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Abstract. We present a model for the spark spread on energy markets which is implied

by a two-dimensional model for the electricity and gas spot prices. The marginal price

processes are supposed to follow sums of (not necessarily Gaussian) Ornstein-Uhlenbeck

components and the main focus of this paper is on the two-dimensional dependence

modeling via Lévy copulas. We will introduce a specific class of skewed Lévy copulas and

estimate the complete model on data from UK markets. Further, due to the arithmetic

structure of the model, we are able to employ Fourier transform techniques to derive

semi-analytic expressions for option prices.

1. Introduction

The global economic growth highly depends on sustainable supply of energy which

has caused a strong worldwide increase in demand of energy related assets over the last

decades. At the same time, in many parts of the world electricity markets have been,

or are in the process of being deregulated in order to establish a free float of prices in a

competitive environment. This deregulation of electricity markets has led to the creation of

a network of energy exchanges, where electricity is quoted almost as any other commodity.

This new and highly complex environment has introduced a lot of price uncertainty that

energy market participants have to cope with. Hence, the development of reliable and

sustainable quantitative tools for valuation and management of energy risk should be a

key consideration of decision makers from politics and industry.

In this paper we consider the specific problem to develop and estimate a dynamic model

for the so called spark spread. The spark spread represents the difference between the price

of electricity and the price of the gas required to generate this electricity. In other words,

the spread is a proxy for the cost of igniting fuel and turning it into electricity, which

indicates where the name ”spark” comes from. Expressed mathematically that is

S(t) := Ẽ(t)− c G̃(t) ,

where Ẽ(t) is the spot price of electricity, and G̃(t) the spot price of gas, both quoted

in customary units. The factor c is the (assumably) constant heat rate, which includes

factors for matching the unit of G̃ to the unit of Ẽ and moreover takes into account, that
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gas for most applications is less efficient than electricity or cannot be transformed into it

without losses. However, the natural gas is a primary source of energy and environmental

awareness is drawing more attention to gas-fired power plants since they run with very

little pollution. The spark spread represents one of the primary cross commodity products

in electricity markets.

When looking at the current literature, one basically finds two different approaches to

model the spark spread:

(1) to model the spark spread directly,

(2) to specify a two-dimensional model for the underlying commodities and to infer

the spark spread as the difference of the margins.

The first approach, which is a so called reduced form model of the spark spread, fully

ignores the character of the marginal processes of electricity and gas. A model from this

class is proposed in [4] where the spread price S(t) is assumed to follow a non-gaussian

OU process. The stress remains on tractability, since one can derive quite simple pricing

formulas. However, the major disadvantage lies in loosing connection to the marginal

processes, which results in less robustness, especially when the market conditions change

for one margin it is not transparent in which way parameters are affected.

Contrary to the reduced form approach, models from the second class keep track of the

dynamics and, in particular, the dependence of the marginal processes of the underlying

commodities electricity and gas. Examples of models from this class can be found in [5],

[15], and [3]. In [5] the marginal prices are assumed to follow exponentials of Gaussian

Ornstein-Uhlenbeck (for short OU) processes. In order to gain analytic tractability the

authors approximate the induced spark spread model as difference between two log-normal

random variables with a normal distribution. However, one of the most prominent features

of electricity prices (and also of gas prices on a smaller scale) are violent spikes, which

are big upward jumps followed by a rapid decline to normal levels. Obviously, a Gaussian

setting is not flexible enough to capture neither path nor distributional properties of

this spiky behavior. An idea to improve this model was proposed in [15], where the

approximation by a normal distribution for the difference in exponential OUs is critiqued

and replaced by a Normal inverse Gaussian (for short NIG) distribution, so as to capture

the observed heavy-tailedness. In [3] both electricity and gas price dynamics are modeled

by discrete-time AR(1) processes with NIG-distributed noise terms. In this setting, a more

thorough analysis of the dependence structure between the marginal processes is required

to obtain the model of the spark spread in (2.1). The main reason to chose a time-discrete

model is to facilitate the dependence modeling, and the authors propose to model the

dependence structure by a copula

Ch(v, z) := vz + h(1− |2v − 1|)(1− (2z − 1)2),
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that connects the NIG distributions of the random innovations between the discrete points

of time.

In this paper we will pick up the trail of [3] by following their explicit call for further de-

velopment of continuous time modeling of the spark spread. We propose a two-dimensional

dynamic model for the vector of electricity and gas prices where the marginals follow sums

of, not necessarily Gaussian, OU processes (see (2.2) in Section 2). In the one-dimensional

case, this model was successfully proposed and estimated for electricity spot prices in [1],

[16], and [13]. In the present two-dimensional case the additional difficulty of modeling

the multivariate dependence risk between electricity and gas prices arrives. While the

specification of an appropriate covariance matrix is sufficient to connect the Gaussian

OU components, we propose to employ Lévy copulas to model the dependence of the

non-Gaussian OU components. For this purpose we introduce a new class of Lévy cop-

ulas that meet the requirement revealed by empirical spark spread data. Besides being

able to capture both path and distributional properties of the marginal price processes as

well as the multivariate dependence structure given by empirical data, the model exhibits

great analytic tractability. In particular, due to its arithmetic structure we are able to de-

velop semi-analytic pricing formulas for options written on the spark spread by employing

Fourier transform techniques.

The remaining parts of the paper are structured as follows. In Section 2 we introduce our

two-dimensional dynamic model for the underlying electricity and gas prices. In particular

we present a class of Lévy copulas that we use to specify the dependence structure in our

multivariate setting. In Section 3 we demonstrate how to fit the model to empirical data

from the UK market. Finally, in Section 4 we employ Fourier transform techniques to

develop call option prices written on the spark spread. Further we demonstrate how to

numerically compute these option prices in the model fitted to UK data.

2. The model

The objective is to build a two-dimensional model for the process (Ẽ(t), G̃(t)) which

implies a flexible and analytically tractable model for the spark spread

S(t) := Ẽ(t)− c G̃(t) ,(2.1)

that in particular provides an appropriate modeling of the dependence risk between elec-

tricity and gas prices. We start by specifying the dynamic model for the marginal electric-

ity spot price process where we adopt the model proposed in [16] (see also [1], [13]) which

has been shown to be analytically very tractable and to successfully reproduce stylized

features of electricity spot prices such as

• seasonality on different time scales.

• stationarity of deseasonalized price series.

• multiscale autocorrelation structure.



4 MEYER-BRANDIS AND MORGAN

• spike occurrence.

• non-Gaussianity, mainly caused by low-probability large-amplitude spikes.

According to this model we set

Ẽ(t) = Λe(t)
(
Y e

1 (t) + Y e
2 (t)

)
,(2.2)

where Y e
1 (t) and Y e

2 (t) are OU processes of the form

dY e
1 (t) = −λe1(µe − Y e

1 (t))dt+ σedBe(t) ,(2.3)

dY e
2 (t) = −λe2Y e

2 (t)dt+ dLe(t) .(2.4)

The OU component Y e
1 (t) is driven by a Brownian motion Be(t) and is responsible for

modeling the base signal of the electricity spot price. The OU component Y e
2 (t) models

the spike behavior of the spot price and is driven by a compound Poisson process

Le(t) =

∫ t

0

∫
R
z N e(dt, dz) ,

where the associated Poisson jump measure N e(dt, dz) is characterized by its Lévy mea-

sure νe(dz) = ρeDe(dz) with jump intensity ρe > 0 and jump distribution De(dz). Note

that since Y e
2 is supposed to model spikes caused by upward jumps the jump distribution

De(dz) has positive support, i.e. Le(t) is a subordinator. Further, Λe(t) is a deterministic

seasonality function, λe1, λ
e
2 > 0 are constants determining the respective mean reversion

rates of the OU components, while µe > 0 notates the mean reversion level and σe > 0

the volatility of Y e
1 (t) .

Next, we come to the marginal gas spot price process G̃(t). Since gas prices exhibit

similar qualitative behavior as electricity prices (the main difference being the smaller

scale of spikes due to better storability of gas compared to electricity) we adopt the same

model as in (2.2) for gas prices, differentiating all objects by a superscript g:

G̃(t) = Λg(t)
(
Y g

1 (t) + Y g
2 (t)

)
,(2.5)

where Y g
1 (t) and Y g

2 (t) are OU processes of the form

dY g
1 (t) = −λg1(µg − Y g

1 (t))dt+ σgdBg(t) ,(2.6)

dY g
2 (t) = −λg2Y

g
2 (t)dt+ dLg(t) ,(2.7)

where (Be(t), Bg(t)) is two-dimensional (correlated) Brownian motion and (Le(t), Lg(t))

is a two-dimensional compound Poisson process.

In order to complete the specification of the two-dimensional model (Ẽ(t), G̃(t)) needed

for the spark spread process (2.1), the remaining core problem is the specification of

the dependence structure between the margins Ẽ(t) and G̃(t), i.e. the specification of

the multivariate distributions of (Be(t), Bg(t)) and (Le(t), Lg(t)). As for the Gaussian

distribution of (Be(t), Bg(t)), it is sufficient to determine the correlation parameter δ

between Be(1) and Bg(1). The main focus of this paper, however, lies on the modeling of
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the multivariate Lévy process (Le(t), Lg(t)), i.e. on the modeling of the dependence risk

of electricity and gas spikes. This will be done by employing the concept of Lévy copulas

as elaborated in the following subsection.

Remark 2.1. We remark that in the case of compound Poisson processes we could also

model the dependence structure by usual copulas applied to marginal jump distributions.

However, this would require a cumbersome separation of the modeling and estimation

procedure into dependent and independent components. The Lévy copula approach, on the

other hand, conveniently integrates the complete dependence modeling and estimation into

one concept. Also we remark that as soon as the compound Poisson processes are replaced

by general Lévy processes with possibly infinite activity the concept of Lévy copulas becomes

inevitable.

2.1. A class of Lévy copulas for the spark spread. Since in our model spikes are

driven by positive jumps, we restrict ourselves to the concept of Lévy copulas for two-

dimensional Lévy measures with positive support for the dependence modeling of spike

risk, i.e. for the specification of the dependence structure of the two-dimensional Lévy

process (Le(t), Lg(t)). We refer to Appendix A for a short review of the characterization

of such Lévy measures with Lévy copulas.

A parametric class of Lévy copulas called Archimedean Lévy copulas, that is the ana-

logue of the popular class of Archimedean copulas, is given by

F (x, y) = φ−1(φ(x) + φ(y)) ,(2.8)

where φ : [0,∞] → [0,∞] is a strictly decreasing convex function such that φ(0) = ∞
and φ(∞) = 0 (see Appendix A for some specific examples). This class, as all other

classes we have found in literature, has the symmetry property F (x, y) = F (y, x), for all

x, y ∈ [0,∞]. Our empirical spark spread data from the UK market, however, does not

confirm this symmetry property (see FIGURE 5 in Section 3). We will therefore introduce

the more flexible class of what we call skewed Archimedean Lévy copulas which is better

suited to generate the dependency structure found in empirical spark spread data:

Proposition 2.2 (Skewed Archimedean Lévy copulas). Let φ be as in (2.8) above. Fur-

ther, for i = 1, 2 let ψi : [0,∞] → [1,∞] be decreasing functions satisfying ψi(∞) = 1

then if

F (x, y) = φ−1 (ψ1(y)φ(x) + ψ2(x)φ(y))

is 2-increasing, it defines a 2-dimensional Lévy copula.

Proof. According to Definition A.7 it suffices to show that F is grounded and has uniform

margins, which in the setting of Proposition 2.2 is obviously fulfilled. �

We will nominate the two functions ψ1 and ψ2 as skew factors. It would be interesting

to specify some conditions on the ψi, independent from φ at best, or at least in a simple
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way depending on φ, that would guarantee the 2-increasingness of F . In this paper,

however, we will leave this problem for future research and focus on a specific class of

skewed Archimedean Lévy copulas where φ(x) = x−θ is the Clayton-Lévy generator (see

Example (1) in Appendix A), and ψ2 ≡ 1 and ψ1(x) = (αv−β +1) introduce a single-sided

skew:

Corollary 2.3 (One-sided skewed Clayton-Lévy copula). The function F : [0,∞]2 →
[0,∞] given by

F (u, v) =
(
(αv−β + 1)u−θ + v−θ

)− 1
θ ,

for α > 0, θ > 0 and 0 < β ≤ θ + 1 is a Lévy copula.

Clayton-Levy copula:

F (u, v) =
(
u−θ + v−θ

)− 1
θ

= F (v, u), for all u, v

One-sided skewed Clayton-Lévy copula:

F (u, v) =
(
(αv−β + 1)u−θ + v−θ

)− 1
θ ,

6= F (v, u), for some u, v

Figure 1. Introducing the skewed Archimedean Lévy copulas: a more flexible class

Proof. By Proposition 2.2 we need to show that F is 2-increasing. By Lemma A.4 it

suffices to show ∂2F
∂u∂v
≥ 0:

∂

∂u
F (u, v) =(αv−β + 1)

(
(αv−β + 1) +

uθ

vθ

)−(1+ 1
θ

)

=: (αv−β + 1)h
−(1+ 1

θ
)

u,v ,

and therefore

∂2

∂u∂v
F (u, v) =− βαv−(β+1)h

−(1+ 1
θ

)
u,v + (αv−β + 1)

[
−θ + 1

θ

(
−βαv−(β+1) − θ uθ

vθ+1

)
h
−(2+ 1

θ
)

u,v

]
= −βαv−(β+1)

[
hu,v − (αy−β + 1)

θ + 1

θ

]
h
−(2+ 1

θ
)

u,v + (θ + 1)(αv−β + 1)
uθ

vθ+1
h
−(2+ 1

θ
)

u,v

≥h−(2+ 1
θ

)
u,v (θ + 1)

uθ

vθ+1
≥ 0

�
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In FIGURE 1 a one-sided skewed Clayton-Lévy copula is compared to a symmetric Clayton-

Lévy copula.

This concludes the entire specification of our model for the spark spread. In the next

section we will pick a specific, well suited one-sided skewed Clayton-Lévy copula and

provide a complete estimation of our model on data from the UK energy market.

3. A case study on UK data

In this section we will exemplarily fit the model presented in the preceding chapter to

the data of a UK power and gas price series (see FIGURE 2). The data we use is quoted

from February 6th, 2001 to December 31st, 2007 and was kindly provided by Icis Heren.

In order to estimate and simulate the model we will proceed in six steps:
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Figure 2. Daily quotes of UK power and gas spot prices spanning across 1736 workdays

(based on data by ).

(1) Fitting and removing seasonality

(2) Spike filtering

(3) Base signal fitting

(4) Spike signal fitting

(5) Dependence of spike signals

(6) Simulation of the model
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The first four steps apply mainly to the fitting of the marginal models (2.2) and (2.5) of

the electricity and gas spot price series. We here follow the procedure given in [16] and

thus do not give all the details. The main contribution of this paper lies in the modeling

and estimation of the dependence risk performed in step five.

(1) Fitting and removing seasonality. For each of the marginal models (2.2) and

(2.5) we are assuming the seasonal component to be Λ(t) = ef(t) with f being a deter-

ministic function of the form

f(t) = a+ bt+ c1 sin
(

2π

252
t
)

+ c2 cos
(

2π

252
t
)

+ d1 sin
(

4π

252
t
)

+ d2 cos
(

4π

252
t
)
,(3.1)

The six parameters as shown in TABLE 1 are estimated by the method of least squares,
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Figure 3. Top: The electricity spot prices and the seasonality function (fitted to the

logarithms). Bottom: The residuals from dividing by the seasonality function (based on

data by ).

fitting f to the logarithms of each data series. FIGURE 3 illustrates the regression for the

electricity margin.

a b c1 c2 d1 d2

UK power 2.73 6.96 · 10−4 -0.147 0.0580 -0.0876 -0.0446

UK gas 2.79 4.85 · 10−4 -0.138 0.1918 -0.0561 -0.0124

Table 1. Fitted parameters of the seasonality function
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(2) Spike filtering For separating the deseasonalized series into base signals - corre-

sponding to Y1(t) - and spike signals - corresponding to Y2(t) - we use the adapted Potts

filter presented in [16], which compared to the other candidate in [16] (hard-thresholding)

performs better for clustered spikes as is the case for UK power and gas. The filter pro-

cedures are fed by the following parameters:

• λe2 = 1.00 and λg2 = 0.84, the mean reversion parameters describing the spikes: As

proposed in [13], these are estimated directly from the largest relative decreases

between two consecutive days. The largest decreases appear after a spike that is not

followed by another spike and especially, where the spike is large enough to consider

the current base signal negligible. For each margin we take the second largest

(avoiding an exceptionally extreme case) relative decrease φ := Y (t)/Y (t− 1) and

we estimate λ2 := − log φ.
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Figure 4. Performance of the adapted Potts filter on UK electricity. Top: Filtered spike

signal. Middle: The deseasonalized series and the residual base signal after filtering.

Bottom: the combination of both, at a higher resolution (based on data by ).
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• λe1 = 0.17 and λg1 = 0.23 as first estimates for the mean reversion rates of the

Gaussian Ornstein-Uhlenbeck processes: We remark, that in step three they will

be reestimated with more accuracy and also the choices here play a minor role

for the performance of the filter, i.e. any λ1 between 0.3 and 0.05 would perform

comparably. However, here they are found by examination of the autocorrelation

functions.

• The penalties for placing a spike are found by decreasing the values in small steps,

until the filtering procedures reach the desired closeness to a Gaussian base signal.

See [16] for details on this procedure.

The adapted Potts filter finally places M = 169 spikes for UK power. Its performance is

illustrated in FIGURE 4. For UK gas it places M = 74 spikes. We remark that there seems

to be evidence of clusters in spike occurrence. To capture cluster behavior one would have

to extend the model to stochastic jump intensities, which, however, is beyond the scope

of the paper.

(3) Base signal fitting and base signal dependence In our model the base signals

Y e
1 and Y g

2 which correspond to the residuals after the respective spike removals are

represented by one-factor Gaussian Ornstein-Uhlenbeck processes. These fail to capture

the stochastic long-term movement of a trend line that the residual base signal exhibits:

see FIGURE 4 (middle). A third Gaussian OU component as in [13] with a very slow mean

reversion rate could be considered to more appropriately model the base signal. But since

this paper focusses on the dependence modeling of spike risk, we restrict ourself to one-

factor models for the base signals for simplicity of the exposition.

We estimate the mean level parameters µe, µg, the volatility parameters σe, σg, the mean

reversion parameters λe
1, λ

g
1 and the correlation δ of the two dimensional Brownian motion

by fitting the corresponding two dimensional AR(1)-process with a Maximum-Likelihood

method to the historical base signals. The estimates are shown in TABLE 2.

Set µ σ λ1

UK power 0.95 .11 .066

UK gas 1.00 .09 .078

Correlation δ: .23

Table 2. Estimates for the base signal

(4) Spike signal fitting We estimate the jump intensities ρe, ρg of the two compound

Poisson processes driving the spike signals by dividing the number of filtered spikes by the

entire number of days under observation. For the jump size distributions De, Dg we have

found good fit in both cases with the heavy tailed shifted inverse Gaussian distributions

(a random variable X is said to follow a shifted inverse Gaussian distribution with shift

s, mean µ > 0 and shape parameter λ > 0 if X − s ∼ IG(µ, λ)).
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For estimating the parameters, the method of Maximum-Likelihood is applied and the

results are reproduced in TABLE 3.

Set s∗ µ∗ λ∗ ρ

UK power (pos) .15 .60 .56 .10

UK gas (pos) .24 .54 .32 .04

Table 3. Maximum-likelihood estimates for shifted inverse Gaussian distributions and

the intensity of the respective compound Poisson process

(5) Dependence of spike signals As announced in Section 2 a Lévy copula shall

link the two marginal processes Le and Lg. Our estimation procedure makes use of the

fact that the dependence modeling via Lévy copulas is fully abstracted from the marginal

processes, which means that the procedure does not rely on any choice we have made for

the distributions of the spikes in step (4).

According to Definition A.6, let U1, U2 and U , respectively be the two marginal tail

integrals and the joint tail integral of (Le, Lg) Their empirical equivalences shall be

Ū1(x), Ū2(y), Ū(x, y), returning the observed average number of jumps per day, which

exceeded x in their electricity component, respectively y in their gas component, or respec-

tively both. Denote the Lévy copula by F , that satisfies F (U1(x), U2(y)) = U(x, y), x, y ∈
[0,∞]. In order to estimate a Lévy copula on our data we introduce the notion of the em-

pirical Lévy copula F̄ (u1, u2) as the function defined on the range of Ū1 and Ū2 satisfying

F̄ (Ū1(x), Ū2(y)) = Ū(x, y).

In our case the empirical Lévy copula consists of 1632 points and a 3D-plot revealing

its shape can be seen in FIGURE 5. We give a brief interpretation to a few features of the

figure:

• All points of F̄ are plotted, so the maximum value of Ū2 is smaller than the

maximum value ofŪ1, which simply reflects that historically (at least according to

our filtering) there were more jumps in electricity.

• For fixed u1, F̄ (u1, u2) shows a concave behavior in u2, growing rapidly for small

values. The high values for small u2 ensure that a large jump in gas is very likely

accompanied by a jump in electricity.

• Contrarily, the behavior of F̄ for fixed u2 shows a slow growth. A large jump in

electricity is not necessarily accompanied by a jump in the gas margin.

The last two items in the list represent the skewness of the Lévy copula, and show that

we cannot use Lévy copulas where F (x, y) = F (y, x). For choosing the best Lévy cop-

ula we tested 24 2-dimensional functions as candidates for skewed Archimedean Lévy

copulas, temporarily assuming they are all 2-increasing. Precisely, we are using the four

one-parameter Archimedean generators presented among the examples in Section A (i.e
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Figure 5. Empirical Lévy copula, and profile views (based on data by ).
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φC, φG,φḠ, φexp) and six skew factors, the neutral and five more with one parameter, as

follows:

ψ1(x) = 1, ψ4(x) = π
2

(arctan(αx))−1,

ψ2(x) = α
x

+ 1, ψ5(x) = tan
(
π
2
(xα + 1)−1

)
+ 1,

ψ3(x) = α√
x

+ 1, ψ6(x) = (log(αx+ 1)−1) + 1

For each combination of generator and skew factor we construct the function:

Fφ,ψ(x, y) = φ−1 (ψ(y)φ(x) + φ(y)) ,

and fit its parameters to the empirical Lévy copula by least squares. Then we compare

the sums of squared distances between the fitted and the empirical Lévy copula:

Σφ,ψ =
∑

(u1,u2,z)∈ELC

(Fφ,ψ(u1, u2)− z)2 ,

where ELC denotes the graph of the empirical Lévy copula. All the values for Σφ,ψ are

given in TABLE 4. The result of the measurement holds three clear statements:

• The two generators φexp and φḠ cannot compete with φC and φḠ, except in the

non-skewed, case.

• The skew is essential and provides significantly better fit in all cases.

• Within the Clayton- and the Gumbel- generators there are only very small differ-

ences between the success of the different skew factors.

φ\ψ 1 α
x

+ 1 α√
x

+ 1 ψ4 ψ5 ψ6

φC 67.6 5.59 4.79 5.71 5.22 5.52

φG 69.2 5.35 4.92 5.45 5.18 5.30

φḠ 103 42.1 48.4 41.4 44.2 42.5

φexp 61.3 30.0 16.6 37.7 9.00 20.0

Table 4. The residual sum-of-squares after fitting the parameters for each combination,

given as Σφ,ψ · 104

According to the TABLE 4 ψ3 combined with the Clayton-Lévy generator (where 2-

increasingness is already verified by Proposition 2.3) is our best option. The two fitted

parameters are θ = 3.39 and α = 2.56, while the final Lévy copula F chosen for the model

in this paper takes the form:

F (u, v) =

((
α√
v

+ 1

)
u−θ + v−θ

)− 1
θ

In FIGURE 6 one can see how it mimics the empirical Lévy copula quite well and in par-

ticular the skewness mirrors the smaller slope in u1.

(6) Simulation of the model We conclude this section with a short simulation study.

A simulated path of the spark spread with the estimated parameters is presented in
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Figure 6. The estimated Lévy copula and its fit to the empirical Lévy copula (based

on data by ).
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FIGURE 7. The seemingly higher volatility in the simulated path is due to the fact that we

restricted ourself to one OU component for the base signal for simplicity of the exposition

(a more realistic modeling of the base signal with two OU components can be found in

[13]). The focus of this paper is on the dependence modeling of the spike risk in electricity

and gas prices. A detailed view on the spike dependence can be seen in FIGURE 8. In both

cases, the historical and the simulated, we can see, how some spikes in the electricity spot

are totally explained by a spike in the gas price, while others are not even noticed in the

gas. Some are only partially accompanied. A large spike in the gas price which is not

accompanied by a spike in the electricity is not found on any series.

0 500 1000 1500

0
50

10
0

15
0

t

H
is

to
ric

al
 S

pa
rk

 S
pr

ea
d

0 500 1000 1500

0
50

10
0

15
0

t

S
im

ul
at

ed
 S

pa
rk

 S
pr

ea
d

Figure 7. The original UK spark spread compared to a simulated path of the model

(based on data by ).
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Figure 8. Detailed views on the isolated spike signals and the spike dependence in the

historical and in a simulated setup (based on data by ).
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4. Pricing of options written on the Spark Spread

In this section we demonstrate the applicability of our model in pricing options on the

spark spread. We will focus on computing arbitrage free prices of call options written on

the spark spread with maturity T and strike K:

CT,K = EQ
[
e−

∫ T
0 r(s)ds(S(T )−K)+

]
,

where (x)+ := max(x, 0), r(s) is the risk free rate, and Q is a risk neutral pricing measure.

In the following we assume for the sake of simplicity that r = 0 and that Q is model

structure preserving, i.e. without loss of generality we set Q = P. Then the call option

price reads

(4.1) CT,K = E
[
(S(T )−K)+

]
.

To compute the price in (4.1) we will employ Fourier transform pricing techniques as

presented in [6, Section 3.1]). Define the dampened payoff function f : R→ [0,∞) by

f(x) := e−αx(x−K)+, α > 0, x ∈ R,

which is needed in the sequel, since (· −K)+ is not integrable on the right. Note that f

is an integrable function for any α > 0. It is easy to show that the Fourier transform of

f , denoted by f̂ , is also integrable and given by

(4.2) f̂(u) =

∫
R
eixuf(x)dx =

1

(iu− α)2
e(iu−α)K .

So the Fourier inversion theorem (see for example [14, Section 8.2]) says that

f(x) =
1

2π

∫
R
e−ixuf̂(u)du.

We can thus derive the following semi-analytic expression for the call price

CT,K = E
[
(S(T )−K)+

]
= E

[
eαS(T )f(S(T ))

]
=

1

2π
E

eαS(T )

∫
R

e−iuS(T )f̂(u)du


=

1

2π

∫
R

E
[
e(α−iu)S(T )

]
f̂(u)du ,(4.3)

provided the extended Laplace transform E
[
e(α−iu)S(T )

]
exists for the chosen α > 0. Now,

due to the arithmetic structure of the marginal price models, the resulting model for the

spark spread S(t) is also of arithmetic form and analytically very tractable. In particular,

we can analytically compute the extended Laplace transform. Indeed, by explicitly solving
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for the involved OU components we can write

(4.4) S(T ) = φ0 +

T∫
0

φ1
sdBs +

T∫
0

φ2
sdLs,

where the two dimensional Brownian motion B = (Be, Bg) has correlation parameter δ

and the two-dimensional compound Poisson process L = (Le, Lg) is characterized by its

Lévy measure ν(dx) (with support on R+ × R+), and where we define

φ0 :=
[
Λe(T )

(
µe + e−λ

e
1T (Y e

1 (0)− µe)
)
− cΛg(T )

(
µg + e−λ

g
1T (Y g

1 (0)− µg)
) ]

,

φ1
s :=

(
Λe(T )σee−λ

e
1(T−s)

−cΛg(T )σge−λ
g
1(T−s)

)
,

φ2
s :=

(
Λe(T )e−λ

e
2(T−s)

−cΛg(T )e−λ
g
2(T−s)

)
.

By employing the Lévy-Khinchin representation for Lévy processes we can use this

explicit representation to derive as in [12, Proposition 1.9] the extended Laplace transform

of S(T ) if it exists:

E
[
e(α−iu)S(T )

](4.5)

= exp
(
(α− iu)φ0

)
E

exp

 T∫
0

(α− iu)φ1
sdBs

E

exp

 T∫
0

(α− iu)φ2
sdLs


= exp

(
(α− iu)φ0

)
exp

 T∫
0

1

2
(α− iu)2〈φ1

s, Aφ
1
s〉ds

 exp

 T∫
0

∫
R2

(
e〈(α−iu)φ2s,x〉 − 1

)
ν(dx)ds


where α, u ∈ R and

A =

(
1 δ

δ 1

)
is the correlation matrix of the Brownian motion. In order to specify for which values

of α > 0 the extended Laplace transform exists, we only need to consider the Poisson

process Le, since Lg points into the negative direction and therefore can be ignored, while

the Brownian and deterministic components clearly have finite expectation. Further, the

non-decreasing paths of the compound Poisson process allows us to ignore the mean

reversion:

E

exp

α T∫
0

Λe(T )e−λ
e
2(T−s)dLe(s)

 ≤ E [exp (αΛe(T )Le(T ))] .
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The exponential moments of Lévy processes E
[
euLt

]
are finite if and only if their Lévy

measure satisfies
∫
|x|≥1

euxν(dx) <∞ (see [17, Theorem 25.17]). So expressed by the jump

size distribution De, in our case shifted inverse Gaussian with parameters (µ, λ), we are

looking for an α > 0 such that ∫
R+

e(αΛe(T ))xDe(dx) <∞ .

For the regular inverse Gaussian as a special case of the generalized inverse Gaussian

distribution, according to [8] this holds as long as αΛe(T ) < λ
2µ2

. The shift, however, does

not change the asymptotic behavior and therefore the same applies here. Therefore α

must be chosen in dependence on T as:

0 < α < λ
(
2µ2Λe(T )

)−1
.

By plugging (4.5) into (4.3), we thus obtain

Proposition 4.1. Let the electricity jump distribution De(dx) be shifted inverse Gaussian

with parameters µ and λ, and let 0 < α < λ (2µ2Λe(T ))
−1

be a given constant. Then the

price of a call option written on the spark spread with maturity T and strike K is given

by

CT,K =
1

2π

∫
R

e(α−iu)φ0 exp

 T∫
0

1

2
(α− iu)2〈φ1

s, Aφ
1
s〉ds

(4.6)

· exp

 T∫
0

∫
R2

(
e〈(α−iu)φ2s,x〉 − 1

)
ν(dx)ds

 f̂(u)du,

To compute prices given in (4.6), we observe that the integral in the first parentheses

can be calculated analytically as

T∫
0

1

2
(α− iu)2〈φ1

s, Aφ
1
s〉ds =

1

2
(α− iu)2

[
1

2λe
1

a11(Λe(T ))2
(
1− e−2λe1T

)
− 2

λe
1 + λg

1

a21cΛ
e(T )Λg(T )

(
1− e−((λe1+λg1))T

)
+

1

2λg
1

a22c
2(Λg(T ))2

(
1− e−2λg1T

)]
.

The double integral in the second parentheses will require numerical evaluation, where

we shortly sketch how to compute the inner integral in terms of the Lévy copula and the

tail integrals of the marginal compound Poisson processes. We denote the integrand by

gu,s(x1, x2) := e〈(α−iu)φ2(s),x〉 − 1
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and fix a grid R×R with R = {r0, . . . , rk} ⊂ R, 0 = r0 < r1 < · · · < rk. Then∫
[0,∞[2

gu,s(x1, x2)ν(dx1 × dx2)

≈
k−1∑
i=0

k−1∑
j=0

gu,s(ri, rj)ν ([ri, ri+1[×[rj, rj+1[)

=
k−1∑
i=0

k−1∑
j=0

gu,s(ri, rj) · [U(ri, rj)− U(ri, rj+1)− U(ri+1, rj) + U(ri+1, rj+1)]

=
k−1∑
i=0

k−1∑
j=0

gu,s(ri, rj) ·
[
F (U1(ri), U2(rj))− F (U1(ri), U2(rj+1))

− F (U1(ri+1), U2(rj)) + F (U1(ri+1), U2(rj+1))
]
,

where the tail integrals are given by

U1(x) = ρe(1−De(x)) ,

U2(x) = ρg(1−Dg(x)) .

We conclude this section by computing some call prices for our estimated model ac-

cording to the formula given in Proposition 4.1. Parallel to [2], in Table 5, we consider call

prices with a maturity of T = 20 days for five strike prices K ∈ {0, 5, 10, 15, 20} and four

periods of time equally spaced around the yearly cycle beginning on the same day the

sample begins: t0 ∈ {0, 63, 126, 189}. Those periods are referred to as Period 1,2,3 and 4.

We also applied the same routine for two non-skewed Clayton Lévy copulas with θ1 = 0.1

and θ2 = 10, representing continuous approximations for respectively the independence

and the complete dependence Lévy copula (more extreme values for θ1, θ2 do not change

the prices noticeably). Additionally we fitted an alternative skewed Clayton Lévy copula

with skew factor ψ(x) = α
x

+ 1 in order to study the model’s robustness across different

choices for the Lévy copula.

The first finding is that the seasonal effect and trend plays the major role for the option

prices. This is a common and natural observation in energy markets.Another conspicuous

observation is that the relative effect of the assumed dependence becomes stronger when

moving towards out-of-the-money options. This results in a rather absolute effect on the

prices for in-the-money options.

Choosing any of the skew Lévy copulas keeps the prices nicely between those of an

independent and fully dependent assumption, except for the two cases of K ∈ {5, 10} in

Period 1, where the fitted skew copulas leave a higher value for the option. The choice of

the skew factor only has a very small effect. This is the ideal case in terms of robustness.

However, in general we find that the stronger the dependence assumption, the higher the

value of the call option. It would be more intuitive to think that a strong dependence
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Strike Period 1 Period 2 Period 3 Period 4 Levy copula

-10 6.0887 10.4511 10.3304 8.6884 Complete dep.

-10 5.8444 10.1682 10.0413 8.2714 Alternative LC

-10 5.8392 10.1629 10.0359 8.2632 Skew LC

-10 5.7914 10.0144 9.8876 8.0804 Independence

-5 1.1094 5.4637 5.3315 3.6909 Complete dep.

-5 0.9024 5.1821 5.0432 3.2851 Alternative LC

-5 0.8913 5.1764 5.0374 3.2747 Skew LC

-5 0.8158 5.0229 4.8869 3.0837 Independence

0 0.0350 0.6360 0.5745 0.3793 Complete dep.

0 0.0272 0.3856 0.3250 0.1332 Alternative LC

0 0.0184 0.3773 0.3162 0.1164 Skew LC

0 0.0002 0.2320 0.1744 0.0043 Independence

5 0.0031 0.0884 0.0883 0.1193 Complete dep.

5 0.0112 0.0389 0.0393 0.0561 Alternative LC

5 0.0070 0.0299 0.0299 0.0415 Skew LC

5 0.0002 0.0004 0.0003 0.0005 Independence

10 0.0003 0.0208 0.0210 0.0389 Complete dep.

10 0.0056 0.0183 0.0187 0.0322 Alternative LC

10 0.0035 0.0128 0.0130 0.0220 Skew LC

10 0.0001 0.0010 0.0007 0.0003 Independence

Table 5. The prices of call options of maturity T = 20 derived from the model with

complete dependence, fitted dependence and independence of spikes

reduced the value of the spark spread options, i.e. by cancelling out situations where

the electricity spot jumps without the gas spot, thus producing less situations where the

option is worthless, but as one can see here the opposite is true. This phenomenon was

also found in the studies of [3].

Appendix A. Lévy copulas

We will shortly review the main definitions and results needed for the concept of two-

dimensional Lévy copulas for Lévy measures with positive support. For further informa-

tions on Lévy copulas we refer to [7] and [10]. We first need a multidimensional extension

of the notion of increasing functions.

Definition A.1 (F -volume). Let F : S → R̄ for some subset S ⊂ R̄d. For u1 =

(u1
1, . . . , u

1
d), u2 = (u2

1, . . . , u
2
d) ∈ S with u1 ≤ u2 and [u1, u2] ⊂ S, the F -volume is
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defined by

VF ([u1, u2]) :=
2∑

j1=1

· · ·
2∑

jd=1

(−1)j1+···+jdF (uj11 , . . . , u
jd
d )

Definition A.2 (d-increasing). A function F : S → R̄ for some subset S ⊂ R̄d is called

d-increasing if VF ([u, v]) ≥ 0 for all u, v ∈ S with u ≤ v and [u, v] ⊂ S.

Definition A.3 (Grounded functions). A function F : [0,∞]d → [0,∞] is grounded if

F (x) = 0, x = (x1, . . . , xd) as soon as any of x1, . . . , xd equals 0.

Note, that in general the notion of d-increasing functions does not coincide with func-

tions that increase in each margin. However, in the following lemma some connection is

made in the 2-dimensional and positive case.

Lemma A.4. Let F : [0,∞]2 → [0,∞] be grounded and in C1,1 then F is 2-increasing, if
∂2

∂u∂v
F (u, v) > 0,∀(u, v) ∈ [0,∞]2

Next, we need the definition of the tail integral of a positive Lévy measure.

Definition A.5 (Tail integral). A d-dimensional tail integral is a function U : [0,∞]d →
[0,∞] such that

(1) (−1)dU is a d-increasing function.

(2) U is equal to zero if one of its arguments is equal to ∞.

(3) U is finite everywhere except at zero and U(0, . . . , 0) =∞.

The margins Uk, k = 1, . . . , d of a tail integral U are defined by

Uk(x) = U(0, . . . , 0, x
↑

k-th posisition

, 0, . . . , 0).

The name ”tail integral” makes more sense, as soon as the following link between Lévy

measures and tail integrals is made:

Definition A.6 (Tail integral of a positive Lévy measure). The tail integral U of a Lévy

measure ν on [0,∞)d for x = (x1, . . . , xd) is defined by

• U(x) = 0, if xk =∞ for any k = 1, . . . , d;

• U(x) = ν([x1,∞)× · · · × [xd,∞)) for x ∈ [0,∞)d\{0};
• U(0, . . . , 0) =∞.

We are now ready to introduce Lévy copulas for two-dimensional Lévy measures with

positive support. We remark that the general framework would need some small modifi-

cation.

Definition A.7 (Lévy copula). A two-dimensional Lévy copula for Lévy processes with

positive Lévy jumps is a function F : [0,∞]2 → [0,∞], which

• is grounded,
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• 2-increasing and

• has uniform margins, that is F (x,∞) = F (∞, x) = x, ∀x ∈ [0,∞].

In analogy to Sklar’s Theorem for copulas, the following theorem forms the main result

in the theory of Lévy copulas.

Theorem A.8 (Sklar’s Theorem for Lévy copulas). Let (Xt, Yt) be a two-dimensional

Lévy process with positive jumps having tail integral U and marginal tail integrals U1 and

U2. There exists a positive Lévy copula F such that:

(A.1) U(x1, x2) = F (U1(x1), U2(x2)), ∀x1, x2 ∈ [0,∞]

It is unique on Ran U1 × Ran U2, the product of the ranges of one-dimensional tail inte-

grals.

Conversely, if F is a positive Lévy copula and (Xt), (Yt) are two one-dimensional Lévy

processes with tail integrals U1,U2 then there exists a two-dimensional Lévy process such

that its tail integral is given by (A.1).

Finally, we recall the major representatives of Lévy copulas applied in practice.

Proposition A.9 (Archimedean Lévy copula). Let φ : [0,∞] → [0,∞] be a strictly

decreasing convex function such that φ(0) =∞ and φ(∞) = 0. Then

F (x, y) = φ−1(φ(x) + φ(y))

defines a two-dimensional Lévy copula.

In analogy to ordinary copulas, the Lévy copulas constructed this way, are called

Archimedean Lévy copulas and φ is called the generator.

Examples A few examples of Archimedean Lévy copulas, each with respect to a pa-

rameter θ > 0, following the naming in [11] wherever given, are:

(1) The Clayton-Lévy copula generated by φC(u) = u−θ:

Fθ(x, y) =
(
x−θ + y−θ

)−1/θ
,

In this case a greater parameter θ means higher dependence of jumps. This includes

F⊥ for θ → 0 and F↑↑ for θ →∞.

(2) The Gumbel-Lévy copula generated by φG(u) = [log(u+ 1)]−θ

Fθ(x, y) = exp

{[
(log(x+ 1))−θ + (log(y + 1))−θ

]−1/θ
}
− 1.

(3) The complementary Gumbel-Lévy copula generated by the inverted generator:

φḠ(u) = exp(u−θ)− 1

Fθ(x, y) =
{

log
[
exp(x−θ) + exp(y−θ)− 1

]}−1/θ
.
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(4) Generated by φexp(u) = 1
eθu−1

Fθ(x, y) =
1

θ
log

[(
1

eθx − 1
+

1

eθy − 1

)−1

+ 1

]
.

Remark A.10. Even though unnamed in literature, the last example should be included

in any relevant list. It could play an important role as an alternative to the Clayton-Lévy,

since, in the above list, these are the only two cases where the inverse of the partial deriv-

ative can be given in closed form. The relevance of this feature comes with the simulation

algorithm of Lévy copulas.
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[17] Sato, K.I. (1999): Lévy processes and infinitely divisible distributions, Cambridge Univ Pr, ISBN

0521553024.

(Thilo Meyer-Brandis), Department of Mathematics, University of Munich, D-80333, Mu-

nich, Germany

E-mail address: meyerbr@math.uio.no

(Michael Morgan), Rottenbucher Str. 35, D-81377, Munich, Germany

E-mail address: michael.morgan@gmx.net


