Supplement to "Liquidity based modeling of asset price bubbles via random matching"

Francesca Biagini * Andrea Mazzon* Thilo Meyer-Brandis*
Katharina Oberpriller ${ }^{\dagger}$

November 2, 2022

This is a supplement to the paper [1]. The supplement is organized as follows. First, we prove Theorem 3.13 in [1] which provides the existence of the dynamical system \mathbb{D} introduced in Definition 3.6 in [1]. Second, we show some properties of \mathbb{D} which are summarized in Theorem 3.14 in [1].
In the following, we only state the basic setting and refer to 1 for definitions.

1 Setting

Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ be a probability space and $(\hat{\Omega}, \hat{\mathcal{F}})$ another measurable space. We define the product space

$$
\begin{equation*}
(\Omega, \mathcal{F}):=(\tilde{\Omega} \times \hat{\Omega}, \tilde{\mathcal{F}} \otimes \hat{\mathcal{F}}) . \tag{1.1}
\end{equation*}
$$

Let \hat{P} be a Markov kernel (or stochastic kernel) from $\tilde{\Omega}$ to $\hat{\Omega}$. Given $\tilde{\omega} \in \tilde{\Omega}$, we set $\hat{P}^{\tilde{\omega}}:=\hat{P}(\tilde{\omega})$ with a slight notational abuse. We then introduce a probability measure P on (Ω, \mathcal{F}) as the semidirect product of \tilde{P} and \hat{P}, that is,

$$
\begin{equation*}
P(\tilde{A} \times \hat{A}):=(\tilde{P} \ltimes \hat{P})(\tilde{A} \times \hat{A})=\int_{\tilde{A}} \hat{P}^{\tilde{\omega}}(\hat{A}) d \tilde{P}(\tilde{\omega}) . \tag{1.2}
\end{equation*}
$$

We fix an atomless probability space $(I, \mathcal{I}, \lambda)$ representing the space of agents and let $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$ be a rich Fubini extension of $(I \times \Omega, \mathcal{I} \otimes \mathcal{F}, \lambda \otimes P)$. All agents in I can be classified according to their type. In particular, we let $S=\{1,2, \ldots, K\}$ be a finite space of types and say that an agent has type J if he is not matched. We denote by $\hat{S}:=S \times(S \cup\{J\})$ the extended type space. Moreover, we call $\hat{\Delta}$ the space of extended type distributions, which is the set of probability distributions p on \hat{S} satisfying $p(k, l)=p(l, k)$ for any k and l in S. This space is endowed with the topology \mathcal{T}^{Δ} induced by the topology of the space of matrices with $|S|$ rows and $|S|+1$ columns. We consider $(n)_{n \geq 1}$ time periods and denote by ($\eta^{n}, \theta^{n}, \xi^{n}, \sigma^{n}, \varsigma^{n}$) the matrix valued processes, with $\left(\eta^{n}, \theta^{n}, \xi^{n}, \sigma^{n}, \varsigma^{n}\right)=\left(\eta_{k l}^{n}, \theta_{k l}^{n}, \xi_{k l}^{n}, \sigma_{k l}^{n}[r, s], \varsigma_{k l}^{n}[r]\right)_{k, l, r, s \in S \times S \times S \times S}$ for $n \geq 1$, on (Ω, \mathcal{F}, P). For a detailed introduction of these processes we refer to Section 3 in [1]. Moreover, let $\hat{p}=\left(\hat{p}^{n}\right)_{n \geq 1}$ be a stochastic process on (Ω, \mathcal{F}, P) with values in $\hat{\Delta}$, representing the evolution of the underlying extended type distribution. We assume that \hat{p}^{0} is deterministic.
Given the input processes ($\eta, \theta, \xi, \sigma, \varsigma$) we denote by \mathbb{D} a dynamical system on $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$ and

[^0]by $\Pi=(\alpha, \pi, g)=\left(\alpha^{n}, \pi^{n}, g^{n}\right)_{n \in \mathbb{N} \backslash\{0\}}$ the agent-type function, the random matching and the partner-type function, respectively, as introduced in Definition 3.6 in [1], which we recall in the following.

Definition 1.1. A dynamical system \mathbb{D} defined on $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$ is a triple $\Pi=(\alpha, \pi, g)=$ $\left(\alpha^{n}, \pi^{n}, g^{n}\right)_{n \in \mathbb{N} \backslash\{0\}}$ such that for each integer period $n \geq 1$ we have:

1. $\alpha^{n}: I \times \Omega \rightarrow S$ is the $\mathcal{I} \boxtimes \mathcal{F}$-measurable agent type function. The corresponding end-of-period type of agent i under the realization $\omega \in \Omega$ is given by $\alpha^{n}(i, \omega) \in S$.
2. A random matching $\pi^{n}: I \times \Omega \rightarrow I$, describing the end-of-period agent $\pi^{n}(i)$ to whom agent i is currently matched, if agent i is currently matched. If agent i is not matched, then $\pi^{n}(i)=i$. The associated $\mathcal{I} \boxtimes \mathcal{F}$-measurable partner-type function $g^{n}: I \times \Omega \rightarrow S \cup\{J\}$ is given by

$$
g^{n}(i, \omega)= \begin{cases}\alpha^{n}\left(\pi^{n}(i, \omega), \omega\right) & \text { if } \pi^{n}(i, \omega) \neq i \\ J & \text { if } \pi^{n}(i, \omega)=i\end{cases}
$$

providing the type of the agent to whom agent i is matched, if agent i is matched, or J if agent i is not matched.

Let the initial condition $\Pi^{0}=\left(\alpha^{0}, \beta^{0}\right)$ of \mathbb{D} be given. We now construct a dynamical system \mathbb{D} defined on $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$ with input processes $\left(\eta^{n}, \theta^{n}, \xi^{n}, \sigma^{n}, \varsigma^{n}\right)_{n \geq 1}$. We assume that $\Pi^{n-1}=\left(\alpha^{n-1}, \pi^{n-1}, g^{n-1}\right)$ is given for some $n \geq 1$, and define $\Pi^{n}=\left(\alpha^{n}, \pi^{n}, g^{n}\right)$ by characterizing the three sub-steps of random change of types of agents, random matchings, break-ups and possible type changes after matchings and break-ups as follows.
Mutation: For $n \geq 1$ consider an $\mathcal{I} \boxtimes \mathcal{F}$-measurable post mutation function

$$
\bar{\alpha}^{n}: I \times \Omega \rightarrow S
$$

In particular, $\bar{\alpha}_{i}^{n}(\omega):=\bar{\alpha}^{n}(i, \omega)$ is the type of agent i after the random mutation under the scenario $\omega \in \Omega$. The type of the agent to whom an agent is matched is identified by a $\mathcal{I} \boxtimes \mathcal{F}$-measurable function

$$
\bar{g}^{n}: I \times \Omega \rightarrow S \cup\{J\}
$$

given by

$$
\bar{g}^{n}(i, \omega)=\bar{\alpha}^{n}\left(\pi^{n-1}(i, \omega), \omega\right)
$$

for any $\omega \in \Omega$. In particular, $\bar{g}_{i}^{n}(\omega):=\bar{g}^{n}(i, \omega)$ is the type of the agent to whom an agent is matched under the scenario $\omega \in \Omega$. Given \hat{p}^{n-1} and $\tilde{\omega} \in \tilde{\Omega}$, for any k_{1}, k_{2}, l_{1} and l_{2} in S, for any $r \in S \cup\{J\}$, for λ-almost every agent i, we set

$$
\begin{align*}
& \hat{P}^{\tilde{\omega}}\left(\bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k_{2}, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=l_{2} \mid \alpha_{i}^{n-1}(\tilde{\omega}, \cdot)=k_{1}, g_{i}^{n-1}(\tilde{\omega}, \cdot)=l_{1}, \hat{p}^{n-1}(\tilde{\omega}, \cdot)\right)(\hat{\omega}) \\
& \quad=\eta_{k_{1}, k_{2}}\left(\tilde{\omega}, n, \hat{p}^{n-1}(\tilde{\omega}, \hat{\omega})\right) \eta_{l_{1}, l_{2}}\left(\tilde{\omega}, n, \hat{p}^{n-1}(\tilde{\omega}, \hat{\omega})\right), \tag{1.3}\\
& \hat{P}^{\tilde{\omega}}\left(\bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k_{2}, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=r \mid \alpha_{i}^{n-1}(\tilde{\omega}, \cdot)=k_{1}, g_{i}^{n-1}(\tilde{\omega}, \cdot)=J, \hat{p}^{n-1}(\tilde{\omega}, \cdot)\right)(\hat{\omega}) \\
& \quad=\eta_{k_{1}, k_{2}}\left(\tilde{\omega}, n, \hat{p}^{n-1}(\tilde{\omega}, \hat{\omega})\right) \delta_{J}(r), \tag{1.4}
\end{align*}
$$

We then set

$$
\bar{\beta}^{n}(\omega)=\left(\bar{\alpha}^{n}(\omega), \bar{g}^{n}(\omega)\right), \quad n \geq 1
$$

The post-mutation extended type distribution realized in the state of the world $\omega \in \Omega$ is denoted by $\check{p}(\omega)=$ $\left(\check{p}^{n}(\omega)[k, l]\right)_{k \in S, l \in S \cup J}$, where

$$
\begin{equation*}
\check{p}^{n}(\omega)[k, l]:=\lambda\left(\left\{i \in I: \bar{\alpha}^{n}(i, \omega)=k, \bar{g}^{n}(i, \omega)=l\right\}\right) . \tag{1.5}
\end{equation*}
$$

Matching: We introduce a random matching $\bar{\pi}^{n}: I \times \Omega \rightarrow I$ and the associated post-matching partner type function $\overline{\bar{g}}^{n}$ given by

$$
\overline{\bar{g}}^{n}(i, \omega)= \begin{cases}\bar{\alpha}^{n}\left(\bar{\pi}^{n}(i, \omega), \omega\right) & \text { if } \bar{\pi}^{n}(i, \omega) \neq i \\ J & \text { if } \bar{\pi}^{n}(i, \omega)=i\end{cases}
$$

satisfying the following properties:

1. $\overline{\bar{g}}^{n}$ is $\mathcal{I} \boxtimes \mathcal{F}$-measurable.
2. For any $\tilde{\omega} \in \tilde{\Omega}$, any $k, l \in S$ and any $r \in S \cup\{J\}$, it holds

$$
\hat{P}^{\tilde{\omega}}\left(\overline{\bar{g}}^{n}(\tilde{\omega}, \cdot)=r \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=l\right)(\hat{\omega})=\delta_{l}(r) .
$$

This means that

$$
\bar{\pi}_{\omega}^{n}(i)=\pi_{\omega}^{n-1}(i) \quad \text { for any } i \in\left\{i: \pi^{n-1}(i, \omega) \neq i\right\}
$$

3. Given $\tilde{\omega} \in \tilde{\Omega}$ and the post-mutation extended type distribution \check{p}^{n} in 1.5 , an unmatched agent of type k is matched to a unmatched agent of type l with conditional probability $\theta_{k l}\left(\tilde{\omega}, n, \tilde{p}^{n}\right)$, that is for λ-almost every agent i and $\hat{P}^{\tilde{\omega}}$-almost every $\hat{\omega}$, we define

$$
\begin{equation*}
\hat{P}^{\tilde{\omega}}\left(\overline{\bar{g}}^{n}(\tilde{\omega}, \cdot)=l \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=J, \check{p}^{n}(\tilde{\omega}, \cdot)\right)(\hat{\omega})=\theta_{k l}^{n}\left(\tilde{\omega}, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right) . \tag{1.6}
\end{equation*}
$$

This also implies that

$$
\begin{equation*}
\hat{P}^{\tilde{\omega}}\left(\bar{g}^{n}(\tilde{\omega}, \cdot)=J \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=J, \check{p}^{n}(\tilde{\omega}, \cdot)\right)(\hat{\omega})=1-\sum_{l \in S} \theta_{k l}^{n}\left(\tilde{\omega}, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right)=b^{k}\left(\tilde{\omega}, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right) . \tag{1.7}
\end{equation*}
$$

The extended type of agent i after the random matching step is

$$
\overline{\bar{\beta}}_{i}^{n}(\omega)=\left(\bar{\alpha}_{i}^{n}(\omega), \overline{\bar{g}}_{i}^{n}(\omega)\right), \quad n \geq 1
$$

We denote the post-matching extended type distribution realized in $\omega \in \Omega$ by $\check{p}^{n}(\omega)=\left(\check{p}^{n}(\omega)[k, l]\right)_{k \in S, l \in S \cup J}$, where

$$
\begin{equation*}
\check{\check{p}}^{n}(\omega)[k, l]:=\lambda\left(\left\{i \in I: \overline{\bar{\alpha}}^{n}(i, \omega)=k, \bar{g}^{n}(i, \omega)=l\right\}\right) . \tag{1.8}
\end{equation*}
$$

Type changes of matched agents with break-up: We now define a random matching π^{n} by

$$
\pi^{n}(i)= \begin{cases}\bar{\pi}^{n}(i) & \text { if } \bar{\pi}^{n}(i) \neq i \tag{1.9}\\ i & \text { if } \bar{\pi}^{n}(i)=i\end{cases}
$$

We then introduce an $(\mathcal{I} \boxtimes \mathcal{F})$-measurable agent type function α^{n} and an $(\mathcal{I} \boxtimes \mathcal{F})$-measurable partner function g^{n} with

$$
g^{n}(i, \omega)=\alpha^{n}\left(\pi^{n}(i, \omega), \omega\right), \quad n \geq 1
$$

for all $(i, \omega) \in I \times \Omega$. Given $\tilde{\omega} \in \tilde{\Omega}, \check{p}^{n} \in \hat{\Delta}$, for any $k_{1}, k_{2}, l_{1}, l_{2} \in S$ and $r \in S \cup\{J\}$, for λ-almost every agent i, and for $\hat{P}^{\tilde{\omega}}$-almost every $\hat{\omega}$, we set

$$
\begin{gather*}
\hat{P}^{\tilde{\omega}}\left(\alpha_{i}^{n}(\tilde{\omega}, \cdot)=l_{1}, g_{i}^{n}(\tilde{\omega}, \cdot)=r \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k_{1}, \overline{\bar{g}}_{i}^{n}(\tilde{\omega}, \cdot)=J\right)(\hat{\omega})=\delta_{k_{1}}\left(l_{1}\right) \delta_{J}(r), \tag{1.10}\\
\hat{P}^{\tilde{\omega}}\left(\alpha_{i}^{n}(\tilde{\omega}, \cdot)=l_{1}, g_{i}^{n}(\tilde{\omega}, \cdot)=l_{2} \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k_{1}, \overline{\bar{g}}_{i}^{n}(\tilde{\omega}, \cdot)=k_{2}, \check{p}^{n}(\tilde{\omega}, \cdot)\right)(\hat{\omega})
\end{gather*}
$$

$$
\begin{align*}
& \quad=\left(1-\xi_{k_{1} k_{2}}\left(\tilde{\omega}, n, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right)\right) \sigma_{k_{1} k_{2}}\left[l_{1}, l_{2}\right]\left(\tilde{\omega}, n, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right), \tag{1.11}\\
& \hat{P}^{\tilde{\omega}}\left(\alpha_{i}^{n}(\tilde{\omega}, \cdot)=l_{1}, g_{i}^{n}(\tilde{\omega}, \cdot)=J \mid \bar{\alpha}_{i}^{n}(\tilde{\omega}, \cdot)=k_{1}, \bar{g}_{i}^{n}(\tilde{\omega}, \cdot)=k_{2}, \check{p}^{n}(\tilde{\omega}, \cdot)\right)(\hat{\omega}) \\
& \quad=\xi_{k_{1} k_{2}}\left(\tilde{\omega}, n, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right) \varsigma_{k_{1} k_{2}}^{n}\left[l_{1}\right]\left(\tilde{\omega}, n, \check{p}^{n}(\tilde{\omega}, \hat{\omega})\right) . \tag{1.12}
\end{align*}
$$

The extended-type function at the end of the period is

$$
\beta^{n}(\omega)=\left(\alpha^{n}(\omega), g^{n}(\omega)\right), \quad n \geq 1
$$

We denote the extended type distribution at the end of period n realized in $\omega \in \Omega$ by $\hat{p}^{n}(\omega)=\left(\hat{p}^{n}(\omega)[k, l]\right)_{k \in S, l \in S \cup J}$, where

$$
\begin{equation*}
\hat{p}^{n}(\omega)[k, l]:=\lambda\left(\left\{i \in I: \alpha^{n}(i, \omega)=k, g^{n}(i, \omega)=l\right\}\right) \tag{1.13}
\end{equation*}
$$

Furthermore, the definition of Markov conditionally independent (MCI) dynamical system is provided in Definition 3.8 in [1. We work under the following assumption, which is Assumption 3.9 in [1].

Assumption 1.2. Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ be the probability space introduced. We assume that there exists its corresponding hyperfinite internal probability space, which we denote from now on also by $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ by a slight notational abuse.

As already pointed out in [1], the proofs of the results below follow by analogous arguments as in [2] which is possible due to the product structure of the space Ω in (1.1) and the Markov kernel P in 1.2 . As in 2 we use some concepts and notations from nonstandard analysis. Note here that an object with an upper left star means the transfer of a standard object to the nonstandard universe. For a detailed overview of the necessary tools of nonstandard analysis, we refer to Appendix D.2. in [2].

2 Proof of Theorem 3.13 in [1]

From now on, we fix the hyperfinite internal space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$, along with the input functions $\left(\eta_{k l}, \theta_{k l}, \xi_{k l}, \sigma_{k l}[r, s], \varsigma_{k l}[r]\right)_{k, l, r, s \in S \times S \times S \times S}$ from $\tilde{\Omega} \times \mathbb{N} \times \Delta$ to [0,1$]$ introduced above. Given this framework we prove the existence of a rich Fubini extension $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$, on which a dynamical system \mathbb{D} described in Definition 1.1 for such input probabilities is defined. More specifically, we are going to construct the space $\hat{\Omega}$ and the probability measure \hat{P} such that $\Omega=\tilde{\Omega} \times \hat{\Omega}$ and $P=\tilde{P} \ltimes \hat{P}$ is a Markov kernel from $\tilde{\Omega}$ to $\hat{\Omega}$.
We now present and prove Theorem 3.13 in [1]. The proof is based on Proposition 3.12 in [1], which focuses on the random matching step and shows the existence of a suitable hyperfinite probability space and partial matching, generalizing Lemma 7 in [2].

Theorem 2.1. Let Assumption 3.9 in [1] hold and $\left(\eta_{k l}, \theta_{k l}, \xi_{k l}, \sigma_{k l}[r, s], \varsigma_{k l}[r]\right)_{k, l, r, s \in S \times S \times S \times S}$ be the input functions from $\tilde{\Omega} \times \mathbb{N} \times \hat{\Delta}$ defined in Section 3 in [1]. Then for any extended type distribution $\ddot{p} \in \hat{\Delta}$ and any deterministic initial condition $\Pi^{0}=\left(\alpha^{0}, \pi^{0}\right)$ there exists a rich Fubini extension $(I \times \Omega, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P)$ on which a discrete dynamical system $\mathbb{D}=\left(\Pi^{n}\right)_{n=0}^{\infty}$ as in Definition 3.6 in [1] can be constructed with discrete time input processes $\left(\eta^{n}, \theta^{n}, \xi^{n}, \sigma^{n}, \varsigma^{n}\right)_{n \geq 1}$ coming from $\left(\eta_{k l}, \theta_{k l}, \xi_{k l}, \sigma_{k l}[r, s], \varsigma_{k l}[r]\right)_{k, l, r, s \in S \times S \times S \times S}$ as stated in Section 2 in [1]. In particular,

$$
\Omega=\tilde{\Omega} \times \hat{\Omega}, \quad \mathcal{F}=\tilde{\mathcal{F}} \otimes \hat{\mathcal{F}}, \quad P=\tilde{P} \ltimes \hat{P},
$$

where $(\hat{\Omega}, \hat{\mathcal{F}})$ is a measurable space and \hat{P} a Markov kernel from $\tilde{\Omega}$ to $\hat{\Omega}$. The dynamical system \mathbb{D} is also MCI according to Definition 3.8 in [1] and with initial cross-sectional extended type distribution \hat{p}^{0} equal to \ddot{p}^{0} with probability one.

Proof. At each time period we construct three internal measurable spaces with internal transition probabilities taking into account the following steps:

1. random mutation
2. random matching
3. random type changing with break-up.

Let M be a limited hyperfinite number in ${ }^{*} \mathbb{N}_{\infty}$. Let $\{n\}_{n=0}^{M}$ be the hyperfinite discrete time line and $\left(I, \mathcal{I}_{0}, \lambda_{0}\right)$ the agent space, where $I=\{1, \ldots, \hat{M}\}, \mathcal{I}_{0}$ is the internal power set on I, λ_{0} is the internal counting probability measure on \mathcal{I}_{0}, and \hat{M} is an unlimited hyperfinite number in ${ }^{*} \mathbb{N}_{\infty}$.
We start by transferring the deterministic functions ${ }^{1} \eta(0, \cdot), \theta(0, \cdot), \xi(0, \cdot), \sigma(0, \cdot), \varsigma(0, \cdot): \hat{\Delta} \rightarrow[0,1]$ to the nonstandard universe. In particular, we denote by ${ }^{*} \theta_{k l}^{0}$ for any $k, l \in S$ and by ${ }^{*} f^{0}$ for $f=\eta, \xi, \sigma, \varsigma$ the internal functions from ${ }^{*} \hat{\Delta}$ to $[0,1]$. We also let $\hat{\theta}_{k l}^{0}(\hat{\rho})={ }^{*} \hat{\theta}_{k l}^{0}(\hat{\rho})$ and $\hat{b}_{k}^{0}=1-\sum_{l \in S} \hat{\theta}_{k l}^{0}(\hat{\rho})$ for any $k, l \in S$ and $\hat{\rho} \in{ }^{*} \hat{\Delta}$, with $1 \in{ }^{*} \mathbb{N}$.
We start at $n=0$. To do so, we introduce the trivial probability space over the single set $\{0\}$ denoted by $\left(\bar{\Omega}_{0}, \overline{\mathcal{F}}_{0}, \bar{Q}_{0}\right)$. Let $\left\{A_{k l}\right\}_{(k, l) \in \hat{S}}$ be an internal partition of I such that $\frac{\left|A_{k l}\right|}{\hat{M}} \simeq \ddot{p}_{k l}$ for any $k \in S$ and $l \in S \cup\{J\}$, such that $\left|A_{k k}\right|$ is even for any $k, l \in S$ and $\left|A_{k l}\right|=\left|A_{l k}\right|$ for any $k, l \in S$. Let α^{0} be an internal function from $\left(I, \mathcal{I}_{0}, \lambda_{0}\right)$ to S such that $\alpha^{0}(i)=k$ if $i \in \bigcup_{l \in S \cup\{J\}} A_{k l}$. Let π^{0} be an internal partial matching from I to I such that $\pi^{0}(i)=i$ on $\bigcup_{k \in S} A_{k J}$, and the restriction $\left.\pi^{0}\right|_{A_{k l}}$ is an internal bijection from $A_{k l}$ to $A_{l k}$ for any $k, l \in S$. Let

$$
g^{0}(i)= \begin{cases}\alpha^{0}\left(\pi^{0}(i)\right) & \text { if } \pi^{0}(i) \neq i \\ J & \text { if } \pi^{0}(i)=i\end{cases}
$$

It is clear that $\lambda_{0}\left(\left\{i: \alpha^{0}(i)=k, g^{0}(i)=l\right\}\right) \simeq \ddot{p}_{k l}^{0}$ for any $k \in S$ and $l \in S \cup\{J\}$.
Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ be the hyperfinite internal space. Since the intensities are supposed to be deterministic at initial time, the Markov kernel from $\tilde{\Omega}$ is trivial and we define the initial internal product probability space as

$$
\left(\Omega_{0}, \mathcal{F}_{0}, Q_{0}\right):=\left(\tilde{\Omega} \times \bar{\Omega}_{0}, \tilde{\mathcal{F}} \otimes \overline{\mathcal{F}}_{0}, \tilde{P} \otimes \bar{Q}_{0}\right)
$$

Suppose now that the dynamical system \mathbb{D} has been constructed up to time $n-1 \in{ }^{*} \mathbb{N}$ for $n \geq 1$, i.e., that the sequences $\left\{\left(\Omega_{m}, \mathcal{F}_{m}, Q_{m}\right)\right\}_{m=0}^{3 n-3}$ and $\left\{\alpha^{l}, \pi^{l}\right\}_{l=0}^{n-1}$ have been constructed. In particular, we assume to have introduced the spaces $\left(\hat{\Omega}_{m}, \hat{\mathcal{F}}_{m}\right)$ and the Markov kernel \hat{P}_{m} from $\tilde{\Omega}$ to $\hat{\Omega}_{m}$ for any $m=1, \ldots, n-3$, so that we can define $\Omega_{m}:=\tilde{\Omega} \times \hat{\Omega}_{m}$ as a hyperfinite internal set with internal power set $\mathcal{F}_{m}:=\tilde{\mathcal{F}} \otimes \hat{\mathcal{F}}_{m}$ and $Q_{m}:=\tilde{P} \ltimes \hat{P}_{m}$ as an internal transition probability from Ω^{m-1} to $\left(\Omega_{m}, \mathcal{F}_{m}\right)$, where

$$
\begin{equation*}
\Omega^{m}:=\tilde{\Omega} \times \hat{\Omega}^{m}, \quad \hat{\Omega}^{m}:=\bar{\Omega}_{0} \times \prod_{j=1}^{m} \hat{\Omega}_{j}, \quad \hat{\mathcal{F}}^{m}:=\overline{\mathcal{F}}_{0} \otimes\left(\otimes_{j=1}^{m} \hat{\mathcal{F}}_{j}\right) \quad \text { and } \quad \mathcal{F}^{m}=\tilde{\mathcal{F}} \otimes \hat{\mathcal{F}}^{m} \tag{2.1}
\end{equation*}
$$

[^1]In this setting, α^{l} is an internal type function from $I \times \Omega^{3 l-1}$ to the space S, and π^{l} an internal random matching from $I \times \Omega^{3 l}$ to I, such that

$$
\alpha^{l}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 l-1}\right)\right)=\alpha^{l}\left(i, \hat{\omega}^{3 l-1}\right), \quad \text { for any }\left(\tilde{\omega}, \hat{\omega}^{3 l-1}\right) \in \Omega^{3 l-1}
$$

and

$$
\pi^{l}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 l}\right)\right)=\pi^{l}\left(i, \hat{\omega}^{3 l}\right), \quad \text { for any }\left(\tilde{\omega}, \hat{\omega}^{3 l}\right) \in \Omega^{3 l}
$$

Given $\omega^{3 l} \in \Omega^{3 l}$ we denote by $\pi_{\hat{\omega}^{3 l}}^{l}: I \rightarrow I$ the function given by

$$
\pi_{\hat{\omega}^{3 l}}^{l}(i):=\pi^{l}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 l}\right)\right)=\pi^{l}\left(i, \hat{\omega}^{3 l}\right) .
$$

A similar notation will be used for $\alpha_{\hat{\omega}^{3 l}}^{l}: I \rightarrow S$. We now have the following.

(i) Random mutation step:

We let $\hat{\Omega}_{3 n-2}:=S^{I}$, which is the space of all internal functions from I to S, and denote its internal power set by $\hat{\mathcal{F}}_{3 n-2}$. For each $i \in I$ and $\omega^{3 n-3}=\left(\tilde{\omega}, \hat{\omega}^{3 n-3}\right) \in \Omega^{3 n-3}$, if $\alpha^{n-1}\left(i, \omega^{3 n-3}\right)=\alpha^{n-1}\left(i, \hat{\omega}^{3 n-3}\right)=k$, define a probability measure $\gamma_{i}^{\tilde{\omega}, \hat{\omega}^{3 n-3}}$ on S by letting $\gamma_{i}^{\tilde{\omega}, \hat{\omega}^{3 n-3}}(l):=\theta_{k l}\left(\tilde{\omega}, n, \hat{\rho}_{\hat{\omega}} n-1,3\right)$ for each $l \in S$ with

$$
\hat{\rho}_{\hat{\omega}^{3 n-3}}^{n-1}[k, r]:=\lambda_{0}\left(\left\{i \in I: \alpha_{\hat{\omega}^{3 n-3}}^{n}(i)=k, \alpha_{\hat{\omega}^{3 n-3}}^{n}\left(\pi_{\hat{\omega}^{3 n-3}}^{n}(i)\right)=r\right\}\right), \quad k, r \in S
$$

and

$$
\hat{\rho}_{\hat{\omega}^{3 n-3}}^{n-1}[k, J]:=\lambda_{0}\left(\left\{i \in I: \alpha_{\hat{\omega}^{3 n-3}}^{n}(i)=k, \pi_{\hat{\omega}^{3 n-3}}^{n}(i)=i\right\}\right), \quad k \in S .
$$

Define a Markov kernel $\hat{P}_{3 n-2}^{\hat{\omega}^{3 n-3}}$ from $\tilde{\Omega}$ to $\hat{\Omega}_{3 n-2}$ by letting $\hat{P}_{3 n-2}^{\hat{\omega}^{3 n-3}}(\tilde{\omega})$ be the internal product measure $\prod_{i \in I} \gamma_{i}^{\tilde{\omega}, \hat{\omega}^{3 n-3}}$. Define $\bar{\alpha}^{n}:\left(I \times \Omega^{3 n-2}\right) \rightarrow S$ by

$$
\bar{\alpha}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-2}\right)\right):=\bar{\alpha}^{n}\left(i, \hat{\omega}^{3 n-2}\right)=: \hat{\omega}_{3 n-2}(i)
$$

and $\bar{g}^{n}:\left(I \times \Omega^{3 n-2}\right) \rightarrow S \cup\{J\}$ by

$$
\bar{g}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-2}\right)\right):=\bar{g}^{n}\left(i, \hat{\omega}^{3 n-2}\right):= \begin{cases}\bar{\alpha}^{n}\left(\pi^{n-1}\left(i, \hat{\omega}^{3 n-3}\right), \hat{\omega}^{3 n-2}\right) & \text { if } \pi^{n-1}\left(i, \hat{\omega}^{3 n-3}\right) \neq i \\ J & \text { if } \left.\pi^{n-1}\left(i, \hat{\omega}^{3 n-3}\right)\right)=i\end{cases}
$$

Moreover, we introduce the notation

$$
\bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}(\cdot): I \rightarrow S, \quad \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}(i):=\bar{\alpha}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-2}\right)\right):=\bar{\alpha}^{n}\left(i, \hat{\omega}^{3 n-2}\right)
$$

for the type function. We then define $\pi_{\hat{\omega}^{3 n-3}}^{n-1}(\cdot): I \rightarrow I$ and $g_{\hat{\omega}^{3 n-2}}^{n}: I \rightarrow S \cup\{J\}$ analogously. Finally, we define the cross-internal extended type distribution after random mutation $\breve{\rho}_{\hat{\omega}^{3 n-2}}^{n}$ by

$$
\check{\rho}_{\hat{\omega}^{3 n-2}}^{n}[k, l]:=\lambda_{0}\left(\left\{\in I: \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}(i)=k, \bar{g}_{\hat{\omega}^{3 n-2}}^{n}(i)=l\right\}\right), \quad k, l \in S .
$$

(ii) Directed random matching:

Let $\left(\hat{\Omega}_{3 n-1}, \hat{\mathcal{F}}_{3 n-1}\right)$ and $\hat{P}_{3 n-1}^{\hat{\omega}^{3 n-2}}$ be the measurable space and the Markov kernel, respectively, provided by Proposition 3.12 in [1], with type function $\bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}(\cdot)$ and partial matching function $\pi_{\hat{\omega}^{3 n-3}}^{n-1}(\cdot)$, for fixed matching probability function $\theta\left(\cdot, n, \check{\rho}_{\tilde{\omega}^{3 n-2}}^{n}\right)$. Proposition 3.12 in [1] also provides the directed random matching

$$
\pi_{\theta^{n}\left(\cdot, \check{\rho}_{\hat{\omega}^{3 n-2}}^{n}\right), \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}, \pi_{\dot{\omega}^{3 n-3}}^{n-1},},
$$

which is a function defined on $\left(\Omega_{3 n-1}, \mathcal{F}_{3 n-1}\right)$ by

$$
\pi_{\theta^{n}\left(\cdot, \check{\rho}_{\hat{\omega}^{3 n-2}}^{n}\right), \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}, \pi_{\hat{\omega}^{3 n-3}}^{n-1}}\left(i,\left(\tilde{\omega}, \hat{\omega}_{3 n-1}\right)\right):=\pi_{\theta^{n}\left(\cdot, \tilde{\rho}_{\hat{\omega}^{3 n-2}}^{n}\right), \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}, \pi_{\hat{\omega}^{3 n-3}}^{n-1}}\left(i, \hat{\omega}_{3 n-1}\right) .
$$

We then define $\bar{\pi}^{n}:\left(I \times \Omega^{3 n-1}\right) \rightarrow I$ by

$$
\bar{\pi}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}_{3 n-1}\right)\right):=\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right):=\pi_{\left.\theta^{n}\left(\cdot, \check{\rho}_{\hat{\omega}^{3 n-2}}^{n}\right), \bar{\alpha}_{\hat{\omega}^{3 n-2}}^{n}, \pi_{\hat{\omega}^{3 n-3}}^{n-1}\left(i, \hat{\omega}_{3 n-1}\right)\right)}
$$

and

$$
\overline{\bar{g}}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\overline{\bar{g}}^{n}\left(i, \hat{\omega}^{3 n-1}\right):= \begin{cases}\bar{\alpha}^{n}\left(\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right), \hat{\omega}^{3 n-2}\right) & \text { if } \bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right) \neq i \\ J & \text { if } \bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=i\end{cases}
$$

Define now the cross-internal extended type distribution after the random matching $\check{\rho}_{\hat{\omega}^{3 n-1}}^{n}$ by

$$
\check{\rho}_{\hat{\omega}^{3 n-1}}^{n}[k, l]:=\lambda_{0}\left(\left\{\in I: \bar{\alpha}_{\hat{\omega}^{3 n-1}}^{n}(i)=k, \overline{\bar{g}}_{\hat{\omega}^{3 n-1}}^{n}(i)=l\right\}\right) .
$$

(iii) Random type changing with break-up for matched agents:

Introduce $\hat{\Omega}_{3 n}:=(S \times\{0,1\})^{I}$ with internal power set $\hat{\mathcal{F}}_{3 n}$, where 0 represents "unmatched" and 1 represents "paired"; each point $\hat{\omega}_{3 n}=\left(\hat{\omega}_{3 n}^{1}, \hat{\omega}_{3 n}^{2}\right) \in \hat{\Omega}_{3 n}$ represents an internal function from I to $S \times\{0,1\}$. Define a new type function $\alpha^{n}:\left(I \times \Omega^{3 n}\right) \rightarrow S$ by letting $\alpha^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n}\right)\right):=\alpha^{n}\left(i, \hat{\omega}^{3 n}\right)=\hat{\omega}_{3 n}^{1}(i)$. Fix $\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right) \in \Omega^{3 n-1}$. For each $i \in I$, we proceed in the following way.

1. If $\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=i$ (i is not paired after the matching step at time n), let $\tau_{i}^{\tilde{\omega}, \hat{\omega}^{3 n-1}}$ be the probability measure on the type space $S \times\{0,1\}$ that gives probability one to the type $\left(\bar{\alpha}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-2}\right)\right), 0\right)=$ $\left(\bar{\alpha}^{n}\left(i, \hat{\omega}^{3 n-2}\right), 0\right)$ and zero to the rest
2. If $\bar{\pi}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=j \neq i(i$ is paired after the matching step at time $n), \bar{\alpha}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-2}\right)\right)=$ $\bar{\alpha}^{n}\left(i, \hat{\omega}^{3 n-2}\right)=k, \bar{\pi}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=j$ and $\bar{\alpha}^{n}\left(j,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\bar{\alpha}^{n}\left(j, \hat{\omega}^{3 n-1}\right)=l$, define a probability measure $\tau_{i j}^{\tilde{\omega}, \hat{\omega}^{3 n-1}}$ on $(S \times\{0,1\}) \times(S \times\{0,1\})$ as

$$
\tau_{i j}^{\tilde{\omega}, \hat{\omega}^{3 n-1}}\left(\left(k^{\prime}, 0\right),\left(l^{\prime}, 0\right)\right):=\left(1-\xi_{k l}\left(\tilde{\omega}, n, \check{\rho}_{\hat{\omega}^{3 n-1}}^{n}\right)\right) \varsigma_{k l}\left[k^{\prime}\right]\left(\tilde{\omega}, n, \check{\rho}_{\hat{\omega}^{3 n-1}}^{n}\right) \varsigma_{l k}\left[l^{\prime}\right]\left(\tilde{\omega}, n, \check{\rho}_{\hat{\omega}^{3 n-1}}^{n}\right)
$$

and

$$
\tau_{i j}^{\tilde{\omega}, \hat{\omega}^{3 n-1}}\left(\left(k^{\prime}, 1\right),\left(l^{\prime}, 1\right)\right):=\xi_{k l}\left(\tilde{\omega}, n, \check{\rho}_{\hat{\omega}^{3 n-1}}^{n}\right) \sigma_{k l}\left[k^{\prime}, l^{\prime}\right]\left(\tilde{\omega}, n, \check{\rho}_{\hat{\omega}^{3 n-1}}^{n}\right)
$$

for $k^{\prime}, l^{\prime} \in S$, and zero for the rest.
Let $A_{\hat{\omega}^{3 n-1}}^{n}=\left\{(i, j) \in I \times I: i<j, \bar{\pi}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=j\right\}$ and $B_{\hat{\omega}^{3 n-1}}^{n}=\{i \in I$: $\left.\bar{\pi}^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n-1}\right)\right)=\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=i\right\}$. Define a Markov kernel $\hat{P}_{3 n}^{\hat{\omega}^{3 n-1}}$ from $\tilde{\Omega}$ to $\hat{\Omega}^{3 n}$ by

$$
\hat{P}_{3 n}^{\hat{\omega}^{3 n-1}}(\tilde{\omega}):=\prod_{i \in B_{\tilde{\omega}, \hat{\omega}^{3 n-1}}^{n}} \tau_{i}^{\tilde{\omega}, \hat{\omega}^{3 n-1}} \otimes \prod_{(i, j) \in A_{\tilde{\omega}^{3 n-1}}^{n}} \tau_{i j}^{\tilde{\omega}, \hat{\omega}^{3 n-1}}
$$

Let

$$
\begin{aligned}
\pi^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n}\right)\right) & =\pi^{n}\left(i, \hat{\omega}^{3 n}\right) \\
& := \begin{cases}J & \text { if } \bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)=J \text { or } \hat{\omega}_{3 n}^{2}(i)=0 \text { or } \hat{\omega}_{3 n}^{2}\left(\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right)\right)=0 \\
\bar{\pi}^{n}\left(i, \hat{\omega}^{3 n-1}\right) & \text { otherwise, }\end{cases}
\end{aligned}
$$

and

$$
g^{n}\left(i,\left(\tilde{\omega}, \hat{\omega}^{3 n}\right)\right)=g^{n}\left(i, \hat{\omega}^{3 n}\right):= \begin{cases}\alpha^{n}\left(\pi^{n}\left(i, \hat{\omega}^{3 n}\right), \hat{\omega}^{3 n}\right) & \text { if } \pi^{n}\left(i, \hat{\omega}^{3 n}\right) \neq i \\ J & \text { if } \pi^{n}\left(i, \hat{\omega}^{3 n}\right)=i\end{cases}
$$

Define $\hat{\rho}_{\hat{\omega}^{3 n}}^{n}=\lambda_{0}\left(\alpha_{\hat{\omega}^{3 n}}^{n}, \pi_{\hat{\omega}^{3 n}}^{n}\right)^{-1}$.

By repeating this procedure, we construct a hyperfinite sequence of internal transition probability spaces $\left\{\left(\Omega_{m}, \mathcal{F}_{m}, Q_{m}\right)\right\}_{m=0}^{3 M}$ and a hyperfinite sequence of internal type functions and internal random matchings $\left\{\left(\alpha^{n}, \pi^{n}\right)\right\}_{n=0}^{M}$. Moreover, define $\left(\Omega^{m}, \mathcal{F}^{m}\right)$ as in 2.1 , and

$$
\hat{P}^{m}:=\prod_{i=1}^{m} \hat{P}_{i}, \quad Q^{m}:=\tilde{P} \ltimes \hat{P}^{m}
$$

where the product of the Markov kernels is $\tilde{\omega}$-wise.
Let $\left(I \times \Omega^{3 M}, \mathcal{I}_{0} \otimes \mathcal{F}^{3 M}, \lambda_{0} \otimes Q^{3 M}\right)$ be the internal product probability space of $\left(I, \mathcal{I}_{0}, \lambda_{0}\right)$ and $\left(\Omega^{3 M}, \mathcal{F}^{3 M}, Q^{3 M}\right)$. Denote the Loeb spaces of $\left(\Omega^{3 M}, \mathcal{F}^{3 M}, Q^{3 M}\right)$ and the internal product $\left(I \times \Omega^{3 M}, \mathcal{I}_{0} \otimes \mathcal{F}^{3 M}, \lambda_{0} \otimes Q^{3 M}\right)$ by $\left(\Omega^{3 M}, \mathcal{F}, P\right)$ and $\left(I \times \Omega^{3 M}, \mathcal{I} \boxtimes \mathcal{F}, \lambda \boxtimes P\right)$, respectively. For simplicity, let $\Omega^{3 M}$ be denoted by Ω and $\hat{\Omega}^{3 M}$ by $\hat{\Omega}$. Denote now $Q^{3 M}$ by P and the Markov kernel $\hat{P}^{3 M}$ by \hat{P}.
The properties of a dynamical system as well as the independence conditions follow now by applying similar arguments as in the proof of Theorem 5 in [2] for any fixed $\tilde{\omega} \in \tilde{\Omega}$. The only difference is that in our setting the input processes for the random mutation step and the break-up step also depend on the extended type distribution. Furthermore, these arguments are similar to the ones in the proof of Lemma 3.2 and can be found there with all details.

3 Proof of Theorem 3.14 in [1]

We now prove Theorem 3.14 in [1] which is a generalization of the results in Appendix C in [2]. For $n \geq 1$ we define the mapping Γ^{n} from $\tilde{\Omega} \times \hat{\Delta}$ to $\hat{\Delta}$ by

$$
\begin{align*}
\Gamma_{k l}^{n}(\tilde{\omega}, \hat{p})= & \sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right) \tilde{p}_{k_{1} l_{1}}^{n} \\
& +\sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{n}\right) \tilde{p}_{k_{1} J}^{n} \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
\Gamma_{k J}^{n}(\tilde{\omega}, \hat{p}) & =b_{k}\left(\tilde{\omega}, n, \tilde{p}^{n}\right) \tilde{p}_{k J}^{n}+\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, \tilde{p}^{n}\right) \tilde{p}_{k_{1} l_{1}}^{n} \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{n}\right) \tilde{p}_{k_{1} J}^{n} \tag{3.2}
\end{align*}
$$

with

$$
\begin{aligned}
\tilde{p}_{k l}^{n} & =\sum_{k_{1}, l_{1} \in S} \eta_{k_{1} k}(\tilde{\omega}, n, \hat{p}) \eta_{l_{1} l}(\tilde{\omega}, n, \hat{p}) \hat{p}_{k_{1} l_{1}} \\
\tilde{p}_{k J}^{n} & =\sum_{l \in S} \hat{p}_{l J} \eta_{l k}(\tilde{\omega}, n, \hat{p})
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{p}_{k l}^{n} & =\tilde{p}_{k l}^{n}+\theta_{k l}\left(\tilde{\omega}, n, \tilde{p}^{n}\right) \tilde{p}_{k J}^{n} \\
\tilde{p}_{k J}^{n} & =b_{k}\left(\tilde{\omega}, n, \tilde{p}^{n}\right) \tilde{p}_{k J}^{n}
\end{aligned}
$$

Theorem 3.14 in [1] is proven with the help of the following lemmas.
Lemma 3.1. Assume that the discrete dynamical system \mathbb{D} defined in Definition 3.6 in [1] is Markov conditionally independent given $\tilde{\omega}$ as defined in Definition 3.8 in [1]. Then given $\tilde{\omega} \in \tilde{\Omega}$, the discrete time processes $\left\{\beta_{i}^{n}\right\}_{n=0}^{\infty}, i \in I$, are essentially pairwise independent on $\left(I \times \hat{\Omega}, \mathcal{I} \boxtimes \hat{\mathcal{F}}, \lambda \boxtimes \hat{P}^{\hat{\omega}}\right)$. Moreover, for fixed $n=1, \ldots, M$ also $\left(\bar{\beta}_{i}^{n}\right)_{n=0}^{\infty}$ and $\left(\overline{\bar{\beta}}_{i}^{n}\right)_{n=0}^{\infty}, i \in I$, are essentially pairwise independent on $\left(I \times \hat{\Omega}, \mathcal{I} \boxtimes \hat{\mathcal{F}}, \lambda \boxtimes \hat{P}^{\tilde{\omega}}\right)$.

Proof. This can be proven by the same arguments used in the proof of Lemma 3 in [2].
We now derive a result which shows how to compute for a fixed $\tilde{\omega} \in \tilde{\Omega}$ the expected cross-sectional distributions $\mathbb{E}^{\hat{P}^{\hat{\omega}}}\left[\check{p}^{n}\right], \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]$ and $\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n}\right]$.

Lemma 3.2. The following holds for any fixed $\tilde{\omega} \in \tilde{\Omega}$.

1. For each $n \geq 1, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n}\right]=\Gamma^{n}\left(\tilde{\omega}, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right)$, with Γ defined in (3.1).
2. For each $n \geq 1$, we have

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\tilde{p}_{k l}^{n}\right]=\sum_{k_{1}, l_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l_{1}, l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k_{1}, l_{1}}^{n-1}\right]
$$

and

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\tilde{p}_{k J}^{n}\right]=\sum_{k_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k_{1}, J}^{n-1}\right] .
$$

3. For each $n \geq 1$, we have

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]=\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\tilde{p}_{k l}^{n}\right]+\theta_{k l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\omega}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\omega}}\left[\tilde{p}_{k J}^{n}\right]
$$

and

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]=b_{k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\tilde{p}_{k J}^{n}\right] .
$$

Proof. Fix $\tilde{\omega} \in \tilde{\Omega}$ and $k, l \in S$. By Lemma 3.1 we know that the processes $\left(\beta_{i}^{n}\right)_{n=0}^{\infty}, i \in I$, are essentially pairwise independent. Then the exact law of large numbers in Lemma 1 in [2] implies that $\hat{p}^{n-1}(\hat{\omega})=$ $\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\lambda\left(\beta^{n-1}\right)^{-1}\right]$ for \hat{P}-almost all $\hat{\omega} \in \hat{\Omega}$. Thus equations (1.3) and (1.4) are equivalent to

$$
\begin{align*}
& \hat{P}^{\tilde{\omega}}\left(\bar{\alpha}_{i}^{n}=k_{2}, \bar{g}_{i}^{n}=l_{2} \mid \alpha_{i}^{n-1}=k_{1}, g_{i}^{n-1}=l_{1}\right)=\eta_{k_{1}, k_{2}}\left(\tilde{\omega}, n, \mathbb{E}^{P^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l_{1}, l_{2}}\left(\tilde{\omega}, n, \mathbb{E}^{P^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \tag{3.3}\\
& \hat{P}^{\tilde{\omega}}\left(\bar{\alpha}_{i}^{n}=k_{2}, \bar{g}_{i}^{n}=r \mid \alpha_{i}^{n-1}=k_{1}, g_{i}^{n-1}=J\right)=\eta_{k_{1}, k_{2}}\left(\tilde{\omega}, n, \mathbb{E}^{P^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \delta_{J}(r) . \tag{3.4}
\end{align*}
$$

Therefore, for any $k_{1}, l_{1} \in S$ we have

$$
\begin{align*}
& \hat{P}^{\tilde{\omega}}\left(\bar{\beta}_{i}^{n}=(k, J) \mid \beta_{i}^{n-1}=\left(k_{1}, l_{1}\right)\right)=0 \tag{3.5}\\
& \hat{P}^{\tilde{\omega}}\left(\bar{\beta}_{i}^{n}=(k, l) \mid \beta_{i}^{n-1}=\left(k_{1}, J\right)\right)=0 . \tag{3.6}
\end{align*}
$$

Then with the same calculations as in the proof of Lemma 4 in [2] we get that

$$
\begin{align*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right] & =\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\lambda\left(i \in I: \bar{\beta}_{\omega}^{n}(i)=(k, l)\right)\right] \\
& =\int_{I} \hat{P}^{\tilde{\omega}}\left(\bar{\beta}_{i}^{n}=(k, l)\right) d \lambda(i) \\
& =\sum_{k_{1}, l_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l_{1}, l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k_{1} l_{1}}^{n-1}\right] \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]=\sum_{k_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k J}^{n-1}\right] \tag{3.8}
\end{equation*}
$$

By Lemma 3.1 we know that $\bar{\beta}^{n}$ is essentially pairwise independent. Again it follows by the exact law of large numbers that $\check{p}^{n}(\hat{\omega})=\mathbb{E}^{\hat{P}^{\omega}}\left[\check{p}^{n}\right]$ for $\hat{P}^{\tilde{\omega}}$-almost all $\hat{\omega} \in \hat{\Omega}$. Then 1.6 and 1.7) are equivalent to

$$
\begin{align*}
& \hat{P}^{\tilde{\omega}}\left(\overline{\bar{g}}^{n}=l \mid \bar{\alpha}_{i}^{n}=k, \bar{g}_{i}^{n}=J\right)=\theta_{k l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \tag{3.9}\\
& \hat{P}^{\tilde{\omega}}\left(\overline{\bar{g}}^{n}=J \mid \bar{\alpha}_{i}^{n}=k, \bar{g}_{i}^{n}=J\right)=b_{k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) . \tag{3.10}
\end{align*}
$$

By the same calculations as in the proof of Lemma 4 in [2] we have

$$
\begin{equation*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]=\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]+\theta_{k l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right] \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]=b_{k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right] . \tag{3.12}
\end{equation*}
$$

By Lemma 3.1, $\overline{\bar{\beta}}^{n}$ is essentially pairwise independent and thus $\check{p}^{n}(\hat{\omega})=\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]$ for \hat{P}-almost all $\hat{\omega} \in \hat{\Omega}$. Then 1.11 and 1.12 are equivalent to

$$
\hat{P}^{\tilde{\omega}}\left(\alpha_{i}^{n}=l_{1}, g_{i}^{n}=l_{2} \mid \alpha_{i}^{n}=k_{1}, \overline{\bar{g}}_{i}^{n}=k_{2}\right)=\left(1-\xi_{k_{1} k_{2}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)\right) \sigma_{k_{1} k_{2}}\left[l_{1}, l_{2}\right]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)
$$

and

$$
\hat{P}^{\tilde{\omega}}\left(\alpha_{i}^{n}=l_{1}, g_{i}^{n}=J \mid \alpha_{i}^{n}=k_{1}, \overline{\bar{g}}_{i}^{n}=k_{2}\right)=\xi_{k_{1} k_{2}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \varsigma_{k_{1} k_{2}}\left[l_{1}, l_{2}\right]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)
$$

respectively. Thus

$$
\begin{equation*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k l}^{n}\right]=\sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} l_{1}}^{n}\right] \tag{3.13}
\end{equation*}
$$

and

$$
\begin{align*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k J}^{n}\right]= & \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right] \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} l_{1}}^{n}\right] . \tag{3.14}
\end{align*}
$$

By plugging (3.8) in 3.13 we get

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k l}^{n}\right]
$$

$$
\begin{align*}
= & \sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} l_{1}}^{n}\right] \\
& +\sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \eta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} J}^{n}\right] . \tag{3.15}
\end{align*}
$$

By using (3.12) and 3.13, it follows that

$$
\begin{align*}
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k J}^{n}\right]= & b_{k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right] \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} l_{1}}^{n}\right] \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k_{1} J}^{n}\right] . \tag{3.16}
\end{align*}
$$

Lemma 3.3. Assume that the discrete dynamical system \mathbb{D} defined in Definition 3.6 in [1] is Markov conditionally independent given $\tilde{\omega} \in \tilde{\Omega}$ according to Definition Definition 3.8 in [1]. Then for fixed $\tilde{\omega} \in \tilde{\Omega}$ the following holds:

1. For λ-almost all $i \in I$, the extended type process $\left\{\beta_{i}^{n}\right\}_{n=0}^{\infty}$ for agent i is a Markov chain on $(I \times \hat{\Omega}, \mathcal{I} \boxtimes$ $\left.\hat{\mathcal{F}}, \lambda \boxtimes \hat{P}^{\tilde{\omega}}\right)$ with transition matrix z^{n} after time $n-1$.
2. $\left\{\beta^{n}\right\}_{n=0}^{\infty}$ is also a Markov chain with transition matrix z^{n} at time $n-1$.

Proof. Fix $\tilde{\omega} \in \tilde{\Omega}$.

1. The Markov property of $\left\{\beta_{i}^{n}\right\}_{n=0}^{\infty}$ on $\left(I \times \hat{\Omega}, \mathcal{I} \boxtimes \hat{\mathcal{F}}, \lambda \boxtimes \hat{P}^{\tilde{\omega}}\right)$ follows by using the same arguments as in the proof of Lemma 5 in [2], for λ-almost all $i \in I$. We now derive the transition matrix with similar arguments as in [2]. By putting together (3.7), (3.8) and (3.15), we get

$$
\begin{aligned}
& \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k l}^{n}\right] \\
& =\sum_{k_{1}, l_{1}, k^{\prime}, l^{\prime} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}}, n\right.\right. \\
& \quad \cdot \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{P^{(}} \hat{\omega}^{\tilde{\omega}}\left[\hat{p}_{k^{\prime} l^{\prime}}^{n-1}\right], \tilde{\tilde{p}^{\tilde{\omega}}, n}\right) \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\tilde{P}}\left[\hat{p}^{n-1}\right]\right) \\
& \quad+\sum_{k_{1}, l_{1}, k^{\prime} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}^{\tilde{\omega}}, n}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{\tilde{p}^{\tilde{\omega}}, n}\right) \theta_{k_{1} l_{1}}(\tilde{\omega}, n, \tilde{p} \tilde{\omega}, n) \\
& \quad \cdot \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k^{\prime} J}^{n-1}\right] .
\end{aligned}
$$

Thus we have

$$
\left.\left.\left.\begin{array}{rl}
z_{\left(k^{\prime} J\right)(k l)}^{n}(\tilde{\omega})= & \sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}(\tilde{\omega}, n, \tilde{\tilde{p}} \tilde{\omega}, n\right.
\end{array}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{\tilde{p}^{\omega}, n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right)\right)
$$

and

$$
z_{\left(k^{\prime} l^{\prime}\right)(k l)}^{n}(\tilde{\omega})=\sum_{k_{1}, l_{1} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}^{\tilde{\omega}}, n}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right)
$$

$$
\begin{equation*}
\cdot \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) . \tag{3.18}
\end{equation*}
$$

Similarly, equations (3.7), 3.8) and (3.16) yield to

$$
\begin{aligned}
& \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k J}^{n}\right]=\sum_{k^{\prime} \in S} b_{k}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \eta_{k^{\prime} k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k^{\prime} J}^{n-1}\right] \\
& +\sum_{k_{1}, l_{1}, k^{\prime}, l^{\prime} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k][\tilde{\omega}, n, \tilde{\tilde{p}} \tilde{\omega}, n] \\
& \cdot \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k^{\prime} l^{\prime}}^{n-1}\right] \\
& +\sum_{k_{1}, l_{1}, k^{\prime} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \\
& \text { - } \eta_{k^{\prime} k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k^{\prime} J}^{n-1}\right] .
\end{aligned}
$$

Therefore, the transition probabilities from time $n-1$ to time n can be written as

$$
\begin{align*}
z_{\left(k^{\prime} l^{\prime}\right)(k J)}^{n}(\tilde{\omega})= & \sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}^{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}}, n\right. \\
& \cdot \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P} \tilde{\omega}}\left[\hat{p}^{n-1}\right]\right) \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}}\left[\hat{p}^{n-1}\right]\right) \tag{3.19}
\end{align*}
$$

and

$$
\begin{align*}
z_{\left(k^{\prime} J\right)(k J)}^{n}(\tilde{\omega})= & b_{k}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \eta_{k^{\prime} k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \eta_{k^{\prime} k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) . \tag{3.20}
\end{align*}
$$

2. The transition matrix of $\left\{\beta^{n}\right\}_{n=0}^{\infty}$ at time $n-1$ can be derived by using 3.17 - 3.20 and the Fubini property applied to $\lambda \boxtimes \hat{P}^{\tilde{\omega}}$ for every fixed $\tilde{\omega} \in \tilde{\Omega}$ as in the proof of Lemma 6 in [2].

We are now able to prove Theorem 3.14 in [1], which we present here.
Theorem 3.4. Assume that the discrete dynamical system \mathbb{D} introduced in Definition 3.6 in [1] is Markov conditionally independent given $\tilde{\omega} \in \tilde{\Omega}$ according to Definition 3.8 in [1]. Given $\tilde{\omega} \in \tilde{\Omega}$, the following holds:

1. For each $n \geq 1, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n}\right]=\Gamma^{n}\left(\tilde{\omega}, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right)$.
2. For each $n \geq 1$, we have

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]=\sum_{k_{1}, l_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l_{1}, l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k_{1}, l_{1}}^{n-1}\right]
$$

and

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]=\sum_{k_{1} \in S} \eta_{k_{1}, k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k_{1}, J}^{n-1}\right] .
$$

3. For each $n \geq 1$, we have

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]=\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]+\theta_{k l}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]
$$

and

$$
\mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right]=b_{k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}^{n}\right]\right) \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k J}^{n}\right] .
$$

4. For λ-almost every agent i, the extended-type process $\left\{\beta_{i}^{n}\right\}_{n=0}^{\infty}$ is a Markov chain in \hat{S} on $(I \times \hat{\Omega}, \mathcal{I} \boxtimes$ $\hat{\mathcal{F}}, \lambda \boxtimes \hat{P}^{\tilde{\omega}}$), whose transition matrix z^{n} at time $n-1$ is given by

$$
\begin{align*}
& z_{\left(k^{\prime} J\right)(k l)}^{n}(\tilde{\omega})=\sum_{k_{1}, l_{1}, k^{\prime} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right)\right) \sigma_{k_{1} l_{1}}[k, l](\tilde{\omega}, n, \tilde{\tilde{p}} \tilde{\omega}, n) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}}, n\right) \\
& \text { - } \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \tag{3.21}\\
& z_{\left(k^{\prime} l^{\prime}\right)(k l)}^{n}(\tilde{\omega})=\sum_{k_{1}, l_{1}, k^{\prime}, l^{\prime} \in S}\left(1-\xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p^{\omega}, n}\right)\right) \sigma_{k_{1} l_{1}}[k, l]\left(\tilde{\omega}, n, \tilde{p^{\omega}}, n\right) \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\tilde{P^{\tilde{\omega}}}}\left[\hat{p}^{n-1}\right]\right) \\
& \text { - } \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P^{\tilde{\omega}}}}\left[\hat{p}^{n-1}\right]\right) \tag{3.22}\\
& z_{\left(k^{\prime} l^{\prime}\right)(k J)}^{n}(\tilde{\omega})=\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p^{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \\
& \text { - } \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \eta_{l^{\prime} l_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \tag{3.23}\\
& z_{\left(k^{\prime} J\right)(k J)}^{n}(\tilde{\omega})=b_{k}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \eta_{k^{\prime} k}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \\
& +\sum_{k_{1}, l_{1} \in S} \xi_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \varsigma_{k_{1} l_{1}}[k]\left(\tilde{\omega}, n, \tilde{\tilde{p}}^{\tilde{\omega}, n}\right) \theta_{k_{1} l_{1}}\left(\tilde{\omega}, n, \tilde{p}^{\tilde{\omega}, n}\right) \\
& \text { - } \eta_{k^{\prime} k_{1}}\left(\tilde{\omega}, n, \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}^{n-1}\right]\right) \text {. } \tag{3.24}
\end{align*}
$$

5. For λ-almost every i and every λ-almost every j, the Markov chains $\left\{\beta_{i}^{n}\right\}_{n=0}^{\infty}$ and $\left\{\beta_{j}^{n}\right\}_{n=0}^{\infty}$ are independent on $\left(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P}^{\tilde{\omega}}\right)$.
6. For $\hat{P}^{\tilde{\omega}}$-almost every $\hat{\omega} \in \hat{\Omega}$, the cross sectional extended type process $\left\{\beta_{\hat{\omega}}^{n}\right\}_{n=0}^{\infty}$ is a Markov chain on $(I, \mathcal{I}, \lambda)$ with transition matrix z^{n} at time $n-1$, which is defined in 3.21- (3.24).
7. We have $\hat{P}^{\tilde{\omega}}$-a.s. that

$$
\mathbb{E}^{\hat{P} \tilde{\omega}}\left[\check{p}_{k l}^{n}\right]=\check{p}_{k l}^{n} \quad \text { and } \quad \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\check{p}_{k l}^{n}\right]=\check{p}_{k l}^{n} \quad \text { and } \quad \mathbb{E}^{\hat{P}^{\tilde{\omega}}}\left[\hat{p}_{k l}^{n}\right]=\hat{p}_{k l}^{n} .
$$

Proof. Fix $\tilde{\omega} \in \tilde{\Omega}$. Points 1. to 5 . of Theorem 3.14 in [1] follow directly by Lemma 3.1, 3.2 and 3.3. Moreover, Points 6. and 7. can be proven by using the same arguments as in the proof of Theorem 4 in [2].

References

[1] Francesca Biagini, Andrea Mazzon, Thilo Meyer-Brandis, and Katharina Oberpriller. Liquidity based modeling of asset price bubbles via random matching. preprint, 2022. URL http://arxiv.org/abs/ 2210.13804
[2] Darrell Duffie, Lei Qiao, and Yeneng Sun. Dynamic directed random matching. Journal of Economic Theory, 174:124-183, 2018.

[^0]: *Workgroup Financial Mathematics, Department of Mathematics, Ludwig-Maximilians-Universität München, Theresienstr. 39, 80333 Munich, Germany.
 ${ }^{\dagger}$ Department of Mathematics, University of Freiburg, Ernst-Zermelo-Str. 1, 79104 Freiburg im Breisgau, Germany.

[^1]: ${ }^{1}$ Note that at initial time, the functions are supposed to be deterministic and in particular independent of $\tilde{\Omega}$.

