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1. Introduction8

In this paper, we aim at analyzing the small noise problem of discontinuous ODE’s. More9

precisely, we want to provide conditions under which the solutions Xn
t , n ∈ N, of the stochastic10

differential equations (SDE’s)11

dXn
t = b(t,Xn

t )dt+
1

n
dBt, 0 ≤ t ≤ 1, Xn

0 = x ∈ Rd , (1.1)

for n→∞ converge to a solution (process) Xt of the ODE12

dXt = b(t,Xt)dt, 0 ≤ t ≤ 1, X0 = x ∈ Rd , (1.2)

where the drift term b : [0, T ] × Rd → Rd is allowed to be a discontinuous function. Here13

{Bt}0≤t≤1 is a d-dimensional Ft-Brownian motion on a probability space (Ω,F , µ), where14

{Ft}0≤t≤1 is a µ-augmented filtration generated by B·.15

In the case of continuous drift coefficients b the small noise problem (1.1), (1.2) has been16

studied by various authors in the literature. See e.g [2, 3, 4, 8, 13, 25] and [26]. The author in17

[25] introduces the large deviation principle to study the convergence rate of solutions of (1.1)18

to (1.2) with (Lipschitz-) continuous coefficients. We mention that the authors in [2, 3] and19

[4] employ the Skorohod embedding in combination with certain boundary value problems to20

establish criteria for the convergence to solutions processes of (1.2). See also [26]. The work21

[4] deals with a selection principle based on viscosity solutions to construct Feller solutions of22

ill-posed degenerate diffusion processes. See also the interesting paper of [13] in the context23

of (stochastic) superposition solutions of ODE’s (SDE’s). We shall also refer the reader to [1]24

and the references therein.25

The perturbation problem (1.1), (1.2) for discontinuous or even merely measurable drift26

terms b is in general challenging and sparsely covered by the current literature. See [7,27

9, 15, 16]. In the interesting work [7] the authors use the Skorohod embedding technique28
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to derive (under fairly general conditions on b) generalized solutions to (1.2) in the sense29

of Filippov. Further, the papers [15, 16] are concerned with the convergence rate of the30

probability densities of Xn for some (concrete) non-Lipschitzian drift terms b. The method31

used in the latter papers are based on large deviation techniques and viscosity solutions of32

Hamilton-Jacobi equations. We also emphasize the work [9], where the authors develop large33

deviations techniques to treat ODE’s for certain discontinuous coefficients b. Other techniques34

for the construction of solutions of discontinuous ODE’s can be e.g. found in [6, 24].35

Our approach to problem (1.1), (1.2) is different from the above mentioned authors’ ones36

and is based on the use of Gel’fand triples37

D1,2 ↪→ L2(µ) ↪→ D−1,2 (1.3)

and38

(S) ↪→ L2(µ) ↪→ (S)∗. (1.4)

D1,2 denotes the stochastic Sobolev space of Malliavin differentiable square integrable Brow-39

nian functionals and D−1,2 is its topological dual. Further, (S) is the Hida test function space40

and (S)∗ the Hida distribution space. Here the symbol ↪→ stands for continuous inclusions of41

spaces. We mention that42

(S) ↪→ D1,2 ↪→ L2(µ) ↪→ D−1,2 ↪→ (S)∗. (1.5)

For more information about Malliavin calculus the reader may consult [11, 18] or [21]. As for43

the construction of the triple (1.4) and its applications in white noise analysis, we recommend44

the books of [17] or [22].45

To be more precise, our method to tackle the perturbation problem (1.1), (1.2) relies on a46

compactness criterion in L2(µ) based on Malliavin calculus (see [10]), a “variational calculus”47

technique with respect to local time [12], and a compactness criterion for continuous functions48

with values in (S)∗. Using these tools, we are able to show (under certain stochastic conditions49

on b) that Xn in (1.1) converges in L2(µ) (or even in D1,2) for a subsequence to a (possibly50

Malliavin differentiable) cluster point Xt, which solves the ODE, almost surely (or on a set51

with positive probability).52

We point out that we obtain solutions of discontinuous ODE’s which are stable under53

random perturbations. This approach also provides a natural selection procedure for solutions54

of discontinuous ODE’s which, as one knows, have no unique solutions in general. See e.g [13]55

for a general discussion of this topic.56

2. Main results57

In this section, we want to introduce a new technique to study the behavior of the solutions58

Xn
· of SDE’s (1.1) when n → ∞. Before we proceed, we shall send ahead some notions and59

definitions which we will make use of later on in this paper.60

In the following, let S([0, 1]) ⊆ L2([0, 1]) be the Schwartz space on [0, 1] as e.g., constructed
in [22]. Using the theorem of Bochner-Minlos, we shall denote by π the unique probability
measure on the Borel sets B(S′([0, 1])) of S′([0, 1]) (topological dual of S([0, 1])) such that∫

S′([0,1])
ei〈ω,φ〉π(dω) = e

− 1
2
‖φ‖2

L2([0,1])

for all φ ∈ S([0, 1]), where 〈ω, φ〉 is the action of ω ∈ S′([0, 1]) on φ ∈ S([0, 1]).61
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From now on, we assume that the Brownian motion Bt ∈ Rd in (1.1) is defined on the62

probability space63

(Ω,F , µ) :=

(
d∏
i=1

Ωi, ⊗di=1Fi, ⊗di=1µi

)
, (2.1)

where Ωi = S′([0, 1]), Fi = B(S′([0, 1])), µi = π for i = 1, . . . , d.64

Further, we briefly recall the definition of the S-transform, which can be used to characterize65

elements of the Hida test function and distribution spaces. See [17]. The S-transform of a66

Φ ∈ (S)∗, denoted by S(Φ) is defined as67

S(Φ)(φ) = 〈Φ, ẽ(φ, ·)〉 (2.2)

for φ ∈ SC([0, 1])d, where SC([0, 1]) is the complexification of S([0, 1])) and ẽ(φ, ·) ∈ (S) is the
exponential functional

ẽ(φ, ω) := exp

{
〈ω, φ〉 − 1

2
‖φ‖2L2([0,1];Rd)

}
for ω = (ω1, . . . , ωd) ∈ Ω, Φ = (Φ(1), . . . ,Φ(d)) ∈ (S([0, 1]))d, and 〈ω, φ〉 =

∑d
i=1 〈ωi, φi〉68

In what follows, we shall denote by D· the Malliavin derivative on (Ω,F , µ), which is a69

linear operator from D1,2 to L2(λ ⊗ µ) (λ Lebesgue measure). See e.g [11] or [21] for the70

definition of D·. We Mention that D1,2 in (1.3) is a Hilbert space with a norm ‖·‖1,2 given by71

‖F‖21,2 := ‖F‖2L2(µ) + ‖D·F‖2L2([0,1]×Ω,λ⊗µ) (2.3)

(for d = 1). We shall also use the notation δ for the adjoint operator of D·, which is referred72

to as divergence operator.73

In this section, we also want to introduce the crucial concept of stochastic integration74 ∫ t

0

∫
R
f(s, x)L(ds, dx) (2.4)

over the plane with respect to Brownian local time L(t, x) for integrands f : [0, 1] × R → R75

in the Banach space (H, ‖·‖) with the norm76

‖f‖ := 2

(∫ 1

0

∫
R

(f(s, x))2 exp(−x
2

2s
)
ds dx√

2πs

) 1
2

+

∫ 1

0

∫
R
|xf(s, x)| exp(−x

2

2s
)
ds dx

s
√

2πs
. (2.5)

See [12]. We need the following auxiliary result ([12, Theorem 3.1, Corollary 3.2])77

Lemma 2.1. Let f ∈ H. Suppose that for all t ∈ [0, 1] f(t, ·), the derivative f ′(t, ·) (in the
generalized sense with respect to the Lebesgue measure) exists and that∫ 1

0

∫ A

−A

∣∣f ′(s, x)
∣∣ ds√

s
dx <∞

for all A ≥ 0. Then78 ∫ t

0

∫
R
f(s, x)L(ds, dx) = −

∫ t

0
f ′(s,Bs)ds. (2.6)
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Later on in this paper, we shall also use the following decomposition of local time space79

integral (see the proof of Theorem 3.1 in [12])80

∫ t

0

∫
R
fi(s, x)Li(ds, dx) =

∫ t

0
fi(s,B

(i)
s )dB(i)

s +

∫ 1

1−t
fi(1− s, B̂(i)

s )dW̃ (i)
s

+

∫ 1

1−t
fi(1− s, B̂(i)

s )
B̂

(i)
s

1− s
ds, (2.7)

0 ≤ t ≤ 1, a.e., for fi ∈ H, i = 1, . . . , d, where Li(ds, dx) denotes the local time-space with81

respect to B(i) (the i-th component of B) on (Ωi, µi), i = 1, . . . , d. Here B̂(i) is the i-th82

component of the time-reversed Brownian motion, that is of83

B̂t :=
(
B̂

(1)
t , . . . , B̂

(d)
t

)
:= B1−t, (2.8)

0 ≤ t ≤ 1. Further W̃
(i)
t , 0 ≤ t ≤ 1, are independent µi-Brownian motions (see (2.1)) with84

respect to the filtration F B̂(i)

t generated by B̂
(i)
t , i = 1, . . . , d.85

Now consider the SDE’s (1.1)with Borel measurable drift b : [0, 1]×Rd → Rd. For our main86

result (Theorem 2.2) we will need the existence of a sequence bp : [0, 1] × Rd → Rd, p ∈ N,87

of approximating drift coefficients which fulfill the following five conditions. For notational88

convenience we set b0 := b.89

(C1): The coefficients bp, p ∈ N, are continuous with compact support such that bp(t, ·) is90

continuously differentiable, 0 ≤ t ≤ 1, with bounded derivative on [0, 1]×Rd. It is well known91

that bounded coefficients admit unique strong solutions Xn,p
t , n ∈ N, p ∈ N, of the SDE’s92

dXn,p
t = b(t,Xn,p

t )dt+
1

n
dBt, 0 ≤ t ≤ 1, Xn,p

0 = x ∈ Rd . (2.9)

(C2): Let M⊂ Rd×d denote the class of continuous matrix valued functions M(t) : [0, 1]→93

Rd×d such that M(t) commutes with
∫ t
sM(u) du for all 0 ≤ s ≤ t ≤ 1. Suppose that94

b′p(·, X
n,p
· ) ∈ M for all n ∈ N, p ∈ N, where the symbol ′ stands for the derivative with95

respect to the space variable.96

(C3): For each n ∈ N

sup
p≥0

∥∥∥∥∥exp

{
512

∫ 1

0
n2

∥∥∥∥bp(s, Bsn + x)

∥∥∥∥2

ds

}∥∥∥∥∥
L1(µ)

<∞

and the sequence of coefficients bp, p ∈ N, approximates b in the sense that for each n ∈ N

E[Jn,p] −→
p→∞

0 ,

where97

Jn,p =

d∑
j=1

(
2

∫ 1

0

(
n b(j)p (s,

Bs
n

+ x)− n b(j)(s, Bs
n

+ x)

)2

ds

+

(∫ 1

0

∣∣∣∣(n b(j)p (s,
Bs
n

+ x))2 − (n b(j)(s,
Bs
n

+ x))2

∣∣∣∣ ds)2
)
. (2.10)
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(C4): Using the notation (·)0≤i,j≤d for Rd×d-matrices, we require98

sup
n,p≥1

sup
0≤t<t′≤1

∥∥∥∥∥
4∏
i=1

Ai(n, p, t, t
′)

∥∥∥∥∥
L1(µ)

<∞, (2.11)

where99

A1(n, p, t, t′) = exp

{∫ 1

0
n bp(s,

Bs
n

+ x)dBs −
1

2

∫ 1

0
n2

∥∥∥∥bp(s, Bsn + x)

∥∥∥∥2

ds

}
. (2.12)

A2(n, p, t, t′) =

∥∥∥∥∥exp

{(
−
∫ 1

t′
n b(j)p (s,

Bs
n

+ x)dB(i)
s −

∫ 1−t′

0
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+

∫ 1−t′

0
n bp(1− s,

B̂s
n

+ x)
B̂

(i)
s

1− s
ds

)
0≤i,j≤d


∥∥∥∥∥∥

2

. (2.13)

A3(n, p, t, t′) = sup
0≤λ≤1

∥∥∥∥∥exp

{(
−λ
∫ t′

t
n b(j)p (s,

Bs
n

+ x)dB(i)
s − λ

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+λ

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)

B̂
(i)
s

1− s
ds

)
0≤i,j≤d


∥∥∥∥∥∥

2

, (2.14)

100

A4(n, p, t, t′) =
1

n2

‖I4(n, p, t, t′)‖2

|t− t′|α
, t 6= t′ (2.15)

for some α > 1
2 with101

I4(n, p, t, t′) =

(∫ t′

t
n b(j)p (s,

Bs
n

+ x)dB(i)
s −

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)

B̂
(i)
s

1− s
ds

)
0≤i,j≤d

, (2.16)

(C5):102

sup
n,p≥1

sup
0≤t<t′≤1

∥∥A5(n, p, t, t′)A1(n, p, t, t′)
∥∥
L1(µ)

<∞, (2.17)

where103

A5(n, p, t, t′) =

∥∥∥∫ t′t bp(s, Bs
n + x)ds

∥∥∥2

|t− t′|β
, t 6= t′ (2.18)

for some β > 1
2 .104

Theorem 2.2. Consider the family of SDE’s in (1.1) with Borel measurable drift coefficient105

b : [0, 1] × Rd → Rd. Suppose there exists a sequence of approximating coefficients (bp)p≥1106

such that {b, (bp)p≥1} fulfill conditions (C1)-(C5). Then for all 0 ≤ t ≤ 1 the set of solutions107

(Xn,p
t )n≥1, p≥1 of (2.9) is relatively compact in L2(µ;Rd). Further, for all n ∈ N there exist108
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a unique strong solution Xn
t of (1.1) and the sequence of solutions Xn

t to (1.1) is relatively109

compact in L2(µ;Rd), 0 ≤ t ≤ 1, and there exists a cluster point (Xt)0≤t≤1 of (Xn
t )0≤t≤1,110

that is one finds a subsequence (nm)m≥1 such that111

lim
m→∞

Xnm
t = Xt in L2(µ;Rd) (2.19)

for all 0 ≤ t ≤ 1. In particular, if ‖b(t,Xn
t )‖L2(µ) ≤M <∞, n ≥ 1, t-a.e for some constant112

M , then113

Xt = x+

∫ t

0
lim
m→∞

b(s,Xnm
s )ds (2.20)

in L2(µ).114

Remark 2.3. Note that in case of a bounded drift coefficient b there obviously exists a se-115

quence of approximating coefficients (bp)p≥1 that fulfill conditions (C1), (C3), and (C5). In116

that case, the crucial conditions to check are (C2) and (C4).117

Remark 2.4. In the case of dimension d = 1, the commutativity requirement (C2) is obvi-
ously always fulfilled. In the case d = 2, condition (C2) can be verified, if e.g.,

b(t, x) =

(
f(x1 + x2)
f(x1 + x2)

)
,

where f : R → R is a bounded Borel measurable function. See [19] for other examples and118

more general criteria.119

We postpone the proof of Theorem 2.2 to a later time point. In the sequel, we discuss some120

consequences of the previous result:121

Corollary 2.5. Retain the conditions in Theorem 2.2 and assume additionally that the drift122

coefficient b in (1.1) is continuous. Then there exists a Malliavin differentiable process Xt123

such that124

Xt = x+

∫ t

0
b(s,Xs)ds. (2.21)

Proof. Equation (2.21) follows from (2.20) and the continuity of b. The Malliavin differentia-125

bility of Xt follows from a weak compactness argument. See the proof of Theorem 2.2. �126

The next two result treats the case of discontinuous ODE’s:127

Theorem 2.6. Keep the conditions in Theorem 2.2 and assume additionally that the drift128

coefficient b in (1.1) is bounded. Further require that the process Xt in (2.19) doesn’t hit the129

set of points of discontinuity of b(t, ·) µ-a.e. for almost all (fixed) t. Then Xt solves the ODE130

Xt = x+

∫ t

0
b(s,Xs)ds. (2.22)

Theorem 2.7. Retain the conditions in Theorem 2.2 and require additionally that the drift
coefficient b in (1.1) is bounded and time-homogeneous. Then

X
(i)
t ∈ D1,2

for all i = 1, . . . , d, 0 ≤ t ≤ 1. Moreover, if the Malliavin matrix σXt = (σi,jXt
)1≤i,j≤d with

σi,jXt
= (D·X

(i)
t , D·X

(j)
t )L2([0,1])
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is invertible a.e for each t, then Xt is a solution of (2.22).131

The proofs of these two theorems are also put off to a later time point.132

The following result will be needed in the proof of Theorem 2.2.133

Lemma 2.8. Suppose that the conditions of Theorem 2.2 hold. Then the double sequence134

(t 7−→ Xn,p
t , n, p ≥ 1) is relatively compact in C([0, 1], (S)∗).135

Proof. Let ζ belong to the Hida test function space (S). Denote by 〈F, ρ〉 the dual pairing136

for F ∈ (S)∗, ρ ∈ (S). Using the Cauchy-Schwartz inequality, Girsanov’s theorem and (C3),137

and (C5) we get that138

∣∣〈Xn,p
t1
−Xn,p

t2
, ζ
〉∣∣ = E

[(
Xn,p
t1
−Xn,p

t2

)
ζ
]
≤ E

[∥∥Xn,p
t1
−Xn,p

t2

∥∥2
] 1

2
E
[
|ζ|2
] 1

2

≤ C |t2 − t1|β E
[
|ζ|2
] 1

2

for some β > 1
2 . On the other hand, we directly see that

sup
0≤t≤T

‖Xn,p
t ‖L2(µ) ≤M

for all n, p ≥ 1. The desired result then follows from Mitoma’s theorem (see [20]) applied to139

the conuclear space (S)∗ and Arzelá-Ascoli’s theorem with respect to C([0, 1]). �140

Proof. (Theorem 2.2).141

We first want to employ a compactness criterion based on Malliavin calculus [10, Theorem142

1] to show that (Xn,p
t )p≥0,n≥1 is relatively compact in L2(µ;Rd) for all t ≥ 0. To this end143

we assume without loss of generality that t = 1. Our assumptions and the chain rule of the144

Malliavin derivative Dt (see e.g., [21]) imply that145

DtX
n,p
1 =

1

n
exp

{∫ 1

t
b′p(s,

Xn,p
s

n
)ds

}
∈ Rd×d, 0 ≤ t ≤ 1, n, p ≥ 1. (2.23)

Fix 0 ≤ t < t′ ≤ 1. Then using Girsanov’s theorem we find that146

E
[
‖DtX

n,p
1 −Dt′X

n,p
1 ‖

2
]

=
1

n2
E

[∥∥∥∥exp

{∫ 1

t
b′p(s,

Bs
n

+ x)ds

}
− exp

{∫ 1

t′
b′p(s,

Bs
n

+ x)ds

}∥∥∥∥2

A1

]
,

where A1 = exp
{∫ 1

0 n bp(s,
Bs
n + x)dBs − 1

2

∫ 1
0 n

2
∥∥bp(s, Bs

n + x)
∥∥2
ds
}

.147
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Applying the properties of evolution operators for linear systems of ODE’s and the mean148

value theorem, we have149

E
[
‖DtX

n,p
1 −Dt′X

n,p
1 ‖

2
]

=
1

n2
E

∥∥∥∥exp

{∫ 1

t′
b′p(s,

Bs
n

+ x)ds

}∥∥∥∥2
∥∥∥∥∥exp

{∫ t′

t
b′p(s,

Bs
n

+ x)ds

}
− 1

∥∥∥∥∥
2

A1


≤ 1

n2
CE

∥∥∥∥exp

{∫ 1

t′
b′p(s,

Bs
n

+ x)ds

}∥∥∥∥2
∥∥∥∥∥
{∫ t′

t
b′p(s,

Bs
n

+ x)ds

}∥∥∥∥∥
2

.

sup
0≤λ≤1

∥∥∥∥∥exp

{
λ

∫ t′

t
b′p(s,

Bs
n

+ x)ds

}∥∥∥∥∥
2

A1


Consider the local time-space Li(ds, dx) with respect to B(i) (the i-th component of B) on150

(Ωi, µi), i = 1, . . . , d. Using Lemma 2.1 and the decomposition (2.7), we get151

E
[
‖DtX

n,p
1 −Dt′X

n,p
1 ‖

2
]

≤ CE

∥∥∥∥∥exp

{(
−
∫ 1

t′

∫
R
n b(j)p (s,

x

n
)Li(ds, dx)

)
1≤i,j≤d

}∥∥∥∥∥
2

∥∥∥∥∥∥

(
−
∫ t′

t

∫
R
n b(j)p (s,

x

n
)Li(ds, dx)

)
1≤i,j≤d


∥∥∥∥∥∥

2

sup
0≤λ≤1

∥∥∥∥∥∥exp

λ
(
−
∫ t′

t

∫
R
n b(j)p (s,

x

n
)Li(ds, dx)

)
1≤i,j≤d


∥∥∥∥∥∥

2

A1


≤ C

∣∣t′ − t∣∣α
 sup
n,p≥1

sup
0≤t<t′≤1

∥∥∥∥∥
4∏
i=1

Ai(n, p, t, t
′)

∥∥∥∥∥
L1(µ)


for some constant C. In particular, we see that the family (Xn,p

1 )p≥0,n≥1 is bounded in D1,2.152

Then the relative compactness of (Xn,p
1 )p≥0,n≥1 follows from [[10], Lemma 1] in connection153

with [10, Theorem 1].154

In the next step of the proof we aim at constructing a solution process Xt to the ODE’s (1.2)
based on the double sequence (Xn,p

t )p≥1,n≥1. Using the condition (C3) in connection with
Theorem 4 in [19], we obtain that for all n ≥ 1 there exists a subsequence (pk,n) (independent
of t) such that

Xn
t = lim

k→∞
X
n,pk,n
t ∈ L2(µ;Rd)

satisfies the SDE’s (1.1). In particular, (Xn
t )n≥1 is relatively compact in L2(µ;Rd) for each155

t. We also mention that Xn
t is Malliavin differentiable for all n, t by a weak compactness156

argument (see [19, Lemma 1,2,3]).157
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On the other hand, it follows from Lemma 2.8 that there exists a subsequence (nk) such
that

Xnk
t −→

k→∞
Xt in (S)∗

uniformly in t. The latter and the uniqueness of chaos decompositions in (S)∗ entail that

Xnk
t −→

k→∞
Xt in L2(µ;Rd)

for all t.158

Finally, if the drift coefficient is bounded, we can apply dominated convergence for functions159

from [0, 1] to L2(µ;Rd) and obtain (2.20). �160

Proof. (Theorem 2.6).161

We shall argue by contradiction. Assume that b(t,Xn
t ) does not converge to b(t,Xt) in L2(µ)162

for some t for which the points of discontinuity cannot be reached. Then there exists a ε > 0163

and a subsequence (nk) such that164

‖b(t,Xnk
t )− b(t,Xt)‖L2(µ) > ε. (2.24)

We know that
X
nñl(t)

t −→ Xt a.e.

for some subsequence (ñl(t)). Using the fact that Xt doesn’t hit the points of discontinuity
of b(t, ·) a.e., we see that

b(t,X
nñl(t)

t ) −→ b(t,Xt) a.e.

Since b is bounded, it follows from the dominated convergence theorem that∥∥∥b(t,Xnñl(t)

t )− b(t,Xt)
∥∥∥
L2(µ)

−→
l→∞

0.

For k = ñl(t), this leads to a contradiction to (2.24). Therefore165

lim
n→∞

b(t,Xn
t ) = b(t,Xt) in L2(µ), t-a.e.

�166

Proof. (Theorem 2.7).
We recall that each Xn

s is Malliavin differentiable (see [19]). We want to justify that we may
set bp = b for all p ≥ 1 in the proof of Theorem 2.2. To this end we shall derive a certain
representation for DtX

n
s by employing the S-transform (see (2.2)). Without loss of generality,

we assume that s = 1 and d = 1 (one-dimensional case). Let us evaluate

S(DtX
n,p
1 )(φ), φ ∈ SC(R), n ≥ 1.

Then, using Girsanov’s theorem and the local time-space decomposition (2.7), we find that167

S(DtX
n,p
1 )(φ)

= E

[
1

n
exp

{∫ 1

t
n bp(

1

n
Bs + x)dBs −

∫ 1−t

0
n bp(

1

n
Bs + x)dW̃s

+

∫ 1−t

0
n bp(

1

n
B̂s + x)

B̂s
1− s

ds

}
(2.25)

exp

{∫ 1

0

(
n bp(

1

n
Bs + x) + φ(x)

)
dBs −

1

2

∫ 1

0

(
n bp(

1

n
Bs + x) + φ(x)

)2

ds

}]
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for all φ ∈ S(R). By analyticity, we see that relation (2.25) also holds for all φ ∈ SC(R).168

Using an appropriate sequence of coefficients bp, p ≥ 1, which approximates the bounded169

function b (compare e.g the proof of [19, Lemma 12]) and a weak compactness argument in170

Hilbert spaces, we deduce that171

S

(∫ 1

0
DtX

n
1 .h(t)dt

)
(φ)

= E

[∫ 1

0

(
1

n
exp

{
−
∫ 1

t
n b(

Bs
n

+ x)dBs −
∫ 1−t

0
n b(

Bs
n

+ x)dW̃s

+

∫ 1−t

0
n b(

B̂s
n

+ x)
B̂s

1− s
ds

}
(2.26)

exp

{∫ 1

0

(
n b(

Bs
n

+ x) + φ(s)

)
dBs −

1

2

∫ 1

0

(
n b(

Bs
n

+ x) + φ(s)

)2

ds

})
h(t)dt

]
for all bounded Borel-measurable functions h on [0, 1], φ ∈ SC(R) and n ≥ 1. Repeated use
of the local time-space decomposition (2.7), Girsanov’s theorem and the Itô-Tanaka formula
for continuous semimartingales in [23, p.220] give that

S(DtX
n
1 )(φ) = S(Ψn

t )(φ)

for all φ ∈ SC(R), where

Ψn
t =

1

n
exp

{∫ 1

t

∫
R
n b(

y

n
+ x)Ln(Xn−x)(ds, dy)

}
,

where Ln(Xn−x)(s, y) denotes the local time at y of n(Xn
· − x). Thus172

D·X
n
1 = Ψn

· (2.27)

for all n.173

Using this representation and the line of reasoning in the proof of Theorem 2.2 in connection174

with the weak compactness in D1,2, we conclude that Xt is Malliavin differentiable for all t.175

The last statement of Theorem 2.7 is a direct consequence of [21, Theorem 2.1.2] �176

Remark 2.9. Assume b : R → R satisfies the assumptions of Theorem 2.6. Consider the177

case, when178

D·Xu = 0 (2.28)

on a measurable set A such that (λ ⊗ µ)(A) > 0 for some 0 < u ≤ 1. Then using relation179

(2.27) in the proof of Theorem 2.6 in connection with Girsanov’s theorem shows that there is180

a subsequence nk such that181

− log nk + L1(nk, t, u) + L2(nk, u) −→
k→∞

−∞ (2.29)

on A (t, ω)-a.e., where182

L1(n, t, u) =

∫ u

t
n bp(

1

n
Bs + x)dBs −

∫ 1−t

1−u
n bp(

1

n
Bs + x)dW̃s

+

∫ 1−t

1−u
n bp(

1

n
B̂s + x)

B̂s
1− s

ds
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and183

L2(n, u) =

∫ u

0
n bp(

1

n
Bs + x)dBs −

1

2

∫ u

0
n2b2p(

1

n
Bs + x)ds.

So (2.29) is a necessary condition for (2.28). In particular, if (λ ⊗ µ)(A) < 1 there is a set184

B of positive measure such that the conditional density of Xu with respect to B exists and185

condition (2.29) is violated.186

The next result provides a sufficient condition for the assumptions of Theorem 2.6 in the187

one dimensional case.188

Theorem 2.10. Let the drift coefficient b : [0, 1] × R → R and its approximating sequence189

bp : [0, 1]× R→ R satisfy the assumptions of Theorem 2.2. Further suppose that190

E

[(∫ s

0
A2(n, p, u, s)du

)−4

A1(n, p, u, s)

]
<∞ (2.30)

for all 0 < s ≤ 1, n ≥ 1, p ≥ 1, and that for all compact sets K ⊆ R there exists a constant191

M <∞ such that192 ∫
K

(
E

[∫ s

0
mχ(y,y+ 1

m
)(

1

n
Bs + x)A2(n, p, u, s)

.

(∫ s

0
A2(n, p, u, s)du

)−1

A1(n, p, u, s) du

])2

dy < M (2.31)

for all m,n ≥ 1, p ≥ 1. Then there exists a cluster point Xt, 0 ≤ t ≤ 1 of the processes193

Xn
t , 0 ≤ t ≤ 1 in (1.1) such that X· solves the ODE’s (1.2).194

Proof. For convenience we assume that K = R. Using Girsanov’s theorem and the local
time-space decomposition (2.7) we see that the condition (2.30) is equivalent to

E
[
‖D·Xn,p

s ‖
−8
L2[0,1]

]
<∞.

The latter and our assumptions on bp, p ≥ 1 imply that D·X
n,p
s

‖D·Xn,p
s ‖2L2[0,1]

is in the domain of195

the divergence operator δ for all 0 < s ≤ 1. See e.g [21].196

From this it follows that Xn,p
s has a continuous and bounded probability density ρn,ps which197

has the representation198

ρn,ps (y) = E

[
χ(y,∞)(X

n,p
s )δ

(
D·X

n,p
s

‖D·Xn,p
s ‖2L2[0,1]

)]
, y ∈ R, n, p ≥ 1. (2.32)

See [21, Proposition 2.1] or [11]. Consider now the sequence of Lipschitz continuous functions199

0 ≤ %m ≤ χ(x,∞) with %m(z)→ χ(y,∞)(z), z ∈ R given by200

%m(z) =

 mz −my , y < z < y + 1
m

0 , z ≤ y
1 , z ≥ y + 1

m

Then the functions ρm,n,ps defined as

ρm,n,ps (y) = E

[
%m(Xn,p

s )δ

(
D·X

n,p
s

‖D·Xn,p
s ‖2L2[0,1]

)]
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converge to ρn,ps , pointwisely for all s, n, p. On the other hand one infers from the duality
relation and the chain rule of the Malliavin derivative (see e.g [21, 11]) that

ρm,n,ps (y) = E

[∫ s

0
χ(y,y+ 1

m
)(X

n,p
s )

(DuX
n,p
s )

2

‖D·Xn,p
s ‖2L2[0,1]

du

]
.

Then we obtain from (2.31) in connection with the Girsanov’s theorem and the decomposition
(2.7) that

‖ρm,n,ps ‖2L2(R) ≤M <∞ for all m,n, p.

Using weak compactness of ρm,n,ps , m, n, p in L2(R), pointwise convergence of ρm,n,ps with201

respect to m and the fact that Xn,p
s converges to Xn

s in L2(µ) (for a subsequence), we observe202

that Xn
s has a probability density ρns and that ρns is weakly compact in L2(R). Repeated use203

of weak compactness and L2(µ)-convergence shows that the cluster point Xs in Theorem 2.6204

has a density ρs, 0 < s ≤ 1. So the result follows. �205

Finally, we give an application of Theorem 2.6 in the case of a discontinuous ODE.206

Example 2.11. Consider the ODE (1.2) with initial value x and the drift coefficient b given207

by the sign function, that is the special case of a step function208

b(t, y) = sign(y) =

{
1 , y ≥ 0
−1 , y < 0.

We want to show that there exists a subsequence (nk) such that the solutions Xn
s converge in209

D1,2 to a deterministic process Xs, 0 ≤ s ≤ 1 (for certain x 6= 0).210

Without loss of generality, let s = 1. Since the sign function is bounded, we know from the211

proof of Theorem 2.6 that212

DtX
n
1 =

1

n
exp

{
−
∫ 1

t

∫
R
n sign

(
1

n
y + x

)
Ln(Xn−x)(ds, dy)

}
,

where Ln(Xn−x)(s, y) is the local time at y of n (Xn − x). Using the latter representation, we213

may replace the coefficient bp, p ≥ 1 in Theorem 2.2 by the sign function itself. In order to214

verify condition (C4) we apply Girsanov’s theorem and Hölder’s inequality and find that it215

is sufficient to show that216

I1(n, t, t′) · I2(n, t, t′) ≤ C ·
∣∣t− t′∣∣α , 0 ≤ t ≤ t′ ≤ 1 (2.33)

for some α > 1
2 and a constant C (independent of n), where217

I1(n, t, t′) :=
1

n2
E

(−∫ t′

t

∫
R
n sign

(
1

n
y + x

)
L(ds, dy)

)4
 1

2

(2.34)

and218

I2(n, t, t′) := E

[
exp

{
−4

∫ t′

t

∫
R
n sign

(
1

n
y + x

)
L(ds, dy)

}

. exp

{∫ 1

0
n sign

(
1

n
Bs + x

)
dBs −

1

2

∫ 1

0
n2ds

}] 1
2

. (2.35)
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Using the Itô-Tanaka formula and Burkholder’s inequality we find that219

I1(n, t, t′)

=
1

n2
E

[(∫ t′

t
n2(sign(Xn

u ))2du+

∫ t′

t
n sign(Xn

u )dBu − (|nXn
t′ − nx| − |nXn

t − nx)

)4] 1
2

≤ C n4
∣∣t− t′∣∣ (2.36)

for some constant C.220

On the other hand, by applying [12, Corollary 3.2] we get that221

−
∫ 1

t

∫
R
n sign

(
1

n
y + x

)
L(ds, dy) =

∫
R

(∫ 1

t
2ndsL

y
s

)
δ{−nx}(dy)

= 2n (L(1,−nx)− L(t,−nx)) ,

where δ{−nx} is the Dirac measure in −nx.222

Repeated use of Girsanov’s theorem and the formula of Itô-Tanaka gives that223

I2(n, t, t′) = E [exp {8n (L(1,−nx)− L(t,−nx))}

exp

{
n

(
|B1 + nx| − n |x| − 2L(1,−nx)− 1

2
n

)}] 1
2

≤ E
[
exp

{
6nL(1,−nx) + n |B1 + nx| − n2(|x|+ 1

2
)

}] 1
2

.

Then using the probability density of (L(s, y), Bs) for a Brownian motion starting in a (see224

e.g. [5, p.155]) that is225

Pa (L(t, x) ∈ dy,Bt ∈ dz)

=
1

t
√

2πt
(y + |z − x|+ |x− a|) exp

{
−(y + |z − x|+ |x− r|)2

2t

}
dz dy,

we obtain that226

I2
2 (n, t, t′) ≤

∫ ∞
0

∫
R

exp

{
6ny + n |z + nx| − n2(|x|+ 1

2
)

}
1√
2π

(y + |z + nx|+ |nx|) exp

{
−(y + |z + nx|+ |nx|)2

2

}
dz dy.

Using substitution and the fact that

2√
π

∫ ∞
r

e−v
2
dv ∼=

1√
πr
e−r

2

for r →∞ (see e.g. [5]). We conclude that227

I2
2 (n, t, t′)

≤ 2

(n(|x| − 1)− 1) (n(|x| − 11)− 1)
exp

{
72n2 − 7n2 |x| − (n(|x| − 11)− 1)2

}
(2.37)

for n ≥ n0 and |x| > 11.228

Combining this with the estimate in (2.36) we see that (C4) is fulfilled for initial values
with |x| > 11. On the other hand the boundedness of the sign function implies the validity of
the conditions (C3) and (C5) for |x| > 11. So it follows from Theorem 2.2 that the solutions
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Xn
s , 0 ≤ s ≤ 1 converge to Xs, 0 ≤ s ≤ 1 in L2(µ) for a subsequence if |x| > 11. Moreover,

by weak compactness and the estimates in (2.36) and (2.37) we can even deduce that this
convergence is in D1,2 and that

D·Xs = 0, 0 ≤ s ≤ 1.

Hence, Xs, 0 ≤ s ≤ 1 is a deterministic process. On the other hand, since |x| > 11 we get
that

|Xs| ≥ ||x| − s| ≥ 10 for all 0 ≤ s ≤ 1, a.e.,

that is Xs cannot hit the discontinuity point zero.229

So X· must be a deterministic solution (i.e., x± t) of the ODE (1.2).230

Remark 2.12. The arguments in Example 2.11 show that we may also consider drift coeffi-
cients b given by e.g. step functions of the form

b(x) =
n∑
i=1

ξiχ[0,bi),

ξi ≥ 0, bi ∈ [0,∞], i = 1, . . . , n.231
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