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This is a supplement to the paper [I]. The supplement is organized as follows. First, we prove Theorem 3.13
in [I] which provides the existence of the dynamical system D introduced in Definition 3.6 in [I]. Second,
we show some properties of D which are summarized in Theorem 3.14 in [I].

In the following, we only state the basic setting and refer to [I] for definitions.

1 Setting
Let (€, F, P) be a probability space and (Q, f;") another measurable space. We define the product space
(Q,9) = (QxQ,FeF). (1.1)

Let P be a Markov kernel (or stochastic kernel) from Q to Q. Given @ € Q, we set P® := P(@) with a slight
notational abuse. We then introduce a probability measure P on (Q,F) as the semidirect product of P and
]5, that is,

P(Ax A):=(Px P)(Ax A) = | P*(A)dP(a). (1.2)

A

We fix an atomless probability space (I,Z, A) representing the space of agents and let (I x Q;,ZK F, AKX P)
be a rich Fubini extension of (I x Q,Z® F,A® P). All agents in I can be classified according to their type.
In particular, we let S = {1,2,..., K} be a finite space of types and say that an agent has type J if he is
not matched. We denote by S := S x (SU{J}) the extended type space. Moreover, we call A the space of
extended type distributions, which is the set of probability distributions p on S satisfying p(k,1) = p(l, k) for
any k and [ in S. This space is endowed with the topology 7 induced by the topology of the space of matrices
with |S] rows and |S| + 1 columns. We consider (n),>1 time periods and denote by (n™,0",£", 0™, ,¢") the
matrix valued processes, with (n™,0™,£",0",¢"™) = (i, 0%, & omlr sl Sp Dk i rsesxsxsxs for n > 1, on
(Q,3, P). For a detailed introduction of these processes we refer to Section 3 in [I]. Moreover, let p = ("), >1
be a stochastic process on (Q, F, P) with values in A, representing the evolution of the underlying extended
type distribution. We assume that p° is deterministic.

Given the input processes (1,0,&,0,¢) we denote by D a dynamical system on (I x Q,ZX F, AKX P) and
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by I = (a, m,g) = (", 7", 9" )nen\{o} the agent-type function, the random matching and the partner-type
function, respectively, as introduced in Definition 3.6 in [I], which we recall in the following.

Definition 1.1. A dynamical system D defined on (I x Q,Z K F, AKX P) is a triple I = (a,7,g) =
(@, 7™, 9" )neny{o} such that for each integer period n > 1 we have:

1. a™: I xQ — S is the ZKX F-measurable agent type function. The corresponding end-of-period type of
agent ¢ under the realization w € Q is given by a"(i,w) € S.

2. A random matching 7" : I x Q — I, describing the end-of-period agent 7™ (i) to whom agent ¢ is
currently matched, if agent ¢ is currently matched. If agent i is not matched, then 7n"(:) = i. The

associated Z X F-measurable partner-type function ¢g” : I x Q — S U{J} is given by

(7" (iw),w) if 7" (i, w) £ 1

J if 7" (i,w) =1,

providing the type of the agent to whom agent 7 is matched, if agent ¢ is matched, or J if agent 7 is
not matched.

Let the initial condition II° = (a, 3°) of D be given. We now construct a dynamical system D defined on
(I xQ,IRTF, \K P) with input processes (7", 0",£", 0",¢"),>1. We assume that I[I"! = (o~ !, 7771 gn~1)
is given for some n > 1, and define II" = (a™, 7", g"™) by characterizing the three sub-steps of random change
of types of agents, random matchings, break-ups and possible type changes after matchings and break-ups
as follows.

Mutation: For n > 1 consider an Z X F-measurable post mutation function

a" I xQ— S

In particular, & (w) := a"(i,w) is the type of agent i after the random mutation under the scenario w € €.
The type of the agent to whom an agent is matched is identified by a Z X F-measurable function

gt I xQ— SU{J},

given by

g"(i,w) = a" (7" (i, w),w)

for any w € Q. In particular, gl'(w) := g"(i,w) is the type of the agent to whom an agent is matched under

the scenario w € Q. Given p" ! and @ € Q, for any ky, k,l; and Iy in S, for any » € S U {J}, for A-almost
every agent i, we set

PE(ai (@,) = k2, g1 (@, ) = bofaf M@, ) = ku, g7 TN (@) = 1,07 TN (@, ) (@)

= Nk1,k2 (&)7”7ﬁn_1(&7®)) Myl (Qv n,ﬁn_l(a],d})) ’ (13)
P2 (a7 (@) = k2, g7 (@) = rlaf (@, ) = kgl (@,0) = L7 (@, ) (@)

= Ny ke (@1, 0" (@,@)) 6(r), (1.4)

We then set



The post-mutation extended type distribution realized in the state of the world w € Q is denoted by p(w) =

~T

(P" (w)[k, ) xes,icsus, where
PRk, = {i € 1:a"(i,w) =k, g"(i,w) = 1}). (1.5)

Matching: We introduce a random matching 7" : I x — I and the associated post-matching partner type function
g" given by

satisfying the following properties:

n

1. g" is Z X F-measurable.
2. For any @ € Q, any k,l € S and any r € S U {J}, it holds

This means that

7e(i) =mn ') forany i€ {i:7"" " (i,w) # i}

3. Given & € Q and the post-mutation extended type distribution p” in (1.5), an unmatched agent of type k is
matched to a unmatched agent of type [ with conditional probability 0y;(@,n,p"), that is for Ad-almost every

agent ¢ and P®_almost every w, we define
p&)(.an((bv ) = l‘o_‘?(a)v ) = kvgin(a)v ) = ]713"((:;7 ))(":)) = HZZ((DJﬁ"(d)’(,D)) (1'6)
This also implies that

PG (@,-) = J]ai (@, ) = k, g (@,) = 15" (@,)(@) = 1 = ) 01 (@,5" (@, @) = b"(@,5"(@,@))-  (L.7)

The extended type of agent i after the random matching step is

B (w) = (@i (W), 5 (W), n=>1.

We denote the post-matching extended type distribution realized in w € Q by p"(w) = (p"(w)[k, ])res,icsu.7, Wwhere

pr(W)k ) = {i€l:a"(G,w) =k, g"(i,w) =1}). (1.8)

Type changes of matched agents with break-up: We now define a random matching ©" by

3

(i) # i

’ (1.9)
") = i.

if
if

3

We then introduce an (Z X F)-measurable agent type function o™ and an (Z X F)-measurable partner function g"
with

9"(l,w) =" (7" (i,w),w), n=1,
for all (i,w) € I x Q. Given @ € Q, p" € A, for any ki, k2,l1,lo € Sandr € SU {J}, for A-almost every agent 4, and
for P¥-almost every w, we set

P (i (@,) =, g7 (@, ) = r|ai (@, ) = ka1, g7 (@, ) = J) (@) = 0k, (1) 4 (r), (1.10)

P (a?(‘:}v ) = ll,g?(l:), ) = 12|d?(‘:}v ) = klaé?(®7 ) = k27ﬁn(‘:jv )) (U:))



= (1 — &hyks (‘:}7 n>ﬁn(‘:}7w))) Ok ko [llv l2](‘:}7n71§n(®7w)): (1~11)

)
= £k1k2 ((Z), n,ﬁn(d), &J))C}?le [ll](w’ nvﬁn 0, ‘2))) (1'12)
The extended-type function at the end of the period is
B"(w) = (" (w), 9" (w)), n>1

We denote the extended type distribution at the end of period n realized inw € Q by p"(w) = (p™(w)[k,])kes.iesu7,
where

PrW)k I = A{i e l:a"(i,w) =k, g"(i,w) =1}). (1.13)

Furthermore, the definition of Markov conditionally independent (MCI) dynamical system is provided in
Definition 3.8 in [I]. We work under the following assumption, which is Assumption 3.9 in [IJ.

Assumption 1.2. Let (Q,.’;", ﬁ) be the probability space introduced. We assume that there exists its corre-
sponding hyperfinite internal probability space, which we denote from now on also by (Q,f;t, 15) by a slight

notational abuse.

As already pointed out in [I], the proofs of the results below follow by analogous arguments as in [2] which
is possible due to the product structure of the space 2 in and the Markov kernel P in . As in 2]
we use some concepts and notations from nonstandard analysis. Note here that an object with an upper
left star means the transfer of a standard object to the nonstandard universe. For a detailed overview of the
necessary tools of nonstandard analysis, we refer to Appendix D.2. in [2].

2 Proof of Theorem 3.13 in [1]

From now on, we fix the hyperfinite internal space (€2, 7, P), along with the input functions
(Mt Okt Ekts ol [T, 8], Sk [k i rseSxsxSxs from QO x Nx A to [0,1] introduced above. Given this frame-
work we prove the existence of a rich Fubini extension (I x Q,ZXJ, AKX P), on which a dynamical system D
described in Definition for such input probabilities is defined. More specifically, we are going to construct
the space Q) and the probability measure P such that Q = Q x Q and P = P x P is a Markov kernel from
to Q.

We now present and prove Theorem 3.13 in [I]. The proof is based on Proposition 3.12 in [I], which focuses
on the random matching step and shows the existence of a suitable hyperfinite probability space and partial
matching, generalizing Lemma 7 in [2].

Theorem 2.1. Let Assumption 3.9 in [1] hold and (M1, Okt, Ekt, ori[T, S)s Skilr])k1rsesxSxsxs be the input
functions from Q x N x A defined in Section 8 in [1l]. Then for any extended type distribution p € A and
any deterministic initial condition 1I° = (a, 7°) there exists a rich Fubini extension (I x Q,ZXF AKX P) on
which a discrete dynamical system D = (II")>°_ as in Definition 3.6 in [1] can be constructed with discrete
time input processes (n™, 0™, &", 0™, "™ )p>1 coming from (Mii, Oki, Ekt, Ori[T, S)s Skil7]) ke 1rseSxSxSxs as stated
in Section 2 in [1]. In particular,

O=0xQ, F=F0F, P=PxP,



where (Q,fr”) is a measurable space and P a Markov kernel from Q to Q. The dynamical system D is also
MCI according to Definition 3.8 in [1] and with initial cross-sectional extended type distribution p° equal to
0 with probability one.

Proof. At each time period we construct three internal measurable spaces with internal transition probabil-

ities taking into account the following steps:
1. random mutation
2. random matching
3. random type changing with break-up.

Let M be a limited hyperfinite number in *No,. Let {n}}, be the hyperfinite discrete time line and
(I,Zy, \o) the agent space, where I = {1, ..., M}, Ty is the internal power set on I, \q is the internal counting
probability measure on Z, and M is an unlimited hyperfinite number in *Ng.
We start by transferring the deterministic function 7(0,-),0(0,-),£(0,-),0(0,-),<(0,-) : A = [0,1] to the
nonstandard universe. In particular, we denote by *69, for any k,l € S and by *f° for f = n,¢{, 0, the
internal functions from A to [0,1]. We also let 69,(5) = *égl(ﬁ) and b) =1 — Yies 09,(p) for any k,l € S
and p € A, with 1 € *N.
We start at n = 0. To do so, we introduce the trivial probability space over the single set {0} denoted
by (Qo, Fo, Qo). Let {Akl}(k,l)eé‘ be an internal partition of I such that % ~ Py for any k € S and
l € SU{J}, such that |Ag| is even for any k,l € S and |Ag;| = |Aw| for any k,1 € S. Let a® be an internal
function from (I,Zg, \o) to S such that a®(i) = k if i € Uresugsy Akt~ Let 70 be an internal partial matching
from I to I such that 7°(i) = on {J,cg Aks, and the restriction 7°| 4,, is an internal bijection from Ay to
Ay for any k,1 € S. Let
) = a(703))  if 70%i) £

J if 70(i) = 4.
It is clear that A\o({i : a°(i) = k, ¢°(i) = 1}) ~ §?, for any k € S and [ € SU {J}.
Let (Q,f}’", 15) be the hyperfinite internal space. Since the intensities are supposed to be deterministic at
initial time, the Markov kernel from  is trivial and we define the initial internal product probability space

as
(9079707@0) = (Q X Qo,§® §0,p®Q0).

Suppose now that the dynamical system D has been constructed up to time n — 1 € *N for n > 1, i.e.,
that the sequences {(Q,, Fm, sz %;03 and {a!, ﬂ'l}?z_ol have been consitructed. In particular, we assume to
have introduced the spaces (2, F,) and the Markov kernel P, from € to €, for any m=1,...,n— 3, so
that we can define ©,, := Q x Qm as a hyperfinite internal set with internal power set &F,, := F® é"m and
Q. = P x P, as an internal transition probability from Q™! to (Qn, Fn), where

Q" =0 x Q" Q™= x H Qj, I =F® (®;-n:1§"j) and F"=F@F". (2.1)
j=1

1Note that at initial time, the functions are supposed to be deterministic and in particular independent of Q.



In this setting, o! is an internal type function from I x Q3'~! to the space S, and 7! an internal random
matching from I x Q3 to I, such that

ol (i, (0,37 1) = ol (3,031, for any (@, 0% 71) € Q3171

and
(i, (@, &%) = 7' (5,&%),  for any (@, %) € Q3.

Given w3 € Q3 we denote by ﬂé)m : I — I the function given by
ﬂ-gl:;Sl (Z) = ﬂ-l(ia ((:), df}l)) = ﬂ'l(i, @31)

A similar notation will be used for afb s - I — 5. We now have the following.

(i) Random mutation step:

We let Qg0 = 57 , which is the space of all internal functions from I to S, and denote its internal power
=3 = (@, 73) € 33 @ (i, winT3) = an Tl (z @3n- 3) = k,

-3

B on S by letting 'yf":’sn ) := 9kl(w,n,ﬁg;{3) for each [ € S with

set by f;"gn,g. For each i € I and w

~3n
define a probability measure 'yw @

Ansnl 3[]{3 7'] =A ({Z el: awdn 3( ) =k awdn 3 (ﬂ-wdn 3( )) = 7’}) k,reS

and
AZ&nla[k J} ({ZGI Oéwan 3()—k’ 7Tw3n 3()—Z}) kelsS.

Define a Markov kernel P2"," from Q to Qg,_o by letting P2, (@) be the internal product measure
~3n—3

[Licr V9. Define a" : (I xQ¥=%) — S by
a"(i, (@,0°"2)) 1= a" (i, 0% %) = D3p—2(4)
and g" : (I X 93"*2) — SU{J} by

) {an(ﬂ_n—l(i’wlin—B)’a}Sn—Q) if ﬂ_n—l(i’wiin—B) #Z

gn(z, ((:J,@Sn_Q)) — gn(i7dj3n—2 — [
J if 7716, 0%" %)) =i

Moreover, we introduce the notation
dg3'rt—2(-) I — S, dggn,z (’L) e 6{”(2, (037@3”—2)):207 (Z w?)n 2)

for the type function. We then define 77, " os(-): T — I and G2sn—> : I — SU{J} analogously. Finally, we
define the cross-internal extended type distribution after random mutation gs, . by

Pran—zk, 1] :=Xo({€ I alsn—2(i) = k,glan—2(i) =1}), k,l€S.

(ii) Directed random matching:

Let (an_l,f;”gn_l) and 13513:2 be the measurable space and the Markov kernel, respectively, provided
by Proposition 3.12 in [I], with type function &7, .(-) and partial matching function WW% s(+), for fixed
matching probability function 6 (~,n, ﬁg3n_2). Proposition 3.12 in [I] also provides the directed random
matching

—1

Ton(. n
0 ( Pl an— 2)0‘ 3n—2 w3n 3’



which is a function defined on (Qs3,-1, F3,—1) by

7(9”('7/}23'”79 Qg 277"n3n1 3(27 ((I),W3n,1))2:7(9n(.7p23"72> Qg 2771'”37373 (i7w3n71)'

We then define 7™ : (I X Q3"’1) — I by

7 (@, G 1)) i= (0T = Ty e (1 @)

and
6(”(77'"@ w?)n—l) @3n—2)
) )

En(i7 (@’CDSn—l)) — §n<i,w3n—1) =
J if fr”(z‘,aﬁn—l) =i

Define now the cross-internal extended type distribution after the random matching ,éggn,l by

pin— [k 1] := Ao({€ I+ Asn— (i) = k, Gon— (i) = 1}).

(iii) Random type changing with break-up for matched agents:

Introduce Qg, = (S x {0,1})! with internal power set F3,,, where 0 represents “unmatched” and 1 represents
“paired”; each point Wz, = (@4,,03,) € Qs, represents an internal function from I to Sx {0, 1}. Define a new
type function a” : (I x Q3") — S by letting o™ (i, (@, &%")) == a™(i,&%") = @i, (i). Fix (@, 1) € Q3L

For each ¢ € I, we proceed in the following way.

~ ~3n—1
1. If 773,03~ 1) =i (i is not paired after the matching step at time n), let 7, be the probability
measure on the type space S x {0,1} that gives probability one to the type (a"(i, (@, 3" ~?)),0) =

(@"(i,&*"=2),0) and zero to the rest

2. If 7" (i, (@0, 03" 1)) = 77(i, %" 1) = j # i (i is paired after the matching step at time n), &" (i, (&, 03" ~2)) =
an(i, 3" =2) =k, 7" (i, (d} @3 = 77(i, %" 1) = j and a" (4, (@, 03" 1)) = @ (j,@*" 1) = I, define
~3n—1
a probability measure 7,5 on (S x {0,1}) x (S x {0,1}) as

3n—1

5O ((K,0),(1,0) = (1= &ua(@,m, pan—1)) smilk'] (@, 1, Faon—) aill] (@, fsnr)

S

and
TS (K1), (1,1)) = G (@, a1 ) o[k, 1] (&5, Fisn—)
for k',1’ € S, and zero for the rest.

Let A%, = {(i,j) € I xI :i < j,7"(i,(@,&*" 1)) = 7"(i, wf’m Y = j} and B, . = {i € I :
71(i, (@, @3 1)) = #7(i,&3" 1) = i}. Define a Markov kernel P&”" " from ) to Q3" by

“3n—1, @31 &%t
P3n (w) = H T; ® H Tz] .

E€BY an—1 (i.)EA™ 5, 4
Let
" (i, (@,0%")) = 7" (i, ")
e 771, = 7 or 63, (0) = 0 or &3, ((1,67 1) = 0
| #G,@%Y)  otherwise,



and
a”(w"(i7®3”)7®3”) if w"(i,ofz?’") #+1

J if 7 (i, %) = i,

Define pls, = Xo(Qsn, Tlsn )™~

By repeating this procedure, we construct a hyperfinite sequence of internal transition probability spaces
{(Qumy Frny Q) }3M ) and a hyperfinite sequence of internal type functions and internal random matchings
{(a™, ™) }M . Moreover, define (2™, F™) as in (2.1), and

pm=1[r, Qm=PxPm,

.::]3

I
—

2

where the product of the Markov kernels is w-wise.

Let (IxQ*M  To@F3*M  \o@Q>M) be the internal product probability space of (I, Zy, Ag) and (Q3M, F3M Q3M),
Denote the Loeb spaces of (Q2*M F3M Q3M) and the internal product (I x Q*M Ty @ F3M )\ @ Q3M) by
(M F P) and (I x Q*M T F, \K P), respectively. For simplicity, let 23 be denoted by Q and O3M py
Q). Denote now Q3 by P and the Markov kernel P3M by P

The properties of a dynamical system as well as the independence conditions follow now by applying similar
arguments as in the proof of Theorem 5 in [2] for any fixed & € Q). The only difference is that in our setting
the input processes for the random mutation step and the break-up step also depend on the extended type
distribution. Furthermore, these arguments are similar to the ones in the proof of Lemma and can be
found there with all details. O

3 Proof of Theorem 3.14 in [1]

We now prove Theorem 3.14 in [I] which is a generalization of the results in Appendix C in [2]. For n > 1

we define the mapping ' from Q x A to A by

(‘D ﬁ) Z (1 - £k1l1 ((*NJ’ n?ﬁn))gklh [kv l] ((D» nvﬁn) 152111

kil €S
+ Z gklll w,n p ))Jklll[k7l] ((Z),n7ﬁ”) 9k1ll (dﬂnvﬁn)ﬁzlJv (31)
kil €S
and
R (@,9) = br(@,m, DBy + Y Gkt (@1, 5" )y, [K(@, 5™ B,
ki,l1€S
+ Z £k1l1 (d}an7ﬁn)§klll[k](a)anaﬁn)eklll (a)anaﬁn)ﬁzlJ (32)
ki,l1€S
with

ﬁzl = Z nk1k(@7naﬁ>nl1l(wan7ﬁ)ﬁk1l1
ki,lh€S

Py = > Drmk(@,n, p)
les



and
P = Pry + Okt (@, 1, ") Pr s
Pry = bir(@,n, ")Py ;-
Theorem 3.14 in [I] is proven with the help of the following lemmas.

Lemma 3.1. Assume that the discrete dynamical system D defined in Definition 3.6 in [1] is Markov
conditionally independent given & as defined in Definition 3.8 in [1]. Then given & € Q, the discrete time
processes {8152, 1 € I, are essentially pairwise independent on (I x O, IRF,\K I:’J’) Moreover, for fized
n=1,..,M also ()5, and (E{‘);L’O:O,i € I, are essentially pairwise independent on (I X 0, IXT, )\XP‘:’).

Proof. This can be proven by the same arguments used in the proof of Lemma 3 in [2]. O

We now derive a result which shows how to compute for a fixed @ € Q the expected cross-sectional distribu-

tions EX7["], EP”[5"] and EF° [p].
Lemma 3.2. The following holds for any fized & € Q.
1. For eachn > 1, EP® [p"] =TI (©, EF? [p" 1)), with T defined in (3.1]).

2. For each n > 1, we have

Pl = Y k(@ B [ )o@, m, EPT [ ED [
ki,l1€S

and

) =D e k(@n BT ER 55,
ki1€S

3. For each n > 1, we have

EX” 5] = PV (5] + O (@, n, EPT [ DEP [0
and
EP[52,] = bio(@, n, E [ EP [p7).

Proof. Fix @ € Q and k,l € S. By Lemma we know that the processes (8")52,4 € I, are essentially

pairwise independent. Then the exact law of large numbers in Lemma 1 in [2] implies that p" (@) =

EX® A(BP~1) 7] for P-almost all & € Q). Thus equations and are equivalent to
pe ( = ko, G = la]al™ - = k1,9, - ll) = My ks (&J,n, = [ﬁ”_l]) Myl (d},n, = [ﬁ”_l]) (3.3)
PP (A = ko, g = ol =k, g7 =) = sk (wn EF? [pnfl}) 55(r). (3.4)
Therefore, for any k1,l; € S we have

P2 (87 = (, J)|Br " = (ke 1)) = 0 (3.5)
P2 (87 = (b, D187 = (k1. 7)) = 0. (3.6)



Then with the same calculations as in the proof of Lemma 4 in [2] we get that
EP (o] = EP M € 12 G5 (1) = (k,1)]

- / PA(AR = (k,1))dA(i)

I
= D Mk @, BT N (@, BT [ DET [ (3.7)
k}l,lles
and
EP [r) = D ey (@,m, EX [ DE [, (3-8)
k€S

By Lemma we know that 5" is essentially pairwise independent. Again it follows by the exact law of
large numbers that §™(w) = EF” [p"] for PP-almost all & € Q. Then (L.6) and (L.7) are equivalent to

PR(§" = llay = k.67 = J) = bua (@7, E™ [5"]) (3.9)
Po(G" = Ja} = kg = J) = bp(@,n,EP” [5)). (3.10)
By the same calculations as in the proof of Lemma 4 in [2] we have
EP 5] = 7 (o] + O (@, m. E7 [ DE [, (3.11)
and

EP[52,] = biu(@, n, E [0 EP [}, (3.12)

By Lemma 5:” is essentially pairwise independent and thus p™ (@) = EP® [p"] for P-almost all @ € Q.
Then (1.11) and (1.12)) are equivalent to

Po(af = 11,97 = bola = ki, 3 = k2) = (1 — &ty (@, 1, EL” [5"])) 0o 11, ) (0377% E” [Pn])
and
Po(af = b, g} = Jjof = ki, 37 = k2) = €,k (@7, ET 5"k [, 2] (uﬁ,n, E” [ﬁn]) ;

respectively. Thus

E ] = Y (1= Gana (@, B 5w, [k, 1] (0, B 5] EP7 5, (3.13)
kl,lleS
and
E”” (s = E” [132]]
~ Przn ~ P¥rxn P rzn
D G @ B B sk ] (@0, B 5) B 5, (3.14)
kl,lleS
By plugging (3.8) in (3.13) we get

E” (53]

10



= > (= G @ B 5 owan, 1] (0,0, E7 5] ) EP 5,

k1,01 €S

> (= & @ BT D)o [ ) (@0, B (57w (@0, EP DET [, ). (3.15)

ki,l1€8

By using (3.12) and (3.13)), it follows that
EP" 9] = bu(@, n, EP [ EP” [52]
> G @ B 5 ek K] (@,E75) B (5,1

k1,l1€8

+ > G @ B 5 sk 6] (@00, B [5) Oury (@0, BT DET ) (3.16)

k1,l1€8
O]

Lemma 3.3. Assume that the discrete dynamical system D defined in Definition 3.6 in [1] is Markov
conditionally independent given @ € Q according to Definition Definition 3.8 in [1]. Then for fized & € Q
the following holds:

1. For X-almost alli € I, the extended type process {BI}5% for agent i is a Markov chain on (I x Q,I&
F AR PJJ) with transition matriz 2™ after time n — 1.

2. {B"}22, is also a Markov chain with transition matriz 2™ at time n — 1.

Proof. Fix & € Q.
1. The Markov property of {5}22, on (I x O, IRF,\K 13‘:’) follows by using the same arguments as in the
proof of Lemma 5 in [2], for A\-almost all ¢ € I. We now derive the transition matrix with similar arguments

as in [2]. By putting together (3.7)), (3.8)) and (3.15]), we get

E” (5]
- Z (1= &y, (@, 7, 5% )) ok, [, 1] (@510, 57) oy (@5, gF® ")
ki k' €S
'771/11(0?1 n, EF* [ﬁ"—l])EF’ e
+ Y (=& @n " ok k1) (@0, 577) O, (@, 55")
kol k€S

oy (@, 1, EPY [ EPT [R5

Thus we have

Z?k’J)(kl)(‘:’) = Z (1 — &kl ((D,mﬁ:’*”))gklll[k,l] (Jj,n,ﬁ‘:”") lell(a&n’ﬁ@’n)
ki,lies

o (@,0, EPT[pRY) (3.17)

and

zzlk’l’)(kl) ((:J) = Z (1 —&kily (@7 n75&7n))0k111 [k7 l] ((‘:}7 n7ﬁ&’n) Nk’ k1 (‘:}7 n, E” [ﬁn_l])
kl,lleS

11



S (@0, EPT [571)). (3.18)
Similarly, equations (3.7)), (3.8) and (3.16) yield to
EP sl = Y bk(@,n, 5" e (@, n, B [ EP [
k'eS

+ Z g’flll(wvn’ﬁ&)m)gmh[k} [@7’”75@7“]
ki,l1,k"l'eS

* Mk’ keq (‘D’ n, EPW [ﬁn_l])nl’ll (‘D’ n, EPW [ﬁ ])EPW [ﬁZ’l’l}

+ Z fklll (@’n’ﬁwm)gklh[k] (&] ﬁw n) 919111(@7”713@7")
ki,l1,k'€S

(@, n, BT [ﬁn_leP B -

Therefore, the transition probabilities from time n — 1 to time n can be written as

(k’l’ (kJ) Z Eklll w,n p )gklll[k] (a)vn’ﬁ@n)
kl,lles
"Nk Ky (‘:)7 n, EPM [ﬁnil])nl/ll (‘:)7 n, EPM [ﬁnil]) (319)

and

2oy ey (@) = br (@, 1, 5 ) gk (@, EP 51
+ Z Eraty (@, 10, 5™ Sk 1, [K] (@7”7;’@’”) vty (@, 10, 5™ Voo (@, 1, E” PTT). (3.20)

k1,01 €S
2. The transition matrix of {87}, at time n — 1 can be derived by using (3.17)-(3.20) and the Fubini
property applied to A X P% for every fixed @ € Q as in the proof of Lemma 6 in [2]. O

We are now able to prove Theorem 3.14 in [I], which we present here.

Theorem 3.4. Assume that the discrete dynamical system D introduced in Definition 3.6 in [1|] is Markov
conditionally independent given w € Q according to Definition 3.8 in [1l]. Given & € Q, the following holds:

1. For eachn > 1, Ep&[ﬁn] =TI, P [ 1])

2. For each n > 1, we have

[pkl Z Ny (@, 1, EP [p"~ 1])77l1 (@,n, EP "~ 1])EPW Akl,ll]
kl,lleS

and

ka Z My e (@, 72, EP [An 1DEP [AZI 1]
k€S

3. For each n > 1, we have
E” [p5) = B[R] + (@, E7 [ DE (5]
and

EP°[5g,] = bi (@, n " [ DET” [
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4. For M\-almost every agent i, the extended-type process {8}, is a Markov chain in S on (I x Q, TR
f;r, AKX 155’), whose transition matriz z" at time n — 1 is given by

Bonn@ = 3 (1= &0, (@ 55w, [ 1) (@0, 55 0,1, @, 1, 557)

k1,l1,k’€S

iy (@, EPT 7)) (3.21)
D@ = S (1= bt @ 5o, I 1) (@0, 5) i, (3,0, E7 )

k1,l1,k"l’€S

e, (@,m, BT [p1) (3.22)
Zglk’l’)(kJ)(a}) = Z fklh(dj’nvﬁa}m)ghll[k] (@7%5&7“)

ki,l1€S

iy (@, EXT (57 ), (@, m, ETT [ )) (3.23)

Gy (@) = b, 5 i (@, B [5771))

+ Z A ((]),mﬁ‘:””)gklh [k] ((b’n’ﬁ@m) ks ((Z),n,ﬁa”")
ki,l1€S

iy (@, m, EPT [P, (3.24)

5. For A-almost every i and every A-almost every j, the Markov chains {B}'}52o and {B} }72 are inde-
pendent on (Q,F, P?).

6. For P®-almost every & € ), the cross sectional extended type process {82}, is a Markov chain on

(I,Z,\) with transition matriz 2" at time n — 1, which is defined in (3.21))- (3.24).
7. We have P®-a.s. that

E o) =pr  and  ETT[pRl=pp  and BT [p] =By

Proof. Fix & € Q. Points 1. to 5. of Theorem 3.14 in [I] follow directly by Lemma and Moreover,
Points 6. and 7. can be proven by using the same arguments as in the proof of Theorem 4 in [2]. O
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