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Abstract. We revisit Marinacci’s uniqueness theorem for convex-ranged probabilities and its

applications. Our approach does away with both the countable additivity and the positivity

of the charges involved. In the process, we uncover several new equivalent conditions, which

lead to a novel set of applications. These include extensions of the classic Fréchet-Hoeffding

bounds as well as of the automatic Fatou property of law-invariant functionals. We also

generalize existing results of the “collapse to the mean”-type concerning capacities and α-

MEU preferences.

1. Introduction

Two convex-ranged probabilities p and q on a λ-system are one and the same if there exists

an event E with 0 < p(E) < 1 and for every event A with p(A) = p(E) we have q(A) = q(E).

This result was originally obtained by Marinacci [25] under the assumption that q be countably

additive, and has been recently extended by Svistula [32], who allows for both p and q to be

only finitely additive.

Shortly after obtaining it, Marinacci gave two applications of his result. The first (Marinacci

[24]) deals with symmetric coherent capacities. Introduced by Kadane & Wasserman in [20]

with the purpose of providing a suitable analog of the uniform measure for use in robust

statistics, symmetric coherent capacities are non-additive set functions defined as the upper
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envelope of sets of countably additive probabilities that satisfy a condition called p-invariance.

This stipulates that the capacity of an event depends only on its p-probability, where p is a given

reference probability. Symmetric coherent capacities encode the notion that the probability of

the various events may be fuzzy, in the sense that it could be pinned down to an interval but

not necessarily to a point estimate. Nonetheless, Marinacci showed that, when p has convex

range and is countably additive, the idea of symmetric coherent capacities becomes vacuous

as soon as there exists a single non-trivial event that admits such a point estimate. More

precisely, if there exists one event to which all the measures in the defining set assign the same

probability and this is strictly in between 0 and 1, then a symmetric coherent capacity can

only be a measure.

A second application (Marinacci [26]) concerns the so-called α-MEU model. This is a decision-

theoretic paradigm whereby uncertain prospects, represented as mappings from a measurable

space to the reals, are evaluated by means of a functional of the form

V (f) = αmax
q∈Q

∫
fdq+ (1− α)min

q∈Q

∫
fdq,

where α ∈ [0, 1] and Q is a set of finitely additive probabilities. An α-MEU model is said to be

p-invariant if there exists an underlying convex-ranged probability p such that the value of the

functional depends only on the p-distribution of its argument. Marinacci showed that, if all

the probabilities in the set Q are countably additive (such α-MEU models are called monotone

continuous), then the existence of a single non-trivial event on which all probabilities in Q
agree implies that, for every prospect f , we must have V (f) =

∫
fdp. That is, once again, the

typically non-linear functional under consideration must collapse to a linear one.

These two applications are the prototype of others that have followed, which all consisted

in showing that, rather surprisingly, certain non-linear functionals (pricing functions, risk

measures, cooperative games) under the seemingly mild condition of p-invariance must collapse

to a linear form. Specifically, Castagnoli et al. [9] have shown that, in a context of financial

markets with frictions, the existence of a single frictionless risky asset implies the linearity

of the pricing function and an analogous result has been obtained by Frittelli and Rosazza

Gianin [15] in a risk measure setting. Later, Bellini et al. [7] have obtained a general “collapse

to the mean” result for convex functionals, which contains the previous results as special cases.

Similar results, proved with different methods yet reducible to an application of Marinacci’s

theorem, have been obtained by Liebrich and Munari [22], who establish the “collapse to the

mean” for a variety of functionals beyond the convex case, and by Amarante [4], who observes

that the anticore of a submodular, nonatomic, law-invariant capacity is either a singleton or

must span an infinite dimensional subspace.

With regard to this type of applications, it must be noted that Svistula’s extension of Mari-

nacci’s result is significant as in many applications the assumption of countable additivity is

not met. For instance, when dealing with the α-MEU model Marinacci had to introduce the

extra assumption of monotone continuity; in the case of risk measures, discontinuities at 0 are

common and require considerations of purely finitely additive charges. Similar considerations
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can be made for all other settings. Thus, by weakening the assumption that the probability q

in Marinacci’s theorem be countably additive, Svistula’s extension has considerably widened

the range of applicability of the original result.

In the present paper, we are concerned both with the uniqueness result for convex-ranged

probabilities per se and with its applications. Two sections, Section 3 and Section 8, are

devoted to the uniqueness theorem. In Section 3 we provide a new proof for the uniqueness

result for convex-ranged probabilities that are finitely additive. Notably, our proof is much

shorter and, at the same time, much simpler than the existing ones. The main dividend is

that not only does our proof clarify the nature of the result under consideration, but it also

leads us to uncovering several equivalent conditions, thus easing the applicability of the result

(Theorems 3.3 and 3.5). We complete Section 3 by presenting a strikingly short proof for the

special case of countably additive probabilities defined on a σ-algebra (Corollary 3.6). Building

on the approach of Section 3, in Section 8 we prove an altogether novel uniqueness result for

signed charges (Theorem 8.3).

Sections 4 to 7 as well as the second part of Section 8 are devoted to applications. Those

of Section 4 are “standard”, in the sense that they concern the collapse to a linear form of

various non-linear functionals. We prove a new result about the “collapse” of the (anti)core of a

law-invariant capacity, which showcases the most fundamental implication of commonly made

assumptions (Theorem 4.2). We, then, show that the results in the existing literature follow

at once as simple corollaries. We round up Section 4 by re-considering the same problems

under conditions milder than those imposed in the existing literature. In Section 5, we present

an entirely novel application of the uniqueness theorem: an extension of the classical Fréchet-

Hoeffding bounds to the case of finitely additive probabilities (Theorem 5.1). This extension, in

turn, provides the grounds for the two other novel applications of the subsequent two sections.

In Section 6, we extend the important result on the automatic Fatou property of convex, law-

invariant risk measures to the case of an underlying probability which is only finitely additive

(Theorem 6.2). Notably, our approach to this problem, informed as it is by the developments of

the previous sections, provides a fresh perspective on the automatic Fatou property even in the

countably additive case. In Section 7, we investigate under which conditions a capacity can be

simultaneously law-invariant with respect to different probabilities and show that this can only

occur for very special capacities (Proposition 7.3). Finally, in the second part of Section 8, after

having established the uniqueness result for signed measures, we provide extended versions of

the Fréchet-Hoeffding bounds and of the automatic Fatou property.

2. Preliminaries

In this section we collect some basic definitions about set functions. We refer the reader to

[11, 27] for more on the subject matter. Throughout the paper, the basic environment is a pair

(Ω,Σ), where Ω is a nonempty set and Σ a family of subsets of Ω. In most applications, the

set Ω is interpreted as a set of states of nature and Σ as the class of measurable events, but

other interpretations are possible. For instance, Ω can be interpreted as the set of players in a

cooperative game and Σ as the class of possible coalitions; Ω can be regarded as a set of possible
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criteria for evaluating a complex system, etc. We stipulate the following minimal assumption

on Σ that we maintain throughout the paper. Notice that this covers most modelling situations

where it is typically assumed that either Σ is a λ-system or an algebra or a σ-algebra.

Assumption 2.1. Σ contains Ω and is closed under complementation and finite unions of

pairwise disjoint sets.

A set function v : Σ → R is a (cooperative) game if v(∅) = 0. It is a capacity if it is monotone,

i.e., v(A) ≤ v(B) for all A,B ∈ Σ with A ⊂ B. Throughout the paper, capacities are assumed

to be finite, i.e., v(Ω) < +∞, and are normalized so that v(Ω) = 1.

We denote by ba(Σ) the normed space of (signed) charges, i.e., finitely additive set functions

µ : Σ → R with bounded variation, equipped with the total variation norm, and by ca(Σ)

its subspace consisting of countably additive functions. We denote by P(Σ) the subset of

probability charges. Normally, we will use gothic letters like p and q to indicate finitely additive

probabilities, while we will use capital boldface letters like P and Q for countably additive

probabilities. For p ∈ P(Σ) and µ ∈ ba(Σ) we say that:

(1) µ is absolutely continuous with respect to p, written µ ≪ p, if, for every N ∈ Σ with

p(N) = 0, we have µ(N) = 0.

(2) µ is strongly absolutely continuous with respect to p, written µ ≪ p, if, for all ε > 0 there

is δ > 0 such that, for all A ∈ Σ, p(A) ≤ δ implies |µ(A)| ≤ ε.

(3) p is nonatomic if, for every A ∈ Σ with p(A) > 0, there exists B ∈ Σ such that B ⊂ A and

0 < p(B) < p(A).

(4) p has convex range or is strongly nonatomic if, for all A ∈ Σ and 0 ≤ ε ≤ p(A), there exists

B ∈ Σ such that B ⊂ A and p(B) = ε.

The set of signed charges, resp. finitely additive probabilities, that are absolutely continuous

with respect to p is denoted by bap(Σ), resp. Pp(Σ). Clearly, a convex range implies nonatomic-

ity. The converse implication fails in general but it holds for countably additive probabilities

if Σ is a σ-algebra; see [8, Theorem 5.1.6].

A game v : Σ → R is law-invariant with respect to p, in short p-invariant, if it is constant on

the equilikelihood classes under p, i.e., if, for all A,B ∈ Σ, we have

p(A) = p(B) =⇒ v(A) = v(B).

The core, resp. anticore, of a game v is the (possibly empty) set of all signed charges that

dominate, resp. are dominated by, v and agree with v at Ω, i.e.,

core(v) := {µ ∈ ba(Σ) ; µ(Ω) = v(Ω), ∀A ∈ Σ, µ(A) ≥ v(A)},
acore(v) := {µ ∈ ba(Σ) ; µ(Ω) = v(Ω), ∀A ∈ Σ, µ(A) ≤ v(A)}.

If v is p-invariant and µ ∈ core(v) or µ ∈ acore(v), then µ ≪ p. A game v is called submodular

if, for all A,B ∈ Σ with A ∪B, A ∩B ∈ Σ, we have

v(A ∪B) + v(A ∩B) ≤ v(A) + v(B). (2.1)
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It is supermodular if the reverse inequality holds. The core (anticore) of a supermodular

(submodular) capacity is always nonempty. A capacity is exact if it is either the lower envelope

of its core or the upper envelope of its anticore; see [29].

We denote by Π the set of finite partitions of Ω consisting of elements of Σ. We say that

π ∈ Π has size n ∈ N if it contains n elements. For a given p ∈ P(Σ), we say that π is a

p-equipartition (of Ω) if the elements of π have the same p-probability. The following lemma

gives a simple but very useful result concerning the existence of certain p-equipartitions when

p has convex range.

Lemma 2.2. Let p be a finitely additive probability with convex range. If A ∈ Σ satisfies

p(A) = m
n
for some m,n ∈ N with m < n, then there is a p-equipartition π ∈ Π of size n such

that A can be written as the union of m elements of π.

Proof. As p has convex range, there is A1 ∈ Σ such that A1 ⊂ A and p(A1) =
1
n
. If m = 1,

we can take A1 = A. Else, A \ A1 = (A1 ∪ Ac)c ∈ Σ satisfies p(A \ A1) =
m−1
n

. Similarly, we

find A2 ∈ Σ such that A2 ⊂ A \A1 and p(A2) =
1
n
. If m = 2, we may take A2 = A \A1. Else,

A \ (A1 ∪A2) = (A1 ∪A2 ∪Ac)c ∈ Σ satisfies p(A \ (A1 ∪A2)) =
m−2
n

. Continuing in the same

manner, we find pairwise disjoint events A1, ..., Am ∈ Σ with p(Ai) =
1
n
for every i = 1, . . . ,m

that form a partition of A. Applying the same reasoning to Ac, which satisfies p(Ac) = n−m
n

,

we may enlarge this to a p-equipartition of Ω of size n. □

We denote by B0(Σ) the pointed cone of all functions X : Ω → R of shape X =
∑n

i=1 xi1Ai
,

where n ∈ N, x1 < ... < xn are real numbers, and A1, ..., An ∈ Σ form a partition of Ω

into pairwise disjoint events. Similarly, B(Σ) is the pointed cone of all bounded functions

X : Ω → R with the property that X−1(B) ∈ Σ holds for every Borel set B ⊂ R. One verifies

that B0(Σ) ⊂ B(Σ). If Σ is an algebra, B0(Σ) is a linear space and normed when equipped

with the supremum norm ∥·∥. Similarly, B(Σ) is a Banach space with respect to the supremum

norm ∥ · ∥ when Σ is a σ-algebra. In this case, we have the duality pairing (B(Σ),ba(Σ)).

The expectation (the Dunford-Schwartz integral) of X ∈ B(Σ) with respect to µ ∈ ba(Σ)

is denoted by Eµ[X]. Convergence of a sequence (Xn) ⊂ B(Σ) to an element X ∈ B(Σ) is

denoted by Xn → X.

When Σ is an algebra, for any p ∈ P(Σ) and A ∈ Σ with p(A) > 0 we define the finitely

additive probability pA ∈ P(Σ) by setting, for every B ∈ Σ,

pA(B) := p(A∩B)
p(A)

.

Clearly, pA ∈ Pp(Σ). Given a finite partition π ∈ Π, for every X ∈ B(Σ) we define

Ep[X|π] :=
∑

A∈π, p(A)>0

EpA [X]1A =
∑

A∈π, p(A)>0

Ep[X1A]
p(A)

1A.

For all X, Y ∈ B(Σ) we write X ∼p Y to indicate that X and Y have the same distribution

under p, i.e., for each interval I ⊂ R, we have p(X ∈ I) = p(Y ∈ I). We shall say that X is

p-nonconstant if there is no r ∈ R such that X ∼p r.
1

1 Equivalently, we can find two disjoint intervals I, J ⊂ R such that both p(X ∈ I) and p(X ∈ J) are positive.
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When B(Σ) is a linear space, for X = B(Σ) or X = B0(Σ), we say that a functional φ : X → R
is convex if, for all X, Y ∈ X and λ ∈ [0, 1],

φ(λX + (1− λ)Y ) ≤ λφ(X) + (1− λ)φ(Y ),

and lower semicontinuous if, for every sequence (Xn) ⊂ X and every X ∈ X ,

Xn → X =⇒ φ(X) ≤ lim inf
n∈N

φ(Xn).

We say that φ is p-invariant if, for all X, Y ∈ X with X ∼p Y , we have φ(X) = φ(Y ).

The conjugate function of φ is the map φ∗ : ba(Σ) → R ∪ {∞} defined by

φ∗(µ) := sup
X∈B(Σ)

{Eµ[X]− φ(X)}.

If φ is convex and lower semicontinuous, then for all X ∈ B(Σ)

φ(X) = sup
µ∈ba(Σ)

{Eµ[X]− φ∗(µ)} = sup
µ∈dom(φ∗)

{Eµ[X]− φ∗(µ)}. (2.2)

where dom(φ∗) := (φ∗)−1(R); cf. [12, Propositions 3.1 & 4.1].

3. Uniqueness of convex-ranged probabilities

The present section is divided into three subsections. In the first, we consider the general

case where Σ is required to satisfy only Assumption 2.1 and probabilities are only required

to be finitely additive, as in Svistula’s extension of Marinacci’s theorem. We provide two

reformulations of the uniqueness result, each unveiling a new necessary and sufficient condition.

The condition in the first reformulation yields, in our opinion, the key structural insight and

leads to a proof that is more direct and compact than the existing proofs. The condition

in the second reformulation, while obviously a recasting of the previous one, provides a new

perspective and sets the grounds for the applications of Sections 5 to 7.

3.1. The general case. The general result on the uniqueness of convex-ranged probabilities

is stated in Theorem 3.1 below. With respect to the formulations of Marinacci and Svistula

– which both entail only the equivalence of the conditions (i) and (iii) in Theorem 3.1 – our

formulation adds condition (ii) that, in our opinion, provides the key insight on what drives

the uniqueness result.

Theorem 3.1. Suppose Σ satisfies Assumption 2.1 and let p and q be finitely additive proba-

bilities such that p has convex range. The following statements are equivalent:

(i) There exists E ∈ Σ such that p(E) ∈ (0, 1) and

p(A) = p(E) =⇒ q(A) = q(E)

(ii) Every p-equipartition is a q-equipartition.

(iii) p = q.

Proof. (i) =⇒ (ii): As Ec satisfies the same condition as E, we can assume without loss of

generality that p(E) ≤ 1/2. Choose k ∈ N so that k > 1/p(E) and take a p-equipartition
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{A1, ..., Ak}. Thus, p(Ai) = 1/k for i = 1, 2, . . . , k. For i ̸= 1, we have p((A1 ∪ Ai)
c) ≥

p(E) − p(A1). As p is convex ranged, there exists B ∈ Σ such that B ⊂ (A1 ∪ Ai)
c and

p(B) = p(E)− p(A1) = p(E)− p(Ai), whence p(E) = p(A1 ∪B) = p(Ai ∪B). By (i),

q(A1) + q(B) = q(A1 ∪B) = q(Ai ∪B) = q(Ai) + q(B).

As a result, q(A1) = q(Ai). Thus, every p-equipartition is a q-equipartition.

(ii) =⇒ (iii): To begin, take A ∈ Σ so that p(A) ∈ Q and 0 < p(A) < 1. Then, p(A) = m
n
for

some m,n ∈ N with m < n and we can take a p-equipartition {A1, . . . , An} as in Lemma 2.2.

Without loss of generality, A = A1 ∪ · · · ∪ Am. By (ii),

p(A) =
m∑
i=1

p(Ai) =
m

n
=

m∑
i=1

q(Ai) = q(A).

Next, let p(A) ∈ (0, 1]. As p has convex range, we find B ∈ Σ such that B ⊂ A, p(B) ∈ Q,
and 0 < p(B) < 1. Note that

q(A) ≥ sup{q(B) ; B ∈ Σ, B ⊂ A, p(B) ∈ (0, 1) ∩ Q}
= sup{p(B) ; B ∈ Σ, B ⊂ A, p(B) ∈ (0, 1) ∩ Q} = p(A),

where the first equality follows from what we have proved above and the second one from

convex rangedness of p. If p(A) = 1, then also q(A) = 1 must hold. If p(A) < 1, the

same reasoning additionally implies q(Ac) ≥ p(Ac), whence q(A) = p(A) follows; the desired

implication is established.

(iii) =⇒ (i): Obvious □

Remark 3.2.

(a) Owing to its more concise formulation, it is worth noticing that any of the conditions in

Theorem 3.1 is equivalent to:

(iv) Every p-equipartition of size 2 is a q-equipartition.

In fact, it is clear that (ii) implies (iv). In the converse direction, one observes first that

(iv) implies condition (i) in Theorem 3.1. To this end, let E ∈ Σ be such that p(E) = 1/2

and take any A ∈ Σ with p(A) = p(E). As {A,Ac} is a p-equipartition, it follows from

(iv) that q(A) = 1/2. In particular, q(A) = q(E). This yields (i). By Theorem 3.1, it then

follows that (iv) implies (ii).

(b) In a different direction but in a somehow similar spirit, it is also worth observing that

Theorem 3.1 implies that if p ̸= q, then there are p-equipartitions of arbitrarily large size

that are not q-equipartitions. In fact, by Theorem 3.1, p ̸= q if and only if there is a p-

equipartition that is not a q-equipartition and from this, by using the convex rangedness of

p, one readily obtains the above feature by successively splitting an event of the partition

into smaller events of equal p-probability.

The second reformulation of the Marinacci-Svistula theorem can be seen as a functional coun-

terpart to the previous one. It yields a new perspective that will prove useful in the sequel to
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extend the classical result on Fréchet-Hoeffeding bounds and, thence, for the applications to

follow.

Theorem 3.3. Any of the conditions in Theorem 3.1 is equivalent to:

(v) There exists a p-nonconstant X ∈ B0(Σ) such that

sup
Y∼pX

Eq(Y ) = inf
Y∼pX

Eq(Y ).

Proof. (v) =⇒ (i): Let x1, . . . , xk be the different values that X attains with strictly positive

p-probability. Note that k ≥ 2 because X is p-nonconstant. By definition, {X = xi} ∈ Σ for

every i = 1, . . . , k. Moreover, we may assume without loss of generality that, for i = 1, . . . , k−1,

p(X = xi) ≤ p(X = xi+1). This entails that p(X = x1) ≤ 1
2
. Now, suppose an even

m ∈ N satisfy m > 1/p(X = x1). Assume that A,B ∈ Σ are pairwise disjoint and satisfy

p(A) = p(B) = 1/m. By convex rangedness of p, we find disjoint A′, B′ ∈ Σ such that

A′, B′ ⊂ (A ∪B)c and

p(A′) = p(X = x1)− 1
m
, p(B′) = p(X = x2)− 1

m
.

If k = 2, we may assume Ω = A ∪ A′ ∪ B ∪ B′. Else, select pairwise disjoint C3, . . . , Ck ∈ Σ

such that Ci ⊂ (A ∪ A′ ∪ B ∪ B′)c and such that p(Ci) = p(X = xi) for i = 3, . . . , k. Now,

define X1, X2 ∈ B0(Σ) by setting

X1 = x11A∪A′ + x21B∪B′ +
k∑

i=3

xi1Ci
, X2 = x11B∪A′ + x21A∪B′ +

k∑
i=3

xi1Ci
.

Clearly, X1, X2 ∼p X. Then, it follows from (v) that

0 = Eq(X1)− Eq(X2) = (x1 − x2)[q(A)− q(B)].

This can only hold if q(A) = q(B). As a consequence, we infer that every p-equipartition of

size m is also a q-equipartition. By combining Remark 3.2 and Lemma 2.2, we conclude that

(i) holds.

(i) =⇒ (v): This is obvious because (i) implies that p = q. □

3.2. The case of an algebra of events. Trivially, any of the first two conditions in Theorem

3.1 as well as conditions (iv) in Remark 3.2 and (v) in Theorem 3.3, in that they imply p = q,

imply also that p and q are comonotone: for all A,B ∈ Σ, p(A) > p(B) implies q(A) ≥ q(B).

Notably, as we will show momentarily, the reverse implication also holds whenever Σ is an

algebra, i.e., it is closed under finite unions and intersections. Thus, in such a case, one

may test the comonotonicity of p and q to determine whether or not the two charges are the

same. This result extends [2], who obtained it for countably additive probabilities. The key to

showing this additional equivalence is the Lemma 3.4 below, which is of independent interest.

Incidentally, we will generalize this lemma in Section 8, where we will also prove a converse to

it yielding a general representation for law-invariant, submodular games of bounded variation.
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Lemma 3.4. Let Σ be an algebra, p and q be finitely additive probabilities with p convex ranged

and let p ̸= q. The set function c : Σ → [0, 1] defined by

c(A) := sup{q(B) ; B ∈ Σ, p(B) = p(A)}.

has the form c = γ+v for a constant γ ∈ [0, 1] and a submodular, monotone, p-invariant game

v. Moreover, c(A) > p(A) for every A ∈ Σ with p(A) ∈ (0, 1).

Proof. We set γ := c(∅) and v := c − γ. Clearly, v(∅) = 0. Monotonicity of v follows once

we establish monotonicity of c. To this effect, take A,B ∈ Σ with A ⊂ B. Let C ∈ Σ satisfy

p(C) = p(A). As p has convex range, we findD ∈ Σ such thatD ⊂ Cc and p(D) = p(B)−p(A).

Note that C ∪D ∈ Σ and p(C ∪D) = p(C) + p(D) = p(B). Hence, q(C) ≤ q(C ∪D) ≤ c(B).

Taking the supremum of q(C) over all such C’s yields c(A) ≤ c(B). This shows that v is a

monotone game. To prove submodularity of v, it suffices to prove that, for arbitrary A,B ∈ Σ,

c(A ∪B) + c(A ∩B) ≤ c(A) + c(B). (3.1)

We may assume that p(A) > 0 and p(B) > 0, for otherwise (3.1) is clear. Let C,D ∈ Σ satisfy

p(C) = p(A ∪B) and p(D) = p(A ∩B). As

p(C \D) ≥ p(C)− p(D) = p(A ∪B)− p(A ∩B) ≥ p(A \B),

there is E ∈ Σ such that E ⊂ C \D and p(E) = p(A \B). We then observe that p(E ∪D) =

p(E) + p(D) = p(A) and p(C \ E) = p(C)− p(E) = p(B). As a result,

q(C) + q(D) = q(C \ E) + q(E ∪D) ≤ c(A) + c(B).

Taking the supremum of q(C) + q(D) over such C’s and D’s yields (3.1). It remains to

show that, if A ∈ Σ satisfies p(A) ∈ (0, 1), then c(A) > p(A). Since p ̸= q, as observed in

Remark 3.2(b), there exists a strictly increasing sequence (kn) ⊂ N such that, for every n ∈ N,

we find a p-equipartition of size kn that is not a q-equipartition. Suppose that p(A) = m/kn
for some m,n ∈ N with m ≤ kn. Select a p-equipartition {A1, . . . , Akn} such that q(A1) ≤
· · · ≤ q(Akn) and q(A1) < q(Akn), and set

B =
kn⋃

i=kn−m+1

Ai.

Moreover, define y1 = · · · = ykn−m = 0 and ykn−m+1 = · · · = ykn = 1. Using the discrete

Chebyshev’s inequality, e.g., [17, p. 43], we obtain

c(A) ≥ q(B) =
kn∑
i=1

yiq(Ai) >
1
kn

(
kn∑
i=1

yi

)(
kn∑
i=1

q(Ai)

)
= m

kn
= p(A).

Next, we consider the general case where A ∈ Σ with p(A) ∈ (0, 1). Note that for a unique

function h : [0, 1] → [0, 1] with h(m/kn) > m/kn, n ∈ N, 1 ≤ m < kn, c = h ◦ p. Let n ∈ N
large enough such that we can find m, ℓ ∈ N satisfying

0 < m
kn

< p(A) < ℓ
kn
.
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Moreover, let λ ∈ (0, 1) satisfy p(A) = λm+(1−λ)n
kn

. Following the argument in the proof of [14,

Proposition 4.75], one shows that the aforementioned function h is midpoint-concave. As h is

nondecreasing, it is measurable. Sierpinski’s Theorem [30] yields that h is concave, whence we

infer

c(A) = h
(λm+(1−λ)n

kn

)
≥ λh

(
m
kn

)
+ (1− λ)h

(
ℓ
kn

)
> λm+(1−λ)n

kn
= p(A).

This delivers the desired inequality and concludes the proof. □

Theorem 3.5. Let Σ be an algebra. Any of the conditions in Theorem 3.1 is equivalent to:

(vi) p and q are comonotone as functions from Σ to [0, 1]: For all A,B ∈ Σ with p(A) >

p(B) we have q(A) ≥ q(B).

Proof. (vi) =⇒ (i): We first prove that statement (vi) implies that q ≪ p. Towards a contra-

diction, suppose we can find N ∈ Σ such that p(N) = 0, but q(N) > 0. Let m > 1/q(N) and

select a p-equipartition π of Ω of size m. In particular, there is B ∈ π such that q(B) ≤ 1
m
.

Now, 1
m

= p(B) > p(N) = 0, but q(B) ≤ 1
m

< q(N), contradicting (vi).

Now, assume that (i) does not hold, i.e., q ≪ p, but also q ̸= p. Let C1 ∈ Σ satisfy 0 <

p(C1) < 1. By Lemma 3.4 and by convex rangedness of p, we find C2 ∈ Σ such that

p(C1) < p(C2) < sup
B∈Σ, p(B)=p(C1)

q(B).

Use Lemma 3.4 once more to infer that

inf
A∈Σ, p(A)=p(C2)

q(A) < p(C2) < sup
B∈Σ, p(B)=p(C1)

q(B).

Now, choose A,B ∈ Σ such that p(A) = p(C2) > p(C1) = p(B) but q(A) < p(C2) < q(B).

This contradicts (vi) and yields the desired implication.

(i) =⇒ (vi): This follows at once from Theorem 3.1. □

3.3. The countably additive case. We conclude this section by showing that, in the case of

countably additive probabilities on a σ-algebra, the uniqueness result obtains via an extremely

short proof. The proof is based on the observation from, e.g., [23], that, given an atomless

probability measure P on the measurable space (Ω,Σ), for all measurable functions X, Y :

Ω → R with P-integrable product and all P-quantile functions F−1
X and F−1

Y of X and Y

{EP[X
′Y ] ; X ′ ∼P X} =

[∫ 1

0

F−1
X (1− s)F−1

Y (s)ds,

∫ 1

0

F−1
X (s)F−1

Y (s)ds

]
.

One can show that the interval is a singleton if and only if at least one between X and Y is P-
constant; see, e.g., [22]. Before stating the corollary below, let us recall that nonatomicity and

convex rangedness are equivalent properties of a countably additive probability on a σ-algebra.

Corollary 3.6. Let Σ be a σ-algebra and let P and Q be countably additive probabilities such

that P is nonatomic. The following statements are equivalent:
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(i) There exists E ∈ Σ such that P(E) ∈ (0, 1) and

P(A) = P(E) =⇒ Q(A) = Q(E)

(iii) P = Q.

Proof. If (i) holds, then Q ≪ P necessarily holds, whence nonatomicity of Q follows. Let

Y = dQ
dP . Then {EP[XY ] ; X ∼P 1E} = {Q(A) ; A ∈ Σ, P(A) = P(E)} = {Q(E)}. Since 1A is

not P-constant, Y must be P-constant and P = Q follows, showing (iii). □

4. Collapse of capacities

As we discussed in the Introduction, several results have been obtained in a variety of settings

showing that – under a seemingly innocuous condition – certain law-invariant capacities (and

the associated non-linear functionals) collapse to an additive (linear) form. The link between

the uniqueness theorem and these results is precisely this seemingly innocuous condition: the

existence of a non-trivial unambiguous event (see below). Yet, a number of extra assumptions

are added in these derivations: notably, (1) that the core or the anticore of the capacity

under consideration be nonempty ([4, 7, 15, 22, 24]); (2) that the capacities be continuous

([26]); and, in all applications, that (3) the capacities be distortions of a countably additive

probability. With regard to the issue of extending these results, we should like to observe that

while assumption (3) can be weakened (by using Svistula’s extension) without changing the

mechanics of the applications, assumptions (1) and (2) would continue to play a crucial role

and would conceal, at least in part, those implications that stem solely from the uniqueness

theorem.

In this section, we present a novel result that isolates such implications and, consequently,

showcases what is needed to obtain a collapse-type result in any given setting. We then

show that generalizations of the existing results obtain (almost) automatically in the non-

convex/concave case from our theorem. In the first of the following three subsections, we

recall and discuss some basic definitions and establish a collapse result for the core/anticore

of law-invariant capacities. We also highlight, by means of examples, the role played by extra

assumptions such as those mentioned above. In the second, we apply this result to obtain

sufficient conditions for a law-invariant capacity to collapse to a finitely additive probability.

In the final subsection, we re-examine the collapse of the core/anticore under a more permissive,

yet natural, condition of law-invariance of the capacities under consideration.

4.1. Collapse of the core/anticore. For a capacity v, an event A ∈ Σ is v-unambiguous (or

simply unambiguous when the reference to the capacity is clear from the context) if

v(A) + v(Ac) = 1.

The set of all v-unambiguous events is denoted by Σua(v).

We now isolate the implications of the existence of a non-trivial unambiguous event for the

capacity or the functional under consideration. Per se this condition – that the core or the

anticore of the capacity be at most a singleton (see Theorem 4.2, below) – does not imply the
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collapse, but it clarifies what extra conditions would be needed depending on the specific form

of the capacity under consideration and makes it transparent why the collapse obtains in the

cases considered in the existing literature.

Theorem 4.2 follows from a simple, but useful, lemma that extends to a finitely additive setting

earlier observations of [4, Proposition 2.5], [6, Corollary 3.1] and [22, Lemma F.2]. It is worth

noticing that, in the special case of capacities that are law-invariant with respect to a convex

ranged charge, the condition stated in the lemma is the equivalent of the Bondareva-Shapley-

Schmeidler condition for the nonemptiness of the core/anticore.

Lemma 4.1. For a finitely additive probability p with convex range and a p-invariant capacity

v, the following statements hold:

(i) acore(v) ̸= ∅ if and only if p ∈ acore(v).

(ii) core(v) ̸= ∅ if and only if p ∈ core(v).

Proof. We only prove (i); the proof of (ii) is essentially identical. Fix q ∈ acore(v). As p has

convex range and v is p-invariant, there is a unique nondecreasing function h : [0, 1] → [0, 1]

such that v = h ◦ p. It remains to show that, for every p ∈ (0, 1), we have h(p) ≥ p. To this

end, take natural numbers m,n ∈ N with m ≤ n and let π ∈ Π be an arbitrary p-equipartition

of size n, which exists because p has convex range. Let M be the family of all subsets π′ ⊂ π

with cardinality m. Then,(
n

m

)
h(m

n
) =

∑
π′∈M

v

( ⋃
B∈π′

B

)
≥
∑
π′∈M

∑
B∈π′

q(B) =
∑
B∈π

∑
π′∈M, B∈π′

q(B),

(
n− 1

m− 1

)
=

(
n− 1

m− 1

)∑
B∈π

q(B) =
∑
B∈π

∑
π′∈M, B∈π′

q(B).

Hence, h(m
n
) ≥ m

n
. At last, let p ∈ (0, 1) and take any A ∈ Σ with p(A) = p. Then,

h(p) = v(A) ≥ sup
B∈Σ, B⊂A, p(B)∈Q

v(B) = sup
B∈Σ, B⊂A, p(B)∈Q

h(p(B)) ≥ sup
B∈Σ, B⊂A, p(B)∈Q

p(B) = p.

This shows that p ∈ acore(v). □

Theorem 4.2. Suppose p is a finitely additive probability on Σ with convex range and let

v be a p-invariant capacity. If there exists A ∈ Σua(v) such that v(A) ∈ (0, 1), then either

core(v) = acore(v) = ∅, or core(v) = {p}, or acore(v) = {p}.

Proof. If acore(v) ̸= ∅, then p ∈ acore(v) by Lemma 4.1. In particular, p(A) ≤ v(A) and

p(Ac) ≤ v(Ac). In view of our assumptions on A, it follows that p(A) = v(A) ∈ (0, 1). Now,

let q ∈ acore(v). We shall show that p = q using Theorem 3.1. Take any B ∈ Σ with

p(B) = p(A). Observe first that v(B) = v(A) and v(Bc) = v(Ac) by p-invariance of v. As a

consequence, q(B) ≤ v(B) = v(A) = 1− v(Ac) = 1− v(Bc) ≤ 1− q(Bc) = q(B). This yields

q(B) = v(A) = q(A) and delivers that p = q. The reasoning is analogous in the case that

core(v) is nonempty. □
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Remark 4.3. Our definition of unambiguous event is taken from Marinacci [24, 26], and is

well-suited for the type of applications we consider below. In the decision theory literature there

are, nonetheless, several definitions of unambiguous event that greatly differ from one another

and that, in fact, have been at the center of a somewhat heated debate ([3, 13, 16, 28, 33]).

Notably, Ghirardato et al. [16] use a condition that is more stringent than ours. They start by

representing a certain preference relation using a convex combination, with variable coefficients,

of an upper and a lower expectation taken on the same set of charges. In this context, they

term “unambiguous” those events for which all the charges in the aforementioned set – which

is, in fact, the Clarke differential of the functional at 0 – agree. It should be noted, however,

that most definitions, but typically not the ones in [13, 33], yield the same class of unambiguous

events in the important case of exact capacities. Our interests here are not related, at least

immediately, to the issues discussed within this literature, and we could have opted for a

different terminology, but we decided to keep the diction unambiguous because of the direct

reference to [24, 26].

4.2. Collapse of capacities and implications. As already said, the condition in Theorem

4.2 does not imply the collapse of the capacity to the underlying probability p, and we shall

see momentarily examples highlighting this fact. But, before we do so, let us record that, in

the exact case (see Section 2), Theorem 4.2 does imply the collapse at once.

Corollary 4.4. Let p be a finitely additive probability with convex range and v be a p-invariant

exact capacity. If there exists A ∈ Σua(v) such that v(A) ∈ (0, 1), then v = p.

Proof. It follows from exactness that core(v), resp. acore(v), is nonempty and that v is a

minimum, resp. maximum, over core(v), resp. acore(v). But then Theorem 4.2 implies that

core(v) = {p}, resp. acore(v) = {p}, showing that v = p. □

The following examples show that the conclusion v = p might fail if either exactness or the

implied (weaker) condition that either acore(v) ̸= ∅ or core(v) ̸= ∅ are not satisfied.

Example 4.5. Take (Ω,Σ, p) to be ([0, 1],Λ, λ) where Λ and λ are the usual Lebesgue σ-algebra

and measure, respectively.

Consider the capacity v = h ◦ λ where

h(x) =


0 if x = 0,
1
2

if 0 < x < 1,

1 if x = 1.

Clearly, v is λ-invariant and every event in Λ is unambiguous under v, but it is clear that

v ̸= λ. Note that core(v) and acore(v) are both empty.
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Example 4.6. Consider the capacity v = h ◦ λ from [27, Example 4.3 p. 53] where

h(x) =


x if 0 ≤ x ≤ 1

2
,

1
2

if 1
2
< x < 1,

1 if x = 1.

Clearly, v is λ-invariant and the interval [0, 1/2] is an unambiguous event under v. Note also

that core(v) = {λ}. Yet, v ̸= λ. In particular, v is not exact.

Exact capacities are necessarily either subadditive or superadditive. We now move away from

these cases by considering capacities of the form

v = α sup
q∈Q

q+ (1− α) inf
q∈Q

q, (4.1)

where α ∈ [0, 1] and Q is a set of finitely additive probabilities. These capacities are, generally

speaking, neither subadditive nor superadditive. They have been studied in [18] under the

assumption that Q consists of countably additive probabilities and collapse results for them

have been obtained in [22] under the assumption that they are law-invariant with respect to

an atomless countably additive reference probability. Here, we extend the collapse by allowing

Q to be any set of probability charges and the reference probability p to be finitely additive.

In order to ease the notation, given a capacity v as in 4.1, we set

v := inf
q∈Q

q, v := sup
q∈Q

q.

The following lemma states that law-invariance of a capacity of the type 4.1 is equivalent to

law-invariance of v and v as long as α ̸= 1/2. The peculiarities of the case α = 1/2 are well

known (see, for instance, [26]) and will be evident, in any case, from our proofs.

Lemma 4.7. Let p be a finitely additive probability. A capacity v of the form (4.1) for α ̸= 1/2

is p-invariant if and only if v and v are p-invariant.

Proof. The “if” implication is obvious. Conversely, let v be p-invariant and take A,B ∈ Σ

such that p(A) = p(B). Since v(A) = v(B) and v(Ac) = v(Bc) by p-invariance of v,

v(A) = α
2α−1

v(A)− 1−α
2α−1

(1− v(Ac)) = α
2α−1

v(B)− 1−α
2α−1

(1− v(Bc)) = v(B).

This shows that v is p-invariant. Noting that, for every A ∈ Σ, we have v(A) = 1− v(Ac), we

infer that v is p-invariant as well. This establishes the “only if” implication. □

Capacities of the form 4.1, α ̸= 1/2, collapse in the presence of an unambiguous event:

Proposition 4.8. Let p be a finitely additive probability with convex range and v be as in (4.1)

with α ̸= 1/2. If v is p-invariant and there exists A ∈ Σua(v) such that v(A) ∈ (0, 1), then

v = p.
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Proof. Since A ∈ Σua(v), we readily see that

1 = v(A) + v(Ac) = α(v(A) + v(Ac)) + (1− α)(v(A) + v(Ac))

= α(v(A) + v(Ac)) + (1− α)(1− v(Ac) + 1− v(A))

= (2α− 1)(v(A) + v(Ac)) + 2− 2α.

As α ̸= 1/2, this yields v(A) + v(Ac) = 1, showing that A is unambiguous under v. In

particular, v(A) ≤ v(A) = 1− v(Ac) ≤ 1− v(Ac) = v(A), whence v(A) = v(A) ∈ (0, 1). Since

v is exact and p-invariant by Lemma 4.7, we must have v = p by virtue of Corollary 4.4. This

clearly implies v = p as well and delivers v = p as desired. □

In the next result we deal with a preference relation ≿ over B(Σ) that is represented by

V (X) = α sup
q∈Q

Eq[X] + (1− α) inf
q∈Q

Eq[X], (4.2)

where α ∈ [0, 1] and Q is a set of finitely additive probabilities. We say that:

(a) A ∈ Σ is unambiguous for ≿ if V (1A) + V (1Ac) = 1.

(b) A preference relation ≿ over B(Σ) is probabilistically sophisticated if there exists a (unique)

convex-ranged finitely additive probability p such that, for all A,B ∈ Σ, one is≿-indifferent

between 1A and 1B whenever p(A) = p(B).

(c) A preference relation ≿ is a subjective expected utility preference if it is represented by Ep

for some finitely additive probability p with convex range.

From Proposition 4.8, we obtain at once the following generalization of [26] where we remove

altogether the assumption of monotone continuity.

Corollary 4.9. Let ≿ be a preference relation over B(Σ) that is represented as in (4.2) for

some α ̸= 1
2
. If there exists A ∈ Σ such that A is unambiguous for ≿ and 0 < V (1A) < 1, then

≿ is probabilistically sophisticated if and only if it is a subjective expected utility preference.

Proof. Consider the capacity defined by v(A) = V (1A) for A ∈ Σ. If A ∈ Σ is unambiguous for

≿ and 0 < V (1A) < 1, then A is unambiguous under v and satisfies v(A) ∈ (0, 1). But then ≿
is a subjective expected utility preference by Proposition 4.8. The converse is immediate. □

4.3. Collapse of the core/anticore revisited. In this subsection we show that the previous

results remain true if we weaken the requirement of law-invariance and stipulate that a given

capacity be law-invariant only with respect to those events that carry a sufficiently high degree

of reliability. To capture this idea, we shall say that a capacity v is p-invariant on unambiguous

events if it is constant on the equilikelihood classes under p of unambiguous events, i.e., if for

all A ∈ Σua(v) and B ∈ Σ

p(A) = p(B) =⇒ v(A) = v(B).

Clearly, p-invariance on unambiguous events is weaker than p-invariance, and the two prop-

erties coincide only when, for every event, there exists an unambiguous event with the same

p-probability. In particular, the capacities fulfilling this weaker notion of law-invariance need
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not be distortions of probability measures. In connection with the notion of p-invariance on

unambiguous events, we also introduce the notions of unambiguous core and anticore of v by

coreua(v) := {p ∈ P(Σ) ; ∀A ∈ Σua(v), p(A) ≥ v(A)},

acoreua(v) := {p ∈ P(Σ) ; ∀A ∈ Σua(v), p(A) ≤ v(A)}.
Clearly, core(v) is contained in coreua(v) and the same holds for the anticore.

The following result shows that, albeit weaker than law-invariance, law-invariance on unam-

biguous events suffices to generate the same result on the core/anticore of a law-invariant

capacity we obtained in Theorem 4.2.

Proposition 4.10. Let p be a finitely additive probability with convex range and v a capacity

that is p-invariant on unambiguous events. If there is A ∈ Σua(v) such that v(A) ∈ (0, 1), then

core(v) ∪ acore(v) ⊂ coreua(v) ∪ acoreua(v) ⊂ {p}.

Proof. We follow the argument used in the proof of Theorem 4.2. First, observe that p(A) ∈
(0, 1) by p-invariance on unambiguous events. Now, assume that acoreua(v) is nonempty

and take any q ∈ acoreua(v). Take an arbitrary B ∈ Σ with p(B) = p(A). By assumption,

v(A) = v(B). Since Ac is also unambiguous, we have v(Ac) = v(Bc) as well. As a consequence,

B and Bc are both unambiguous and, hence, q(B) ≤ v(B) = v(A) = 1− v(Ac) = 1− v(Bc) ≤
1− q(Bc) = q(B). This shows that q(B) = v(A) = q(A). Thus, condition (i) in Theorem 3.1

is satisfied and we infer that q = p. The proof for the core is similar. □

Just like Theorem 4.2, the proposition does not imply the collapse of the capacity to the

probability p but only (quite trivially) the coincidence of v and p on Σua(v) if p is either in the

unambiguous core or in the unambiguous anticore. Yet, just like in the case of p-invariance,

the collapse follows seamlessly in the case of exact capacities or, more generally, capacities

that can be represented as in (4.1). The simple proof is omitted.

Corollary 4.11. Let p be a finitely additive probability with convex range and v be as in (4.1)

with α ̸= 1/2. If v is p-invariant on unambiguous events and there exists A ∈ Σua(v) such that

v(A) ∈ (0, 1), then v = p.

As an immediate consequence, the (linear) expectation under p is the unique Choquet integral

with respect to a capacity that fulfills the requirements in the corollary. Put differently, if

a capacity is as in (4.1) with α ̸= 1/2 and is p-invariant on unambiguous events, then the

corresponding Choquet integral collapses to the (linear) expectation under p as soon as it

is linear on the vector space spanned by a nontrivial indicator function. The corollary can

therefore be viewed as an extension of the “collapse to the mean” results for Choquet integrals

established in [7, 9, 22] where the global assumption of law-invariance is replaced by the weaker

local assumption of law-invariance on unambiguous events. This is of especial interest when

the collapse is applied to pricing rules in markets with frictions as done in [7, 9], as one would

not expect a sound (market-consistent) pricing rule to be law-invariant on the entire payoff

space but only on a portion of it (which typically consists of payoffs that are fully unreplicable



RANGE CONVEXITY: PROBABILITIES, RISK MEASURES, AND GAMES 17

in financial markets, as is often the case for losses arising from insurance risk or operational

risk); see, e.g., the general discussion in [10].

5. Fréchet-Hoeffding bounds

From this section on, we depart from the existing literature by presenting a novel set of

applications of the uniqueness theorems of Section 3. These applications stem from Proposition

3.3 that, as we observed, provides a new perspective on the uniqueness result.

In Proposition 3.3 we showed that, given a finitely additive probability p with convex range

and any other finitely additive probability q ̸= p, for every p-nonconstant function X ∈ B0(Σ)

sup
Y∼pX

Eq(Y ) > inf
Y∼pX

Eq(Y ).

This result is reminiscent of the classic Fréchet-Hoeffding bounds (see, e.g., the formulation in

[22]) yet it differs as the expectations are taken with respect to finitely additive probabilities.

In the next theorem we sharpen it so to fully extend the classical result to a finitely additive

setting. It is worth noting that, in this setting, we cannot resort to Radon-Nikodým deriva-

tives and, hence, the standard arguments break down. Our proof shows how an appropriate

application of Lemma 3.4 allows to circumvent this problem.

Theorem 5.1. Let Σ be an algebra. Let p be a finitely additive probability with convex range

and take a finitely additive probability q ̸= p. For every p-nonconstant X ∈ B0(Σ)

sup
Y∼pX

Eq(Y ) > Ep(X) > inf
Y∼pX

Eq(Y ).

In particular, for every A ∈ Σ such that p(A) ∈ (0, 1),

sup
B∈Σ, p(B)=p(A)

q(B) > p(A) > inf
B∈Σ, p(B)=p(A)

q(B).

Proof. It suffices to show the left-hand side inequalities. To this effect, let X be p-nonconstant

and let x1 < · · · < xk be the different values it takes with strictly positive p-probability.

Suppose first that there is N ∈ Σ such that p(N) = 0 but q(N) > 0. In this case, we can

partition N c into events A1, . . . , Ak ∈ Σ such that, for 1 ≤ i ≤ k, we have p(Ai) = p(X = xi).

As for all t > 0 we have
∑k

i=1 xi1Ai
+ t1N ∼p X,

sup
Y∼pX

Eq[Y ] ≥ sup
t>0

( k∑
i=1

xiq(Ai) + tq(N)
)
= ∞ > Ep[X],

proving the desired inequality. Hence, we assume in the following that q ≪ p and establish

the desired inequality by induction over k. Observe that k ≥ 2 as X is p-nonconstant.

k = 2. Let A = {X = x2} ∈ Σ. As p(A) ∈ (0, 1), it follows from Lemma 3.4 that

sup
Y∼pX

Eq[Y ] = x1 + (x2 − x1) sup{q(B) ; B ∈ Σ, p(B) = p(A)} > x1 + (x2 − x1)p(A) = Ep[X].
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k − 1 ⇒ k. Set A = {X ̸= xk} and note that xk > EpA(X). Using the case k = 2, we find

B ∈ Σ with p(B) = p(A) such that Z = xk1Bc + EpA(X)1B satisfies

Eq[Z] > Ep[Z] = p(Bc)xk + p(B)EpA [X] = p(Ac)xk + p(A)EpA [X] = Ep[X].

By convex rangedness of p, we find Y ∼p X such that Y 1Bc = xk1Bc . If q(B) = 0, then

Eq[Y ] = xk > Ep[X] and we are done. Hence, assume that q(B) > 0. Note that, in this

case, Y takes k − 1 different values with strictly positive pB-probability, namely x1, . . . , xk−1.

Moreover, EpB [Y ] = EpA [X] because p(B) = p(A). Hence, by induction hypothesis, there exists

Y ′ ∼pB Y such that EqB [Y
′] ≥ EpB [Y ] = EpA [X]. But then X ′ := xk1Bc + Y ′1B ∼p X satisfies

Eq[X
′] = q(Bc)xk + q(B)EqB [Y

′] ≥ q(Bc)xk + q(B)EpA [X] = Eq[Z] > Ep[X].

This concludes the induction argument and delivers the first assertion. The second assertion

already follows directly from Lemma 3.4. □

6. The Fatou property of law-invariant risk measures

The automatic Fatou property of law-invariant risk measures is a fundamental result in the

theory of risk measures. The result has been obtained in [19, 31] under the assumption that

the underlying probability be countably additive and atomless. We now derive a Fatou rep-

resentation in the case of a finitely additive probability. Throughout this section we assume

that Σ is a σ-algebra.

A (monetary) risk measure is a map ρ : B(Σ) → R with the following properties:

(a) Monotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ B(Σ) with X ≥ Y .

(b) Cash-additivity: ρ(X +m) = ρ(X) +m for all X ∈ B(Σ) and m ∈ R.

As it is well known, any risk measure is (Lipschitz) continuous with respect to the supremum

norm on B(Σ). A risk measure ρ has the Fatou property if, for (Xn) ⊂ B(Σ) and X ∈ B(Σ)

Xn → X, sup
n∈N

∥Xn∥ < ∞ =⇒ ρ(X) ≤ lim inf
n→∞

ρ(Xn).

When ρ is law-invariant with respect to a countably additive probability P, the assumption

of pointwise convergence can be replaced by P-almost sure convergence or convergence in P-
probability. Here, as we consider risk measures that are law-invariant with respect to finitely

additive probabilities, we must replace convergence in probability with its hazy convergence

generalization (cf. [8, Chapter 4.3]): A sequence (Xn) ⊂ B(Σ) converges to X ∈ B(Σ) hazily

if, for every ε > 0, we have limn→∞ p(|Xn −X| > ε) = 0.

The extension of the automatic Fatou property (Theorem 6.2) is based on Lemma 6.1 below,

which is a consequence of Theorem 5.1. For given p, q ∈ P(Σ) and a finite measurable partition

π ∈ Π, we introduce the finitely additive probability

pπ,q :=
∑

A∈π, p(A)>0

q(A)pA.
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In Lemma 6.1 (part (ii)), we show that the composition of q-expectations with conditional

p-expectations given the information conveyed by π can be expressed as a straight expectation

with respect to pπ,q. Along with part (iii), this provides a key step toward the proof of Theorem

6.2 as these expectations will appear naturally in the dual representation of p-invariant risk

measures. Part (i) in Lemma 6.1 establishes the finitely additive counterpart of the dilatation

monotonicity of a risk measure that is instrumental – just like dilation monotonicity in the

countably additive case (see [19, 31]) – toward obtaining the automatic Fatou property.

Lemma 6.1. Let p be a finitely additive probability with convex range and ρ : B(Σ) → R be a

p-invariant convex risk measure. For all π ∈ Π and q ∈ Pp(Σ) the following statements hold:

(i) ρ (Ep[X|π]) ≤ ρ(X) for every X ∈ B(Σ).

(ii) Epπ,q [X] = Eq[Ep[X|π]] for every X ∈ B(Σ).

(iii) ρ∗(pπ,q) ≤ ρ∗(q).

Proof. It is easy to verify that any µ ∈ dom(ρ∗) must satisfy µ(Ω) = 1 and µ(A) ≥ 0 for every

A ∈ Σ as well as µ ≪ p. Hence, for every X ∈ B(Σ), we can rewrite (2.2) as

ρ(X) = sup
q∈Pp(Σ)

{Eq[X]− ρ∗(q)} . (6.1)

Now, take X ∈ B0(Σ) and A ∈ Σ such that p(A) > 0. For every q ∈ Pp(Σ) with q(A) > 0

sup
X′∼

pA
X

Eq[X
′1A] = q(A) sup

X′∼
pA

X
EqA [X

′] ≥ q(A)EpA [X] = Eq[EpA [X]1A] (6.2)

by Theorem 5.1. Take an arbitrary Y ∈ B0(Σ) and observe that, for every X ′ ∼pA X, we have

X ′1A + Y 1Ac ∼p X1A + Y 1Ac as well. We then infer from (6.1) and (6.2) that

ρ(X1A + Y 1Ac) = sup
X′∼

pA
X
ρ(X ′1A + Y 1Ac) = sup

q∈Pp(Σ)

{
sup

X′∼
pA

X
Eq[X

′1A + Y 1Ac ]− ρ∗(q)
}

≥ sup
q∈Pp(Σ)

{Eq[EpA [X]1A + Y 1Ac ]− ρ∗(q)} = ρ(EpA [X]1A + Y 1Ac),

where we used p-invariance in the first equality. Reiterating this argument yields

ρ(X) = ρ
( ∑

A∈π, p(A)>0

X1A

)
≥ ρ
( ∑

A∈π, p(A)>0

EpA [X]1A

)
= ρ (Ep[X|π]) . (6.3)

Now, suppose that X ∈ B(Σ) and select any sequence (Xn) ⊂ B0(Σ) satisfying Xn → X,

whence also Ep[Xn|π] → Ep[X|π] follows. Using (6.3) and continuity of ρ yields

ρ (Ep[X|π]) = lim
n→∞

ρ (Ep[Xn|π]) ≤ lim
n→∞

ρ(Xn) = ρ(X).

This concludes the proof of (i). A direct calculation shows that (ii) holds. Finally,

ρ∗(q) ≥ sup
X∈B(Σ)

{Eq[Ep[X|π]]− ρ(Ep[X|π])} ≥ sup
X∈B(Σ)

{Epπ,q [X]− ρ(X)} = ρ∗(pπ,q)

by combining (i) and (ii). This establishes (iii) and concludes the proof. □
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We now give two dual representations of a p-invariant risk measure when p is a probability

charge with convex range. The first representation shows that the dual domain can always

be restricted to the special finitely additive probabilities pπ,q’s. The key insight of the second

representation is that the role played by the finitely additive probability q in the expectation

under pπ,q is “discrete” in the sense that q merely assigns weights on the (finitely many) events

in the partition π, while the probabilistic “nucleus” of pπ,q is entirely driven by p, reflecting

the underlying p-invariance. In other words, for every π ∈ Π, denote by Wπ the set of all

functions w ∈ [0, 1]π summing up to 1 over the events in π with strictly positive p-probability

and consider the probability charge

pπ,w :=
∑

A∈π, p(A)>0

w(A)pA.

The theorem below shows that a convex p-invariant risk measure can be represented as a

supremum of penalized expectations with respect to probability charges of this type. This

provides a new insight into the structure of p-invariance that does not seem to have been

highlighted thus far already in the standard countably additive literature. As a byproduct

of these new representations, we immediately obtain that, when the reference probability is

countably additive, any law-invariant convex risk measure is automatically σ(B(Σ), ca(Σ))-

lower semicontinuous and, hence, possesses the Fatou property.

Theorem 6.2. Let Σ be a σ-algebra and p a finitely additive probability with convex range.

Moreover, let ρ : B(Σ) → R be a p-invariant convex risk measure. Then:

(i) For every X ∈ B(Σ)

ρ(X) = sup
π∈Π, q∈Pp(Σ)

{Epπ,q [X]− ρ∗(pπ,q)} = sup
π∈Π, w∈Wπ

{Epπ,w [X]− ρ∗(pπ,w)}. (6.4)

(ii) For all X ∈ B(Σ),

ρ(X) = sup
q∈P(Σ), q≪p

{Eq[X]− ρ∗(q)}. (6.5)

Moreover, ρ has the hazy Fatou property in that, whenever (Xn) ⊂ B(Σ) converges to

X ∈ B(Σ) hazily and satisfies supn∈N ∥Xn∥,

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

(iii) If p is countably additive, then ρ is σ(B(Σ), ca(Σ))-l.s.c. and has the Fatou property.

Proof. To prove (6.4), it clearly suffices to establish the left-hand side equality there. To this

effect, let X ∈ B0(Σ) and A = {ω ∈ Ω ; p(X = X(ω)) > 0} ∈ Σ. Note that X1A = Ep[X|π0]

for a suitable π0 ∈ Π. As X1A ∼p X, we infer from p-invariance of ρ and (6.1) that

ρ(X) = ρ(Ep[X|π0]) ≤ sup
π∈Π, q∈Pp(Σ)

{Eq[Ep[X|π]]− ρ∗(q)} ≤ sup
π∈Π, q∈Pp(Σ)

{Epπ,q [X]− ρ∗(pπ,q)},

where we used Lemma 6.1 in the last inequality. Another application of (6.1) yields the left-

hand side equality in (6.4). Now, take X ∈ B(Σ) and select any sequence (Xn) ⊂ B0(Σ)

satisfying Xn ≤ Xn+1, n ∈ N, and Xn → X. Note that, for all π ∈ Π and q ∈ Pp(Σ), we
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have Epπ,q [Xn|π] → Epπ,q [X|π] and the sequence (Epπ,q [Xn|π]) is increasing as well. Then, by

continuity and monotonicity of ρ, we infer from (6.4) applied to B0(Σ) that

ρ(X) = sup
n∈N

ρ(Xn) = sup
π∈Π, q∈Pp(Σ)

{
sup
n∈N

Epπ,q [Xn]− ρ∗(pπ,q)
}
= sup

π∈Π, q∈Pp(Σ)

{Epπ,q [X]− ρ∗(pπ,q)}.

As a result, the left-hand side equality in (6.4) holds on B(Σ).

Turning to (ii), let π ∈ Π and q ∈ Pp(Σ) be arbitrary. We claim that pπ,q ≪ p. Indeed, define

α := max{q(A) | A ∈ π, p(A) > 0} and β := min{p(A) | A ∈ Π, p(A) > 0}. For ε ∈ (0, 1)

arbitrary let δ := β
α
ε. If E ∈ Σ satisfies p(E) ≤ δ, then

pπ,q(E) =
∑

A∈π, p(A)>0

q(A)p(A ∩ E)

p(A)
≤ α

β

∑
A∈π, p(A)>0

p(A ∩ E) = α
β
p(E) ≤ ε,

finishing the proof that pπ,q ≪ p. (8.5) is directly implied by (6.4). For the hazy Fatou

property, suppose (Xn) ⊂ B(Σ) converges to X ∈ B(Σ) hazily and satisfies supn∈N ∥Xn∥ < ∞.

Set K := supn∈N ∥Xn −X∥ < ∞, let π ∈ Π, q ∈ Pp(Σ), and ε > 0, and estimate

Epπ,q [|Xn −X|] ≤ ε+Kpπ,q (|Xn −X| > ε) ≤ ε+Kp(|Xn −X| > ε)
∑

A∈π, p(A)>0

q(A)

p(A)
.

Letting n → ∞ now implies lim supn→∞ Epπ,q [|Xn −X|] ≤ ε. The arbitrariness of ε > 0 finally

yields limn→∞ Epπ,q [Xn] = limn→∞ Epπ,q [X]. At last, use (6.4) to verify that

ρ(X) = sup
π∈Π, q∈Pp(Σ)

lim inf
n→∞

{Epπ,q [Xn]− ρ∗(pπ,q)}

≤ lim inf
n→∞

sup
π∈Π, q∈Pp(Σ)

{Epπ,q [X]− ρ∗(pπ,q)} = lim inf
n→∞

ρ(Xn).

As for (iii), if p is countably additive, then it suffices to recognize that all pπ,q’s are also

countably additive to infer from (6.4) that ρ is σ(B(Σ), ca(Σ))-lower semicontinuous. The

Fatou property follows from the hazy Fatou property in (ii). □

To conclude the section, we observe that an inspection of the proofs above shows that the

results remain true if Σ is assumed to be an algebra instead of a σ-algebra provided one

replaces B(Σ) with the smaller space B0(Σ).

7. Uniqueness of the reference probability

At the modeling level, an upside of law-invariant capacities is that they allow one to incorporate

the evidence that is available in the form of estimated likelihoods of relevant events. The point

becomes murky, nonetheless, when the chosen capacity is simultaneously a distortion of more

than one probability. It becomes, thus, necessary to be able to single out such capacities. This

issue is addressed in [21], where it is approached by means of Lyapunov’s Convexity Theorem.

As our focus is narrower than in [21], here we are able to present some sharper results that

obtain by using the machinery we developed in the previous sections.
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The first result stems from our Fréchet-Hoeffding bounds for finitely additive probabilities

(Theorem 5.1). It yields a restrictive necessary condition on the distortion function for a

capacity to be simultaneously law-invariant with respect to different finitely additive proba-

bilities. In what follows, we denote by hp the distortion function associated to a p-invariant

capacity v, i.e., a nondecreasing function hp : [0, 1] → [0, 1] such that v = hp ◦ p.

Proposition 7.1. Let Σ be an algebra and let p and q be finitely additive probabilities such that

p has convex range. If a capacity v is both p- and q-invariant, then p ≪ q and the following

statements hold:

(i) If hp(x) > 0 for every 0 < x ≤ 1, then p ≈ q.

(ii) If p ≈ q and p ̸= q, then there exists α ∈ [0, 1] such that

hp = hq = α1(0,1) + 1{1}.

Proof. It follows from [21] that p ≪ q. To prove (i), assume that hp(x) > 0 for every 0 < x ≤ 1

but we find N ∈ Σ such that p(N) = 0 and q(N) > 0. Hence, 0 = hp(0) = v(N) = hq(q(N)).

Let m ∈ N satisfy m > 1/q(N). Fix a p-equipartition π ∈ Π of size m and note that

min
B∈π

q(B) ≤ 1
m

< q(N).

Hence, we find a suitable B ∈ π such that

0 < hp(
1
m
) = v(B) ≤ hq(

1
m
) ≤ hq(q(N)) = 0.

This is a contradiction and we conclude that q ≈ p must hold. To establish (ii), suppose that

p ≈ q and p ̸= q. Set R = {(p(A), q(A)) ; A ∈ Σ}. Moreover, fix s ∈ (0, 1) and define

σ = sup{x ∈ (0, 1) ; hq(x) = hq(s)}.

As hq is nondecreasing, σ ≥ s. Now, assume that σ < 1. By Theorem 5.1, we find sequences

(y+n ) ⊂ (σ, 1) and (y−n ) ⊂ (0, σ) such that

y+n ↑ sup
B∈Σ, p(B)=σ

q(B), y−n ↓ inf
B∈Σ, p(B)=σ

q(B)

while both (σ, y+n ) and (σ, y−n ) belong to R for each n ∈ N. By construction and definition of

σ, we have for every n ∈ N

hp(σ) = hq(y
+
n ) > hq(s) ≥ hq(y

−
n ) = hp(σ).

Since this is impossible, we deduce that σ = 1. As s was arbitrary, there exists α ∈ [0, 1] such

that hq(x) = α for every x ∈ (0, 1). It remains to observe that hp = hq because p ≈ q. □

As a next step, we investigate the impact of the existence of unambiguous events on the pre-

ceding result. We start with an intermediate result showing that, if a capacity is law-invariant

on unambiguous events with respect to two non-equivalent finitely additive probabilities, one

of which has convex range, then every event is actually unambiguous.



RANGE CONVEXITY: PROBABILITIES, RISK MEASURES, AND GAMES 23

Proposition 7.2. Let p and q be finitely additive probabilities such that p has convex range,

q ≪ p and let v be a capacity that is p- and q-invariant on unambiguous events. Then, either

p ≈ q or Σua(v) = Σ.

Proof. Suppose that p ̸≈ q, so that we find N ∈ Σ with p(N) > 0 = q(N). We first prove the

following claim:

For all A ∈ Σua(v) and B ∈ Σ with 0 ≤ p(A)− p(B) ≤ p(N), we have B ∈ Σua(v). (7.1)

To see this, abbreviate x := p(B), y := p(A), and note that, in view of the convex range of

p, we can select C,D ∈ Σ such that C ⊂ N , D ⊂ N c, p(C) = y − x, and p(D) = x. As

p(A) = p(C ∪D) and A ∈ Σua(v), also C ∪D is unambiguous. As q(C ∪D) = q(D), we infer

that D is unambiguous as well. At last, every B ∈ Σ with p(B) = p(D) = x must also be

unambiguous.

Now, pick A ∈ Σua(v) so that p(A) = 1 and choose x so that 1 − x ≤ p(N). By (7.1), every

event B ∈ Σ whose probability satisfies 1− p(N) ≤ p(B) ≤ 1 is unambiguous.

Next, select an arbitrary event E ∈ Σ with p(E) = 1− p(N) and note that E is unambiguous

by the previous argument. Using the claim above once more in case y = 1− p(N), every event

B ∈ Σ with 1 − 2p(N) ≤ p(B) ≤ 1 − p(N) is unambiguous. If p(N) ≥ 1/2, we have already

proved that all events are unambiguous. Else, we iterate the argument to come to the same

conclusion. □

The next proposition shows that the conditions for a capacity to be law-invariant with respect

to different probabilities become much more stringent in the presence of nontrivial unambigu-

ous events. Indeed, such a simultaneous law-invariance can only hold in the presence of the

special distortion functions encountered in Example 4.5(b).

Proposition 7.3. Let p and q be finitely additive probabilities with convex range and let v be

a capacity which is both p- and q-invariant. Then, p ≈ q. In addition, if there is E ∈ Σua(v)

with v(E) ∈ (0, 1), then p = q or for every A ∈ Σ

v(A) =


0 p(A) = 0,
1
2

0 < p(A) < 1,

1 p(A) = 1.

Proof. As both p and q have convex range, Proposition 7.1 implies that p ≈ q. Now, let

E ∈ Σua(v) be as in the assertion. Since v(E) ∈ (0, 1), both p(E) and p(Ec) are in (0, 1).

By Proposition 7.1 (ii), it follows that v(E) = α = v(Ec). Finally, E unambiguous implies

α = 1/2. □

We conclude the section with a few additional remarks. To begin, let us observe that Propo-

sition 7.1 (ii) has a valid (immediate) converse:

If v = hp ◦ p with hp as in Proposition 7.1 (ii), then v is q-invariant for every

finitely additive probability q such that q ≈ p.



24 M. AMARANTE, F.-B. LIEBRICH, AND C. MUNARI

At once, these capacities admit the representation

v(A) = α max
q∈Pp(Σ)

q(A) + (1− α) min
q∈Pp(Σ)

q(A)

for some α ∈ [0, 1]. By a straightforward application of Lemma 4.1, one sees that core(v)

(acore(v)) is empty unless α = 0 (α = 1), in which case core(v) = Pp(Σ) (acore(v) = Pp(Σ)),

the set of probability charges that are absolutely continuous with respect to p.

Another immediate implication of Proposition 7.1 is that the law-invariant capacities whose

reference probability is non-unique are never continuous as they must fail continuity at either ∅
or Ω. Equivalently, if a capacity that is law-invariant with respect to a convex-ranged charge is

continuous at ∅ or Ω, then the reference probability is automatically unique. Notice, however,

that the converse of the latter statement is false: the capacity v = p is not continuous at ∅
unless p ∈ ca(Σ).

8. Extensions to signed charges

In this final section, we generalize the Marinacci-Svistula theorem by allowing the charge q

of Theorem 3.1 of Section 3 to be any element of ba(Σ); in particular, a signed charge. We

will then quickly present a number of applications, which mirror those in Sections 3 to 6.

Throughout the section, we assume that Σ is an algebra; thus, ba(Σ) is a vector lattice ([1,

Chapter 10.10]).

8.1. A generalization of the Marinacci-Svistula theorem. Our extension of the Marinacci-

Svistula theorem is based the two lemmata below. Let µ ∈ ba(Σ) and ε > 0. Let us recall

that a partition {H+, H−} ∈ Π is an ε-Hahn decomposition for µ if, for every A ∈ Σ, we have

A ⊂ H+ =⇒ µ(A) ≥ −ε, A ⊂ H− =⇒ µ(A) ≤ ε.

By [8, Theorem 2.6.2], each element of ba(Σ) admits an ε-Hahn decomposition if Σ is an

algebra, no matter the value ε. The first lemma is immediately verified.

Lemma 8.1. For µ ∈ ba(Σ) and ε > 0 small enough, and an ε-Hahn decomposition (H+, H−) ∈
Π for µ, we have:

(i) For every A ∈ Σ, µ+(A) ≤ ε if A ⊂ H− and µ−(A) ≤ ε if A ⊂ H+.

(ii) µ+(H+) ≥ µ+(Ω)− ε and µ−(H−) ≥ µ−(Ω)− ε.

(iii) µ(H+) ≥ µ+(Ω)− 2ε.

The next lemma extends Lemma 3.4 and is key to our generalization.

Lemma 8.2. Let p be a finitely additive probability with convex range and suppose µ ∈ ba(Σ)

satisfies µ ̸= µ(Ω)p. Then the set function c : Σ → [0, 1] defined by

c(A) := sup{µ(B) ; B ∈ Σ, p(B) = p(A)}

is submodular in the sense of (2.1) and, for every A ∈ Σ, it satisfies

p(A) ∈ (0, 1) =⇒ c(A) > µ(Ω)p(A). (8.1)
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Moreover, c is nondecreasing if µ ∈ ba+(Σ).

Proof. First, assume that µ ∈ ba+(Σ). In this case µ is, up to a normalization by µ(Ω), a

finitely additive probability and, hence, the statement follows at once from Lemma 3.4. Next,

take a general µ ∈ ba(Σ). We can prove submodularity as in the proof of Lemma 3.4. If

µ ∈ −ba+(Ω), then for every A ∈ (0, 1) with p(A) ∈ (0, 1),

c(A) = sup{µ(Ω)− µ(Bc) ; B ∈ Σ, p(B) = p(A)} > µ(Ω)− µ(Ω)p(Ac) = µ(Ω)p(A)

again by Lemma 3.4. Hence, we shall assume that both µ and −µ lie outside of ba+(Σ). We

are now going to show that for any r ∈ (0, 1), we can find an A ∈ Σ such that p(A) = r and

µ(A) > rµ(Ω), which yields (8.1). To this end, let us select ε := 1
3
min{(1− r)µ+(Ω), rµ−(Ω)}

and let {H+, H−} ∈ Π be an ε-Hahn decomposition for µ. We distinguish three cases. First,

assume that r = p(H+) and set A = H+. In this case, p(A) = r and

µ(A) = µ(H+) ≥ µ+(Ω)− 2ε > rµ+(Ω) > rµ(Ω).

Second, assume that r < p(H+) and take A ∈ Σ satisfying A ⊂ H+ and pH
+
(A) = r/p(H+)

as well as µ+(A) ≥ pH
+
(A)µ+(H+), which is possible by Lemma 3.4 applied to pH

+
defined

on the algebra {A ∩H+ ; A ∈ Σ}. Then, p(A) = r and

µ(A) ≥ pH
+

(A)µ+(H+)− ε ≥ r(µ+(Ω)− ε)− ε > rµ+(Ω)− 2ε > rµ(Ω).

Third, assume that r > p(H+). The partition {H−, H+} is also an ε-Hahn decomposition for

the signed charge ν := −µ, but with the roles of H+ and H− inverted. As 1 − r < p(H−) in

the present case, we are therefore back in the second case for ν and find an event B ∈ Σ with

p(B) = 1 − r and −µ(B) = ν(B) > ν(Ω)(1 − r) = −µ(Ω) + rµ(Ω). Consequently, A := Bc

satisfies p(A) = r and rµ(Ω) < µ(Ω)− µ(B) = µ(A). □

Our extension of the Marinacci-Svistula theorem follows seamlessly from Lemma 8.2. For

convenience, we have collected in one statement all the equivalent conditions encountered in

Section 3.

Theorem 8.3. Let p be a finitely additive probability with convex range. For every µ ∈ ba(Σ)

the following statements are equivalent:

(i) There exists E ∈ Σ such that p(E) ∈ (0, 1) and

p(A) = p(E) =⇒ µ(A) = µ(E).

(ii) There exists a p-nonconstant X ∈ B0(Σ) such that

sup
Y∼pX

Eµ[Y ] = inf
Y∼pX

Eµ[Y ].

(iii) Every p-equipartition is a µ-equipartition.

(iv) Every p-equipartition of size 2 is a µ-equipartition.

(v) µ = µ(Ω)p.

Proof. To show that (i) implies (v), let E ∈ Σ satisfy p(E) ∈ (0, 1) and assume that µ ̸= µ(Ω)p.

By applying Lemma 8.2 to ±µ, we find A,B ∈ Σ such that p(A) = p(B) = p(E) and
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µ(A) > µ(Ω)p(E) > µ(B). This delivers the desired implication. The proofs of the remaining

implications are identical to those of the corresponding statements in Section 3 with Lemma 8.2

replacing Lemma 3.4. □

8.2. Collapse of games. The results obtained for capacities in Section 4 extend to general

games. The key step is in the following generalization of Lemma 4.1:

Proposition 8.4. For a convex-ranged probability charge p and a p-invariant game v, the

following statements hold:

(i) acore(v) ̸= ∅ if and only if v(Ω)p ∈ acore(v).

(ii) core(v) ̸= ∅ if and only if v(Ω)p ∈ core(v).

Proof. We shall only prove statement (i). Take an arbitrary A ∈ Σ. If p(A) = 0, then v(A) =

0 = v(Ω)p(A) by p-invariance of v. Similarly, if p(A) = 1, then v(A) = v(Ω) = v(Ω)p(A).

Now, let p(A) ∈ (0, 1) and take any µ ∈ acore(v). It follows from Lemma 8.2 that there exists

B ∈ Σ with p(B) = p(A) such that

v(A) = v(B) ≥ µ(B) ≥ µ(Ω)p(B) = v(Ω)p(A),

again by p-invariance. This yields v(Ω)p ∈ acore(v). □

Conditions for the collapse of a game to an additive form obtain by following the same patterns

as in Section 4 and by simply replacing Lemma 4.1 with Proposition 8.4. In particular, we can

give the following extended version of Theorem 4.2:

Theorem 8.5. Let p be a finitely additive probability with convex range and v be a p-invariant

game. If there exists A ∈ Σ such that v(A) /∈ {0, v(Ω)} and v(A) + v(Ac) = v(Ω), then

core(v) = {v(Ω)p}, acore(v) = {v(Ω)p}, or both core and anticore of v are empty.

8.3. Fréchet-Hoeffding bounds. The following extends our version of the Fréchet-Hoeffding

bounds (Theorem 5.1) to the world of signed charges.

Theorem 8.6. Let p a finitely additive probability with convex range and µ ∈ ba(Σ) such that

µ ̸= µ(Ω)p. Then, for every p-nonconstant X ∈ B0(Σ),

sup
Y∼pX

Eµ[Y ] > µ(Ω)Ep[X] > inf
Y∼pX

Eµ[Y ].

In particular, for every A ∈ Σ such that p(A) ∈ (0, 1)

sup
B∈Σ, p(B)=p(A)

µ(B) > µ(Ω)p(A) > inf
B∈Σ, p(B)=p(A)

µ(B).

Proof. Let x1 < . . . < xk be the different values that X takes with strictly positive p-

probability. Suppose first that |µ| ̸≪ p, i.e., there is N ∈ Σ such that p(N) = 0 but |µ|(N) ̸= 0.

In this case, partition N c into events A1, . . . , Ak ∈ Σ such that p(Ai) = p(X = xi) for every

1 ≤ i ≤ k. For all t > 0 and E ∈ Σ with E ⊂ N , we have
∑k

i=1 xi1Ai
+ t1E − t1N\E ∼p X and
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thus

sup
Y∼pX

Eµ[Y ] ≥
{ k∑

i=1

xiµ(Ai) + t(µ(E)− µ(N \ E) ; t > 0, E ∈ Σ, E ⊂ N
}

= sup
{ k∑

i=1

xiµ(Ai) + t|µ|(N) ; t > 0
}
= ∞ > Ep[X].

As a result, we may assume that µ ≪ p. From this point on, one can argue as in the proof of

Theorem 5.1 by replacing Lemma 3.4 with Lemma 8.2. □

8.4. Fatou property. In this subsection we extend to general convex functionals on B(Σ) the

automatic Fatou property established in Section 6 for convex risk measures. The appropriate

version of the Fréchet-Hoeffding bounds, which is recorded in the previous subsection, plays a

key role also in this case. In what follows, for a given p ∈ P(Σ), we define for all π ∈ Π and

µ ∈ bap(Σ) the finitely additive set function

pπ,µ :=
∑

A∈π, p(A)>0

µ(A)pA.

Lemma 8.7. Let Σ be a σ-algebra and p a finitely additive probability with convex range.

Moreover, let φ : B(Σ) → R be p-invariant, lower semicontinuous, and convex. For all π ∈ Π

and µ ∈ bap(Σ) the following statements hold:

(i) φ (Ep[X|π]) ≤ φ(X) for every X ∈ B(Σ).

(ii) Epπ,µ [X] = Eµ[Ep[X|π]] for every X ∈ B(Σ).

(iii) φ∗(pπ,µ) ≤ φ∗(µ).

Proof. It is not difficult to show that any µ ∈ dom(φ∗) must satisfy µ ≪ p. Hence, for every

X ∈ B(Σ) we can rewrite the dual representation in (2.2) as

φ(X) = sup
µ∈bap(Σ)

{Eµ[X]− φ∗(µ)} . (8.2)

Now, take X ∈ B0(Σ) and A ∈ Σ such that p(A) > 0. An application of Theorem 8.6 to

the sample space A equipped with the algebra ΣA := {A ∩ B ; B ∈ Σ} and with the finitely

additive probability with convex range given by the restriction of pA to ΣA shows that, for

every µ ∈ bap(Σ),

sup
X′∼

pA
X

Eµ[X
′1A] ≥ µ(A)EpA [X] = Eµ[EpA [X]1A]. (8.3)

Now, take an arbitrary Y ∈ B0(Σ) and observe that, for every X ′ ∼pA X, we have X ′1A +

Y 1Ac ∼p X1A + Y 1Ac as well. Using p-invariance, we infer from (8.2) and (8.3) that

φ(X1A + Y 1Ac) = sup
X′∼

pA
X
φ(X ′1A + Y 1Ac) = sup

µ∈bap(Σ)

{
sup

X′∼
pA

X
Eµ[X

′1A + Y 1Ac ]− φ∗(µ)
}

≥ sup
µ∈bap(Σ)

{Eµ[EpA [X]1A + Y 1Ac ]− φ∗(µ)} = φ(EpA [X]1A + Y 1Ac).
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Repeating the argument yields (i) on B0(Σ). From this point on, we can argue as in the proof

of Lemma 6.1 by exploiting the fact that, being convex and lower semicontinuous and being

finitely valued, φ is continuous on B(Σ) by [12, Corollary 2.5]. □

The next result extends Theorem 6.2 beyond the class of risk measures. To obtain a parallel

statement, for every π ∈ Π and w ∈ Rπ we consider the finitely additive set function

pπ,w :=
∑

A∈π, p(A)>0

w(A)pA.

Theorem 8.8. Let Σ be a σ-algebra and p a finitely additive probability with convex range.

Moreover, let φ : B(Σ) → R be p-invariant, convex, and lower semicontinuous.

(i) For every X ∈ B(Σ)

ρ(X) = sup
π∈Π, µ∈bap(Σ)

{Epπ,µ [X]− ρ∗(pπ,µ)} = sup
π∈Π, w∈Rπ

{Epπ,w [X]− ρ∗(pπ,w)}. (8.4)

(ii) For all X ∈ B(Σ),

ρ(X) = sup
µ∈bap(Σ), µ≪p

{Eµ[X]− ρ∗(µ)}. (8.5)

Moreover, ρ has the hazy Fatou property.

(iii) If p is countably additive, then ρ is σ(B(Σ), ca(Σ))-l.s.c. and has the Fatou property.

Proof. It suffices to show the left-hand side equality in (8.4). To this effect, take X ∈ B(Σ)

and µ ∈ dom(φ∗). For every n ∈ N set πn := {{X ∈ [k2−n, (k + 1)2−n)} ; k ∈ Z} ∈ Π and

observe that

|Eµ[X]− Eµ[Ep[X|πn]]| ≤
∑

A∈πn, p(A)>0

E|µ|[|EpA [X]−X|1A] ≤ 2−n|µ|(Ω),

where we used that µ ≪ p. As a result,

Eµ[X]− φ∗(µ) ≤ inf
n∈N

{φ(Ep[X|πn]) + 2−n|µ|(Ω)} ≤ sup
π∈Π

φ(Ep[X|π]).

The desired equality follows at once from (8.2) and from Lemma 8.7. Statements (ii) and (iii)

are verified similarly to the corresponding statements in Theorem 6.2. □

A direct inspection of the proofs reveals that the results of this section hold true under alter-

native assumptions. Firstly, they remain valid if Σ is assumed to be an algebra instead of a

σ-algebra provided one replaces B(Σ) with the smaller space B0(Σ). Secondly, they hold true

if φ, rather than only taking finite values, takes values in (−∞,∞], is proper, lower semicon-

tinuous, and, for every X ∈ dom(φ), admits a sequence of simple functions (Y X
n ) such that

φ(X) = limn→∞ φ(Y X
n ).

8.5. Representation of law-invariant games. We conclude the section, and with it the

paper, by providing a representation theorem for law-invariant, submodular games of bounded

variation. A (cooperative) game v:

(1) is bounded if supA∈Σ v(A) < ∞.
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(2) has bounded variation ([5]) if

sup
n∈N

sup

{
n∑

i=1

|v(Ai)− v(Ai−1)| ; ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = Ω, A1, . . . , An ∈ Σ

}
< ∞.

An example of a law-invariant, submodular game of bounded variation was encountered in

Lemma 8.2 and was given for µ ∈ bap(Σ) by

v(A) = sup{µ(B) ; B ∈ Σ, p(B) = p(A)}, A ∈ Σ.

Indeed, as µ ≪ p, v(∅) = 0 and v is a game. As µ ∈ ba(Σ), v is bounded. Clearly, v is p-

invariant and it is submodular by Lemma 8.2. Being bounded and submodular, v has bounded

variation by [27, Theorem 4.7].

Functionals of the previous type have been a key tool throughout our analysis. Our repre-

sentation result focuses on them once more by showing that every law-invariant, submodular

game of bounded variation can always be represented as the above v.

Theorem 8.9. Let p be a finitely additive probability with convex range. A game v is a p-

invariant, submodular game of bounded variation iff there is µ ∈ ba(Σ) such that µ ≪ p and,

for every A ∈ Σ,

v(A) = sup{µ(B) ; B ∈ Σ, p(B) = p(A)}. (8.6)

On our way to this representation, we begin with the following

Lemma 8.10. Let p be a finitely additive probability with convex range and v a submodular,

p-invariant game of bounded variation. Then there is a unique concave function h : [0, 1] → R
such that v = h ◦ p.

The property stated in Lemma 8.10 is well-known, at least in the case of capacities. For

completeness, we provide a proof.

Proof. By p-invariance there is a unique function h : [0, 1] → R satisfying h(0) = 0 = h(1)−v(Ω)

and v = h ◦ p. In particular, h is of bounded variation and therefore Lebesgue measurable.

Using the same arguments as in the proof of Lemma 3.4, we see that h is continuous and

concave on (0, 1). It remains to show concavity on [0, 1]. First, we show concavity at 0. Let

x ∈ (0, 1) and λ = m/n for integers m,n ∈ N with m < n. Take A ∈ Σ with p(A) = x and

partition A into events A1, . . . , An ∈ Σ with the same p-probability. Applying submodularity

repeatedly, we obtain h(x)/n = v(
⋃n

i=1Ai)/n ≤ h(x/n), whence we infer

h(m
n
x) = v

( m⋃
i=1

Ai

)
≥

m∑
i=1

v(Ai) = mh
(
x
n

)
= m

n
h(x).

We can now use continuity on (0, 1) to show for arbitrary λ ∈ (0, 1) that

h(λx) = lim
n→∞

h
( ⌊nλ⌋

n
x
)
≥ ⌊nλ⌋

n
h(x) = λh(x).
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Next, we establish concavity at 1. As h is midpoint concave, for every n ∈ N with n ≥ 2

h
(
2n−1
2n

)
= h

(
1
2
· 1 + 1

2
· 2n−1−1

2n−1

)
≥ 1

2
h(1) + 1

2
h
(
2n−1−1
2n−1

)
.

This entails that ℓ := lim supn→∞ h(2
n−1
2n

)
≥ h(1). Now let x, λ ∈ (0, 1). By concavity and

continuity of h on (0, 1), we have

h(λx+ 1− λ) = lim sup
n→∞

h
(
λx+ (1− λ)2

n−1
2n

)
≥ λh(x) + (1− λ)ℓ ≥ λh(x) + (1− λ)h(1).

This concludes the proof. □

Given µ ∈ ba(Σ) that is absolutely continuous with respect to a convex-ranged probability

charge p, let us denote by vµ the corresponding game defined by (8.6) and let hµ : [0, 1] → R
be the unique function such that vµ = hµ ◦ p.

Lemma 8.11. Let p be a finitely additive probability with convex range and h : [0, 1] → R a con-

cave function. Suppose that A1, . . . , An ∈ Σ form a p-equipartition and let µ =
∑n

i=1

[
h
(
i
n

)
−

h
(
i−1
n

)]
pAi ∈ ba(Σ). Then, for every m ∈ N with m ≤ n,

hµ(
m
n
) = µ

( m⋃
i=1

Ai

)
.

Proof. Set wi := h
(
i
n

)
− h

(
i−1
n

)
for every 1 ≤ i ≤ n and define the function χ : Rn → R

by χ(y) :=
∑n

i=1wiyi. For A ∈ Σ with p(A) = m/n and y :=
(
p(A ∩ A1), . . . , p(A ∩ An)

)
,

µ(A) = χ(y). This immediately implies that for the set ∆ of vectors y = (y1, . . . , yn) ∈ [0, 1
n
]n

satisfying
∑n

i=1 yi =
m
n
,

hµ(
m
n
) = sup

y∈∆
χ(y).

As χ is continuous and ∆ is a simplex, we find an extreme point e = (e1, . . . , en) ∈ ∆

satisfying hµ(m/n) = χ(e). The extreme points of ∆ are characterized by the fact that

I := {1 ≤ i ≤ n ; ei =
1
n
} has cardinality m. By concavity of h, w1 ≥ w2 ≥ · · · ≥ wn, whence

we obtain

hµ(
m
n
) = max

|I|=m

∑
i∈I

wi

n
=

m∑
i=1

wi

n
= µ

( m⋃
i=1

Ai

)
.

□

We are now in a position to prove Theorem 8.9:

Proof of Theorem 8.9. Let v be a game that is p-invariant, submodular and of bounded vari-

ation. Let h be the concave function associated with v by Lemma 8.10. For every n ∈ N,

we can find a p-equipartition {An
1 , . . . , A

n
2n} ⊂ Σ such that, for each 1 ≤ i ≤ 2n, we have

An
i = An+1

2i ∪ An+1
2i+1. For n ∈ N, set

µn :=
2n∑
i=1

[
h
(
i
n

)
− h
(
i−1
n

)]
pA

n
i ∈ ba(Σ).
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Let vµn be the corresponding games as defined by (8.6) and let hµn be the corresponding

distortion. Observe that for all n ∈ N, 1 ≤ i ≤ 2n, and x ∈ [(i− 1)/2n, i/2n], we have

hµn(x) = h( i−1
2n

) +
[
h( i

2n
)− h( i−1

2n
)
]
2n(x− i−1

2n
).

As additionally hµn(0) = h(0) = 0 and hµn(1) = h(1) = v(Ω), we conclude hµn(x) ↑ h(x) for

every x ∈ [0, 1]. Next, denoting by TV (µn) the total variation of µn, observe that

sup
n∈N

TV (µn) ≤ sup
n∈N

sup

{
n∑

i=1

|h(xi)− h(xi−1)| ; 0 = x0 < x1 < ... < xn = 1

}
< ∞.

Hence, by the σ(ba(Σ), B(Σ))-compactness of the unit ball in ba(Σ), we can find a net (nα) ⊂
N such that (µnα) converges to a suitable µ ∈ ba(Σ) in the topology σ(ba(Σ), B(Σ)). Now,

fix any index α0 and set n0 := nα0 . For all ℓ ∈ {1, . . . , 2n0} and n ∈ N with n ≥ n0 define

A :=
⋃ℓ2n−n0

i=1 An
i . Then, hµn(ℓ2

−n0) = µn(A) by Lemma 8.11. As a result,

hµ(ℓ2
−n0) ≥ µ(A) = limµnα(A) = suphµnα

(ℓ2−n0) = h(ℓ2−n0).

Now observe that each hµn is a function whose variation is bounded by the variation of h.

Thus also h is of bounded variation and hence measurable. Arguing several times as above,

both hµ and h are continuous on (0, 1), and the previous estimate implies hµ ≥ h on (0, 1). By

construction, µ ≪ p and therefore hµ(0) = 0 = h(0) and hµ(1) = µ(Ω) = h(1). Hence, hµ ≥ h

on the entire [0, 1]. Conversely, however, we observe for all E ∈ Σ that

µ(E) = limµnα(E) ≤ suphµnα
(p(E)) = h(p(E)).

Taking the supremum over all F ∈ Σ with p(F ) = p(E) on the left-hand side yields hµ ≤ h,

and the proof is complete.

The converse direction is the observation immediately preceding assertion of Theorem 8.9 □
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