run
stochastically through the cycle susceptible → infected → susceptible.
In the next section, we adapt this model to our financial framework.

4.2 The model

As in Chapter 3, we call τ the first time when the signed volume of market
orders X become strictly positive, determine the birth of the bubble. We
reinterpret virus diffusion as trading contagion and consider as a first step in
our model building process the following stochastic version of the SIS model
for the contagion evolution of the fraction (ρkt )τ≤t≤T of traders of degree 0 ≤
k ≤ N (i.e. traders with information channels to k other traders) that has
bought the asset before or at time t:

dρkt =
(
−δρkt + λkmt(1− ρkt )

)
dt+σ̄kt (ρkt )α(1−ρkt )αdB2

t , τ ≤ t ≤ T, 0 < ρkτ < 1.
(4.1)

Here mt is the probability that an individual at the end of an edge has bought
the asset before or at time t, λ is the rate of buying contagion, δ is the rate of
selling, σ̄k = (σ̄kt )τ≤t≤T , k = 1, · · · , N , are progressively measurable processes,
which we assume bounded from above and away from zero, and α ≥ 1. Then
the evolution (4.1) guarantees that 0 ≤ ρk ≤ 1.
To determine the probability mt, we observe that by Bayes rule, and since for
any given node v it holds

P (meet v|deg(v) = k) = k∑
j jqj
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where qj is the number of nodes with degree j, we have that

P (deg(v) = k|meet v) = P (meet v|deg(v) = k)P (deg(v) = k)
P (meet v) = k

1
N

∑
j jqj

pk = kpk
z
,

where z := 1
N

∑
j jqj is the average degree and pk = P (deg(v) = k) = qk/N .

Therefore we have

mt =
∑
k

P (deg(v) = k|meet v)ρkt = 1
z

∑
k

kpkρ
k
t , τ ≤ t < T. (4.2)

Given the contagion evolution of the fraction ρk, we model the average
signed volume of market orders of an agent of degree k by Xk

t = θkt ρ
k
t , where

the size of market orders (θkt )τ≤t≤T of a trader of degree k that buys the asset
is given by a positive continuous process with dynamics

dθkt = µkt dt+ σkt dB
2
t , τ ≤ t < T, 0 < θkτ , (4.3)

where for all k = 1, · · · , N , (µkt )τ≤t≤T is an adapted continuous process, and
(σkt )τ≤t≤T is a positive adapted continuous process.1 Since we have d[ρk, θk]t =
σ̄kt σ

k
t (ρkt )α(1− ρkt )αdt, by Itô’s formula it holds

dXk
t = θkt dρ

k
t + ρkt dθ

k
t + d[ρk, θk]t (4.4)

=
(
−δXk

t + λkmt(θkt −Xk
t ) + ρkt µ

k
t + σ̄kt σ

k
t (ρkt )α(1− ρkt )α

)
dt

+
(
θkt σ̄

k
t (ρkt )α(1− ρkt )α + ρkt σ

k
t

)
dB2

t .

Finally, we obtain that the signed volume of total market orders is given by
Xt =

∑N
k=0 qkX

k
t , where qk is the number of investors of degree k. From (4.4)

we thus obtain

dXt = (−δXt + λmt(θt − nt) + ηt) dt+ Σ̄tdB
2
t , (4.5)

with

nt =
∑
k

kqkX
k
t , θt =

∑
k

kqkθ
k
t , ηt =

∑
k

kqk
(
ρkt µ

k
t + σ̄kt σ

k
t (ρkt )α(1− ρkt )α

)
(4.6)

and
Σ̄t =

∑
k

qk
(
σ̄kt θ

k
t (ρkt )α(1− ρkt )α + ρkt σ

k
t

)
(4.7)

We are thus in the framework2 of Section 3.3, with

µt = −δXt + λmt(θt − nt) + ηt (4.8)

and σt = Σ̄t, leading to the following SDE for the bubble β:

dβt = ΛtMt [−kβt + 2 (−δXt + λmt(θt − nt) + ηt)] dt+ 2ΛtMtΣ̄tdB
2
t (4.9)

1Note that the following analysis still holds under different integrability and measurability
conditions on σ̄ and σk, µk.

2The assumption that θk is driven by the same Brownian motion of ρk allows to show the
existence of the flow by using directly the results of Section 3.3, but it can be easily relaxed,
letting θk depend also on an additional Brownian motion Bθ independent of B2, as we do
in Section 4.3.
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for τ ≤ t < T , with explicit solution

βt =βτe−k
´ t
τ ΛsMsds +

ˆ t

τ
(−δXs + λms(θs − ns) + ηs) ΛsMse

−k
´ t
s ΛuMududs+

+
ˆ t

τ
Σ̄sΛsMse

−k
´ t
s ΛuMududB2

s , τ ≤ t < T. (4.10)

Remark 4.2.1. Setting µj ≡ σ̄j ≡ σj ≡ 0 for all 0 ≤ j ≤ N in (4.1) and
(4.3) respectively, we can identify the driving deterministic contagion evolution
for the signed volume of market orders as implied by the SIS network model
approach:

dXt = (−δXt + λmt(θt − nt)) dt. (4.11)

Remark 4.2.2. In the next Subsection 4.3 we consider two different types
of network topologies in order to see how the characteristics of the network
influence the dynamics of the expected fraction of buyers through nt. In the
first one we have a connectivity distribution which is very peaked at the average
value z and decaying exponentially fast for k � z and k � z. Examples of
this kind of networks are random graph models Erdős and Rényi [1960] and
the small-world model of Watts and Strogatz [1998]. In the second one the
degree distribution is more right skewed, following for example a power law, as
in the Barabási and Albert preferential attachment model Barabási and Albert
[1999]. From (4.11) and (4.6) we can see that the expected contagion between
buyers will spread faster in the second kind of network, since the distribution
puts more weight on the nodes with higher degree, resulting in a bigger value
of nt in (4.6).

We conclude the introduction of the model by showing a sufficient condition
under which the above bubble specification can be represented by a flow of
local martingale measures as analyzed in the general framework of the previous
sections, i.e. that there exists a flow Qt ∈ Mloc(W ) with Radon-Nykodim
derivative process

Zt,s = dQt

dP
|Fs = E

(ˆ ·
0
αt,1u dB

1
u +
ˆ ·

0
αt,2u dB

2
u +
ˆ ·

0
αt,3u dÑu

)
s

, s ∈ [0, T ),

(4.12)
such that

WF
t = EQt [WF

T |Ft], 0 ≤ t ≤ T.

Taking αt,1, αt,2 and αt,3 in (3.31), (3.28) and (3.30) respectively we only need
to show that that Z in (4.12) is in fact a martingale.
First we prove that, under certain conditions on the parameters, it holds
0 < ρk < 1 for the processes (ρkt )t≤0 in (4.1).
We rely on the results given in Mijatovic and Urusov [2012b]. In particular,
consider a process Y = (Yt)t≥0 satisfying

dYt = µY (Yt)dt+ σY (Yt)dWt, t ≥ 0, (4.13)

with W standard Brownian motion. Call J = (`, r) the state space of Y , with
−∞ ≤ ` < r ≤ ∞, and ζ its exit time. Define

ρ(x) := exp
{
−
ˆ x

c

2µY
σ2
Y

(y)dy
}
, x ∈ J, (4.14)
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and
s(x) :=

ˆ x

c
ρ(y)dy, x ∈ J̄ , (4.15)

with c ∈ J . Then (see Proposition 2.4 of Mijatovic and Urusov [2012b]) we
have that ζ =∞ if s(`) = −∞ and s(r) = +∞.

We now give the following

Lemma 4.2.3. Suppose that σ̄ is bounded from above and away from zero,
and that one of the following conditions holds:

• α > 1, and ∃k such that

1
z
λpkk

2 − δ > 0. (4.16)

• α = 1, and ∃k such that

1
z
λpkk

2 − δ > 1
2 . (4.17)

Then the process (ρkt )t≤0 in (4.1) is such that 0 < ρkt < 1 a.s. for all t ≥ 0.

Proof. Take k satisfying (4.16) (or (4.17) if α = 1), and suppose by the
sake of simplicity ρj ≡ 0 for j 6= k 3. Then the process (ρkt )t≥0 satisfies

dρkt =
(
−δρkt + 1

z
λpkk

2ρkt (1− ρkt )
)
dt+ σ̄t(ρkt )α(1−ρkt )αdB2

t , t ≥ 0. (4.18)

Since σ̄ is bounded from above and from below, we can apply the results in
Mijatovic and Urusov [2012b] taking

µY (x) = −δx+Akx(1− x), σY (x) = xα(1− x)α, (4.19)

where we have set Ak = 1
zλpkk

2. We want to prove that s(0) = −∞ and
s(1) = +∞, where s is defined in (4.15).
If α > 1, consider

c1 <
Ak − δ
Ak

, (4.20)

and
c2 >

Ak − δ
Ak

. (4.21)

If α = 1, take c2 as in (4.21) and

c1 ≤
1
Ak

(
Ak − δ −

1
2

)
. (4.22)

By (4.16), (4.17) and since δ > 0 we have 0 < c1 < c2 < 1. We choose
c ∈ (c1, c2), so that we have

0 < c1 < c < c2 < 1. (4.23)
3The following result holds a fortiori if ρjt > 0, j 6= k.
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We then obtain

s(0) = lim
x→0

ˆ x

c
ρ(y)dy = − lim

x→0

ˆ c

x
ρ(y)dy = − lim

x→0

ˆ c1

x
ρ(y)dy −

ˆ c

c1

ρ(y)dy,

where by (4.14), (4.19) and (4.23) it holds 0 <
´ c
c1
ρ(y)dy < +∞.

Analogously,

s(1) = lim
x→1

ˆ x

c
ρ(y)dy =

ˆ c2

c
ρ(y)dy + lim

x→1

ˆ x

c2

ρ(y)dy,

where 0 <
´ c2
c ρ(y)dy <∞.

It follows that

s(0) =−∞ ⇐⇒ lim
x→0

ˆ c1

x
ρ(y)dy = +∞, (4.24)

and

s(1) = +∞ ⇐⇒ lim
x→1

ˆ x

c2

ρ(y)dy = +∞. (4.25)

We now compute

ρ(x) = exp
{
−
ˆ x

c

2µY
σ2
Y

(y)dy
}

= exp
{

2
ˆ x

c

δy −Aky(1− y)
y2α(1− y)2α dy

}
= exp

{
2
ˆ x

c
y1−2α(1− y)−2α (δ −Ak(1− y)) dy

}
= exp

{
2
ˆ x

c
y1−2α(1− y)−2α (δ −Ak +Aky) dy

}
.

Let us consider first the case x < c1 < c, for which we have

ρ(x) = exp
{

2
ˆ c

x
y1−2α(1− y)−2α (Ak − δ −Aky) dy

}
= Kc1,c exp

{
2
ˆ c1

x
y1−2α(1− y)−2α (Ak − δ −Aky) dy

}
≥ Kc1,c exp

{
2 (Ak − δ − c1Ak)

ˆ c1

x
y1−2α(1− y)−2αdy

}
≥ Kc1,c exp

{
2 (Ak − δ − c1Ak)

ˆ c1

x
y1−2αdy

}
, (4.26)

where

Kc1,c = exp
{ˆ c

c1

y1−2α(1− y)−2α (Ak − δ −Aky) dy
}
.

If α > 1, we then have that

ρ(x) ≥ Kc1,cKc1 exp
{
Ak − δ − c1Ak

α− 1 x2−2α
}
,
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with
Kc1 = exp

{
Ak − δ − c1Ak

1− α c2−2α
1

}
.

Thus

lim
x→0

ˆ c1

x
ρ(y)dy ≥ Kc1,cKc1 lim

x→0

ˆ c1

x
exp

{
Ak − δ − c1Ak

α− 1 y2−2α
}
dy = +∞,

(4.27)

since α > 1 and by (4.20). 4

If α = 1, from (4.26) it follows

ρ(x) ≥ Kc1,c exp {2(Ak − δ − c1Ak) (log(c1)− log(x))}

= Kc1,cc
2(Ak−δ−c1Ak)
1 x−2(Ak−δ−c1Ak).

In this case

lim
x→0

ˆ c1

x
ρ(y)dy ≥ Kc1,cc

2(Ak−δ−c1Ak)
1 lim

x→0

ˆ c1

x
y−2(Ak−δ−c1Ak)dy = +∞,

(4.28)

since by (4.22) we have that 2(Ak − δ − c1Ak) ≥ 1.
In the case c < c2 < x, on the other hand, it holds

ρ(x) = exp
{

2
ˆ x

c
y1−2α(1− y)−2α (δ −Ak +Aky) dy

}
= K̄c2,c exp

{
2
ˆ x

c2

y1−2α(1− y)−2α (δ −Ak +Aky) dy
}

≥ K̄c2,c exp
{

2 (δ −Ak + c2Ak)
ˆ x

c2

y1−2α(1− y)−2αdy

}

≥ K̄c2,c exp
{

2 (δ −Ak + c2Ak)
ˆ x

c2

(1− y)−2αdy

}

≥ K̄c2,cK̄c2 exp
{2(δ −Ak + c2Ak)

2α− 1 (1− x)−2α+1
}
,

where
K̄c2,c = exp

{
2
ˆ c2

c
y1−2α(1− y)−2α (δ −Ak +Aky) dy

}
and

K̄c2 = exp
{
−2(δ −Ak + c2Ak)

2α− 1 c−2α+1
2

}
.

Therefore,

lim
x→1

ˆ x

c2

ρ(y)dy ≥ K̄c1,cK̄c1 lim
x→1

ˆ x

c2

exp
{2(δ −Ak + c2Ak)

2α− 1 (1− y)−2α+1
}
dy = +∞,

(4.29)

by (4.21) and since α ≥ 1 (see the footnote above).
The limits (4.27)-(4.29) together with (4.24) and (4.25) imply the result. 2

4It can be easily seen that limx→0
´ c1
x
eay

−b

dy = ∞ for all a, b > 0: let n ∈ N such that
nb > 1, then limx→0

´ c1
x
eay

−b

dy ≥ an

n! limx→0
´ c1
x
y−nbdy = +∞.
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We now prove that from Lemma 4.2.3 it follows that
ˆ t

0

1
σ̄4
s(ρks)4α(1− ρks)4αds <∞ a.s., t <∞, (4.30)

and use (4.30) to prove that Assumption 2.2 holds. Call

ηD = ζ ∧ inf{t ≥ 0 : Yt ∈ D}, (4.31)

where Y is the process in (4.13), ζ is the exit time from the state space
J = (`, r) and

D =
{
x ∈ J : f

σY
/∈ L1

loc(x)
}
, (4.32)

with
L1
loc(x) =

{
F : J → R s.t. ∃ε > 0 :

ˆ x+ε

x−ε
|F (x)|dx <∞

}
.

Suppose that

σY (x) 6= 0 ∀x ∈ J, 1
σ2
Y

,
µ

σ2
Y

∈ L1
loc(J). (4.33)

Then by Theorem 2.6 of Mijatovic and Urusov [2012b] we have
ˆ t

0
f(Yy)dy <∞ a.s., t ∈ [0, ηD).

We can now give the following

Proposition 4.2.4. Suppose the hypothesis of Lemma 4.2.3 hold. Then the
process (ρkt )t≤0 in (4.18) is such that

ˆ t

0

1
σ̄4
t (ρks)4α(1− ρks)4αds <∞ a.s., t <∞.

Proof. We have

µY (x) =
(1
z
λpkk

2 − δ
)
x−1

z
λpkk

2x2, σY (x) = xα(1−x)α, f(x) = x−4α(1−x)−4α.

Then condition (4.33) is fulfilled. We prove that D = ∅ in (4.32), i.e. that all
x ∈ (0, 1) are such that f

σY
∈ L1

loc(x).
Take first 0 < x < 1/2 and set ε = x/2. In this way, x− ε > 0 and

ˆ x+ε

x−ε

f(y)
σ2(y)dx =

ˆ x+ε

x−ε
y−6α(1− y)−6αdy <∞.

Analogously, for 1/2 ≤ x < 1 take ε = (1− x)/2, so that x+ ε < 1 and
ˆ x+ε

x−ε

f(y)
σ2(y)dx <∞.

Then D = ∅, thus ηD = ζ in (4.31). By Lemma 4.2.3 it follows that ζ = ∞.
Then we haveˆ t

0
f(ρks)ds =

ˆ t

0

1
(ρks)4α(1− ρks)4αds <∞ a.s., t <∞.

The thesis follows since σ̄ is bounded away from zero by hypothesis. 2
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Proposition 4.2.5. Assume that α ≥ 1 and that there exists a k̄ ∈ 1, · · · , N
that satisfies the hypothesis of Lemma 4.2.3 and such that θk̄t > ε a.s. for all
t ∈ [τ, T ], where ε > 0. Then for each t ∈ [0, T ], (Zt,u)u∈[0,T ) is a (P,F)-
martingale.

Proof. We show that µ and Σ in (4.8) and (4.7) satisfy Assumption 3.3.2.
We have

´ T
τ µ2

sds <∞ since m, σ̄j are bounded and σj , µj , X, θ, n are contin-
uous processes for j ∈ 1, · · · , N . Analogously one can show

´ T
τ Σ̄2

sds <∞.
Finally by using that σk̄, ρk̄ ≥ 0 and that θk̄, σ̄k̄ are bounded away from zero,
it is easy to see that

ˆ T

τ

1
Σ̄4
s

ds ≤ C

q4
k̄

ˆ T

τ

1
(ρk̄s)4α(1− ρk̄s)4α

ds (4.34)

for some constant C. The integral on the right side of (4.34) is finite by Lemma
4.2.3. 2

4.3 Analysis of the model

We now comment on our model and specify how the evolution of the bubble
described in (4.9) depends on the involved parameters as well as on the struc-
ture of the network.
The evolution of the bubble is characterized by two different phases: in the
first one the bubble builds up, since the quick increase of the signed volume
of market orders X dominates in equation (3.4). However, after a while the
processes ρk in equation (4.1) tend towards an equilibrium in which the drift
of ρk vanishes. When this drift’s component (and also the contribution of η
in (4.5)) is sufficiently small, the mean reverting term of equation (3.4) starts
to dominate, leading to the burst of the bubble and to the second phase, i.e.
the decrease of the bubble towards zero.
In the ascending phase, assuming first for illustration purposes the process
(θt)t≥τ to be constantly equal to θ > 0 and σ̄j = 0 for all 0 ≤ j ≤ N , the
essential force of the bubble is given by the deterministic contagion mech-
anism (4.11) driving the signed volume of market orders X in (4.5). The
contagion accelerates to a maximum and then slows down. In this way X
evolves along an “S” shape as shown in Figure 4.1 growing towards an equilib-
rium/maximum that is increasing in the volume term θ and the contagion rate
λ and decreasing in the recovery rate δ. Further, the speed at which X grows
towards the maximum is increasing in λ and decreasing in δ. However, since
both the length and the maximum of observed speculation bubbles are highly
uncertain, we randomize this mechanism by letting θ be a stochastic process.
The impact of a random volume term θ will be to modify the “S” pattern by
allowing the bubble to slow down or pick up in a random way until it reaches
a random maximum. In the bursting phase, the dynamics of the bubble will
be dominated by the mean reverting factor k, which drives the bubble down.
We now focus on the impact of the choice of the underlying network on the
dynamics of the bubble. We compare two different cases, an Erdős-Rényi
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Figure 4.1: Deterministic fraction of buyers for different networks, with λ = 1,
δ = 1.

network with Poisson degree distribution

pj = e−λ̃λ̃j

j! , j ∈ N, λ̃ ∈ R,

and a scale-free network with a power law distribution

pj ∼ j−γ , 2 < γ < 3, j ∈ N. (4.35)

The Erdős-Rényi network has a degree distribution which is very peaked
around the mean degree z, whereas the scale-free one, that is well-known to
better represent real world information networks (see Ozsoylev et al. [2014]),
has a much larger right tale, which allows for a more heterogeneous degree dis-
tribution with some nodes being very connected and others less (core-periphery
structure).
For simplicity, we consider the following deterministic specifications: we set
σ̄j = 0 for all 0 ≤ j ≤ N and assume the processes (Mt)t≥τ , (Λt)t≥τ and
(θt)t≥τ to be constantly equal to M = Λ = θ = 1. Further, we choose τ = 0.
We take two different values of γ in (4.35)), i.e. γ1 = 2.2 and γ2 = 2.5, ob-
taining therefore a more connected network (with z = z1 ∼ 3.2) and a less
connected one (with z = z2 ∼ 1.9). We consider as well two Erdős-Rényi
networks with z = z1 ∼ 3.2 and z = z2 ∼ 1.9, respectively. We take the
distribution pj up to a maximum degree that corresponds to a network with
5000 nodes, see 3.3.2 of Newman [2003].
In Figure 4.1 we illustrate the trajectories of X for the four different networks
taking λ = 1, δ = 1. One can note that both the mean degree and the degree
heterogeneity play a key role in the evolution of X: in particular, both of them
are positively correlated with the speed of the increase. It can also be seen
that in the Erdős-Rényi network, i.e. in the less right skewed one, as well as in
the less connected networks, the fraction reaches its equilibrium later in time.
We then focus on the behavior of the bubble and consider a mean reversion

level k = 0.4 in (4.10). In Figure 4.2 and Figure 4.3 we show the maximum
reached by the bubble as a function of λ and δ respectively, whereas in Figure
4.4 and Figure 4.5 we plot the time needed to reach the maximum, again as a



4.3 Analysis of the model 55

Lambda
0 0.5 1 1.5 2 2.5 3 3.5 4

M
a

x
im

u
m

 r
e

a
c
h

e
d

 b
y
 t

h
e

 b
u

b
b

le

0

500

1000

1500

2000

2500

3000

3500

4000

scale-free
erdos-renyi

Figure 4.2: Maximum value of the
bubble as a function of λ with δ = 1,
k = 0.4.
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Figure 4.3: Maximum value of the bub-
ble as a function of δ with λ = 1,
k = 0.4.
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Figure 4.4: Time to the maximum as a
function of λ with δ = 1, k = 0.4.
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Figure 4.5: Time to the maximum as a
function of δ with λ = 1, k = 0.4.

function of λ and δ respectively.
Figure 4.5 shows that the time to the maximum is decreasing in δ in the

scale-free network and increasing in δ in the Erdős-Rényi one, i.e. the two
networks give rise to different behaviors. It can be seen that for small λ and
big δ the maximum is higher in the case of the scale-free network, whereas the
opposite holds for big λ and small δ. On the other hand, the time needed by
the bubble to attain the maximum is always higher in the case of the Erdős-
Rényi network.
In Figure 4.6 and in Figure 4.7 we plot the average velocity of the growth of
the bubble from time 0 to the time of the maximum, as a function of λ and δ
respectively: it is increasing with respect to λ and decreasing with respect to
δ. Moreover, for fixed λ = 1, the velocity in the scale-free network is higher
for not too small δ, whereas for fixed δ = 1, it is higher in the Erdős-Rényi
network for big values of λ.

We also analyze the influence of k on the bubble’s evolution: figures 4.9,
4.10, 4.10 show the maximum, the time needed to reach it and the average ve-
locity of the increase of the bubble respectively, as functions of k for λ = δ = 1.
We see that, as it could be forecasted, both the maximum and the time to
the maximum are decreasing in k. In particular, the time to the maximum
is decreasing because for large k the mean reverting term starts to dominate



56 Chapter 4. Liquidity induced bubbles in a network

Lambda
0 0.5 1 1.5 2 2.5 3 3.5 4

A
v
e

ra
g

e
 v

e
lo

c
it
y
 o

f 
g

ro
w

th
 o

f 
th

e
 b

u
b

b
le

0

0.2

0.4

0.6

0.8

1

1.2

1.4

scale-free
erdos-renyi

Figure 4.6: Average velocity of growth
as a function of λ, with δ = 1, k = 0.4.
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Figure 4.7: Average velocity of growth
as a function of δ, with λ = 1, k = 0.4.

sooner. On the other hand, as one can see from Figure 4.10, the velocity of the
growth of the bubble is not monotone: for small k, the maximum is reached
very late in time, when the increase of the bubble is already decelerating be-
cause the drift of X approaches zero, so that the mean velocity decreases.
There is one value of k for which the average velocity is maximum, before it
starts to decrease for large values of k because of the decelerating effect of the
mean reverting term.

In our analysis up to this point, we have taken the process θ = (θt)t≥τ to
be constant. We now show the influence of the process θ on the dynamics of
the bubble assuming that it satisfy the SDE

dθt = σθθtdB
3
t , τ ≤ t < T,

where σθ = 0.4, taking δ = 0.2, λ = 0.4, Λ = 0.5, k = 1, σ̄j = 0.1 for all
0 ≤ j ≤ N , τ = 0, T = 7, M = 1, θ0 = 3. See for example Figure 4.12 and
Figure 4.11 for the case of a scale-free network with mean degree z = 3.2.
The influence of the process θ on the bubble is apparent. If θ has an increase

from its initial value, the bubble bursts relatively late, see the yellow dynamics:
in this sense, the growth of θ can postpone the burst of the bubble. The
other trajectories evolve similarly to each other up to the point where the
corresponding processes θ differ. In the blue case, θ decreases and the bubble
bursts soon. For the red dynamics, θ increases, making the bubble growing
more.
We conclude the section illustrating the impact of the structure of the network
by showing three trajectories of the bubble in Figure 4.13 for the the scale-free
case and in Figure 4.14 for the Erdős-Rényi one. We choose δ = 0.2, λ = 0.3,
Λ = 0.5, k = 1, σ̄j = 0.2 for all 0 ≤ j ≤ N , τ = 0, T = 3, M = 1, θ0 = 3
and σθ = 0.2. We can see that the bubble builds up faster in the scale-free
network, but at the same time the trajectories have a steeper decrease, and
therefore the effect of the burst of the bubble is more dramatic. On the other
hand, Figure 4.12 shows that a quick decrease of θ can also lead to a quick
burst, and then to an hard landing.
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Figure 4.9: Time to the maximum, λ =
1, δ = 1, θ = 1
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Figure 4.10: Average velocity of growth
of the bubble, δ = 1, λ = 1, θ = 1.
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4.3.1 Model testing on real data

In this subsection we test some features of our model on real data. Since we
were not able to find tick by tick data for the signed volume of market orders of
well-known bubbles of the past such as for example for the dot com bubble, we
consider the asset prices Alphabet Inc (NASDAQ:GOOG) and Amazon.com
Inc (NASDAQ:AMZN). For these stocks we could obtain tick by tick data
for the signed volume of their market orders starting from the first months
of 2016. These companies, as it can be seen also by the prices reported in
Figure 4.15 and in Figure 4.16, have experienced in the last years a boom,
which has brought many economists to theorize the presence of a new tech
bubble, after the dot com mania of the late 1990s (see for example Bercovici
[2017], Ozimek [2017], Seria [2017], Sharma [2017]). Even if prices today are
not as widely overvalued as in 1999, there are some evidences of a resurgent
tech mania among investors.

We consider the realized signed volume of market orders since 2016. As
shown in Figures 4.17 and 4.18, the signed volume tends to increase over
time, for both Alphabet and Amazon. This behavior indicates the tendency
of traders to invest on these companies, contributing to the increase of the
price in line with our model.
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Our aim is to investigate whether typical trading behaviour in a bubble envi-
ronment is captured in our model. In particular, since we deal with a relatively
small time window of a potential bubble, we calibrate the coefficients of the
deterministic component for X in (4.11), underlying the signed volume of
market orders on the observed data for Amazon and Google by employing a
quadratic regression. In doing so, we further assume σ̄j = 0 for j ∈ 1, · · · , N ,
the process (θt)t≥τ to be constant and that all the nodes of the network have
the same degree d = 3, i.e. that the degree distribution of our network is a
Dirac delta centered in d = 3.
In Figure 4.17 and Figure 4.18 we can observe the “S” behavior discussed in
Section 4.3. We remark that since we perform a local analysis by considering a
specific short time window with constant θ, this behaviour cannot be directly
interpreted as indication for a decreasing phase of the bubble. In the next
time window the signed volume may start to grow steeply again, due to the
impact of a stochastic θ. In this case the curve describing the evolution of the
signed volume would also grow for a longer time, distorting the “S” shape as
illustrated in Figure 4.11 and in Figure 4.12.
We can conclude that the analysis shows the flexibility of our model and its
capacity of

1. describing both the increasing and the descending phase of the bubble;

2. capturing the impact of signed volume market orders on bubbles’ forma-
tion and burst;

3. taking into account the underlying network structure in the contagion
process of a bubble’s evolution;

4. describing typical features of a bubble’s behavior like steep increase and
hard landing.
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Figure 4.17: Realized signed volume of market orders and deterministic signed
volume given by equation (4.11), Alphabet Inc, June 2016 - October 2017.
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Chapter 5

Financial asset bubbles in
banking networks

5.1 Introduction

Contagion within a banking system and possible default propagation have be-
come central topics in the last decades due to a number of financial crisis.
It is then of fundamental importance to investigate how financial distress can
propagate in a network of financial institutions, and develope new quantitative
methods to deal with these topics.
One stream of research aims at extending the traditional regulatory framework
of monetary risk measures, that quantify the risk of financial institutions based
on a stand alone basis, to multivariate systemic risk measures that take as a
primitive the whole financial system. For an overview about this topic, see
Biagini et al. [2017, 2018], Bisias et al. [2012], Chen et al. [2013], Drapeau
et al. [2016], Feinstein et al. [2017], Hoffmann et al. [2016a,b], Kromer et al.
[2016] and references therein.
Other studies investigate potential default cascades due to various contagion
effects in the setting of explicit network models for the financial system. In
the seminal work of Eisenberg and Noe [2001] and its many extensions (see
e.g. Hurd [2016] and references therein) cascade processes in static, deter-
ministic network models are analized by computing endogenously determined
clearing/equilibrium payment vectors. Within the framework of random graph
theory, cascade processes are studied in large financial random networks by
means of law-of-large number effects in Amini and Minca [2016], Amini et al.
[2012, 2016], Detering et al. [2015, 2017, 2018] and Hurd [2016], and in finite
random networks by Elliott et al. [2014], Gai and Kapadia [2010].
Our approach follows the stream of mean field models of interacting systems
of diffusions, first proposed by the influential papers of McKean [1966a,b]. In
recent years, this framework has been applied to the study of systemic risk
in large financial networks, whose dynamic evolution is studied by means of a
system of interacting diffusions. The SDEs stand e.g. for the wealth, monetary
reserves, or other more general indicators for the health of financial institu-
tions. The links between the nodes in the network represent investments or
loans, so that the SDEs are tied together through a term in the drift that
implies the structure of the network. A first simple model in this direction
is given in Fouque and Sun [2013], where a system of SDEs is proposed with
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dynamics

dXi
t = λ

n

n∑
j=1

(Xj
t −Xi

t)dt+ σdW i
t , 0 ≤ t <∞, (5.1)

where W = (W 1
t , . . . ,W

n
t )t≥0 is a standard n-dimensional Brownian motion

and λ, σ > 0. Here, the Xi stand for the log-monetary reserves of banks, and
the drift terms λ(Xj

t − Xi
t) represent the connections between banks in the

network. In this case, the borrowing and lending rate λ is supposed to be
the same for every couple of banks. When the network size n grows towards
infinity, it is a well-know result (see Sznitman [1991]) that due to law-of-large-
number effects the diffusions in (5.1) converge towards their mean-field limit

dȲ i
t = λ

(
E[Ȳt]− Ȳ i

t

)
dt+ σdW i

t , 0 ≤ t <∞.

Thus, for large networks propagation of chaos applies and the evolution
of the Xi asymptotically de-couples due to averaging effects, which allows to
asymptotically describe the complex system by a representative particle evo-
lution. The simple model in (5.1) to study systemic risk has been generalized
in various ways in a number of articles, see e.g. Carmona et al. [2015, 2016]
where mean-field games are considered, Fouque and Ichiba [2013] where the
probability distributions of multiple default times is approximated, Garnier
et al. [2013a,b] and Battiston et al. [2012] where a tradeoff between individual
and systemic risk in a banking network is described, and Chong and Klüppel-
berg [2015], Kley et al. [2015] where partial mean-field limits are studied.
The main objective of our contribution is to extend the model in (5.1) so that
the effect of a financial speculation bubble on the structure of the network
and the evolving systemic risk can be studied. It is a common understanding
that bubbles are intimately connected with financial crises, and many his-
torical crises indeed originated after the burst of a bubble (e.g. the Great
Depression of the 1930s and the financial crisis of 2007-2008). This causality
is investigated for example in Brunnermeier [2008] and statistically confirmed
in Brunnermeier and Schnabel [2015]. However, it seems that literature on
mathematical models that deal with this question is very scarce.
We take a first step towards filling this gap and model by a system of coupled
stochastic differential equations the so called financial robustness of banks, de-
fined here, as done by Battiston et al. [2012] and Hull and White [2001], as an
indicator of agent’s creditworthiness or distance to default. We suppose that
a group of banks, constituting the core of the network, have access to assets
affected by a bubble, and hold them. Other banks in the periphery have not
direct access to those assets, and can make profits from the increase of their
value only investing money on the banks of the core, as in Battiston [2015].
In particular, we assume that every bank invests money on other institutions
at time t depending on their robustness at time t − δ, where δ > 0 is a de-
lay meaning that the banks do not immediately react to the changes in the
system. As a result of our assumption, a preferential attachment mechanism
takes place where the weights of links towards a node does not depend on its
degree but on its “fitness”. Due to this behavior, the bubble breaks the homo-
geneity of the network: the banks holding the bubble attract more investment
and become more systemic.
We then study the behavior of the system when the number of nodes gets large.
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More precisely, we let the number of periphery banks go towards infinity, but
keep the number of core banks holding the bubble constant. We assume more-
over that the impact of the banks of the core on the system does not vanish
when the total number of banks goes to infinity. The main implication of
this assumption is that the banks in the periphery are no more independent,
since are all impacted by a stochastic term, so that the classic law of large
numbers does not apply anymore. Our main result then determines a partial
mean-field limit for the system where the drift of the diffusions contains an
additional term, that represents the impact of the bubble in the network: by
this term, all the banks are directly or indirectly affected when the bubble
bursts. In other words, at the moment of the burst the most systemic banks
are also the most prone ones to be hit by the shock. This effect is amplified by
the impossibility to immediately disinvest when the robustness of some banks
decreases due to the delay δ.
One important feature of our model is the presence of a number of banks,
sometimes called large players, which are significantly more central and im-
portant than the others in the network. This core-periphery structure of our
banking system is confirmed by empirical studies about networks of financial
institutions in Austria, see Boss et al. [2004], in Brazil (Cont and Moussa
[2010-03]), in Germany (Craig and von Peter [2014]), and for the interbank
payment flows within the US Fedwire service (May et al. [2008], Soramaki
et al. [2007]), where large banks are disproportionately connected to small
banks. Core-periphery structured networks are also studied by Chong and
Klüppelberg [2015] and Kley et al. [2015]. In particular, our setting is similar
to the one of Chong and Klüppelberg [2015], where heterogeneous systems of
diffusions governed by Lévy processes are introduced within a core-periphery
structured network, where some particles have a non-vanishing influence when
the system becomes large. However, the scopes of the two approaches are
still quite different. The motivation of our work is to study the impact of
a bubble on a financial network, and for this reason we consider coefficients
which are possibly nonlinear functions of the value of the diffusions. In Chong
and Klüppelberg [2015], where no bubble is present, the setting is more gen-
eral, since no particular focus is put on preferential attachment mechanisms,
although coefficients are supposed to be linear functionals (an extension to
nonlinear Lipschitz coefficients is possible taking more restrictive hypothesis
on the structure of the network) and don’t take into account the delay. On
the other hand, in Chong and Klüppelberg [2015] the authors prove a law of
large numbers type theorem with explicit bounds on the mean squared error
and give a large deviation result, whereas we only prove a (partial) mean-field
limit result without computing bounds on the error. Moreover, differently
than in our approach, in Chong and Klüppelberg [2015] it is supposed that
every particle in the system is only affected by a negligible number (w.r.t to
the size of the network) of periphery particles, or alternatively a single core
particle affects a negligible number of periphery particles. The content of this
chapter is mostly developed in Biagini et al. [In preparation].
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5.2 The model

Let (Ω,F ,F, P ) be a filtered probability space endowed with a (m + n + 2)-
dimensional Brownian motion W̄ = (W 1

t , . . . ,W
n
t ,W

B,1
t , . . . ,WB,m

t , B1
t , B

2
t )t≥0,

m, n ∈ N, where F = (Ft)t∈R+ is the natural filtration of W̄ . We consider a
network of m+n banks, consisting of m banks holding a bubbly asset in their
portfolio (also referred to as core), and n banks that do not directly hold the
bubbly asset (also referred to as periphery).
By following a similar approach as in Kley et al. [2015], we model the ro-
bustness of the banks in the system. This coefficient dynamically evolves and
represents a measure of how healthy a bank remains in stress situations. Let
ρi,n = (ρi,nt )t≥0, i = 1, . . . n, and ρk,B = (ρk,Bt )t≥0, k = 1, . . . ,m, be the robust-
ness of banks not holding and holding the bubble, respectively. We assume
that they satisfy the following system of stochastic differential delay equations
(SDDEs) for t ≥ δ, δ > 0,

dρi,nt =

 1
n− 1

n∑
j=1,j 6=i

fP (ρj,nt−δ −A
n
t−δ)(ρ

j,n
t −Ant ) + 1

m

m∑
k=1

fB(ρk,Bt−δ −A
n
t−δ) (ρk,Bt −Ant )


+ λ(Ant − ρ

i,n
t )dt+ σ1dW

i
t , (5.2)

dρk,Bt =

 1
n

n∑
i=1

fP (ρi,nt−δ −A
n
t−δ)(ρ

i,n
t −Ant ) + 1

m− 1

m∑
`=1,`6=k

fB(ρ`,Bt−δ −A
n
t−δ)(ρ

`,n
t −Ant )

 dt
+ λ(Ant − ρ

k,B
t )dt+ σ2dW

k,B
t + dβt, (5.3)

where λ > 0, σ1 > 0, σ2 > 0 and

Ant = 1
m+ n

(
n∑
r=1

ρr,nt +
m∑
h=1

ρh,Bt

)
, t ≥ δ, (5.4)

is the mean of the robustness of all the banks in the network at time t. For
t ∈ [0, δ), we assume that (ρi,ns )s∈[0,δ), (ρk,Bs )s∈[0,δ), i = 1, . . . , n, k = 1, . . . ,m,
satisfy (5.2)-(5.3) with δ = 0, by following the approach of Mao [2007]. We
also suppose that ρi,n0 = ρ0 > 0 for all i = 1, . . . , n.
The process β = (βt)t≥0 in (5.3) represents the influence of the asset price
bubble on the robustness of core banks and has dynamics

dβt = µtdt+ σBdB
1
t , t ≥ 0, (5.5)

where σB > 0 and µ is an adapted process satisfying

dµt = b̃(µt)dt+ σ̃(µt)dB2
t , t ≥ 0, (5.6)

where b̃, σ̃ fulfill the usual Lipschitz and sublinear growth conditions such that
there exists a unique solution of (5.6) , satisfying

ˆ t

0
E[|µs|2]ds <∞, 0 ≤ t <∞. (5.7)

Later on in Section 5.4 we will specify a concrete model for the bubbly evolu-
tion in (5.5).
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The interdependencies of the banks’ robustness and corresponding con-
tagion effects are specified through the drifts in (5.2) and (5.3). The term
λ(Ant − ρ

i,n
t ) represents an attraction of the individual robustness towards the

average robustness of the system with rate λ as in the classical mean-field
model (5.1). In addition to the homogeneous average term, we introduce the
terms of type fP (ρj,nt−δ − Ant−δ)(ρ

j,n
t − Ant ) and fB(ρk,Bt−δ − Ant−δ) (ρk,Bt − Ant )

that represent a robustness-dependent evolution of the network connectivity:
for typically positive and increasing fB and fP , bank i is the more connected
to bank j the higher bank j’s robustness is above the average. In this way,
the evolution of the bubble alters the connectivity structure of the network
according to a model of preferential attachment. Moreover, the propensity
of a node i to attract future links not only depends on the current level of
robustness of i, but also on the robustness of the banks already connected to
i. This induces a form of preferential preferential attachment, which creates a
strong clustering effect. This change in network structure then comes along
with an increasing systemic risk and instability in case the bubble burst, as
noted by Battiston [2015]. Further we introduce the delay δ > 0 to reflect
the fact that the bank i’s investment decisions does not immediately react to
changes in bank j’s robustness. Note that when there are no bubble banks
and fP = λ, the system (5.2)-(5.3) collapses to the basis mean-field model in
(5.1).
We assume the following hypothesis on fB and fP .
Assumption 5.2.1. The functions fB, fP : (R,B(R)) → (R+,B(R+)) are
measurable, Lipschitz continuous and such that also the functions FB(x) :=
xfB(x), FP (x) := xfP (x), x ∈ R, are Lipschitz continuous, i.e.

|f `(x)− f `(y)| ≤ K1|x− y|, x, y ∈ R, ` = B,P, (5.8)

and
|xf `(x)− yf `(y)| ≤ K2|x− y|, x, y ∈ R, ` = B,P, (5.9)

with 0 < K1,K2 <∞.
Note that (5.9) implies that fB and fP are bounded, since if f(x)x is

Lipschitz then
|f(x)x| = |f(x)x− f(0) · 0| ≤ K2|x|. (5.10)

Example 5.2.2. We have that f(x) = 1 + 2 arctan(x)/π satisfies Assumption
5.2.1: f takes values in [0, 2], and both f and F (x) = xf(x) are Lipschitz,
because they have bounded derivative.
In particular, f is increasing, so that if ρjt > ρit then the link towards j is bigger
then the link towards i. If the robustness ρjt of bank j is equal to the average
Ant in (5.4), then the link towards bank j has weight f(0) = 1, if ρjt > Ant the
link has weight bigger than 1 and if ρjt < Ant the link has weight less than 1.
If all the banks have the same robustness, we have an homogenous network,
where all the links have weight equal to 1.
Furthermore, any constant function clearly satisfies Assumption 5.2.1. For
such a choice, we have a static and homogenous network.
Proposition 5.2.3. Under Assumption 5.2.1, for every δ ≥ 0 there exists a
unique strong solution for the system of SDEs (5.2)-(5.3). Moreover, it holds

sup
0≤s≤t

E[|ρis|2] <∞, 0 < t <∞, i = 1, . . . , n, (5.11)
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sup
0≤s≤t

E[|ρk,Bs |2] <∞, 0 < t <∞, k = 1, . . . ,m. (5.12)

Proof. Suppose by simplicity λ = 1. We start by proving existence and
uniqueness of the strong solution of (5.2)-(5.3) when δ = 0. In this case we
can write the system of SDEs given by (5.2),(5.3) and (5.6) as an (m+n+ 1)-
dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dW̄t, t ≥ 0, (5.13)

where

b(x) =



1
n−1

∑n
j=2 f

P (xj − x̄)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− x1,
...

1
n−1

∑n−1
j=1 f

P (xj − x̄)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− xn
1
n

∑n
j=1 f

P (xj − x̄)(xj − x̄) + 1
m−1

∑m+n
k=n+2 f

B(xk − x̄)(xk − x̄) + x̄− xn+1
...

1
n

∑n
j=1 f

P (xj − x̄)(xj − x̄) + 1
m−1

∑m+n−1
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− xm+n
b̃(xm+2)


,

(5.14)
with x̄ = 1

m+n
∑m+n
i=1 xi. Here σ(x) is a (n+m+ 1)× (n+m+ 1) block matrix

of the form

σ(x) =

 Σ1(x) 0 0
0 Σ2(x) 0
0 0 σ̃(xm+2)

 , (5.15)

where Σ1(x) is a n× n diagonal matrix with diagonal (σ1, . . . , σ1) and Σ2(x)
is the m× (m+ 1) matrix

Σ2(x) =


σ2 0 . . . 0 σB
0 σ2 . . . 0 σB
...

... . . . 0 σB
0 0 . . . σ2 σB

 .

We use Theorem 9.11 in Pascucci [2011] to prove existence and uniqueness of
the strong solution of (5.13), and that the second moments of the solution are
finite. To this purpose, we show that b(·) and σ(·) defined in (5.14) and (5.15),
respectively, are Lipschitz continuous in x and that there exists some C such
that

‖σ(x)‖2 + ‖b(x)‖2 ≤ C(1 + ‖x‖2).

We begin by proving the first condition. The Lipschitz property clearly holds
for σ(·), since σ̃(·) is Lipschitz by hypothesis. Given x = (x1, . . . , xm+n), x′ =
(x′1, . . . , x′m+n) ∈ Rm+n, we show that there exists a constant K̄ ∈ (0,∞) such
that

‖b(x)− b(x′)‖ ≤ K̄‖x− x′‖.

For the first entry of (5.14) we have
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|b1(x)− b1(x′)| ≤ 1
n− 1

n∑
j=2
|fP (xj − x̄)(xj − x̄)− fP (x′j − x̄′)(x′j − x̄′)|

+ 1
m

m+n∑
k=n+1

|fB(xk − x̄)(xk − x̄)− fB(x′k − x̄′)(x′k − x̄′)|+ |x̄− x̄′|+ |x1 − x′1|,

and by Assumption 5.2.1 we have

|b1(x)− b1(x′)| ≤ K2
1

n− 1

n∑
j=2
|(xj − x̄)− (x′j − x̄′)|+K2

1
m

m+n∑
k=n+1

|(xk − x̄)− (x′k − x̄′)|

+ |x̄− x̄′|+ |x1 − x′1|

≤ K2

 1
n− 1

n∑
j=2
|xj − x′j |+

1
m

m+n∑
k=n+1

|xk − x′k|

+ (2K2 + 1)|x̄− x̄′|+ |x1 − x′1|

≤ K2

 1
n− 1

n∑
j=2
|xj − x′j |+

1
m

m+n∑
k=n+1

|xk − x′k|

+ 2K2 + 1
m+ n

m+n∑
i=2
|xi − x′i|

+ |x1 − x′1|.

Then, since for z1, . . . , zN ∈ R it holds
(∑N

i=1 |zi|
)2
≤ N

∑N
i=1 |zi|2, we have

|b1(x)− b1(x′)|2 ≤ 6(m+ n)

(K2)2

 1
(n− 1)2

n∑
j=2
|xj − x′j |2 + 1

m2

m+n∑
k=n+1

|xk − x′k|2


+ 6(m+ n)
(

(2K2 + 1)2 1
(m+ n)2

m+n∑
i=1
|xi − x′i|2 + |x1 − x′1|2

)
≤ C1‖x− x′‖2,

for a suitable constant C1 > 0. Similarly,

|bi(x)− bi(x′)| ≤ Ci‖x− x′‖2, 2 ≤ i ≤ m+ n,

for a suitable constant Ci > 0, whereas

|bm+2(x)− bm+2(x′)| = |b̃(xm+2)− b̃(x′m+2)| ≤ Kµ|xm+2 − x′m+2|,

where Kµ is the Lipschitz constant for the function b̃(·) in (5.6). Then we
obtain

‖b(x)− b(x′)‖2 =
m+n+1∑
i=1

|bi(x)− bi(x′)|2 ≤
(
m+n+1∑
i=1

Ci +K2
µ

)
‖x− x′‖2.

(5.16)

The second condition, i.e.

‖σ(x)‖2 + ‖b(x)‖2 ≤ C(1 + ‖x‖2), (5.17)

for some C > 0, holds because of Assumption 5.2.1 and the hypothesis on σ̃(·).
Inequalities (5.11) and (5.12) then follow by Theorem 9.11 in Pascucci [2011],
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and in particular by estimation (A.2) in the Appendix.
When δ > 0, equation (5.13) becomes

dXt = b̄(Xt, Xt−δ)dt+ σ̄(Xt, Xt−δ)dWt, t ≥ δ, (5.18)

where σ̄(x, y) = σ(x) as in (5.15) and

b(x, y) =



1
n−1

∑n
j=2 f

P (yj − ȳ)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− x1,
...

1
n−1

∑n−1
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− xn
1
n

∑n
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m−1

∑m+n
k=n+2 f

B(yk − ȳ)(xk − x̄) + x̄− xn+1
...

y 1
n

∑n
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m−1

∑m+n−1
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− xm+n
b̃(xm+2)


.

By Theorem 3.1 in Mao [2007, chapter 5], to prove existence and uniqueness
of the solution it suffices to show that the linear growth condition

‖b̄(x, y)‖2 ≤ C(1 + ‖x‖2 + ‖y‖2) (5.19)

holds and that b̄ is Lipschitz in the variable x uniformly in y, i.e. that there
exists a constant K̃ ∈ (0,∞) such that

‖b̄(x, y)− b̄(x′, y)‖2 ≤ K̃‖x− x′‖2 (5.20)

for all y ∈ R, x, x′ ∈ Rm+n. Property (5.19) can be proven by computations
similar to the ones used for showing (5.37). For the Lipschitz condition we
have

|b̄1(x, y)− b̄1(x′, y)| ≤ 1
n− 1

n∑
j=2
|fP (yj − ȳ)||(xj − x̄)− (x′j − x̄′)|

+ 1
m

m+n∑
k=n+1

|fB(yk − ȳ)||(xk − x̄)− (x′k − x̄′)|+ |x̄− x̄′|+ |x1 − x′1|.

Hence, as fB and fP are bounded by K2, the computations to show (5.20)
are identical to the ones for (5.16).
In order to prove (5.11) and (5.12), we apply the same argument used in the
proof of Theorem 3.1 in Mao [2007, chapter 5]: on [0, δ] we have by hypothesis
a classic stochastic differential equation, and by inequality (9.15) in Theorem
9.11 in Pascucci [2011] it holds

E[ sup
0≤s≤δ

‖Xs‖2] <∞. (5.21)

On the interval [δ, 2δ], we can write equation (5.18) as

dXt = b̄(Xt, ξt)dt+ σ̄(Xt, ξt)dWt, δ ≤ t ≤ 2δ,

where ξt = Xt−δ. Once the solution on [0, δ] is known, this is again a classic
SDE (without delay) with initial value Xδ = ξ0, so that by Theorem 9.11 in
Pascucci [2011], there exists a constant C2δ > 0 such that

E[ sup
δ≤s≤2δ

‖Xs‖2] ≤ C2δ
(
1 + E[‖Xδ‖2]

)
e2δC2δ , (5.22)
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which is finite by (5.21). Repeating this argument on the interval [2δ, 3δ], we
obtain

E[ sup
2δ≤s≤3δ

‖Xs‖2] ≤ C3δ
(
1 + E[‖X2δ‖2]

)
e3δC3δ ≤ C3δ

(
1 + E[ sup

δ≤s≤2δ
‖Xs‖2]

)
e3δC3δ <∞

by (5.22). Recursively we have

E[ sup
(k−1)δ≤s≤kδ

‖Xs‖2] <∞.

Then,

sup
0≤s≤t

E[‖Xs‖2] = sup
s∈[k̄δ,(k̄+1)δ]

E[‖Xs‖2] <∞, (5.23)

for some k̄ with [k̄δ, (k̄ + 1)δ] ⊆ [0, t]. 2

5.3 Mean field limit

We now study a mean field limit for the system of banks (5.2)-(5.3) for large
n.
Define the processes ρ̃i = (ρ̃it)t≥0, i = 1, . . . , n, ρ̄k,B = (ρ̄k,Bt )t≥0, k = 1, . . . ,m,
and ν = (νt)t≥0 as the solutions of the following system of SDEs for t ≥ δ:

dρ̃it = −λρ̃itdt+ σ1dW
i
t , (5.24)

dνt =
(
ϕ(t, t− δ) + 1

m

m∑
k=1

fB
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

) (
ρ̄k,Bt − νt − E[ρ̃it]

)
+ λE[ρ̃it]

)
dt,

(5.25)

dρ̄k,Bt =

ϕ(t, t− δ) + 1
m− 1

m∑
`=1,` 6=k

fB
(
ρ̄`,Bt−δ − νt−δ − E[ρ̃it−δ]

) (
ρ̄`,Bt − νt − E[ρ̃it]

) dt
+
(
µt + λ(E[ρ̃it] + νt − ρ̄k,Bt )

)
dt+ σ2dW

k,B
t + σBdB

1
t , (5.26)

with

ϕ(t, t− δ) := E
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)]
, t ≥ δ. (5.27)

For t ∈ [0, δ] we assume that (ρ̃t)0≤t≤δ, (νt)0≤t≤δ and (ρ̄k,Bt )0≤t≤δ satisfy (5.24)-
(5.26) for δ = 0, with initial conditions ρ̃i0 = ρ0 ∈ R, ν0 = 0, ρ̄k,B0 = ρk,B0 ∈ R.
Note that in equation (5.25) the expression of ϕ is independent of the choice
of ρ̃i since ρ̃i, i = 1, . . . , n, are identically distributed. For the same reason,
the process ν in (5.25) does not depend on ρ̃i.
Set

ρ̄i := ρ̃i + ν, i = 1, . . . , n. (5.28)
In particular,

ρ̄it =ρ̄iδ +
ˆ t

δ

(
ϕ(s, s− δ) + 1

m

m∑
k=1

fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])
(
ρ̄k,Bs − νs − E[ρ̃is]

)
+ λ(E[ρ̃is]− ρ̃is)

)
ds

+ σ1W
i
s , t ≥ δ. (5.29)
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Proposition 5.3.1. Under Assumption 5.2.1, for every δ ≥ 0 there exists a
unique strong solution of the system of SDEs (5.24)-(5.26). In particular, it
holds

sup
0≤s≤t

E[|νs|2] <∞, 0 < t <∞, (5.30)

sup
0≤s≤t

E[|ρk,Bs |2] <∞, 0 < t <∞, k = 1, . . . ,m. (5.31)

Proof. For the sake of simplicity we take λ = 1. It is well known that (5.24)
admits a unique strong solution. As before, we start by proving existence and
uniqueness of the strong solution of (5.25)-(5.26) when δ = 0. The system
given by (5.25), (5.26) and (5.6) can be written as an (m + 2)-dimensional
SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≥ 0, (5.32)

where W = (WB,1
t , . . . ,WB,m

t , B1
t , B

2
t )t≥0, and

b(t, x) =


ϕ(t) + 1

m

∑m
k=1 f

B(xk − x1 − ψ(t))(xk − x1 − ψ(t)) + ψ(t),
ϕ(t) + 1

m−1
∑m+1
`=3 fB(x` − x1 − ψ(t))(x` − x1 − ψ(t)) + x1 + xm+2 − x2 + ψ(t),

...
ϕ(t) + 1

m−1
∑m
`=2 f

B(x` − x1 − ψ(t))(x` − x1 − ψ(t)) + x1 + xm+2 − xm+1 + ψ(t),
b̃(xm+2)


(5.33)

with ψ(t) = E[ρ̃it] and

ϕ(t) := E
[
fP
(
ρ̃it − E[ρ̃it]

) (
ρ̃it − E[ρ̃it]

)]
, t ≥ 0. (5.34)

The (m+ 2)× (m+ 2) matrix σ(x) has the form

σ(t, x) =



0 0 . . . 0 0 0
σ2 0 . . . 0 σB 0
0 σ2 . . . 0 σB 0
...

... . . . 0 σB 0
0 0 . . . σ2 σB 0
0 0 . . . 0 0 σ̃(xm+2)


. (5.35)

As before, we rely on Theorem 9.11 in Pascucci [2011]. We have to show that
b and σ defined in (5.33) and (5.35) respectively are Lipschitz continuous in
x uniformly in t and that for each constant T > 0 there exists some C̃ such
that for all t ∈ [0, T ] it holds

‖σ(t, x)‖2 + ‖b(t, x)‖2 ≤ C̃(1 + ‖x‖2).

We begin by proving the first condition. The Lipschitz property clearly holds
for σ, since σ̃ is Lipschitz by hypothesis. Take now x = (x1, . . . , xm+2), x′ =
(x′1, . . . , x′m+2). We have that

|b1(t, x)− b1(t, x′)|

≤ 1
m

m∑
k=1
|fB (xk − x1 − ψ(t)) (xk − x1 − ψ(t))− fB

(
x′k − x′1 − ψ(t)

) (
x′k − x′1 − ψ(t)

)
|
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≤ K2
1
m

m∑
k=1
|(xk − x1 − ψ(t))− (x′k − x′1 − ψ(t))|

= K2

(
1
m

m∑
k=1
|xk − x′k|+ |x1 − x′1|

)
.

Similarly, for k = 2, . . . ,m+ 1 we have

|bk(t, x)− bk(t, x′)| ≤ K2

 1
m− 1

m∑
`=1,` 6=k

|x` − x′`|+ |x1 − x′1|+ |xk − x′k|

 .
With computations as in the proof of Proposition 5.2.3 we obtain that for
t ≥ 0 it holds

‖b(t, x)− b(t, x′)‖2 ≤ C̄‖x− x′‖2, (5.36)

for some appropriate C̄.
We now show the second condition, i.e. that for t ∈ [0, T ] it holds

‖σ(t, x)‖2 + ‖b(t, x)‖2 ≤ C̃(1 + ‖x‖2), (5.37)

for some C̃ > 0. By (5.35) we can focus only on ‖b(t, x)‖. The computations
are here the same as in Proposition 5.2.3, but we have to estimate the term
ϕ(t) from (5.34). Since

|ϕ(t)| =
∣∣∣E [fP (ρ̃it − E[ρ̃it]

) (
ρ̃it − E[ρ̃it]

)]∣∣∣ ≤ K2E[|ρ̃it − E[ρ̃it]|],

≤ K2
(
E[|ρ̃it − E[ρ̃it]|2]

)1/2
≤ K2

(
σ2

1
2 (1− e−2t)

)1/2

≤ K2
σ1√

2
,

(5.37) follows by the proof of Proposition 5.2.3.
Inequalities (5.30) and (5.31) follow since, by Theorem 9.11 in Pascucci [2011],
(5.36) and (5.37) guarantee that the second moments of the solution of (5.32)
are finite.
The proof for the case δ > 0, based on Theorem 3.1 in Mao [2007, chapter 5],
is analogous to the one of Proposition 5.2.3. 2

Denote |x− y|∗t = sups≤t |xs − ys|. We have the following

Theorem 5.3.2. Fix i ∈ N. Under Assumption 5.2.1, for any t ∈ [0,∞) and
δ ≥ 0 it holds

lim
n→∞

(
E
[
|ρi,n − ρ̄i|∗t

]
+ E[|ρk,B − ρ̄k,B|∗t ]

)
= 0, k = 1, . . . ,m,

where ρi,n, ρ̄i, ρk,B, ρ̄k,B are defined in (5.2), (5.29), (5.3), (5.26) respectively.

Before proving Theorem 5.3.2, we give the following

Proposition 5.3.3. Under Assumption 5.2.1, for 0 ≤ δ <∞, it holds

lim
n→∞

ˆ δ

0
E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Āns )(ρ̄is − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0,

(5.38)
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and

lim
n→∞

ˆ t

δ

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Āns−δ)(ρ̄is − Āns )− E
[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0,

for 0 ≤ δ ≤ t < ∞, where ρ̃i and ρ̄i satisfy (5.24) and (5.29), respectively,
and

Ānt = 1
m+ n

(
n∑
r=1

ρ̄rt +
m∑
h=1

ρ̄h,Bt

)
, t ≥ 0. (5.39)

Proof. We limit ourselves to prove the second limit, since the first one
follows as a particular case. Let us write, for t ≥ δ > 0,

E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̄it−δ − Ānt−δ)(ρ̄it − Ānt )− E
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)] ∣∣∣]

≤ 1
n

n∑
i=1

E
[∣∣∣fP (ρ̄it−δ − Ānt−δ)(ρ̄it − Ānt )− fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃it − E[ρ̃it])

∣∣∣]

+ E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃it − E[ρ̃it])− E
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)] ∣∣∣],
since ρ̄i, i = 1, . . . , n are identically distributed and the same holds for ρ̃i,
i = 1, . . . , n.
By (5.28) we have that

Ānt = 1
m+ n

(
n∑
r=1

ρ̄rt +
m∑
h=1

ρ̄h,Bt

)
= 1
m+ n

(
nνt +

n∑
r=1

ρ̃rt +
m∑
h=1

ρ̄h,Bt

)
,

so that

lim
n→∞

Ānt = νt + lim
n→∞

1
m+ n

n∑
r=1

ρ̃rt = νt + E[ρ̃it], a.s.,

by (5.12) and the law of large numbers, as ρ̃i, i = 1, . . . , n, are independent
and identically distributed. Then we have

lim
n→∞

fP (ρ̄it−δ − Ānt−δ)(ρ̄it − Ānt ) =fP
(
νt−δ + ρ̃it−δ − (νt−δ + E[ρ̃it−δ])

) (
νt + ρ̃it − (νt + E[ρ̃it])

)
= fP

(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)
a.s. (5.40)

We now prove that the family of random variables { 1
n

∑n
i=1 f

P (ρ̄is−δ−Āns−δ)(ρ̄is−
Āns )}n∈N is uniformly integrable for every s ∈ [δ, t], so that convergence almost
surely implies convergence in L1.
By point (iii) of Theorem 11 in Protter [2005, chapter 1] it is enough to prove
that for every s ∈ [δ, t],

sup
n

E

( 1
n

n∑
i=1

fP (ρ̄is−δ − Āns−δ)(ρ̄is − Āns )
)2
 <∞. (5.41)

For every s ∈ [δ, t], we have that

E
[( 1
n

n∑
i=1

fP (ρ̄is−δ − Āns−δ)(ρ̄is − Āns )
)2]
≤ (K2)2E

[( 1
n

n∑
i=1
|ρ̄is − Āns |

)2]
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≤ (K2)2E
[(

(1− n/(m+ n))|νs|+
∣∣∣ρ̃is∣∣∣+ 1

m+ n

n∑
r=1
|ρ̃rs|+

1
m+ n

m∑
h=1

∣∣∣ρ̄h,Bs ∣∣∣ )2]

≤ (K2)2E
[(
|νs|+

∣∣∣ρ̃is∣∣∣+ 1
n

n∑
r=1
|ρ̃rs|+

1
m

m∑
h=1

∣∣∣ρ̄h,Bs ∣∣∣ )2]

≤ 4(K2)2
(

E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1
|ρ̄k,Bs |2

]
+ E

[( 1
n

n∑
r=1
|ρ̃rs|

)2])

≤ 4(K2)2
(

E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1
|ρ̄k,Bs |2

]
+ 1
n

E
[ n∑
r=1
|ρ̃rs|2

])
.

≤ 4(K2)2
(

E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1
|ρ̄k,Bs |2

]
+ E[|ρ̃is|2]

)
<∞,

by (5.30) and (5.31) and because E|ρ̃is|2] < ∞. Hence, { 1
n

∑n
i=1 f

P (ρ̄is−δ −
Āns−δ)(ρ̄is− Āns )}n∈N is uniformly integrable and we obtain therefore by (5.40)
that

lim
n→∞

E
[∣∣∣fP (ρ̄it−δ − Ānt−δ)(ρ̄it − Ānt )− fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃it − E[ρ̃it])

∣∣∣] = 0.

Moreover, for δ ≤ s ≤ t it holds

E
[∣∣∣fP (ρ̄it−δ − Ānt−δ)(ρ̄it − Ānt )− fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃it − E[ρ̃it])

∣∣∣]
≤ K1(E[|ρ̄it − Ānt |] + E[|ρ̃it − E[ρ̃it|]),

where the second term belongs to L1 ([δ, t]) and does not depend on n. On
the other hand, we have
ˆ t

0
E[|ρ̄is − Āns |]ds ≤

ˆ t

0
E

[
|ρ̃is|+ (1− n/(m+ n)) |νs|+

1
m+ n

n∑
r=1
|ρ̃rs|+

1
m+ n

m∑
h=1
|ρ̄h,Bs |

]
ds

≤
ˆ t

0
E
[
2|ρ̃is|+ |νs|+ |ρ̄h,Bs |

]
ds

≤ t sup
0≤s≤t

E
[
2|ρ̃is|+ |νs|+ |ρ̄h,Bs |

]
<∞, (5.42)

by (5.30) and (5.31). We can then apply the dominated convergence theorem
to obtain, for t ∈ [δ,∞),

lim
n→∞

ˆ t

δ
E
[∣∣∣fP (ρ̄is−δ−Āns−δ)(ρ̄is−Āns )−fP (ρ̃is−δ−E[ρ̃is−δ])(ρ̃is−E[ρ̃is])

∣∣∣]ds = 0, t ≥ δ.

(5.43)
It remains to show that for t ≥ δ it holds

lim
n→∞

ˆ t

δ

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̃is−δ−E[ρ̃is−δ])(ρ̃is−E[ρ̃is])−E
[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0.

(5.44)
Since ρ̃i, i = 1, . . . , n, are independent and identically distributed, we have

that, for δ ≤ s ≤ t,

lim
n→∞

E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̃is−δ−E[ρ̃is−δ])(ρ̃is−E[ρ̃is])−E
[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣] = 0.
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Then limit (5.44) follows by the dominated convergence theorem, by Assump-
tion 5.2.1 and since the Ornstein-Uhlenbeck process has finite moments, see
the computations in (5.42). 2

Proof of Theorem 5.3.2. We suppose by simplicity λ = 1 and we proceed
by steps, starting from the case when 0 ≤ t < δ, i.e. when there is no delay in
equations (5.2)-(5.3) and (5.25)-(5.26).
First step: case 0 ≤ t < δ.
For every i = 1, . . . , n and t ∈ [0, δ), we have

ρi,nt − ρ̄it =
ˆ t

0
∆n
s ds,

where

∆n
s = 1

n− 1

n∑
j=1,j 6=i

fP (ρj,ns −Ans )(ρj,ns −Ans )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)]

+ 1
m

m∑
k=1

(
fB(ρk,Bs −Ans )(ρk,Bs −Ans )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])

)
− (ρi,ns − ρ̄is) + (Ans − Āns ) + (Āns − E[ρ̃is]− νs).

Thus

|ρi,n − ρ̄i|∗t = sup
s≤t

∣∣∣∣ˆ s

0
∆n
udu

∣∣∣∣ ≤ sup
s≤t

ˆ s

0
|∆n

u| du =
ˆ t

0
|∆n

u| du.

Therefore, for every i = 1, . . . , n and t ≥ 0, we have

E[|ρi,n − ρ̄i|∗t ] ≤ E

[ˆ t

0
|∆n

s |ds
]

≤
ˆ t

0
E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns −Ans )(ρj,ns −Ans )− fP (ρ̄js − Āns )(ρ̄js − Āns ))
∣∣∣]ds

+
ˆ t

0
E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

0
E

[∣∣∣ 1
m

m∑
k=1

(
fB(ρk,Bs −Ans )(ρk,Bs −Ans )− fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )

) ∣∣∣]ds
+
ˆ t

0
E

[
1
m

m∑
k=1

∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])
∣∣ ]ds

+
ˆ t

0
E[|ρi,ns − ρ̄is|]ds+

ˆ t

0
E[|Ans − Āns |]ds+

ˆ t

0
E
[
|Āns − E[ρ̃is]− νs|

]
ds.

(5.45)

By (5.9) it holds
ˆ t

0
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns −Ans )(ρj,ns −Ans )− fP (ρ̄js − Āns )(ρ̄js − Āns ))
∣∣∣]ds

≤ 1
n− 1

n∑
j=1,j 6=i

ˆ t

0
E
[∣∣∣fP (ρj,ns −Ans )(ρj,ns −Ans )− fP (ρ̄js − Āns )(ρ̄js − Āns )

∣∣∣]ds
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≤ K2
1

n− 1

n∑
j=1,j 6=i

ˆ t

0
E
[∣∣∣(ρj,ns −Ans )− (ρ̄js − Āns )

∣∣∣]ds
≤ K2

1
n− 1

n∑
j=1,j 6=i

ˆ t

0
E
[∣∣∣ρj,ns − ρ̄js∣∣∣+ ∣∣∣Ans − Āns ∣∣∣] ds

= K2

ˆ t

0
E
[∣∣∣ρi,ns − ρ̄is∣∣∣] ds+K2

ˆ t

0
E
[∣∣∣Ans − Āns ∣∣∣] ds, t ≥ 0. (5.46)

By (5.4) and (5.39) we have that
ˆ t

0
E
[∣∣Ans − Āns ∣∣] ds ≤ ˆ t

0
E
[ 1
m+ n

n∑
r=1
|ρr,ns − ρ̄rs|

]
ds+

ˆ t

0
E
[ 1
m+ n

m∑
k=1

∣∣ρh,Bs − ρ̄h,Bs
∣∣ ]ds

≤
ˆ t

0
E
[∣∣ρi,ns − ρ̄is∣∣] ds+

ˆ t

0
E
[∣∣ρk,Bs − ρ̄k,Bs

∣∣] ds, t ≥ 0, (5.47)

because all ρi, i = 1, . . . , n, and ρk,B, k = 1, . . . ,m, are identically distributed,
respectively.
We can conclude by (5.46) and (5.47) that
ˆ t

0
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns −Ans )(ρj,ns −Ans )− fP (ρ̄js − Āns )(ρ̄js − Āns ))
∣∣∣]ds

≤ 2K2

ˆ t

0
E
[∣∣∣ρi,ns − ρ̄is∣∣∣] ds+K2

ˆ t

0
E
[∣∣∣ρk,Bs − ρ̄k,Bs

∣∣∣] ds
≤ 2K2

ˆ t

0
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+K2

ˆ t

0
E
[∣∣∣ρk,B − ρ̄k,B∣∣∣∗

s

]
ds, t ≥ 0. (5.48)

Similarly,
ˆ t

0
E
[∣∣∣ 1
m

m∑
k=1

(
fB(ρk,Bs −Ans )(ρk,Bs −Ans )− fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )

) ∣∣∣]ds
≤ K2

ˆ t

0
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+ 2K2

ˆ t

0
E
[∣∣∣ρk,B − ρ̄k,B∣∣∣∗

s

]
ds t ≥ 0. (5.49)

From (5.45), (5.47), (5.48) and (5.49) we have that for t ≥ 0 it holds

E[|ρi,n − ρ̄i|∗t ]

≤ (3K2 + 2)
ˆ t

0
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+ (3K2 + 1)

ˆ t

0
E
[∣∣∣ρk,B − ρ̄k,B∣∣∣∗

s

]
ds

+
ˆ t

0
E
[ ∣∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

0
E
[
|Āns − E[ρ̃is]− νs|

]
ds, t ≥ 0. (5.50)

Proceeding as before, we find

E[|ρk,B − ρ̄k,B|∗t ]

≤ (3K2 + 1)
ˆ t

0
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+ (3K2 + 2)

ˆ t

0
E
[∣∣∣ρk,B − ρ̄k,B∣∣∣∗

s

]
ds
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+
ˆ t

0
E
[ ∣∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Āns )(ρ̄is − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds, (5.51)

so that, summing up (5.50) and (5.51), we have

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,B − ρ̄k,B|∗t ]

≤ (6K2 + 3)
ˆ t

0
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+ (6K2 + 3)

ˆ t

0
E
[∣∣∣ρk,B − ρ̄k,B∣∣∣∗

s

]
ds

+ 2
ˆ t

0
E
[ ∣∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

0
E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Āns )(ρ̄is − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2
ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds, t ≥ 0. (5.52)

We can now apply Gronwall’s Lemma and obtain

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,Bt − ρ̄k,Bt |∗s]

≤ e(6K2+3)t
ˆ t

0
E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ e(6K2+3)t

ˆ t

0
E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Āns )(ρ̄is − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2e(6K2+3)t

ˆ t

0
E

[ ∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νs − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])
∣∣ ]ds

+ 2e(6K2+3)t
ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds, t ≥ 0. (5.53)

We can writeˆ t

0
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
≤
( 1
n− 1 −

1
n

) ˆ t

0
E
[∣∣∣ n∑
j=1,j 6=i

fP (ρ̄js − Āns )(ρ̄js − Āns )
∣∣∣]ds

+
ˆ t

0
E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Āns )(ρ̄is − Āns )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 1
n

ˆ t

0
E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)]
ds t ≥ 0,

with( 1
n− 1 −

1
n

)ˆ t

0
E
[∣∣∣ n∑
j=1,j 6=i

fP (ρ̄is − Āns )(ρ̄is − Āns )
∣∣∣]ds
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≤ 1
n(n− 1)

ˆ t

0

n∑
j=1,j 6=i

E[|fP (ρ̄is − Āns )(ρ̄is − Āns )|]ds

= 1
n

ˆ t

0
E[|fP (ρ̄is − Āns )(ρ̄is − Āns )|]ds ≤ K2

n

ˆ t

0
E[|ρ̄is − Āns |]ds, t ≥ 0,

where the last term tends to zero when n→∞ by (5.42).
Since it can be shown, for t ≥ 0, that

lim
n→∞

ˆ t

0
E

[ ∣∣fB(ρ̄k,Bs − Āns )(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs − νs − E[ρ̃is])(ρ̄k,Bs − νs − E[ρ̃is])
∣∣ ]ds = 0,

and
lim
n→∞

ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds = 0, t ≥ 0,

with the same proof as for (5.43), then by (5.38) we obtain the result for
t ∈ [0, δ).

Second step: case t ∈ [δ, 2δ).
For every i = 1, . . . , n and t ≥ δ, we have

|ρi,nt − ρ̄it| ≤
∣∣∣∣∣
ˆ δ

0
(ρi,ns − ρ̄is)ds+

ˆ t

δ
∆δ,n
s ds

∣∣∣∣∣ ,
where

∆δ,n
s = 1

n− 1

n∑
j=1,j 6=i

fP (ρj,ns−δ −A
n
s−δ)(ρj,ns −Ans )− E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)]
+ 1
m

m∑
k=1

(
fB(ρk,Bs−δ −A

n
s−δ)(ρk,Bs −Ans )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄k,Bs − νs − E[ρ̃is])

)
− (ρi,ns − ρ̄is) + (Ans − Āns ) + (Āns − E[ρ̃is]− νs|).

Thus

|ρi,n − ρ̄i|∗t = sup
s≤t

∣∣∣∣∣
ˆ δ

0
(ρi,nu − ρ̄iu)du+

ˆ s

δ
∆δ,n
u du

∣∣∣∣∣ ≤
ˆ δ

0
|ρi,nu − ρ̄iu|du+ sup

δ≤s≤t

ˆ s

δ

∣∣∣∆δ,n
u

∣∣∣ du
=
ˆ δ

0
|ρi,nu − ρ̄iu|du+

ˆ t

δ

∣∣∣∆δ,n
u

∣∣∣ du, δ ≤ t. (5.54)

For every i = 1, . . . , n, we have

E

[ˆ t

δ

|∆δ,n
s |ds

]
≤
ˆ t

δ

E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ −A
n
s−δ)(ρj,ns −Ans )− fP (ρ̄js−δ − Ā

n
s−δ)(ρ̄js − Āns ))

∣∣∣]ds
+
ˆ t

δ

E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n
s−δ)(ρ̄js − Āns )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

δ

E

[∣∣∣ 1
m

m∑
k=1

(
fB(ρk,Bs−δ −A

n
s−δ)(ρk,Bs −Ans )− fB(ρ̄k,Bs−δ − Ā

n
s−δ)(ρ̄k,Bs − Āns )

) ∣∣∣]ds
+
ˆ t

δ

E

[
1
m

m∑
k=1

∣∣∣fB(ρ̄k,Bs−δ − Ā
n
s−δ)(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
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+
ˆ t

δ

E[|ρi,ns − ρ̄is|]ds+
ˆ t

0
E[|Ans − Āns |]ds+

ˆ t

0
E
[
|Āns − E[ρ̃is]− νs|

]
ds, δ ≤ t.

(5.55)

By (5.9) it holds
ˆ t

δ
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ −A
n
s−δ)(ρj,ns −Ans )− fP (ρ̄js−δ − Ā

n
s−δ)(ρ̄js − Āns ))

∣∣∣]ds
≤ 1
n− 1

n∑
j=1,j 6=i

ˆ t

δ
E
[∣∣∣fP (ρj,ns−δ −A

n
s−δ)

(
(ρj,ns −Ans ) + (ρ̄js − Āns )

) ∣∣∣]ds
+ 1
n− 1

n∑
j=1,j 6=i

ˆ t

δ
E
[∣∣∣(ρ̄js − Āns )

(
fP (ρj,ns−δ −A

n
s−δ)− fP (ρ̄js−δ − Ā

n
s−δ)

) ∣∣∣]ds
≤ K2

ˆ t

δ
E[|ρi,ns − ρ̄is|]ds+K2

ˆ t

δ
E[|Ans − Āns |ds

+
ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣ ∣∣∣fP (ρi,ns−δ −A

n
s−δ)− fP (ρ̄is−δ − Āns−δ)

∣∣∣] ds. (5.56)

We have that for δ ≤ t
ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣ ∣∣∣fP (ρi,ns−δ −A

n
s−δ)− fP (ρ̄is−δ − Āns−δ)

∣∣∣] ds
≤
ˆ t

δ

(
E
[∣∣ρ̄is − Āns ∣∣2]ds)1/2

(
E
[∣∣∣fP (ρi,ns−δ −A

n
s )− fP (ρ̄is−δ − Āns )

∣∣∣2])1/2
ds

≤
(ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣2] ds

)1/2(ˆ t

δ
E
[∣∣∣fP (ρi,ns−δ −A

n
s−δ)− fP (ρ̄is−δ − Āns−δ)

∣∣∣2] ds)1/2

≤
(ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣2] ds

)1/2(ˆ t

δ
E
[∣∣∣fP (ρi,ns−δ −A

n
s−δ)2 − fP (ρ̄is−δ − Āns−δ)2

∣∣∣] ds)1/2

≤
√

2K2

(ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣2] ds

)1/2(ˆ t

δ
E
[∣∣∣fP (ρi,ns−δ −A

n
s−δ)− fP (ρ̄is−δ − Āns−δ)

∣∣∣] ds)1/2

≤
√

2K1K2

(ˆ t

δ
E
[∣∣∣ρ̄is − Āns ∣∣∣2] ds

)1/2(ˆ t

δ
E
[∣∣∣ρi,ns−δ − ρ̄is−δ∣∣∣+ ∣∣∣Ans−δ − Āns−δ∣∣∣] ds

)1/2

,

where we have used that |a− b|2 ≤ |a2 − b2| for a, b ∈ R+.

Then, setting Gn1 (t) :=
(´ t

δ E
[∣∣∣ρ̄is − Āns ∣∣∣2] ds)1/2

, by (5.56) we have

ˆ t

δ
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ −A
n
s−δ)(ρj,ns −Ans )− fP (ρ̄js−δ − Ā

n
s−δ)(ρ̄js − Āns ))

∣∣∣]ds
≤ K2

ˆ t

δ
E[|ρi,ns − ρ̄is|]ds+K2

ˆ t

δ
E[|Ans − Āns |ds

+
√

2K1K2G
n
1 (t)

(ˆ t

δ
E
[∣∣∣ρi,ns−δ − ρ̄is−δ∣∣∣+ ∣∣∣Ans−δ − Āns−δ∣∣∣] ds

)1/2

, δ ≤ t.

(5.57)
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Since
ˆ t

δ

E
[∣∣∣ρi,ns−δ − ρ̄is−δ∣∣∣+

∣∣Ans−δ − Āns−δ∣∣] ds = E

[ˆ t

δ

(∣∣∣ρi,ns−δ − ρ̄is−δ∣∣∣+
∣∣Ans−δ − Āns−δ∣∣) ds]

= E

[ˆ t−δ

0

(∣∣ρi,nu − ρ̄iu∣∣+
∣∣Anu − Ānu∣∣) du

]
≤
ˆ δ

0
E[
∣∣ρi,nu − ρ̄iu∣∣+

∣∣Anu − Ānu∣∣]du, δ ≤ t < 2δ,

we can rewrite (5.57) as
ˆ t

δ
E
[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ −A
n
s−δ)(ρj,ns −Ans )− fP (ρ̄js−δ − Ā

n
s−δ)(ρ̄js − Āns ))

∣∣∣]ds
≤ K2

ˆ t

δ
E[|ρi,ns − ρ̄is|]ds+K2

ˆ t

δ
E[|Ans − Āns |ds

+
√

2K1K2G
n
1 (t)

(ˆ δ

0
E
[∣∣∣ρi,ns − ρ̄is∣∣∣+ ∣∣∣Ans − Āns ∣∣∣] ds

)1/2

, δ ≤ t. (5.58)

Similarly,
ˆ t

0
E

[∣∣∣ 1
m

m∑
k=1

(
fB(ρk,Bs−δ −A

n
s−δ)(ρk,Bs −Ans )− fB(ρ̄k,Bs−δ − Ā

n
s−δ)(ρ̄k,Bs − Āns )

) ∣∣∣]ds
≤ K2

ˆ t

δ

E[|ρk,Bs − ρ̄k,Bs |]ds+K2

ˆ t

δ

E[|Ans − Āns |ds

+
√

2K1K2G
n
2 (t)

(ˆ δ

0
E
[∣∣ρk,Bs − ρ̄k,Bs

∣∣+
∣∣Ans − Āns ∣∣] ds

)1/2

, δ ≤ t. (5.59)

with Gn2 (t) :=
(´ t

δ E
[∣∣∣ρ̄k,Bs − Āns

∣∣∣2] ds)1/2
.

From (5.47), (5.54), (5.55), (5.58) and (5.59) we obtain

E[|ρi,n − ρ̄i|∗t ]

≤ (3K2 + 2)
ˆ t

δ

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (3K2 + 1)

ˆ t

δ

E[|ρk,B − ρ̄k,B |∗s]ds

+
√

2K1K2G
n
1 (t)

(ˆ δ

0
E
[∣∣ρi,ns − ρ̄is∣∣+

∣∣Ans − Āns ∣∣] ds
)1/2

+
√

2K1K2G
n
2 (t)

(ˆ δ

0
E
[∣∣ρk,Bs − ρ̄k,Bs

∣∣+
∣∣Ans − Āns ∣∣] ds

)1/2

+
ˆ t

0
E

[ ∣∣∣fB(ρ̄k,Bs−δ − Ā
n
s−δ)(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n
s−δ)(ρ̄js − Āns )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ δ

0
E[|ρi,ns − ρ̄is|]ds+

ˆ t

0
E
[
|Āns − E[ρ̃is]− νs|

]
ds, δ ≤ t < 2δ. (5.60)

At the same way, by (5.3) and (5.26) we have

E[|ρk,B − ρ̄k,B|∗t ]

≤ (3K2 + 1)
ˆ t

δ
E
[∣∣∣ρi,n − ρ̄i∣∣∣∗

s

]
ds+ (3K2 + 2)

ˆ t

δ
E[|ρk,B − ρ̄k,B|∗s]ds
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+
√

2K1K2G
n
1 (t)

(ˆ δ

0
E
[∣∣∣ρi,ns − ρ̄is∣∣∣+ ∣∣∣Ans − Āns ∣∣∣] ds

)1/2

+
√

2K1K2G
n
2 (t)

(ˆ δ

0
E
[∣∣∣ρk,Bs − ρ̄k,Bs

∣∣∣+ ∣∣∣Ans − Āns ∣∣∣] ds
)1/2

+
ˆ t

0
E
[ ∣∣∣fB(ρ̄k,Bs−δ − Ā

n
s−δ)(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E
[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Āns−δ)(ρ̄is − Āns )− E
[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ δ

0
E[|ρk,Bs − ρ̄k,Bs |]ds+

ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds, δ ≤ t < 2δ.

(5.61)
Summing up (5.60) and (5.61) we find

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,B − ρ̄k,B |∗t ]

≤ (6K2 + 3)
ˆ t

0

(
E[|ρi,n − ρ̄i|∗s] + E[|ρk,B − ρ̄k,B |∗s]

)
ds

+
√

2K1K2(Gn1 (t) +Gn2 (t))
(ˆ δ

0

(
E[|ρi,ns − ρ̄is|] + E[|ρk,Bs − ρ̄k,Bs |] + E

[∣∣Ans − Āns ∣∣]) ds
)1/2

(5.62)

+
ˆ t

0
E

[ ∣∣∣fB(ρ̄k,Bs−δ − Ā
n
s−δ)(ρ̄k,Bs − Āns )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄k,Bs − νs − E[ρ̃is])

∣∣∣ ]ds
+
ˆ t

0
E

[∣∣∣ 1
n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n
s−δ)(ρ̄js − Āns )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+
ˆ t

0
E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Āns−δ)(ρ̄is − Āns )− E
[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2
ˆ t

0
E
[
|Āns − νs − E[ν̃is|]

]
ds, δ ≤ t < 2δ. (5.63)

With the same computations used in the first step of the proof, we show that
the last four terms of (5.63) converge to zero when n → ∞ by the proof of
Proposition 5.3.3. The term in (5.62) also goes to zero when n → ∞, by the
first step of the proof and because limn→∞[Gn1 (t) + Gn2 (t)] < ∞, by (5.42).
Then applying Gronwall’s Lemma to (5.63) we prove the result for t ∈ [δ, 2δ).
The result then follows by proceeding in the same way for all the steps t ∈
[kδ, (k + 1)δ), k ≥ 2. 2

5.4 Numerical analysis

We now study by numerical simulations how the system described in Section
5.3 reacts to the growth and the burst of a bubble. In particular, we investigate
how a bank not holding the bubbly asset can be affected by a bubble burst
through contagion mechanisms. We first consider the case of (5.2)-(5.3), i.e.
of a network with a finite number of banks, and then we analyze the limit
system (5.24)-(5.26).
The bubble has the dynamics specified in Chapter 3, i.e. it solves (5.5) with

µt = MtΛt(−kβt + 2µ̄t), σt = 2σ̄MtΛt, t ≥ 0,
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where M = (Mt)t∈[0,T ], Λ = (Λt)t∈[0,T ] are respectively a measure of illiquidity
and the so called resiliency, µ̄ = (µ̄t)t≥0 is the drift of the signed volume of
market orders (buy market orders minus sell market orders) and σ̄ > 0. Here,
the illiquidity M is supposed to be a geometric Brownian motion, i.e.

dMt = Mt(µMdt+ σMdB3
t ), t ≥ 0.

with µM ∈ R and σM > 0. We choose the same function f for both core
and periphery banks in (5.2)-(5.3), i.e. fB = fP = f . In particular, we take
f(x) = 1 + 2 arctan(x)/π, as in Example 5.2.2.

5.4.1 Risk analysis for the finite case

We first focus on the system (5.2)-(5.3). We investigate how the first bank
reacts when banks holding the bubble are in trouble. Specifically, we here
introduce and compute the risk measure

Riskiα = − sup
x∈R


 1
Ns

Ns∑
k=1

1{
(ρi,n,k
τk+∆−ρ

i,n,k
τk

)/ρi,n,kτk
≤x
} ≤ α

 , (5.64)

with α > 0, where Ns is the number of simulations of the processes in (5.2)-
(5.3), τk is the value at the k-th simulation of the bursting time τ of the
bubble, and ρi,n,kt is the value of ρi,nt computed in the k-th simulation.
The risk measureRiskiα as defined in (5.64) is analogous to the CoVar of a bank
without the bubble with respect to a bank with the bubble (for a definition
of CoVar see e.g. Biagini et al. [2017] and Brunnermeier and Oehmke [2013]).
Note that, since the banks not holding the bubble are identically distributed,
we only compute the risk for one bank.
From now on, we set α = 0.05 in (5.64). We perform Ns = 10000 simulations
of Risk1

0.05 in the case when there are n = 6 banks not holding the bubble and
m = 2 banks holding it. We consider different values of λ and of the delay δ.
The results are given in Table 5.1:

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3
λ = 0.5 0.283 0.390 0.451 0.716 0.925 0.916 0.901
λ = 1 0.281 0.385 0.434 0.661 0.886 0.879 0.875
λ = 2 0.280 0.377 0.422 0.641 0.851 0.824 0.819

Table 5.1: Risk1
0.05 in the case when the robustness is given by (5.2)-(5.3),

with parameters σ1 = σ2 = 0.2, ∆ = 0.1, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6,
k = 1, 2.

As expected, the risk is bigger for large delays, since a large delay means that
the banks without the bubble are not able to quickly disinvest, when other
institutions holding the bubble are in trouble. However, for delays larger than
0.1, the risk is still big but it decreases. This depends on the fact that we check
the robustness of the banks at time τ + 0.1: at this time, when δ = 0.2, 0.3, f
is smaller than in the case δ = 0.1 because banks are cross investing on each
other according to a value of the robustness, which is realized much before the
bubble’s burst.
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Moreover, the risk is decreasing with λ. Indeed, it follows by (5.2) that ρi,n
reverts to

Ant + 1
λ

 1
n

n∑
i=1

f(ρi,nt−δ −A
n
t−δ)(ρ

i,n
t −Ant ) + 1

m− 1

m∑
`=1,`6=k

f(ρ`,Bt−δ −A
n
t−δ)(ρ

`,n
t −Ant )

 ,
so that for large λ the term involving the network, and then the direct effects
of the banks holding the bubbly asset, is less significative.

We now consider (5.2)-(5.3) when β is replaced by β̄, where

dβ̄t =

0 for t ≤ τ,
ρ1,β̄
τ

ρ1,β
τ
dβt for t ≥ τ,

(5.65)

where ρ1,β is the robustness of bank 1 when there is a bubble in the network,
and ρ1,β̄ is the robustness of bank 1 when there is no bubble. In this way we
model the case when the banks that used to hold the bubbly asset are subject
at time τ to the same (relative) shock, but without having experienced the
growth of the bubble. The results are given in Table 5.2, for the same param-
eters as in Table 5.1.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3
λ = 0.5 0.281 0.383 0.388 0.415 0.505 0.499 0.494
λ = 1 0.280 0.381 0.385 0.403 0.502 0.494 0.492
λ = 2 0.280 0.371 0.380 0.399 0.500 0.490 0.489

Table 5.2: Risk1
0.05 in the case when the robustness is given by (5.2)-(5.3) with

no bubble in the system, but with the same shock at time τ , for parameters
σ1 = σ2 = 0.2, ∆ = 0.1, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

We note that for δ = 0 there is not any significant difference with the case
when there is a bubble in the system, since the banks are able to disinvest
immediately at the time when the shock hits the banks with the bubble. Any-
way, this difference increases with the delay. When the delay is big, the banks
with no bubble are much more in trouble in the first case, i.e when they are
attached to banks holding the bubbly asset.
We can then conclude that the increase of the value of the bubbly asset can
put the network in trouble, because it makes the system more centralized on
the riskier banks, due to the preferential attachment mechanism implied by
(5.2)-(5.3).
This can also be seen by considering a static network, i.e. by taking fB =
fP = 1 in (5.2)-(5.3). In this case, we obtain the following values of the risk
for different values of λ:

λ = 0.5 λ = 1 λ = 2
0.670 0.626 0.599

Table 5.3: Risk1
0.05 with ∆ = 0.1 in the case of a static network, with fB =

fP = 1 and with parameters σ1 = σ2 = 0.2, ∆ = 0.1, ρi,60 = ρk,B0 = 0.5,
i = 1, . . . , 6, k = 1, 2..
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Note that in this case the delay plays no role since it only affects the dynamics
through fB and fP . Comparing this result with Table 5.1, one can see that
when δ in (5.2)-(5.3) is small, then the fact that banks are able to quickly
disinvest makes the system safer than in the case of a static network. On
the other hand, for big values of δ, a centralized network towards the banks
holding the bubble and the impossibility to disinvest quickly after the burst
give rise to a more dangerous system than in the static case.

5.4.2 Risk analysis for the mean field limit

We now consider the case of the limit system (5.24)-(5.26). We compute

Risk1
0.05 = − sup

x∈R


 1
Ns

Ns∑
k=1

1{
(ρ̄1,k
τk+∆−ρ̄

1,k
τk

)/ρ̄1,k
τk
≤x
} ≤ 0.05

 , (5.66)

where Ns and τk are the number of simulations and the time of the burst
of the bubble in the k-th simulation, respectively, and ρ̄1,k

t is the value of ρ̄1
t

computed in the k-th simulation.
As before, we consider m = 2 banks holding the bubble and we make Ns =
10000 simulations of (5.24)-(5.26) taking different values of λ and δ.
We compute φ(t, t−δ) = E

[
f
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)]
in (5.25) and (5.26)

via Monte Carlo simulations of the trajectories of the Ornstein-Uhlenbeck
process in (5.24). Note that E[ρ̃it] = ρ0e

−λt. The results are gathered in Table
5.4.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3
λ = 0.5 0.305 0.367 0.563 0.908 1.281 1.251 1.226
λ = 1 0.302 0.360 0.521 0.765 1.170 1.125 1.117
λ = 2 0.302 0.356 0.503 0.647 0.908 0.907 0.877

Table 5.4: Risk1
0.05 with ∆ = 0.1 of the mean field limit (5.24)-(5.26), with

parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.

As before, the risk is increasing with the delay until δ = 0.1 and decreasing
with λ, since ρ̄it reverts to

1
λ

(
ϕ(t, t− δ) + 1

m

m∑
k=1

f
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

) (
ρ̄k,Bt − νt − E[ρ̃it]

))
+E[ρ̃it]−ρ̃it,

so that a large λ diminishes the influence of the banks holding the bubbly
asset.
We can also see that the risk is bigger at the limit by comparing (5.2) and
(5.29): since νt−δ + E[ρ̃it] < Ant−δ, because the first term is the average robust-
ness of banks not holding the bubble, the argument of f is bigger in (5.29).
This leads to a bigger weight multiplying the loss at the moment of the burst
at the limit.
In Table 5.5, we report the results for the case when β is replaced by β̄ as in
(5.65), i.e. when there is no bubble in the network.
As before, it can be seen that, when the delay is large enough, the preferential
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δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3
λ = 0.5 0.303 0.355 0.468 0.682 0.698 0.659 0.645
λ = 1 0.302 0.347 0.410 0.528 0.640 0.628 0.627
λ = 2 0.300 0.340 0.395 0.455 0.612 0.561 0.550

Table 5.5: Risk1
0.05 with ∆ = 0.1 in the mean field limit (5.24)-(5.26) with no

bubble, with parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.

attachment mechanism, that takes place during the ascending phase of the
bubble, creates a network more exposed to systemic risk at the time of the
shock. If we consider a a static network, with fB = fP = 1, the results, shown
in Table 5.6, agree with the ones obtained in the case of the finite network:
for small delays the dynamic network is less exposed to systemic risk with
respect to the static one, whereas when the delay increases and the banks in
the dynamic network are slower in disinvesting, the risk is bigger than for the
static network.

λ = 0.5 λ = 1 λ = 2
1.001 0.910 0.866

Table 5.6: Risk1
0.05 with ∆ = 0.1 in the case of a static network with fB =

fP = 1 in the mean field limit, with parameters σ1 = σ2 = 0.2, ∆ = 0.1,
ρk,B0 = 0.5, k = 1, 2.



Appendix A

Existence and uniqueness
theorems

For the reader’s convenience we report here the results, which we have used
here to prove existence and uniqueness of a strong solution of a system of
stochastic differential equations (SDEs) and of stochastic differential delay
equations (SDDEs). These theorems also guarantee the finiteness of the second
moments of the strong solution.
In the following, let (Ω,F , P ) be a complete probability space with a filtration
F := (Ft)t≥0 satisfying the usual conditions, and Bt = (B1

t , . . . , B
m
t )t≥0, be an

m-dimensional F-Brownian motion defined on (Ω,F , P ).
We begin by the following existence and uniqueness result for a system of
SDEs, given in Theorem 9.11 in Pascucci [2011].

Theorem A.0.1. Let X0 be an Ft0-measurable Rd-valued random variable
such that E[X2

0 ] <∞. Consider the d-dimensional stochastic differential equa-
tion of Itô type

dXt = f(t,Xt)dt+ g(t,Xt)dBt, t0 ≤ t ≤ T, (A.1)

with Xt0 = X0, where f : [t0, T ] × Rd → Rd and g : [t0, T ] × Rd → Rd×m are
both Borel measurable.
Assume that there there exist two positive constants K1 and K2 such that:

1. (Lipschitz condition) for all x, y ∈ Rd and t ∈ [t0, T ],

‖f(t, x)− f(t, y)‖2 + ‖g(t, x)− g(t, y)‖2 ≤ K1‖x− y‖2;

2. (Linear growth condition) for all (t, x) ∈ [t0, T ]× Rd,

‖f(t, x)‖2 + ‖g(t, x)‖2 ≤ K2(1 + ‖x‖2).

Then there exists a unique solution X = (Xt)x∈[t0,T ] to equation (A.1) and it
holds

E

[
sup
t0≤s≤t

‖Xs‖2
]
≤ C(1 + E

[
‖X0‖2

]
)eCt, t ∈ [t0, T ], (A.2)

where C is a constant depending on K2 and T only.

We now recall Theorem 3.1 in Mao [2007, chapter 5], that provides the
existence and uniqueness results for SDDEs.
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Theorem A.0.2. Let F : [t0, T ]× Rd × Rd → Rd and G : [t0, T ]× Rd × Rd →
Rd×m be Borel-measurable. Consider the delay equation

dXt = F (t,Xt, Xt−τ )dt+G(t,Xt, Xt−τ )dBt, (A.3)

with initial data {Xs : t0− τ ≤ s ≤ t0}, such that Xs is Ft0-measurable for all
s ∈ [t0 − τ, t0] and E[‖Xs‖2] <∞ for all s ∈ [t0 − τ, t0].
Assume that there exists two positive constants K̃1 and K̃2 such that

1. (Linear growth condition) for all (t, x, y) ∈ [t0, T ]× Rd × Rd,

‖F (t, x, y)‖2 + ‖G(t, x, y)‖2 ≤ K̃1(1 + ‖x‖2 + ‖y‖2);

2. (Lipschitz condition on x) for all t ∈ [t0, T ], y ∈ Rd and x, x̄ ∈ Rd,

‖F (t, x, y)− F (t, x̄, y)‖2 + ‖G(t, x, y)−G(t, x̄, y)‖2 ≤ K̃2‖x− x̄‖2.

Then there exists a unique solution X = (Xt)t∈[t0,T ] to equation (A.3).
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