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Abstract

We study the local risk-minimization approach for defaultable claims with
random recovery at default time, seen as payment streams on the random in-
terval J0, τ ∧T K, where T denotes the �xed time-horizon. We �nd the pseudo-
locally risk-minimizing strategy in the case when the agent information takes
into account the possibility of a default event (local risk-minimization with
G-strategies) and we provide an application in the case of a corporate bond.
We also discuss the problem of �nding a pseudo-locally risk-minimizing stra-
tegy if we suppose the agent obtains her information only by observing the
non-defaultable assets.
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1 Introduction

The aim of this paper is to discuss the problem of pricing and hedging defaultable
claims, i.e. options that can lose partially or totally their value if a default event
occurs, by means of local risk-minimization approach applied to payment streams.
We consider a simple �nancial market model with two non-defaultable primary
assets (the money market account and a discounted risky asset) and a defaultable
claim with random recovery at default time.
Since it is impossible to hedge against the occurrence of default by using a port-
folio consisting only of the primary assets, the default-free market extended with
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the defaultable claim is incomplete and then it is reasonable to use the local risk-
minimization, that has become a popular criterion for pricing and hedging in in-
complete markets.
Other quadratic hedging methods such as mean-variance hedging have been exten-
sively studied in the context of defaultable markets by [1], [3], [6], [7] and [8].
The local risk-minimization has been already applied to defaultable markets with
recovery schemes at maturity in [1, 2]. In [1] the authors have investigated the case
where the default time and the underlying Brownian motion were independent.
In [2], they have considered the more general case where the dynamics of the risky
asset may be in�uenced by the occurring of a default event and also the default
time itself may depend on the assets prices behavior.
Here we allow for mutual dependence between default time and asset prices beha-
vior as in [2], but we focus on defaultable claims that deliver a recovery payment
at default time in case of default, seen as payment streams on the random interval
J0, τ ∧ T K, where T denotes the maturity date of the contract.
First we extend the results of [27] for local risk-minimization for payment streams
to the case of payment streams with random delivery date. Then we apply these
results to the case of defaultable claims with recovery at time of default and com-
pute explicitly the optimal strategy and the optimal cost.
Another important achievement of this paper is also that we are not assuming the
hypothesis (H) holds, i.e. the Brownian motion W remains a (continuous) martin-
gale (and then a Brownian motion) with respect to the enlarged �ltration G. This
is a consequence of the fact that we assume that hedging stops after default.
More precisely, the paper is structured as follows. Section 2 introduces the gene-
ral setup and Section 3 lays out the local risk-minimization for payment streams
adapted to our context. In Section 4, we provide the main result by �nding a closed
formula for the pseudo-locally risk-minimizing strategy in the case when the agent's
information takes into account the possibility of a default event. In particular we
compute it explicitly in the case of a corporate bond (see Section 5). Finally
in Section 6, we discuss the problem of �nding a pseudo-locally risk-minimizing
strategy if we suppose the agent obtains her information only by observing the
non-defaultable assets.

2 The setting

We consider a simple model of a �nancial market where we can �nd a risky as-
set, the money market account and defaultable claims, i.e. contingent agreements
traded over-the-counter between default-prone parties. Each side of contract is
exposed to the counterparty risk of the other party. Hence defaultable claims are
derivatives that could fail or lose their own value.
In [1, 2] we have already applied the local risk minimization approach to the case
of defaultable markets. However in this paper we study for the �rst time the
problem of �nding a pseudo-locally risk-minimizing strategy when the defaultable
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claim admits a recovery at default time τ , seen as a payment stream on the in-
terval J0, τ ∧ T K for a �xed time horizon T ∈ (0,∞). Since in practice hedging a
defaultable claim after default time is usually of minor interest and in our model
we have only a single default time, we follow the approach of [9] and assume that
hedging stops after default. Hence it makes sense to hedge by using the stopped
discounted price process Xτ instead of X.
The random time of default is represented by a nonnegative random variable
τ : Ω→ [0, T ] ∪ {+∞}, de�ned on a probability space (Ω,G,P) with P(τ = 0) = 0
and P(τ > t) > 0, for each t ∈ [0, T ]. The last condition means that the default
may not happen during the interval [0, T ]. For a given default time τ , we introduce
the associated default process H given by Ht = I{τ≤t}, for t ∈ [0, T ] and denote by
H := (Ht)0≤t≤T the �ltration generated by the process H, i.e. Ht = σ(Hu : u ≤ t)
for any t ∈ [0, T ].
Let W be a standard Brownian motion on the probability space (Ω,G,P) and
F := (Ft)0≤t≤T the natural �ltration of W . Let G := (Gt)0≤t≤T be the �ltration
given by Gt = Ft ∨ Ht, for every t ∈ [0, T ]. We put G = GT . We remark that
all the �ltrations are assumed to satisfy the usual hypotheses of completeness and
right-continuity.

• Let
Ft = P(τ ≤ t|Ft) (2.1)

be the conditional distribution function of the default time τ and assume
Ft < 1 for t ∈ [0, T ]. Then the hazard process Γ of τ under P:

Γt = − ln(1− Ft)

is well-de�ned for every t ∈ [0, T ]. In particular we assume that the hazard
process Γ admits the following representation:

Γt =

∫ t

0
λsds, ∀t ∈ [0, T ],

where λ is an F-adapted, non-negative process, with integrable sample paths
called intensity or hazard rate, and that eΓT ∈ L2(Ω,G,P). By Proposition
5.1.3 of [10] we obtain that the compensated process M given by

Mt := Ht −
∫ t∧τ

0
λudu = Ht −

∫ t

0
λ̃udu, ∀t ∈ [0, T ] (2.2)

follows a G-martingale. Notice that for the sake of brevity we have put
λ̃t := I{τ≥t}λt. In particular we obtain that the existence of the intensity
implies that τ is a totally inaccessible G-stopping time ( [15], VI.78).

• Since Γ in an increasing process, by Lemma 5.1.6 of [10] we have that W τ

is a G-martingale. By Lévy's Theorem we obtain that W τ is a Brownian
motion on J0, T∧τK. Note that if θ is a (su�ciently integrable)G-predictable
process, then the stochastic integral

∫
θsdW

τ
s is still well-de�ned and a G-

(local) martingale.
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• We denote the money market account by Bt = exp
(∫ t

0 rsds
)
, t ∈ [0, T ],

where r is a non-negative F-predictable process. Then we represent the
risky asset price by a stochastic process S on (Ω,G,P), whose dynamics is
given by {

dSt = µtStdt+ σtStdWt

S0 = s0, s0 ∈ R+,
(2.3)

where σt > 0 a.s. for every t ∈ J0, T ∧ τK and µ, σ, are F-adapted processes

such that the discounted asset price process Xt :=
St
Bt

belongs to L2(P),

∀t ∈ J0, T ∧ τK. In the de�nition of the asset price dynamics we can assume
without loss of generality that the dynamics of S are driven by F-adapted
coe�cients since the price process is stopped at τ . Namely by lemma 4.4 of
Chapter IV.2 of [23], any boundedG-predictable process can be decomposed
as

µt = µ1
t I{t<τ} + µ2(t, τ)I{τ≤t},

where µ1 is a bounded F-predictable process and µ2 : Ω× [0, T ]× [0, T ]→ R
is bounded and B([0, T ]) ⊗ PF-measurable, where PF denotes the set of F-
predictable processes. This decomposition shows how the in�uence of the
default time determines a sudden change in the drift (respectively, in the
volatility).

Remark 2.1. Note that (2.3) also provides the semimartingale decomposi-
tion of X as G-semimartingale. By [21] we obtain that the G-martingale
part of the stopped Brownian motion W τ is given by

W τ
t −

∫ τ∧t

0

d〈W,G〉s
Gs

= W τ
t ,

since Gt := 1− Ft is continuous and of �nite variation.

Let

θt =
µt − rt
σt

, ∀t ∈ J0, T ∧ τK (2.4)

be the market price of risk. We also assume that µ, σ and r are such
that there exists an equivalent martingale measure for the discounted price
process X whose density E

(
−
∫
θdW

)
T∧τ is square-integrable. If we de-

note by P2
e(X) the set of all equivalent martingale measures Q for X with

dQ
dP
∈ L2(P), we have that the convex set P2

e(X) is nonempty and the market

model is in addition arbitrage-free.

• We assume that the information at time t available to the agent is given by

Gt = Ft ∨Ht, ∀t ∈ [0, T ].
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As mentioned above, in this market model there exist defaultable claims, which
are formally represented by a triplet (X̄, Z, τ), where:

- the promised contingent claim X̄ represents the payo� received by the owner
of the claim at time T , if there was no default prior to or at time T . In
particular we assume it is represented by a FT -measurable random variable
X̄ ∈ L2(P);

- the recovery process Z represents the recovery payo� at time of default, if
default occurs prior to or at the maturity date T . The process Z is supposed
to be F-predictable and bounded.

We denote by N = (Nt)0≤t≤τ∧T the process that models all the cash �ows received
by the owner of the contract, i.e. the total payments on J0, τ ∧T K arising from the
defaultable claim. Indeed, we consider a stream of payments N that delivers only
a (random) amount at time τ , whose discounted value is given by:

N̄t =

∫ t

0

1

Bs
dNs =

∫
]0,t]

Zs
Bs

dHs =
Zτ
Bτ

I{τ≤t}, for 0 ≤ t < T (2.5)

and

N̄T =
X̄

BT
I{τ>T}, for t = T. (2.6)

In particular we obtain that N̄t ∈ L2(P), for every t ∈ [0, T ]. In this setting
we study the problem of a trader wishing to price and hedge a defaultable claim
(X̄, Z, τ) which pays a positive recovery in case of default at default time τ . We note
that our market model is incomplete even if we assume to trade with G-adapted
strategies because M does not represent the value of any tradable asset. In fact
it is impossible to hedge against the occurrence of default by using a portfolio
consisting only of the (non-defaultable) primary assets. Hence it makes sense to
apply some methods used for pricing and hedging in incomplete markets to the case
of defaultable options. In particular we focus here on the local risk-minimization
approach. This method focuses on the idea of �nding a replicating strategy for a
given claim. Since the market model is incomplete, this strategy will be in general
not self-�nancing, but it will have a cost. The aim is then to �nd the replicating
strategy with minimal cost in a sense that we discuss in Section 3.

3 Local risk-minimization for payment streams with ran-

dom delivery date

We extend in this section the results of [27] to the case of payment streams with
random delivery date. Under the hypotheses of Section 2, we introduce �rst the
basic framework and give some de�nitions. We recall that the asset price dynamics
is given by (2.3) and that for every t ∈ [0, T ]

Xt =
St
Bt
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denotes the discounted risky asset price.

• We remark that in our modelX belongs to the space S2
loc(P) ofG-semimartin-

gales decomposable as the sum of a locally square-integrable G-local mar-
tingale and of a G-predictable process of �nite variation null at 0. Indeed
by Proposition 4.1 it can be decomposed as follows:

Xτ
t = X0 +

∫ t

0
(µs − rs)Xτ

s ds+

∫ t

0
σsX

τ
s dW τ

s , t ∈ J0, T ∧ τK, (3.1)

where
∫ ·

0 σsX
τ
s dW τ

s is a locally square-integrable G-local martingale null at
0 and

∫ ·
0(µs − rs)Xτ

s ds is a G-predictable process of �nite variation null at
0. Moreover, in our case Xτ is a continuous process.

• In our model we have that the so-called Structure Condition (SC) is sati-
s�ed, that is, X is a special G-semimartingale with canonical decomposition
given by (3.1) and the process K̂ given by

K̂t(ω) :=

∫ t

0
θ2
s(ω)ds, t ∈ J0, T ∧ τK, (3.2)

is �nite P-a.s. for each t ∈ [0, T ], where θ is the market price of risk de�ned
in (2.4). Indeed, since X is continuous and the set P2

e(X) 6= ∅ by hypothesis,
see Section 2, Theorem 1 of [25] guarantees that (SC) is automatically sati-
s�ed. For more general results in this direction, see [11]. Additional results
on the relation between (SC) and properties of absence of arbitrage for the
process X can be found in [12].

In what follows, we assume that K̂ is uniformly bounded in t and ω, i.e.
there exists a constant K such that

K̂t(ω) ≤ K a.s, ∀t ∈ J0, T ∧ τK. (3.3)

Remark 3.1. This assumption guarantees the existence of the minimal martingale
measure for X (see De�nition 3.8). It is possible to choose di�erent hypotheses.
However assumption (3.3) is the simplest condition that can be assumed. For a
complete survey and a discussion of the others, we refer to [26].

We denote by ΘF,τ
S the space of F-predictable processes ξ on Ω such that

E
[∫ τ∧T

0
(ξsσsXs)

2ds

]
+ E

[(∫ τ∧T

0
|ξs(µs − rs)Xs|ds

)2
]
<∞. (3.4)

De�nition 3.2. A pair ϕ = (ξ, η) of stochastic processes is said to be an L2-
strategy with random delivery date τ ∧ T if

1. ξ ∈ ΘF,τ
S ;
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2. η is a real-valued G-adapted process such that the discounted value process
V (ϕ) = ξXτ+η is right-continuous and square-integrable, i.e. Vt(ϕ) ∈ L2(P),
for each t ∈ J0, τ ∧ T K.

Remark 3.3. We underline that in De�nition 3.2 the assumption of η G-adapted
plays a crucial role. Indeed, there are no predictable ϕ such that Vτ∧T (ϕ) = 0. If
τ < T , then the process η will have a jump that will be taken into account in the
cost. For further details on this issue, we also refer to the discussion contained in
Section 6.

Here we have supposed that the agent invests in the risky asset according to the
information provided by the asset behavior before default and adjusts the portfolio
value (by adding or spending money, i.e. modifying the cost), depending on the
occurrence or not of the default. In Section 6 we will further comment on other
possible choices for L2-strategies.
The cost process of an L2-strategy ϕ = (ξ, η) is given by:

CN̄t (ϕ) := N̄t + V N̄
t (ϕ)−

∫ t

0
ξsdX

τ
s , t ∈ J0, τ ∧ T K. (3.5)

We look now for an L2-strategy ϕ for N̄ with minimal cost C and such that ϕ is
0-achieving, i.e. the discounted value process satis�es

V N̄
τ∧T (ϕ) = 0, P− a.s. (3.6)

The de�nition of 0-achieving strategies has been introduced in [27] since it is better
suited for an extension of the local risk minimization method to the case of payment
streams. However the total cost CN̄T is the same as in the approach of [18], where
one uses strategies with terminal value equal to the option payo�.
In which sense is the cost minimal? Although L2-strategies ϕ with V N̄

τ∧T (ϕ) = 0
will in general not be self-�nancing, it turns out that good L2-strategies are still
self-�nancing on average in the following sense.

De�nition 3.4. An L2-strategy ϕ is called mean-self-�nancing if its cost process
CN̄ (ϕ) is a G-martingale under P (which is then square-integrable).

By using Theorem 1.6 of [27] we can give the following de�nition of F-pseudo-
locally risk-minimizing strategy 1 for the payment stream N̄ .

De�nition 3.5. Let N̄ be the payment stream given in (2.5)-(2.6) associated to
the defaultable claim (X̄, Z, τ). We say that an L2-strategy ϕ is a F-pseudo-locally

1The original de�nition of locally risk-minimizing strategy is given in [26] and formalizes the
intuitive idea that changing an optimal strategy over a small time interval increases the risk,
at least asymptotically. Since it is a rather technical de�nition, it has been introduced the
concept of pseudo-locally risk-minimizing strategy that is both easier to �nd and to characterize,
as Proposition 3.7 will show in the following. Moreover, in the one-dimensional case and if X is
su�ciently well-behaved, pseudo-optimal and locally risk-minimizing strategies are the same.
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risk-minimizing (in short F-plrm) strategy for N̄ if and only if ϕ is 0-achieving
and mean-self-�nancing, and the cost process CN̄ (ϕ) is a G-martingale strongly
orthogonal to the martingale part of Xτ .

Let M2
0(G,P) be the space of all P-square-integrable G-martingales null at 0.

De�nition 3.6. A random variable N ∈ L2(GT ,P) admits a (stopped) Föllmer-
Schweizer decomposition if it can be written as

N = N0 +

∫ T

0
ξNs dXτ

s + LNτ∧T , P− a.s (3.7)

where N0 ∈ R, ξN ∈ ΘF,τ
S and L ∈M2

0(G,P) is strongly orthogonal to the martin-
gale part of Xτ .

Proposition 3.7. Let N̄ be a payment stream in L2 with random delivery date
τ ∧ T . Then the payment stream N̄ admits a G-plrm L2-strategy ϕ if and only if
N̄τ∧T admits a (stopped) Föllmer-Schweizer decomposition. In that case, ϕ = (ξ, η)
is given by

ξ = ξN̄τ∧T , η = V N̄τ∧T − ξN̄τ∧TXτ (3.8)

with

V N̄τ∧T
t := N̄0 +

∫ t

0
ξN̄τ∧Ts dXτ

s + LN̄τ∧Tt − N̄t, t ∈ J0, τ ∧ T K, (3.9)

and then the minimal cost is

CN̄t (ϕ) = N̄0 + LN̄τ∧Tt , t ∈ J0, τ ∧ T K. (3.10)

Proof. It follows from Proposition 5.2 of [27], since the discounted price process X
satis�es the (SC) and the process K̂ given in (3.2) is continuous.
More precisely, if N̄τ∧T has a Föllmer-Schweizer decomposition (3.7), then (3.8)
and (3.9) de�ne an L2-strategy ϕ, see De�nition 3.2, whose cost process is given
by (3.10). Hence ϕ is mean-self-�nancing, see De�nition 3.4, and also 0-achieving
by (3.7). Thus ϕ is a F-plrm strategy for N̄ according to De�nition 3.5.
Conversely, if ϕ = (ξ, η) is a F-plrm strategy for N̄ , by using (3.5) we can write
the condition V N̄

τ∧T (ϕ) = 0 as follows:

N̄τ∧T = CN̄τ∧T (ϕ) +

∫ T

0
ξsdX

τ
s = CN̄0 (ϕ) +

∫ T

0
ξsdX

τ
s +

(
CN̄τ∧T (ϕ)− CN̄0 (ϕ)

)
,

and so we have (3.7) for N̄τ∧T with

N̄0 := CN̄0 (ϕ), ξN̄ := ξ, LN̄ := CN̄ (ϕ)− CN̄0 (ϕ);

note that LN̄ is a P-square-integrable G-martingale strongly orthogonal to the
martingale part of Xτ .
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Hence the problem of computing a F-plrm strategy for a payment stream boils
down to compute the Föllmer-Schweizer decomposition (3.9). In our setting we
can �nd a F-plrm strategy for the payment stream N̄ by choosing a good equivalent
martingale measure for X.

De�nition 3.8 (The Minimal Martingale Measure). A martingale measure
P̂ equivalent to P with square-integrable density is called minimal if any square-
integrable G-martingale which is strongly orthogonal to the martingale part of Xτ

under P remains a G-martingale under P̂.

The minimal measure is the equivalent martingale measure that modi�es the mar-
tingale structure as little as possible. Under assumption (3.3) we know that the
minimal martingale measure P̂ exists and it is unique. How to use P̂ to �nd out
the Föllmer-Schweizer decomposition is shown in this well-known Theorem.

Theorem 3.9. Let N̄ be a payment stream in L2 with random delivery date τ ∧T .
De�ne the process V̂ N̄ as follows

V̂ N̄
t := Ê

[
N̄τ∧T

∣∣Gt] , t ∈ J0, τ ∧ T K,

where Ê [·|Gt] denotes the G-conditional expectation under P̂. Let

V̂ N̄
t = V̂ N̄

0 +

∫ t

0
ξ̂N̄s dXτ

s + L̂N̄t (3.11)

be the Galtchouk-Kunita-Watanabe (in short GKW) decomposition2 of V̂ N̄ with
respect to Xτ under P̂. If either N̄ admits a Föllmer-Schweizer decomposition or
ξ̂N̄ ∈ ΘF,τ

S and L̂N̄ ∈M2
0(P), then (3.11) for t = τ ∧T gives the Föllmer-Schweizer

decomposition of N̄ stopped at τ ∧ T with respect to X.

Proof. Since X is continuous and satis�es (SC), and hypothesis (3.3) guarantees
existence of P̂ and of a Föllmer-Schweizer decomposition for N̄τ∧T , then the result
follows by Theorem 3.5 of [26].

4 Local risk-minimization for defaultable claims with

recovery process

Under the hypotheses of Section 2, we apply the results of Section 3 to the class
of defaultable claims with recovery at default time.

2We recall for reader's convenience the de�nition of Galtchouk-Kunita-Watanabe (GKW)
decomposition: if X is a P-local martingale, any H ∈ L2(GT ,P) admits a GKW decomposition
with respect to X, i.e. it can be uniquely written as

H = E [H] +

∫ T

0

ξHs dXs + LHT , P− a.s.,

for some G-predictable process ξH that satis�es E
[∫ T

0
(ξHs )2σ2

sX
2
sds

]
< ∞, and some LH ∈

M2
0(P) which is strongly orthogonal to X.
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We now show that every G-martingale stopped at τ can be represented in terms
of a stochastic integral with respect to (W τ ,M).

Proposition 4.1. Let (Zt)0≤t≤T be a G-martingale. Then the stopped martingale
(Zτt )0≤t≤T admits the martingale decomposition

Zτt = Z0 +

∫ t

0
eΓsξm̂s dW τ

s︸ ︷︷ ︸
:=LW,Z

+

∫
]0,t]

(m̂u −Du)dMu︸ ︷︷ ︸
:=LM,Z

(4.1)

where LW,Z and LM,Z are strongly orthogonal martingales and

m̂t = E
[∫ T

0
ẐudFu

∣∣∣∣Ft] = m̂0 +

∫ t

0
ξm̂s dWs,

for some F-predictable process ξm̂ and

Dt = eΓtE
[∫ T

t
ẐudFu

∣∣∣∣Ft] ,
and Ẑ is an F-predictable process such that

Ẑτ = E [Zτ∧T |Gτ−] = E [Zτ∧T |Fτ−] .

Proof. Consider the stopped G-martingale

Zt∧τ = E [Zτ∧T |Gt]

and let Ẑ be an F-predictable process such that

Ẑτ = E [Zτ∧T |Gτ−] .

Existence of such process Ẑ is ensured by [14], (68.1), page 126. Then we have

E [ZT∧τ |Gt] = E
[
ZT∧τ

(
I{τ≤t} + I{τ>t}

)∣∣Gt]
= E

[
Zτ I{τ≤t}

∣∣Gt]+ E
[
Zτ∧T I{τ>t}

∣∣Gt] . (4.2)

Since Γ is a continuous process, by Corollary 5.1.3 of [10], we have

E
[
ZT∧τ I{τ>t}

∣∣Gt] = I{τ>t}eΓtE
[∫ T

t
ẐudFu

∣∣∣∣Ft] .
Hence we can rewrite (4.2) as

Zt∧τ = E [ZT∧τ |Gt] = I{τ≤t}ZT∧τ + I{τ>t}eΓtE
[∫ T

t
ẐudFu

∣∣∣∣Ft] . (4.3)
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By Lemma 4.3 of [2] and by Lemma 5.1.5 of [10] we have that

HtẐτ = HtE [ZT∧τ |Ft ∨HT ]

= HtE [ZT∧τ |Gt]
= HtZT∧τ = HtZτ .

Hence we can rewrite (4.3) as

Zt∧τ = HtẐτ + I{τ>t}eΓtE
[∫ T

t
ẐudFu

∣∣∣∣Ft] .
Consider now the F-martingale

m̂t = E
[∫ T

0
ẐudFu

∣∣∣∣Ft] .
Then m̂τ stopped at τ is also a G-martingale by Lemma 5.1.6 of [10]. By doing
the same steps as in Proposition 5.2.1 of [10] we can show that

Zt∧τ = Z0 +

∫ t

0
eΓsdm̂τ

s +

∫
]0,t]

(
Ẑu −Du

)
dMu, (4.4)

where

Dt = eΓtE
[∫ T

t
ẐudFu

∣∣∣∣Ft] .
Since τ is a G-stopping time, by using the properties of the stochastic integral we
obtain ∫ t

0
eΓsdm̂τ

s =

∫
]0,t∧τ ]

eΓsdm̂s =

∫
]0,t∧τ ]

eΓsξms dWs

=

∫ t

0
eΓsξms dW τ

s , (4.5)

where

m̂t = m̂0 +

∫ t

0
ξm̂s dWs, t ∈ [0, T ],

is the Brownian representation of m̂ with respect to F, where ξm̂ is an F-predictable
process. Here we have used also the fact that m̂ is a G-semimartingale, see [19]
or [21]. By substituting (4.5) in (4.4) we obtain decomposition (4.1). Note that
LW,Z and LM,Z are strongly orthogonal since

[W τ ,M ]t = [W,M ]τt = 0, ∀t ∈ J0, T ∧ τK.

11



Consequently, by hypothesis (3.3), Girsanov Theorem and Proposition 4.1 we have
that the minimal martingale measure exists and its density is given by

dP̂
dP

= E

(
−
∫
θdW

)
T∧τ

. (4.6)

By (4.6) we have that Ŵ τ
t = W τ

t +
∫ t∧τ

0 θsds, t ∈ J0, T ∧ τK, is a G-Brownian

motion. Furthermore the pair (Ŵ τ ,M) has the predictable representation property
also under P̂ by Theorem 2.1 of [20] (see also [24] for the case when the hypothesis
(H) holds). In fact we recall that M is not a�ected by the change of measure from

P to P̂ by the de�nition of minimal measure, and that Ŵ τ is again a G-Brownian
motion strongly orthogonal to M :

[Ŵ τ ,M ]t = [Ŵ ,M τ ]t = [Ŵ ,M ]t = 0, t ∈ J0, τ ∧ T K,

since M = M τ . We now compute the GKW decomposition of N̄τ∧T under P̂, i.e.
the Föllmer-Schweizer decomposition for N̄τ∧T .
Under the equivalent martingale measure P̂, the discounted value process V̂ N̄ of
N̄τ∧T at time t ∈ J0, τ ∧ T K is given by:

V̂ N̄
t = Ê

[
N̄τ∧T

∣∣Gt]
= Ê

[
X̄

BT
I{τ>T} +

Zτ
Bτ

I{τ≤T}
∣∣∣∣Gt] .

Since X̄ ∈ L1(FT , P̂), then we get the following classic evaluation:

Ê
[
X̄

BT
I{τ>T}

∣∣∣∣Gt] = I{t<τ}Ê
[
e−

∫ T
t λsds X̄

BT

∣∣∣∣Ft] ,
see, e.g., Chapter 5 in [10] or [22]. Moreover, since Gτ− = Fτ− we note that

Ê
[
Zτ
Bτ

I{τ≤T}
∣∣∣∣Gt] =

Zτ
Bτ

Ht + Ê
[
Zτ
Bτ

I{t<τ≤T}
∣∣∣∣Gt] .

In addition, since
Z

B
is an F-predictable bounded process, then

Ê
[
Zτ
Bτ

I{t<τ≤T}
∣∣∣∣Gt] = I{t<τ}e

∫ t
0 λsdsÊ

[∫ T

t

Zs
Bs
e−

∫ s
0 λuduλsds

∣∣∣∣Ft] ,
see, e.g., Proposition 5.1.1. in [10]. We thus obtain, for any t ∈ J0, τ ∧ T K,

V̂ N̄
t =

Zτ
Bτ

Ht + I{t<τ}e
∫ t
0 λsdsÊ

[
e−

∫ T
0 λsds X̄

BT
+

∫ T

t

Zs
Bs
e−

∫ s
0 λuduλsds

∣∣∣∣Ft] . (4.7)

Now, we introduce the continuous F-martingale m by setting for each t ∈ [0, T ]

mt = Ê
[
e−

∫ T
0 λsds X̄

BT
+

∫ T

0

Zs
Bs
e−

∫ s
0 λuduλsds

∣∣∣∣Ft] . (4.8)
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Similarly to the proof of Proposition 2.2 in [4], where however hypothesis (H)
is assumed, in view of (4.7) the process V̂ N̄ can be represented as follows, for
t ∈ [0, T ]:

V̂ N̄
t =

Zτ
Bτ

Ht + I{t<τ}e
∫ t
0 λsdsUt, (4.9)

where the auxiliary process U equals

Ut = mτ
t −

∫ t∧τ

0

Zs
Bs
e−

∫ s
0 λuduλsds. (4.10)

An application of Itô's formula leads to

Ute
∫ t
0 λsds = m0+

∫ t

0
e
∫ s
0 λududmτ

s+

∫ t∧τ

0

(
Use

∫ s
0 λudu − Zs

Bs

)
λsds, t ∈ J0, T ∧τK.

Furthermore, since Ue
∫ ·
0 λsds is a continuous process, by using the integration by

parts formula and the same steps as in (4.5) we can rewrite the process V N̄ given
in (4.9) for all t ∈ J0, τ ∧ T K as:

V̂ N̄
t =

Zτ
Bτ

Ht +m0 +

∫ t

0
e
∫ s
0 λududmτ

s −
∫

]0,t]
Use

∫ s
0 λududMs −

∫
]0,t]

Zs
Bs
λsds

= m0 +

∫ t

0
ξms e

∫ s
0 λududŴ τ

s +

∫ t

0

(
Zs
Bs
− Use

∫ s
0 λudu

)
dMs,

where in particular ξm is the F-predictable process satisfying
∫ t

0 (ξms )2ds <∞, for
all t ∈ [0, T ], that appears in the Brownian representation of the F-martingale m,
i.e.

mt = m0 +

∫ t

0
ξms dŴs, t ∈ [0, T ]. (4.11)

Hence the Föllmer-Schweizer decomposition of N̄τ∧T de�ned in (2.5)-(2.6) with
respect to X stopped at time τ ∧ T , is given by:

N̄τ∧T = m0 +

∫ T

0

1

σsXs
ξms e

∫ s
0 λududXτ

s +

∫ T

0

(
Zs
Bs
− Use

∫ s
0 λudu

)
dMs. (4.12)

Proposition 4.2. In the market model outlined in Section 2, the payment stream
N̄ given in (2.5)-(2.6) admits a F-plrm strategy ϕ = (ξ, η), that is given by:

ξt =
1

σtXt
ξmt e

∫ t
0 λsds,

ηt = V N̄τ∧T
t − 1

σt
ξmt e

∫ t
0 λsds

for t ∈ J0, τ ∧ T K, with

V N̄τ∧T
t := m0 +

∫ t

0

1

σsXs
ξms e

∫ s
0 λududXτ

s +

∫ t

0

(
Zs
Bs
− Use

∫ s
0 λudu

)
dMs − N̄t,

(4.13)
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and cost process

CN̄t (ϕ) = m0 +

∫ t

0

(
Zs
Bs
− Use

∫ s
0 λudu

)
dMs,

for every t ∈ J0, τ∧T K, where the processesM, m, U, ξm are introduced respectively
in (2.2), (4.8), (4.10) and (4.11).

Proof. It follows by hypothesis (3.3), Theorem 3.9 and from the mutual orthogo-
nality ofM andW τ . More precisely, let N̄ the payment stream given in (2.5)-(2.6).
By Proposition 3.7, we know that N̄ admits a F-plrm L2-strategy if and only if
N̄τ∧T admits a (stopped) Föllmer-Schweizer decomposition. We note that since
dP̂
dP ∈ L

2(P), then L2(P) ⊂ L1(P̂). Consequently N̄τ∧T ∈ L1(P̂) since N̄τ∧T ∈ L2(P)
in our setting, and by Proposition 4.1 we obtain decomposition (4.12).

The G-martingale
∫ ·

0

(
Zs
Bs
− Use

∫ s
0 λudu

)
dMs is strongly orthogonal to the martin-

gale part of X, hence (4.12) gives the GKW decomposition of N̄τ∧T under P̂. Since
by hypothesis dP̂

dP ∈ L
2(P) and X is continuous, then by Theorem 3.5. of [18] the

associated density process

Z̃t = Ê

[
dP̂
dP

∣∣∣∣∣Gt
]
, t ∈ [0, T ],

is a square-integrableG-martingale. Since hypothesis (3.3) is in force, we can apply
Theorem 3.9 and conclude that (4.12) is the Föllmer-Schweizer decomposition of
N̄τ∧T .

Remark 4.3. We note that formula (4.13) has also the following interpretation.
By (2.5), (3.5), (3.6), (4.13) we have that

∆Nτ + ∆V N̄
τ =

Zτ
Bτ
− Uτe

∫ τ
0 λudu,

i.e.

−V N̄
τ− =

Zτ
Bτ
− Uτe

∫ τ
0 λudu − Zτ

Bτ
I{τ<T}

if τ < T . By Theorem 3.3.2 of [5], we have that

V N̄
t− = Ute

∫ t
0 λudu

for all t < T .

5 Example: case of a corporate bond

In this example, we wish to �nd a F-plrm strategy for a corporate bond with
recovery at default that we hedge by using a Treasury bond. To simplify the
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computations, we work out the example directly under P̂.
We �x T > 0 and assume that the discounted price process X is F-adapted. Here
we assume that the process X represents the discounted price of a Treasury bond
that expires at time T , with the following representation

Xt = Ê
[
e−

∫ T
0 rsds

∣∣∣Ft] , t ∈ [0, T ],

and that the discounted recovery process
Z

B
is given by

Zt
Bt

= δXt, t ∈ [0, T ],

where δ is a constant belonging to the interval ]0, 1[. As we said, we put X̄ = 1
so that the discounted value N̄ of the payment stream on J0, τ ∧ T K associated to
the corporate bond, is given by:

N̄t = δ

∫
]0,t]

XsdHs, for 0 ≤ t < T

and

N̄T =
1

BT
I{τ>T}, for t = T.

We make also the following hypotheses:

• r is an a�ne process, in particular it satis�es the following equation under
P̂: {

drt = (b+ βrt)dt+ α
√
rtdŴt

r0 = 0,
(5.1)

where b, α ∈ R+ and β is arbitrary. This is the Cox-Ingersoll-Ross model
and we know it has a unique strong solution r ≥ 0 for every r0 ≥ 0. See [16]
for further details.

• The F-intensity λ is supposed to be a positive deterministic function of time.
We remark that in this case τ is independent of F.

This last assumption allows us to compute explicitly the processes D,m and the
Föllmer-Schweizer decomposition for Nτ∧T in the sequel.
We consider the discounted value of the payment stream N at time τ ∧ T :

N̄τ∧T =
1

BT
(1−HT ) + δXτHT . (5.2)

We compute now the terms appearing in decomposition (4.13) for this case. First

we focus on the process e
∫ ·
0 λ(s)dsU , that in this setting has the following form:

e
∫ t
0 λ(s)dsUt = e−

∫ T
t λ(s)dsÊ

[
1

BT

∣∣∣∣Ft]+ e
∫ t
0 λ(s)dsÊ

[∫ T

t
δXse

−
∫ s
0 λ(u)duλsds

∣∣∣∣Ft]
= e−

∫ T
t λ(s)dsXt + Ê

[∫ T

t
δXse

−
∫ s
t λ(u)duλsds

∣∣∣∣Ft] . (5.3)
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Then, we consider ξ̄, the F-predictable process such that
∫ t

0 (ξ̄s)
2ds < ∞, for

every t ∈ [0, T ], that appears in the integral representation of the F-martingale

Ê
[

1
BT

∣∣∣Ft] with respect to the Brownian motion Ŵ :

Ê
[

1

BT

∣∣∣∣Ft] = Ê
[

1

BT

]
+

∫ t

0
ξ̄sdŴs, t ∈ J0, τ ∧ T K.

By following Section 5 of [2], since r is an a�ne process whose dynamics is given
in (5.1), we have

Ê
[

1

BT

∣∣∣∣Ft] = e−
∫ t
0 rsdse−A(t,T )−B(t,T )rt

= e−A(0,T ) −
∫ t

0
e−A(s,T )−B(s,T )rsB(s, T )

Bs

√
rsdŴs, (5.4)

where the functions A(t, T ), B(t, T ) satisfy the following equations:

∂tB(t, T ) =
α2

2
B2(t, T )− βB(t, T )− 1, B(T, T ) = 0

∂tA(t, T ) = −bB(t, T ), A(T, T ) = 0,

that admit explicit solutions (see for instance [17]). Thus, we can rewrite (5.3) as
follows:

e
∫ t
0 λ(s)dsUt = e−

∫ T
t λ(s)ds

(
e−A(0,T ) −

∫ t

0
e−A(s,T )−B(s,T )rsB(s, T )

Bs

√
rsdŴs

)
+ Ê

[∫ T

t
δXse

−
∫ s
t λ(u)duλsds

∣∣∣∣Ft] .
(5.5)

We now compute the second term on the right-hand side of (5.5). By applying
Fubini-Tonelli Theorem, we have

Ê
[∫ T

t
δXse

−
∫ s
t λ(u)duλsds

∣∣∣∣Ft] =

∫ T

t
e−

∫ s
t λ(u)duλ(s)δÊ [Xs|Ft] ds

=

∫ T

t
e−

∫ s
t λ(u)duλ(s)δXtds

= δXt

(
1− e−

∫ T
t λ(s)ds

)
,

since λ is a deterministic function and �nally

e
∫ t
0 λ(s)dsUt = e−

∫ T
t λ(s)dsXt + δXt

(
1− e−

∫ T
t λ(s)ds

)
= e−

∫ T
t λ(s)dsXt

(
δe

∫ T
t λ(s)ds − δ + 1

)
.
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It only remains to compute the F-martingale m introduced in (4.8) and in parti-

cular its integral representation with respect to the Brownian motion Ŵ . In virtue
of (4.10), we can rewrite m in terms of U :

mt

= Ut +

∫ t

0
δXse

−
∫ s
0 λ(v)dvλ(s)ds

= e−
∫ T
0 λ(s)ds

(
e−A(0,T ) −

∫ t

0
e−A(s,T )−B(s,T )rsB(s, T )

Bs

√
rs︸ ︷︷ ︸

ζs

dŴs

)

+ δXt

(
e−

∫ t
0 λ(s)ds − e−

∫ T
0 λ(s)ds

)
+

∫ t

0
δXse

−
∫ s
0 λ(v)dvλ(s)ds (5.6)

= e−
∫ T
0 λ(s)ds

(
e−A(0,T ) −

∫ t

0
ζsdŴs

)
+ δ

[
Xt

(
e−

∫ t
0 λ(s)ds − e−

∫ T
0 λ(s)ds

)
+

∫ t

0

(
e−A(0,T ) −

∫ s

0
ζudŴu

)
e−

∫ s
0 λ(v)dvλ(s)ds

]
= e−

∫ T
0 λ(s)ds

(
e−A(0,T ) −

∫ t

0
ζsdŴs

)
+ δ

[
e−A(0,T )

(
1− e−

∫ T
0 λ(s)ds

)
−
(
e−

∫ t
0 λ(s)ds − e−

∫ T
0 λ(s)ds

)∫ t

0
ζsdŴs −

∫ t

0

∫ s

0
ζue
−

∫ s
0 λ(v)dvλ(s)dŴsds

]
,

(5.7)

where ζ is an F-predictable process such that

Ê
[∫ T

0
ζ2
sds

]
= Ê

[∫ T

0

(
e−A(s,T )−B(s,T )rsB(s, T )

Bs

√
rs

)2

ds

]
<∞.

Moreover we note that

Ê
[∫ T

0

∫ T

0
ζ2
ue
−

∫ s
0 λ(v)dvλ(s)duds

]
=
(

1− e−
∫ T
0 λ(s)ds

)
Ê
[∫ T

0
ζ2
udu

]
ds <∞,

since by (5.4)

Ê
[∫ T

0
ζ2
udu

]
= Ê

[(∫ T

0
ζudŴu

)2
]

= Ê
[
(e−A(0,T ) −XT )2

]
≤ (e−A(0,T ) + 1)2,

because X takes values in (0, 1). Since all the integrability conditions are satis�ed,
by applying the Fubini's Theorem for stochastic integrals, we have

−
∫ t

0

∫ t

0
e−

∫ s
0 λ(v)dvλ(s)ζuI{u≤s}dŴuds =

∫ t

0

(
−
∫ t

u
e−

∫ s
0 λ(v)dvλ(s)ds

)
ζudŴu

=

∫ t

0

(
e−

∫ t
0 λ(v)dv − e−

∫ u
0 λ(v)dv

)
ζudŴu.

(5.8)
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Hence by (5.6), (5.7) and (5.8), we obtain

m0 = e−A(0,T )−
∫ T
0 λ(s)ds

[
δ
(
e
∫ T
0 λ(s)ds − 1

)
+ 1
]

and

mt = e−A(0,T )−
∫ T
0 λ(s)ds

[
δ
(
e
∫ T
0 λ(s)ds − 1

)
+ 1
]
− δ

∫ t

0
e−

∫ u
0 λ(v)dvζudŴu.

Hence the Föllmer-Schweizer decomposition of N̄τ∧T de�ned in (5.2) stopped at
time τ ∧ T , is given by:

N̄τ∧T

= e−A(0,T )−
∫ T
0 λ(s)ds

[
δ
(
e
∫ T
0 λ(s)ds − 1

)
+ 1
]
− δ

∫ τ∧T

0

ζs
σsXs

dXs

+

∫ τ∧T

0
e−

∫ T
s λ(u)duXs(δ − 1)dMs.

In particular, the cost process is given by

Ct = e−A(0,T )−
∫ T
0 λ(s)ds

[
δ
(
e
∫ T
0 λ(s)ds − 1

)
+ 1
]

+

∫ t

0
e−

∫ T
s λ(u)duXs(δ − 1)dMs,

for every t ∈ J0, τ ∧ T K.

6 Local risk-minimization with G-strategies

We now comment on our choice of L2-strategies given by De�nition 3.2. The
following Lemma shows that this is equivalent to local risk-minimization by using
F-strategies.

Lemma 6.1. For any G-predictable process ϕ there exists a unique F-predictable
process ϕ̃ such that

I{τ≥t}ϕ̃t = I{τ≥t}ϕt, t ∈ [0, T ].

Proof. It follows from [13], since G is the �ltration given by Gt = Ft ∨ Ht, for
each t ∈ [0, T ] and the process F de�ned in (2.1) is such that the inequality
Ft = P(τ ≤ t|Ft) < 1 holds for every t ∈ [0, T ].

By Lemma 6.1 we obtain that there exists a unique F-predictable process X̃ such
that

I{τ≥t}X̃t = I{τ≥t}Xt, t ∈ [0, T ].

Following [8] and [9] we refer to X̃ as the pre-default value of X. In practice, since
hedging stops after default, the agent observes the pre-default (discounted) value
X̃ and hedges by using X̃ until the default happens.
We observe that there do not exist F-pseudo-locally risk-minimizing strategies,
if we use the usual de�nition. In fact, �nding a F-plrm strategy ϕF = (ξ, η) is
equivalent to �nd a pair of processes (ξ, C) such that:
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- ξ ∈ ΘF,τ
S ,

- the cost process C is an F-martingale strongly orthogonal to the martingale
part of X̃τ , with

Vt(ϕ
F) =

∫ t

0
ξsdX

τ
s + Ct(ϕ

F)− N̄t, t ∈ J0, τ ∧ T K

and Vτ∧T (ϕF) = 0, i.e.
∫ τ∧T

0 ξsdXs + Cτ∧T (ϕF) = N̄τ∧T .

From this de�nition follows that Ct ≡ cost, for each t ∈ J0, τ ∧ T K, since C is an
F-martingale strongly orthogonal to W and W has the predictable representation
property with respect to F. Equivalently, one could see that if a plrm strategy
with respect to F would exist with Vτ∧T = 0, then τ ∧ T would be an hitting
time of 0 of the F-adapted process V , which is not possible. As already remarked,
the agent observes the pre-default (discounted) value X̃ until the default happens.
Hence we cannot hedge against the occurring of a default by using only the infor-
mation contained in the pre-default asset prices. This is one of the di�erences with
respect to the mean-variance hedging, where the optimal F-strategy is given by
the replicating strategy for Ê

[
N̄τ∧T

∣∣Ft], (if it exists). See [3] for further details.
Another possible choice would be to consider G-predictable strategies. Let ΘG,τ

S ,
the space of G-predictable processes ξ on Ω such that

E
[∫ τ∧T

0
(ξsσsXs)

2ds

]
+ E

[(∫ τ∧T

0
|ξs(µs − rs)Xs|ds

)2
]
<∞.

De�nition 6.2. Let N̄ be the payment stream given in (2.5)-(2.6) associated to
the defaultable claim (X̄, Z, τ). A pair ϕG = (ξ, C) of stochastic processes is said
an G-pseudo-locally risk-minimizing (in short G-plrm) strategy for N̄ , if

1. ξ ∈ ΘG,τ
S ;

2. the cost process C is a G-martingale strongly orthogonal to the martingale
part of X̃τ ;

3. the discounted value process V (ϕG) = ξXτ + η is such that

Vt(ϕ
G) =

∫ t

0
ξsdX

τ
s + Ct(ϕ

F)− N̄t, t ∈ J0, τ ∧ T K,

and Vτ∧T (ϕG) = 0.

Clearly the component η invested in the money market account, is given by

ηt = Vt(ϕ
G)− ξtXτ

t , t ∈ J0, τ ∧ T K.
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Remark 6.3. At a �rst look it may appear that there is no di�erence in between
the sets of the F-plrm strategy (see De�nition 6.2) and of the G-plrm strategy
(see De�nition 3.8). However, these sets are not equal, but they are related in the
following way. For any ϕG = (ξ, η) G-plrm strategy there exists a unique F-plrm
strategy ϕF = (ξ̃, C) such that

I{τ≥s}ξs = I{τ≥s}ξ̃s,

i.e., ξ̃ is the pre-default value of ξ according to Lemma 6.1, and

ηt = Vt(ϕ
F)− ξ̃tXτ

t

=

∫ t

0
ξ̃sdX

τ
s + Ct(ϕ

F)− N̄t − ξ̃tXτ
t .

The two strategies di�er only for what concerns the �rst component. Note that
given H ∈ L2(Gt,P), the (stopped) Föllmer-Schweizer decompositions of it with
respect to F-plrm strategies or to G-plrm strategies coincide by Lemma 6.4. The
two di�erent sets have been introduced only to stress the fact that an agent may
invest in the risky asset without taking into account the possibility of a default until
τ happens. At the moment when the default occurs she is then forced to readjust
the portfolio by using the cost.

Lemma 6.4. Given a G-predictable process ϕ such that

Ê
[∫ T

0
ϕ2
sd〈X〉s

]
<∞, (6.1)

let ϕ̃ be the F-predictable process such that I{τ≥t}ϕt = I{τ≥t}ϕ̃t, for each t ∈ [0, T ].
Then for every t ≤ T ∫ t

0
ϕ̃sdX

τ
s =

∫ t

0
ϕsdX

τ
s , ∀t ∈ [0, T ].

Proof. Since Xτ is a continuous local G-martingale under P̂ and (6.1) holds, we
have that for t ≤ T∫ t

0
ϕsdX

τ
s =

∫ t

0
I{τ≥s}ϕsdXτ

s

=

∫ t

0
I{τ≥s}ϕ̃sdXτ

s =

∫ t

0
ϕ̃sdX

τ
s .

We only need to check that the integral
∫ t

0 ϕ̃sdX
τ
s exists for each t ∈ [0, T ] and

that is well-de�ned if the integral
∫ t

0 ϕsdX
τ
s exists and it is well-de�ned for each
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t ∈ [0, T ]. This is clear since if Ê
[∫ T

0 ϕ2
sd〈Xτ 〉s

]
<∞, we have

∞ > Ê
[∫ T

0
ϕ2
sd〈Xτ 〉s

]
= Ê

[(∫ T

0
ϕsdX

τ
s

)2
]

= Ê

[(∫ T

0
ϕsI{τ≥s}dXs

)2
]

= Ê
[∫ T

0
ϕ̃2
sd〈Xτ 〉s

]
,

since I{τ≥t}ϕt = I{τ≥t}ϕ̃t, for each t ∈ [0, T ], by hypothesis.
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