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Abstract

We critically review the translation of the core originating from game
theory to the allocation of systemic risk. Whereas the core is commonly
accepted for the portfolio allocation we will see that in a systemic context
it might result in unfairnesses for certain members of the system. We ob-
serve that due to the presence of possible feedback mechanisms between
the single entities, apart from the height of the induced losses, also the
ability to transfer these losses has to be considered for the risk allocation
problem. Since this new source of risk is only fully assessable in the com-
plete system and not in the subsystems, it can not be captured by a core
allocation. Thus, instead of considering upper bounds, as it is done for
allocations in the core, we reverse the definition to lower bounds.
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1 Introduction

In this work our aim is to study the appropriateness of the transfer of a classical
game theoretic allocation concept to the allocation problem for financial systems
with interacting institutions. This is due to the fact that in the recent financial
crisis it became apparent that a risk evaluation of a financial network on the
basis of the single institutions is not sufficient in order to capture the systemic
risk inherent from the various feedback mechanisms between the institutions.
For this purpose we position ourself in a stylized market clearing framework
for interbank liabilities. This framework traces back to the seminal work of
Eisenberg and Noe (2001). Briefly said we have a system of financial institutions
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which are connected via bilateral credit agreements. If now a financial insti-
tution defaults due to some adverse market event, then it has to be liquidated
immediately and the remaining assets are distributed among the creditors of the
institution proportionately to their liabilities. As the liquidation value is less
then the total liabilities, the creditor banks face additional losses which might
result in a default of one or more creditor banks. These potential defaults can
trigger further failures of banks and thus the initial failure of banks spreads into
the financial system.

In order to allow for a comprehensive risk assessment of financial systems like
the above, systemic risk measures have been introduced. As we have already
described how losses propagate into the financial system, we can easily calculate
the total losses of the system by summing all the losses of the single institutions
after all possible contagion has taken place. Now the risk of the system can be
easily obtained by using a univariate risk measure. An axiomatic description of
this particular type of systemic risk measures which allow for a decomposition
into an aggregation function and a univariate risk measure has been studied in
Chen et al. (2013), Kromer et al. (2016) and Hoffmann et al. (2016).

However, a major drawback of a systemic risk measurement compared to a
single evaluation is that an appropriate breakdown of the risk of the financial
system to the contributing institutions is far from obvious. Therefore, we need
to identify appropriate allocations in a separate step. In Chen et al. (2013)
and Kromer et al. (2016) this is achieved by using a dual representation of the
systemic risk measures. These allocations are essentially equal to the Aumann-
Shapley value which is known from the game theoretic literature, cf. Aumann and
Shapley (1974). The Aumann-Shapley value is also an example for a coherent
allocation as defined in Denault (2001) which gained much attention for the
portfolio allocation problem. Among the properties of a coherent allocation the
no-undercut property is the most crucial. Moreover, it is also the main building
block of the core from the game theory literature, cf. Aubin (1979). It says that
for all subgroups the amount of the total risk which is allocated to this subgroup
should be smaller than their measured risk. The core property is commonly
justified by the following consideration, if a subgroup would get a share of the
total risk which is higher than its own risk, then this subsystem would split from
the system and consequently obtains a lower risk. Whereas for a portfolio of
financial assets it can be easily answered how a split of a subportfolio should be
executed, this task is much more complex for a financial network. In this work
we will concentrate on two possible ways where the underlying network topology
remain intact. For examples where also the interbank liabilities in the financial
network are modified, we refer to the works of Drehmann and Tarashev (2013) or
Staum et al. (2016). However, in their work they do not study the implications
on the core.

For obvious reasons, the core is only meaningful if the risk measurement is
subadditive with respect to the subgroups, that is merging two disjoint subgroups
should reduce the risk. This diversification effect is usually assumed for the



classical risk management of a firm or a portfolio of financial assets. Also for
financial systems it can be argued that the risk measurement of the aggregated
values should have a diversification benefit. However, for the aggregation itself
this really depends on the chosen model on the formation of the subsystems, i.e.
we cannot say a priori if the merger of two subsystems will decrease or increase
the risk. Hence we have two rivaling streams of diversification benefits and costs.

In Chen et al. (2013) and Kromer et al. (2016) the authors overcome this
problem by considering an aggregation of the subsystem which corresponds to a
worst-case view, when it comes to the spreading of risk within the system. As a
result they also have a diversification benefit on this level. The considered sub-
system generation is a generalization from the classical portfolio approach, where
the risk factors correspond to profits and losses of certain financial instruments.
Thus, considering the risk of the accumulated profits and losses of a subsystem
suggests itself as the subsystem risk. That is simply summing up all risk factors
which are in the subsystem and equate the remainders to zero.

Unfortunately, we will see that in financial networks where contagion might
take place this allocation procedure creates wrong incentives to the financial
institutions. The reason is that, whereas it was sufficient in the classical approach
to measure how much each subsystem spreads into the system, we have now also a
second origin of risk, namely the ability of a subsystem to transfer the losses. For
example consider two financial systems which are connected exclusively via one
intermediate institution having no other operations. Obviously, the intermediate
institution can be considered systemic, since it is the only possible way that
losses of one financial system can be carried over to the other. However, the
systemic relevance of the intermediary cannot be expressed by a core allocation,
since each core allocation must be bounded from above by its standalone risk
and the intermediary has no other sources of risk apart from the losses from the
financial systems.

In order to tackle this problem we invert the definition of the core, i.e. the
allocated risk for each subsystem should be at least as much as the risk of this
subsystem. We call this allocation principle the reverse core. Clearly, by re-
versing the core definition there is now also a need for changing the underlying
subsystem risk management in such a way that instead of a diversification ben-
efit we have that there is a consolidation cost. In our analysis this is provided
by supposing that all institutions outside of a subsystem are equipped with such
a high amount of capital that a default is excluded. Contrarily to the classical
subsystem generation discussed earlier this supports a best-case view. For our in-
teraction model we will see that this new definition resolves the unfairnesses from
before. Moreover, we identify under which assumptions there exist allocations in
the intersection of both approaches.

The rest of the paper is structured as follows: In section 2 we state our notion
and review the (fuzzy) core concept from the game theoretic literature adapted
to more general aggregation functions. In section 3 we apply the core concept to
our financial system with contagion. Based on the deficiencies of this allocation



we alter the underlying risk measurement for the subsystems from a worst-case
to a best-case perspective. Due to this change we introduce in section 4 the
notion of a reverse core and how it is related to the core concept from before.
Finally, in section 5 we determine a reverse core element for our financial system
and show that in most cases it does not coincide with the elements from section
3. In the appendix A we discuss how the non-emptiness of the cores for random
risk factors can be inferred from deterministic risk factors.

2 Standard game theoretic approach to systemic
risk

Throughout this work we consider a financial system Z := {1, ...,d} which con-
sists of d € N different financial institutions. In the analysis of the financial
system Z subsystems will play a decisive role. We denote the set of all subsys-
tems, that is the powerset of Z, by P := P(Z). Since Z represents the largest
system we will denote by J¢ the complementary set of J € P with respect to
Z,ie. JO :=T\J. We will denote the i-th unit vector of R? by e;, i.e. all com-
ponents are equal to zero except the i-th component which is equal to one. 04
and 1, denote d-dimensional vectors where all components are equal to zero or
one, resp. As usual Ri is the space of d-dimensional non-negative real valued
vectors. By I; we denote the d x d dimensional identity matrix and by AT
the transpose of the matrix A. Apart from the usual matrix multiplication, we
will sometimes also need the Hadamard product (componentwise multiplication)
which we denote by *, i.e. x xy = (v1y1, ..., 7qyq) ' for z,y € R%L

Let X¢ be a space of R%-valued functions on some measurable space (£2, F)
representing d-dimensional risk factors of the financial system Z. We evaluate
the systemic risk of these risk factors via a systemic risk measure.

Definition 2.1. A function p : X% — R is called systemic risk measure if it is
antitone, that is for X, Y € X4 with X <Y we have that p(X) > p(Y).

In addition to the measurement of the risk of the whole financial system, we
also suppose that we have excess to information on the risk of each subgroup
of financial institutions. For this measurement we introduce the notion of a
subsystem risk measure.

Definition 2.2. We say that p : X9 x P — R is subsystem risk measure for
the systemic risk measure p : X% — R if the function X¢ > X — p(X,J) is a
systemic risk measure for all J € P and p(X,Z) = p(X).

Moreover, if we just consider deterministic risk factors we will call it a subsystem
construction scheme and denote it by A : R x P — R.

A fairness criterion known as the core from the game theory literature are
individually and coalitionally stable allocations, i.e. allocations where no entity
or group of entities has an incentive to deviate from the allocation by ”splitting”
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from the system. Next we give the formal definition of the core as know from
the game theoretic literature, cf. Aubin (1979).

Definition 2.3 (Allocation and core). For a given X € X%, we say that k € R?
is an allocation of the systemic risk p(X) if

Moreover, let p: X% x P — R be a subsystem risk measure of p. We say that k
is in the core C5 (X) if k is an allocation which additionally fulfills that for all
subsystems J € P
PX.T) = k. (2.1)
jeJ
The core has been prominently used for the allocation of the risk of a port-
folio consisting of financial assets. In the following example we will review this
framework and the motivation for the core.

Example 2.4. The core C~ is a superset of the coherent allocations as postulated
by Denault (2001). In his work the property (2.1) also appeared under the
name of the no undercut property. In Denault (2001) he measures the risk of a
portfolio of financial assets. In our context this translates to a financial system,
where there are not feedback mechanisms between the single institutions, i.e. the
well-being of a single institution is unaffected by the state of the other banks.
However, note that in the absence of feedback mechanisms, the single risk factors,
here the profits and losses of the banks, might still be dependent in a probabilistic
sense. In the portfolio framework the risk of a multivariate risk factor X € x¢

is measured by
d
(33,
j=1

where n : X — R is some coherent risk measure. Note that a coherent risk
measure is a functional which is antitone, cash-additive, convex and positive
homogeneous. For more details on coherent risk measures we refer to Follmer
and Schied (2011). Since we do not observe any other effects by adding or
removing a financial asset apart from the additional or missing profits and losses
generated by this asset, the sum is an appropriate aggregation function in this
setup. Thus, the risk of a subsystem J € P should also be measured via

PX,J)=n (Z Xj> : (2.2)

Recall that every coherent risk measure 7 is subadditive and thus we have that
for all disjoint Ji, Jo, € P

p(X, LU Jy) < p(X, 1) + p(X, o),

bt



which reflects a diversification effect. This implies that it is always profitable to
merge subportfolios. In order to have a fair allocation k& € R? this diversification
benefit should be shared among the different financial assets, i.e. k; < p(X, {j})
for j = 1,...,d. Otherwise the investor would demerge this asset from the port-
folio and would hold it separately. Therefore the allocated risk of every single
financial asset should be less than its standalone risk. Similarly we can argue for
subportfolios, which then results in (2.1) that is the main property of the core
c-.

The following lemma relates the cores of two subsystem risk measures where
one is always more conservative than the other. It is a direct consequence of the
definition of the core.

Lemma 2.5. Let p; be a subsystem risk measure. If k € Cﬁ_l(X), then k €
C5,(X) for all pr with pi(X, J) < p2(X, J) for all J € P and pi(X) = pa(X).

For the construction of the core, we just considered subsystems of type P, i.e.
a risk factor of a financial institution can either be accounted for completely or
not at all. But especially in the context of Example 2.4 a subsystem can also be
created by taking fractional parts of the profits and losses of the banks. Thus we
will now characterize a subsystem by a fractional participation level A € [0,1]4
or \ € R‘i. For this purpose we need to generalize the notion of a subsystem risk
measure to a function p : X% x ]R‘i — R, where p(X, \) is the risk of the system
X € X% where bank j participates with A; and p(X,1;) = p(X). Here \; =1
means full participation and A; = 0 is the absence of bank j.

Definition 2.6 (Fuzzy core). We say k € R? is in the fuzzy core FCI(X) ifk
is an allocation, i.e. p(X,14) = 1]k and for all X € [0,1]¢ it holds that

p(X, ) > Nk

Since each subsystem risk measure with fractional participation p yields a
subsystem risk measure p: X% x P — R via

(X, J):=p <X7Zej> for all J € P,
jeJ

we have that F'C 7 (X) C C5 (X).
In the following theorem we recall the well-known result that under differ-
entiability, convexity and positive homogeneity of a subsystem risk measure the
fuzzy core is single-valued and equal to its gradient. For a proof see for instance

Aubin (1979). In this case the fuzzy core is also called Euler allocation or Euler
principle in the literature, c.f. Denault (2001); Tasche (2004).

Theorem 2.7. Letp : deRi — R be a subsystem risk measure which is positive
homogeneous on the diagonal of its second arqument, i.e. p(-,aly) = ap(-,14)
for all « > 0. Then, the extended fuzzy core

FC,(X)={keR": p(X,14) = 1)k and p(X,\) > X\Tk,VA € R} }
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s equal to the subdifferential
O p(X, 1) :=={k e R": p(X,\) > p(X,1q) + k' (A —1y) VA€ RS }.

Thus, if the function A — p(X, \) is additionally convex and differentiable in 14
the extended fuzzy core
FC,(X)=Vp(X, 14)

where Vp(X,-) is the gradient of p in its second argument.

Example 2.8 (Portfolio approach cont.). A possible extension of (2.2) to allow
for fractional participation is given by

d

p(X,\) =1 (Z Ain) =n(\'X), (2.3)

=1

where 7 is the coherent univariate risk measure from (2.2). Clearly, A — p(X, \)
is positively homogeneous and convex, thus the fuzzy core FC; (X) is non-empty.
If A = p(X, ) is also differentiable then the fuzzy core FFC(X) is even single
valued. Therefore the fuzzy core FC~(X) or the larger core C~ (X)) seems to be
a feasible allocation approach in the portfolio context.

3 Financial model with contagion

In this section we will investigate if the (fuzzy) core still yields fair allocations
given that our financial network allows for feedback mechanisms among the fi-
nancial institutions. For this purpose we need to alter the aggregation function
in (2.2) and (2.3) respectively from a simple sum to a more complex aggregation
function which allows for the inclusion of a channel of contagion. The aggre-
gation function we will use traces back to the seminal paper of Eisenberg and
Noe (2001) and has been extended in many directions, e.g. to include multiple
sources of contagion, c.f. Awiszus and Weber (2015) for a survey. In order to fo-
cus on the impact of the feedback mechanism on the allocations, we will consider
a deterministic risk # € R?. The treatment of random risk factors is discussed
in the appendix.

As before we assume that Z := {1, ..., d} represents a financial system. However,
we now assume that only the first d — 1 components are financial institutions
and the last component represents the real economy. We suppose that the fi-
nancial institutions have claims against each other which appear as interbank
assets/liabilities on their balance sheets. The interbank assets/liabilities are
summarized by the matrix L = (L; ;); j=1...4, where L, ; is the monetary amount
of bank i which it owes to bank j. Furthermore the total amount of the interbank
liabilities of bank i is denoted by L; := 7 L, for alli = 1, ..., d. Three stand-
ing assumptions on the liability matrix will be that each bank does not have
claims against itself and against the real economy, however the real economy



has claims against each bank. Summarizing we assume that L,; = 0,Lg; = 0
and L;4 > 0 for all ¢ = 1,...,d. The first and the last assumption are more
technical and not really restricting. The second assumption needs some further
explanation. Of course, banks have claims against the real economy like house-
holds or industrial companies. However, we will not model these connections
within the feedback mechanism, but the real economy can contribute losses to
the banks via an initial shock. Another model assumptions is that in case of
a default the debtors of the defaulting institution divide the remaining assets
proportional to their claims, i.e. it will suffice to consider the relative liability
matrix IT = (II; ;); j=1,..4 which is given by

Li ; .
H‘_{L; Jif L > 0
Z?] T

0 LifL;,=0

Moreover, the institutions are endowed with an initial capital/equity ¢ € Ri. On
the asset side the institutions have interbank assets as described above and some
external assets, which also contains claims against the real economy. Therefore
we have a full description of the balance sheet of each bank. Next we suppose
that at a future point in time the external assets of each bank are hit by some
adverse market event y < 04. Due to this market shock also the liability side
of the balance sheet has to decrease by the same amount. As debt is senior to
equity, the equity is used first to buffer the shock. However, if there is not a
sufficient amount of equity to dampen the shock, the bank is in default and pays
out the remaining assets proportionally to its creditors. Since the creditors are
not paid in full this creates a further loss on their balance sheets which can result
in a default of one or more of the creditors. Finally these defaults can trigger
other defaults, so that a large fraction of the system might be affected. This
contagion is modeled by the following aggregation function

A(z) := min 1] a (3.1)

d
a€RY

s.t. a= (HTa — a:)+ ,

where * = ¢ + y is the equity value of the financial institutions directly af-
ter the adverse market event y took place. Note that by monotonicity of the
function Ri Sar (HTa — a:)+, we have that the optimal value for a in the op-
timization problem (3.1) of the aggregation function A can be found by iterating
a(n) = (IlTa(n — 1) — x)+ with a(0) := 04. The interpretation of this iteration
procedure is as follows:

First, we suppose that no bank defaults which corresponds to a(0) = 04. In
the first iteration we thus have that a(1) = (—z)" which is identical to the
losses of the banks defaulting initially due to the adverse market event. Next
a(2) = (IT7a(1) — x)+ = (" (—2)* — ,:E)+, where ITT (—z)* are the losses which
the banks receive from the initially defaulting banks. Hence a(2) contains the
losses of the initially defaulting banks and of those banks which fail due to the



losses transmitted by the defaulting banks. In each subsequent step these losses
further spread into the system and we approach an equilibrium a fulfilling the
constraint in (3.1).

In contrast to Eisenberg and Noe (2001) we do not cap the transmission of
losses to other banks by the corresponding interbank liability. We did so in order
to keep the model simple and thus for a better understanding of the contagion
effects later on and second the inclusion of the real economy makes the events
where the losses exceed the interbank liabilities rather unlikely. As there is not
an upper bound for the transmitted losses, it could be that for a finite shock
the contagion effects wind each other up more and more. However, we will see
in Lemma 3.1 below that this is not possible in our framework, since a certain
percentage of the losses is always transfered to the real economy, where the
channel of contagion ends.

Lemma 3.1. For each v € R? the aggregation function A(z) is finite.

Proof. Firstly, we observe that A is monotonically decreasing and that A(z) =0
for all x > 04. Thus it suffices to consider z < 0y, i.e. all institutions default
initially. Then the constraint in (3.1) can be simplified to

a= (HTa—x)+ =II'a—2
and thus if the matrix I; — ITI" is invertible, then there exists a unique solution
a=—T;—II") 'z,

where 1; the d x d dimensional identity matrix. B B
We denote by (A;x)jk=1...a = A :=I;—II". Moreover by IT and A we denote the
(d—1) x (d— 1) matrices which are obtained by erasing the last row and column
from IT and A resp. Note that, since we assumed that every institution has
liabilities to the real economy, i.e. II; 4 > 0 for all j =1, ...,d —1, the row sums of
IT are less then 1 and thus the operator norm HﬁT |1 = max;—1,_ 41 Z?;} IIL;] <
1. Hence a classic result from functional analysis, see e.g. Werner (2011) Satz
I1.1.11, yields that the Neumann series Z?:O(f[T)i,n € N, converges and that
the inverse of A = I, — I exists and is equal to the limit of the series.
Furthermore, a Laplace expansion along the last column of A yields det(A) =
det(A) # 0 and thus A is invertible.

O

In the next lemma we derive an element in the (fuzzy) core for the subsys-
tem construction scheme A°(z,\) := A(\ * x) by making use of Theorem 2.7.
As already pointed out earlier this subsystem construction scheme parallels the
portfolio approach (2.3), where the sum as aggregation function is replaced by A.
For the result we need to identify the institutions which default after all possible
contagion has taken place. We denote the set of these institutions for a given
x € R by

D(z) = {p1,...,pip|} = {i € Z: (I"a—x); >0},
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where a is the limit of the sequence a(n) = (II"a(n — 1) — x)* with a(0) = 0,.
If it is clear from the context we will mostly drop the reference to the risk factor
x.

Lemma 3.2. Let x € R? and define k € R? by
D] .
Fp == > <(I‘D‘ — 10}, ) >]~ . i=1,..|D|,
j=1 ’
and k; == 0 fori ¢ D. Here IIpp = (I1; ;)i jep. Then
ke FC(x).

Proof. That the matrix Ijp| —ILj , is invertible can be shown analogously to the
considerations made in the proof of Lemma 3.1.

Denote by a is the limit of the sequence a(n) = (II" a(n—1)—xz)" with a(0) = 04.
Since (IT"a — z); < 0 for all non-defaulting institutions i ¢ D we have that
a; = 0. Therefore we obtain for the vector of losses of the defaulting institutions
ap = (a;);ep that

ap = ((IT'a - x>j+)j€D

= H;}DGD — Ip,
where and zp := (z;);ep. Finally, we obtain that

D] D

d
=1 i=1

1€D =1

where €; is the i-th unit vector in RP! and thus & is an allocation.
Moreover, suppose that a € R? is such that a = (II"a — 2)* and A(z) = 1]a.
Then we have for each A > 0 that Aa = (IT" (Aa) — Az)*. Hence

A%z, M1g) = A(Az) < 1) (Aa) = M(z) = A (z, 1,).
On the other hand we obtain by a similar argumentation for Az that
MO(z,14) = AN° (m, %Ald) = A\’ ()\:c, %151)
< A°(Ax, 1) = A%z, A1,).

Combining both results yields positive homogeneity on the diagonal of the second
argument of A°.

Furthermore, it can be easily shown that A is a convex function, from which
it immediately follows that the function z — A%(z, 2) is also convex. Hence it
follows from Theorem 2.7 that F'C\,(x) is equal to the subdifferential of z
A(x,2) at 14.
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Firstly, we suppose that there exists a neighborhood N of = such that D(z) =
D(zx) for all z € N. Then A(zx) is the linear function (3.2) on N and thus
differentiable in z. Therefore k is the gradient of A%(z,-) at 14 and hence k =
FCO ().

If no such neighborhood N exists the subdifferential might not be single valued.
However, it can still be shown that k is a member of the subdifferential.

Since the function z +— |D(z)| is left-continuous with values in {0, ...,d}, we can
always find 7 < z with ||z — Z||c > € for some ¢ > 0 such that D(Z) = D(x) and
A — A%, \) is differentiable in 14. Note that T can also be chosen such that
z; # 0 for all i = 1, ..., d and thus the componentwise quotient u € Ri of z and
T,ie u; =2 forall i =1,...,d, is well-defined. Since A is linear between = and
x, we have that

A%(F, 1) + VA7, 19) T (u — 14) = A°(T,u) = A%z, 1), (3.3)

where VA®(Z, 1,) denotes the gradient of the function A — A%(Z, \) at 1. From
this we can immediately infer that for all A € R%

Az, \) = AT, \ * u)
Z AO(E, 1d) + VA()(f, ]_d)T()\ * U — 1d)
= A(2,1q) + (VA% 10) #u) " (A — 14),
where we used (3.3) in the last step. Hence VA°(Z,14) * u is a subdifferential

of A — A%z, \) at 1;. By using (3.2) a simple calculation shows that k =
VA°(Z,14) * u and the result follows. O

Lemma 3.3. Let z € R? and k € FCy,(x) be the allocation from Lemma 3.2.
Moreover, denote by Dy := {i € Z : x; < 0} the set of initially defaulting
institutions. Then we have that the allocations k;,i € D\Dy of the institutions
which default due to contagion are non-positive.

Proof. First, we prove that (Ijp| — H;D)f1 =>7 (H;D)i. We have already
seen in the proof of Lemma 3.1 that this holds true if [|II}, p|[y < 1. Therefore we
assume that ||[IL} p|l; = 1. In particular this implies that the real economy d € D.

We consider the matrix TI € RUPIFUXIPI-1) which we obtain from IIpp by

.....

containing the relative liabilities of the defaulting banks to the real economy.

Then _
I 1II,
Mo = ( )
Oppp—, 0

and it can be easily shown that for all n € N

- T\ o ') Op,
2, Moo) = (HZ Sy )

=0
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Since ||TI||; < 1 the Neumann series Z?:O(ﬁT)i converges and hence also Y7 (II}, )"

From Werner (2011) it thus follows that the limit Y- (T1}, )" = (Ijp| — H;D)fl
Therefore all entries of the inverse of Ijp| — I}, , must be positive. Finally this
implies that for all ¢ € D the allocation k from Lemma 3.2 can be rewritten as
k; = —w;x; for the positive weighting factor w; := — Zgl ( (I‘D| — H;D)_l )”
Therefore, we have for all i € D\D, that k; < 0, since z; > 0. 0

In summary the allocation k£ from Lemma 3.2 seems to be reasonable for the
initially defaulting banks, since it is a combination of the severity of the loss x;
and of how much the loss propagates further into the system which is specified
by the weighting factor w;. Moreover, those banks which do not default at all
get an allocation of zero which could also be declared as fair. However, those
banks which have enough equity at the beginning x; > 0 but which default due
to contagion, get an allocation which is strictly negative. Compendiously, this
allocation creates an incentive to control the standalone risk factor x;, but to
ignore (or even to increase) the systemic risk which originates from the network
effects w;.

The major problem with this allocation is that it is based on the subsystem

construction scheme A°. Whilst in the portfolio framework the entities outside
of a subsystem had no influence on the risk evaluation of the subsystem, the
subsystem construction scheme A° just sets the equity of the neighboring entities
to zero. However, this does not imply that they have no impact on the subsystem
anymore, since the network linkages have not changed at all. Even worse the
banks outside of the subsystem are assumed to be already in default which means
that they transmit all the losses. Thus this construction scheme corresponds in
some sense to a worst-case view on how much a subsystem is able to spread
its losses within the whole system. This interpretation is also in line with the
definition of the core, i.e. that the construction scheme is always an upper bound
of the subsystems allocation.
Another problem with the core allocations in this interaction model is that each
entity do not only act as a spreader of risk as in the portfolio approach, but
can also function as a transmitter of the losses of some other entities. This
perspective is exactly the crucial part for the fuzzy core element from above.
Namely the banks which are in D\Dy, do not contribute losses to the system and
thus any core allocation must be bounded by zero. Nonetheless in the complete
system they face losses from other institutions and transmit them further into
the system. However, they can not be charged for this loss transmission as their
share is already capped by zero.

Contrarily, we now want to find an appropriate subsystem construction scheme
such that the causality of the risk of a subsystem can solely be explained by the
subsystem itself. Moreover, we also want that the feedback effects within the
subsystem still remain intact. The most intuitive choice for such a subsystem
construction scheme is equipping all banks outside of the subsystem with a very
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high amount of capital such that these banks can never face a default, i.e.
A(z,\) = AN x4+ (14— ) % b), (3.4)

with b € R% sufficiently large.

Note that, whilst in the financial network without feedback mechanisms we
had that joining two subgroups of banks always resulted in a risk reduction
compared to the sum of the single risks, it might now happen that two single
subsystems are not able to trigger a default of a bank but they can in a combined
subsystem. That is the diversification benefit can turn into a cost. Moreover, in
contrast to the prior subsystem construction scheme A°, we now have a best-case
view as we suppose that the external system is capable of covering all losses.

4 The reverse core

Because of the change of the perspective towards a best-case view, we also need
to change the definition of a fair allocation in a way that the allocation of a
subsystem should at least cover the risk of the subsystem. Moreover, for this new
subsystem construction, we have that the risk of a single financial institution is
just a measure of the adverse market event, since we assume that no loss can
spread to the other institutions. This is in line with the current market practice
of measuring the risk on a standalone basis. Therefore we should demand that
the allocation of the systemic risk to this bank does not fall below this threshold
in order to cover it own losses. For this reason we introduce the notion of the
reverse (fuzzy) core.

Definition 4.1 (Reverse (fuzzy) core). Let X € X% and p: X4 x P — R a
subsystem risk measure. We say that k € R? is in the reverse core C’g(X) if

S k= p(X,T) and for all J € P
PXT) < ks
jeJ

Similarly, we say that k is in the reverse fuzzy core FC’;F(X) for a subsystem
risk measure p : X x RY — R if L ki = p(X, 14) and for all X € [0,1]% we
have that

p(X, ) < Ak

Next we investigate the relationship between the core and the reverse core
which are generated by the same subsystem risk measure. Note that a similar
result also holds for the fuzzy cores.

Lemma 4.2. Let p: X% x P — R be a subsystem risk measure. The core and
the reverse core are related in one of the following ways

o S (X)=CH(X)=10;

13



o C5(X) =C7(X) = {k} with p(X,J) =3, k; for all J € P;

e One core contains only allocations where the inequality is strict for at least
one J € P and the other core is empty.

In particular, if C’;E(X) # 0, then |CF(X)] < 1.

Proof. Suppose C5 (X) as well as C; (X) are non-empty. Let £~ € C5(X) and
kt e C; (X) from which it follows that

d d
k=YK and Y k<> kfforall JeP.
i=1 i=1 jeJ jeJ

We define further K :=={i € Z : k; <k} and G:={i € T :k; > k}. We
assume that G U K # 0. If K # 0, then ¢ k7 = 3% | k" implies that

i=1"

S kf—k =)k —k <.

e, ieK
Thus also G # (), which contradicts »>,, k; < 35,k for all J € P. Hence
k~ = kT and we can deduce that both cores are equal and single valued.

Finally, if one core is empty, we clearly have that

{keRd:ﬁ(X,J):ij,VJEP} =0

jeJ
and thus the other core has to be empty as well or the inequality has to be strict
for at least one J € P for each allocation. O]

In the prior lemma we studied the connection of the two core concepts for
the same subsystem risk measure. In contrast to this, we will see in the next
lemma that we can also translate one core concept to the other by changing the
underlying subsystem risk measure.

Lemma 4.3. Let p: X x P — R be a subsystem risk measure with p(X,0) = 0
for all X € X%, Then

CH(X) C {k: ERY:D ki < p(X) -5 (X, V€ P} :
JjeJ

where J¢ := T\J is again the complement w.r.t. the complete system. The
interpretation is that each element of the reverse core must "undercut” the "with
and without risk”. In particular by defining the subsystem risk measure p via

p(X, ) = p(X) — F(X, JO)
we obtain from the result above and from p(X) — p(X,J) = p(X, J) that
+ . —
C5(X) = C5 (X).

p
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Proof. Let k € C5(X). Then for each J € P it holds that

d
LX) = 3k <0=p(X.T) =Y ki

jeJc =1

which is equivalent to

> ki < p(X) =5 (X,J9).

JjeJ
[

We remark that a similar result also holds for the fuzzy and reverse fuzzy
cores.

5 The reverse core in the financial model with
contagion

Equipped with this new core concept, we come back to our interaction model from
section 3. Recall that we are interested in a risk factor © = ¢ + y, where ¢ € R%
is the vector of some initial capital endowments of the financial institutions and
—y € Ri is a negative shock. For the subsystem construction scheme A® defined
in (3.4) we vaguely demanded that b € R?% should be sufficiently large. In
Lemma 5.2 we will show that it is already sufficient to consider A¢ in order that
the reverse fuzzy core FC}.(z) is non-empty. Moreover, similar to Lemma 2.5
we derive that FCY.(z) C FC},(z) for all b > c.

Note that the subsystem construction scheme A’ is independent of the specific
decomposition of the risk factor x into a positive capital amount ¢ and a shock
y. Therefore, if we allow also for positive shocks, i.e. # = ¢ + y with y € R,
then we can choose the decomposition x = ¢+ y with ¢ = ¢ + max{y, 04} and
y = min{y,04}. Since ¢ and —y are again positive, we have that FC’XE(x) -
FCY,(x). Thus, if we are interested in the non-emptiness of the reverse core of
A’ assuming a negative shock is essentially not a restriction.

Before we identify an element of the reverse fuzzy core of A¢; we need the following
preparatory lemma:

Lemma 5.1. Let A = (4;;)ij=1..a € RZ? and b € RL. Then there exists a
B = (Bi;)ij=1,..4 € RiXd such that

(Z A — b) => (A;-B,", (5.1)

where Z‘;:l B;j = b; and B, ; is either equal to A;; or b; for alli=1,...,d.
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Proof. Let i € I be fixed. We denote by @ : Z — Z the permutation which
exchanges the first and the i-th entry, i.e. 7(1) =4, m(z) = 1 and 7(j) = j for all
Jj & {1,i}. We distinguish the following two cases:
o If E?Zl A;j < b, then set By == Ajy) forall j = 1,...,d — 1 and
d—1
Bix(a) 7= bi = 2521 Airn(i)-

o If % | Aij > b, then define for j =1,....d

Bin() = Aix() Ly a0 <t}

7j—1
+ (bi o Z Aiﬂr(k)) 1{2{;1 Ai,w(k)gbi121:1 A my>bi}”
k=1

Obviously, (5.1) is fulfilled and we have for this choice of B; . that Z;l:l B;; =1b;.
Depending on the size of A;;, we have either B;; = A;; or B;; = b;. O

Lemma 5.2. Let x = y+ c with y < 04 and ¢ € R‘i. Then the reverse fuzzy
core FCY.(x) with the subsystem construction scheme

ANz A)i=AA*xa2+ (1g— ) *xc) =A(Axy+0),

is non-empty. Moreover, there exists an allocation k € FC}.(x) such that for all
i=1,..d

ki S A(J/’Z@i),
that is k also fulfills the property of the core for the single financial institutions
and the subsystem construction scheme A°(z, \) = A(\ x ).

Proof. As in Lemma 3.2, we will use the fact that the optimal value for a in
the optimization problem (3.1) of the aggregation function A can be found by
iterating a(n) = (IL"a(n — 1) — x)Jr ,n € N with a(0) := 04.

First, we iteratively define a non-negative partition A;(n) € R%,i = 1,...,d of
a(n), that is 37, As(n) = a(n). Clearly, A;(0) := 04,7 = 1,...,d is a partition of
a(0) = 04. Note that, if we have found a partition of a(n — 1) for some n € N,
then

a(n) = (MTa(n — 1) — a:)+
— (Z ' A(n—1)—y— c>
= (Z (HTAZ-(n —-1)— yl-ei) — c) .

=1
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Since TITA;(n — 1) — ye; > 04 for all i = 1,...,d and ¢ > 04, we can apply
Lemma 5.1 in order to obtain the existence of Cj(n) € R%,i = 1,...,d with

>4 Ci(n) = ¢ and
d
=1

Hence, A;(n) = (IITA;(n—1) —yiei—C’i(n))+ € RL,i = 1,..,d is a non-
negative partition of a(n).

Since (a(n))nen is an increasing sequence, we have that A;(n) is also bounded
from above by a = lim,,_,., a(n) for all i = 1,...,d. Recall that a is finite by
Lemma 3.1. Thus ((A4;(n))iz1,.. d)nen is a bounded sequence and we obtain
by applying the Bolzano-Weierstrass theorem, that there exists a converging
subsequence ((A;(ny))i=1 We denote the limit of this subsequence by

(Ai)i=1

----- d)keN'
4- Thus, we have that

.....

a = lim a(ng) = lim Ai(ng) = ZAi

k—o00 k—o0
i=1 i=1

and that A; > 0, for alli =1, ..., d.
Next we define for a level of participation A € [0, 1]¢ the sequence

a(A\,n) =M aAn—1)—Axy— c)+ foralln e N
and a(A,0) = 04 which corresponds to the fixpoint iteration for A°(z, A). In the

following we prove that

Z)\A ) > a(A,n), forallneN. (5.2)

Obviously (5.2) holds true for n = 0. Suppose now that (5.2) is valid for n — 1,
with n € N. Then, we have that

d

Z Aidi(n) = Z Ai (I Ay(n — 1) — yse; — Ci(n)) "

1
d +
> (HTZAZA, n—1) Z/\,y,ez ZA Ci(n >
zzl
HT
i=1

\%

+

Vv

(IITa(A,n—1) = A*y — c)+
a(\,n),
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where we used the induction hypothesis in the penultimate step and that Zle AiCi(n) <
c in the third. By taking the limit we obtain

d d
—00

k—o0
=1 =1

Finally, by defining k = (ki, ..., kg) with k; :== 1] A;,i = 1,...,d, we have for all
A € [0, 1]¢ that

d
AE =17 NA; > 1ja(A) = A°(z, \)
=1

and

d
Lik=17) A=1ja=A(x,15) = Ax).

=1

Thus k = (ky, ..., ka) € FCY.(z).
In the end we still have to show that k; < A%(z,e;) for all i = 1,...,d. For
this purpose denote by

a(i,n) := (HTa(i,n —-1)— xiei)+, a(i,0) = 0g,
the fixpoint iteration for A°(z,e;). Again we will use induction to show that
Ai(n) <a(i,n), forallneN. (5.3)

Then, obviously A4;(0) < a(i,0). Thus suppose that (5.3) holds for n — 1. Before
we proceed with the induction step recall that by construction of (C’Z(n))Z =
(ITT Aj(n — 1) — ye;); or (Ci(n)), = ¢; and in both cases we obtain

(07 A = 1), ~ e~ (C))" < (A0 - 1), ~ g )
Moreover, since Cj(n) > 04 for all i =1, ..., d we have that

Ai(n) = (TT" Ai(n — 1) — goe; — Ci(n)) *
(HTAi(n —1) —yie; — c@-ei)+

< (HTa(z’,n —1) — ye; — cz-ei)+ = a(i,n).

IN

Hence (5.3) holds and we can conclude that
k‘z‘ = 1:{141 S 1;(1(2) = AO($,€i>,

where a(i) := limy_,oo a(i, ng).
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We have seen in Lemma 5.2 that the reverse fuzzy core for the subsystem
construction scheme A€ is non-empty and that there exists an element in the
reverse fuzzy core which additionally fulfills the essential property (2.1) of the
core of A° at least for the single institutions. As we have seen that the usual core
might not be a useful allocation in a financial model with contagion, we want
to investigate if there is also an element in the intersection of the two cores Cy.
and C,. In Lemma 5.4 it will be shown that under a rather weak assumption
on the risk factor z the intersection of the cores is empty. In order to put this
assumption into context, we precede the following lemma.

Lemma 5.3. We have for all v € R? that

ZA Z e;jxy | < A(x), (5.4)

i€Dg JEDS U{i}

where Dy == {i € T : x; < 0} denotes the set of institutes which default initially.
Moreover, if (5.4) is strict, then there is at least one institution which defaults
due to contagion, i.e. D\Dy # ().

Proof. Similar to Lemma 5.2 we consider the sequences
a(n) == (ITTa(n — 1) — :(:)+, a(0) = 04,

and for all 7 € D,

a(i,n) := HTa(i,n —-1)— Z €;T; ,a(i,0) = 0q4.

JEDS U{i}

By construction a(0) = ;.5 a(i,0). Thus suppose that

a(n—1) > Za(i,n—l)

i€Dg

for some n € N, then

a(n) = (IMTa(n —1) — x)+ > (HT Z a(i,n —1) — x) : (5.5)

1€Dg

Now we look at the single entries of the vector on the right hand side of (5.5).
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For [ € Dy we have

(HTZ in—1) )+:<Z(HT(n—1))—xl>+

1€Dy l i€Dg
= Z (HTa(i, n— 1))l —
i€Dg
= ((MTa(l,n-1),—=) + Y ((MTa(i,n-1)),)"
1€Do\{l}
+
= Z ' a(i,n—1) — Z e;x;
i€Do JEDS U{i} !

and for | € DY

(HTZ iyn—1) )+:<Z(HT(n—1))—xl>+

1€Dy 1 1€Dg
S (W afion - 1), - X)*
1€Dg
> Z HT a(i n—l)) —:m)
1€Dg
= Z (ITa(i,n—1) — m);r
1€Dg
+
=> | Tlalin—1)— Y ea— > ey
i€Dy JjeDSU{i} J€Do\{i} !
+
> Z M a(i,n—1)— Z e;x;
i€Do JEDS U{i} !

where (Xi;)ep¢ iep, is specified by Lemma 5.1. Note that, since X;; > 0 and
ZZ.GDO X, = x; we have that X;; < x; for all [ € DS and i € Dy which we used

in the third step. Now we can continue with (5.5)

+

a(n) > Z M a(i,n—1) — Z ejx; | = Z a(i,n)

i€Do jeP§ Ui} i€Dy

and thus we have shown that a(n) > > .5 a(i,n) for all n € N. Finally by
considering the limit for n — oo we obtain (5.4).

Next we show the second claim. For this we will prove that D\ Dy = ) implies
that (5.4) holds with equality. Obviously this is true if Dy = (). Thus we suppose
that Dy # (), i.e. at least one bank defaults initially. It can be readily seen that
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Dy C D and thus, since D\Dy = ), we have that Dy = D. For each i € D we will
also need the sets of banks which default initially and after all possible contagion
took place for the subsystem with corresponding risk factor > jepSuti} €t We
denote these sets by Dy(i) and D(i) respectively. Since for all i € D we have
that ZjeDOCu{i} e;x; > x, it follows directly that

D(i) C D.

Contrarily, due to the fact that (Zjebg‘u{z’} ejq;j)l < 0 for all I € Dy, we also
have that
D(i) 2 Do(i) = Do =D
and thus D(i) = D for all i € D.
As in Lemma 3.2 let D = {p1,...,pjp|} and denote by Ilpp := (Il;;), ;cp €
RIPIXIPI the matrix IT where the rows and columns which are not in D have been

erased. Similar to Lemma 3.2 we get that

D
Az) = =1)p (Ip — T} p) > &y,
=1

D

=D 1 (Ip - I},p) &y,

=1

= Z A Z €l |,

i€Dy JEDS U{i}
where ¢; € RIP! is the i-th |D|-dimensional unit vector. O

It is obvious that the reverse implication of Lemma 5.3 does not hold. As
a counterexample take for instance a financial network comprising two banks,
where the first bank defaults initially and the second fails as a consequence of
this default. Then we have a contagious default, but (5.4) holds with equality.
Therefore, (5.4) is strict if there is a contagious default and this default must
be triggered by more than one defaulted bank. Thus (5.4) being strict can be
interpreted as a scenario of a high level of interactions in the network.

Lemma 5.4. If (5.4) is strict for some v € R?, i.e.
Z A Z e;x; | < A(z),
i€Do JEDF U{i}

then
+ - _
C3.(z) N O, (x) =0,

where A(z, J) := A (Z]EJ Tje;+ ) ic e bjej> for all J € P and b € R%.
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Proof. Assume there exists an k € C7 (v) NC5, (). We have for all i € Df that

0< A (61'«7:2' + Zejcj> < A(ezxz) = 07

J#

and thus the respective core properties imply that k; = 0. Hence

d d
Sh=Yh=Y Y k=X Y an)<am-=Yk
i=1 i€Do i€Do jeD§ U{i} i€Do DS {4} i=1

which is a contradiction. O

We finish this section with a small but concrete calculation of the core and
the reverse core in order to exemplify their differences. We consider a financial
network with the following specifications:

01/2 0 0 1/2 0—5 -5
0 0 1/2 0 1/2 5—3 2
O=(0 1/4 0 1/2 1/4]| andz=c+y=|10—12] = | -2
01/3 0 0 2/3 53 2
00 0 0 0 0—0 0

The corresponding network is depicted in Figure 5.1 and the values of the sub-
system construction schemes can be found in Table 5.1. Note that, since the
inclusion of the real economy do not change the risk of a subsystem, we omitted
the results in Table 5.1. Clearly, the initially defaulting banks are Dy = {1, 3}.
Moreover, we observe that the initial default of bank 1 triggers a contagious de-
fault of bank 2 and that even after all possible defaults bank 4 is still solvent.
Applying Lemma 3.2 yields that

(13.57,—4.86,3.71,0,0)" = FC\,(z)
and by using the partition from the proof of Lemma 5.2 we obtain that
(8.71,0,3.71,0,0)" € FC.(x).

As bank 4 is not participating in the contagion process, it gets in both allocations
a share of zero which can be considered as fair. However, here we see clearly that
bank 2 is a transmitter of losses in the system and by the allocation of the fuzzy
core it is rewarded for this position with a negative share compared to the solvent
bank 4. Contrarily, bank 2 also gets a share of zero for the allocation which is
in the reverse fuzzy core. Since, bank 2 does not default initially this allocation
can barely be considered as fair. However, since bank 2 is also in a channel of
contagion later on, it would also be fair that bank 2 gets a strictly positive share.
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Using the Table 5.1, it can be readily seen that this holds for all other allocations
in the reverse core, which is given by

3
(j/i\rc(m) = {(kl,kQ,kg,0,0) S Ri Zkl = 12.43,
i=1
ki >7.5,ks > 2.5,k + ko >8.25}.

The largest share of the systemic risk for bank 2 in the reverse core is attained
for the allocation

(7.5,2.43,2.5,0,0)".
Furthermore, since Dy = {1,3} and

Alz) =12.43 > 1121 =8.71 4+ 2.5
= A%z, {1,2,4,5}) + A%z, {2,3,4,5})

= A Z l’j@j +A Z mjej s

JEDFU{1} JEDSU{3}

(5.4) is strict and thus the reverse core of A¢ and the core of A° do not have a
common element.

Finally, we also observe that not only the fuzzy core, but also all core elements
does not respect a fair ordering in the sense that k, > k, > k, for all u €
Dy, v € D\Dy and w € DC. Recall that bank 2 defaults due to contagion, but
not initially, and thus a core allocation £ must fulfill that k5 < 0. Since, this bank
participates in the contagion process later on we want that its allocation should
be non-negative. Now we assume that there exists an allocation k£ € C’/{O (x)
which respects our notion of a fair ordering, i.e. k = (ki,0, k3, k4,0) such that
ki,k3 > 0 and k4 < 0. Then,

ky = (ky + ky) + (ks + ky) — Zk:
< Az, {1,2,4,5}) + A"(:c, {2,3,4, 5}) — A(z) = —1.22.

Moreover, we have that
5
12.43 = Z 2,{1,2}) + A%z, {2,3}) + ky = 13.28 + ky,

which immediately yields the contradiction that k4 > —0.85. Hence there does
not exist a core element which respects the fair ordering from above.
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J A(x, J) | A%z, J)

{1,2,3,4}y | 1243 | 12.43

{1,2,3} | 1243 | 15.95

{1,2,4} | 825 8.71

{1,3,4} | 10.00 | 17.29

{2,3,4F | 250 2.50

Q@ {12} 8.25 9.11

(1,3} 10.00 | 22.37

{1,4} 7.50 13.57

5-3 B 4 53 2,3} 2.50 417
. {2,4} 0 0

- & v {3,4} 2.50 3.71

v {1} 7.50 15.53
{2} 0 0

0-5 1 12 RE {3} 2.50 6.84
{4} 0 0

Figure 5.1: Exemplary system. Table 5.1: Risks of the subsystems.

A Random risks

This section will be devoted to a discussion on how we can derive the non-
emptiness of the core also for random risks. For this purpose, we first recall the
well-known Bondareva-Shapley theorem which gives an alternative characteriza-
tion of the non-emptiness of the core. For this we need the notion of a balanced
collection of weights.

Definition A.1. We say (a)jep is a balanced collection of weights if ay > 0
forall J € P and y  cp ay=1 foralli=1,..,d. HereP;:={JecP:iclJ}

denotes the set of all subgroups containing the i-th financial institution.

Theorem A.2 (Bondareva-Shapley). The core C5(X) of the subsystem risk
measure p is not empty if and only if for all balanced collections of weights
(ag)jep it holds that

p(X) <D ap(X, ).
=

For a proof see for instance Shapley (1967).
In the following we suppose that p: X? x P — R is given by

ﬁ<X7 ']) = 77<_A(X7 J>>7

where A : R? x P — R is a subsystem construction scheme and 7 is a univariate
risk measure.

Lemma A.3. If the subsystem risk measure p is given by p(X, J) = n(—A(X, J))
for all X € X and J € P, where 1 is a positive homogeneous and subadditive
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univariate risk measure and A is a subsystem construction scheme which is ad-
ditive with respect to the subsystems, i.e. for all disjoint sets Ji,Jo € P and
X e xd N B _

AX, LU ) =AX, J1) + A(X, Jo), (A.1)

then there exists a core allocation k € C5 (X).

Proof. In order to prove the lemma we will utilize Theorem A.2. Let (a ;) jep be
a balanced collection of weights, then we obtain by additivity of A that

ZAX{} ZZaJAX{})

i=1 JeP;
= ZaJZA XAi}) =) a,AX, )
JeP e JeP

and thus by subadditivity and positive homogeneity that

n(—A(X)) =7 (— > asA(X, ) ) <> am(—AX, ).

JEP JEP
[l

Remark A.4. Note that in order to prove Lemma A.3 it would be sufficient
to show that A(X) < Y payA(X,J) for all balanced collection of weights

(o) sep-

Example A.5. The additivity over subsystems (A.1) is clearly satisfied by the
subsystem construction scheme A(z,J) = — >, ; x; which we already know as
a suitable aggregation for financial systems without contagion. Furthermore, the

additivity still holds if we just consider the losses of the financial institutions in
this model, i.e. if A(z,J) =3, ;.

Note that the additivity property (A.1) in Lemma A.3 directly implies that
the core of the subsystem construction scheme is always non-empty. In the
following lemma we show that this weaker property is already sufficient for the
core of the subsystem risk measure to be non-empty.

Lemma A.6. Let p(X,J) = n( — A(X, J)) be a subsystem risk measure where

n is a positive homogeneous and subadditive univariate risk measure and A s
a subsystem construction scheme such that the functions x — A(x,J) are con-
tinuous for all J € P. Then we have that C5(X) # 0 for all X € X with

CZ(X(w)) # 0 for allw € Q.

Proof. Let X € X% such that CZ(X(w)) # 0 forallw € Q. It is well-known

that the set-valued function C~ mapping all possible v : P — R to its core is
upper hemicontinuous, see for instance Delbaen (1974). Since x — A(z,-) are
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continuous, we get that the set-valued composition C7 (z) =C~ o A(z,-) is also
upper-hemicontinuous, i.e. for all open A C R¢, we have that {z € R?: C1(z) C
A} is open. Moreover this implies that C’i is measurable and thus according to
Theorem 8.1.3 in Aubin and Frankowska (2009) there exists a Borel measurable
selection of C’/{ . Therefore there also exists a measurable selection K € X% of
C5(X), ie. K(w) € 5 (X(w)) for each w € Q. Now, define the subsystem risk
measure

ﬁ:deP—HR;(K,J)Hn<ZKj> .

jed

By applying Lemma A.3 we obtain that C7(K) # (. The monotonicity of 7
yields

as well as for all J € P

and it immediately follows from Lemma 2.5 that also CT(X) # 0 O

In particular Lemma A.6 implies that for every coherent risk measure 7 :
X — R the core of the subsystem risk measure no A° is always non-empty. Note
that this is possible since both the coherent risk measure 1 and the subsystem
construction scheme AY share the same perspective towards diversification, that
is joining to subgroups always results in a risk reduction. Unfortunately, for
subsystem construction schemes for which the reverse core is non-empty like A€
this is no longer true. Thus it is more problematic to obtain a similar result
as in Lemma A.6, i.e. that the reverse core of a random risk is non-empty if
the reverse cores for the corresponding scenario-wise deterministic risks are non-
empty. For instance this would hold if we ask that the univariate risk measure n
is superadditive instead of subadditive, i.e.

n(F+G)>n(F)+n(G) forall F,G e X.

However, the requirement of superadditivity is less clear on the level of the uni-
variate risk measure compared to the level of aggregation. Clearly, a compromise
in this context would be a linear risk measure.

Moreover, if we have a scenario-wise non-emptiness of the reverse core, but
we insist upon a subadditive univariate risk measure, then a possible workaround
is to consider the transition to the equivalent core. That is, if we suppose that
there exists a k(w) € C{ (X (w)) for all w € €, then it follows by Lemma 4.3 that
k(w) € C5 (X(w)) for all w € Q, where

AMX(w),J) == AX(w)) = A (X(w), J).
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Now, define -

where 7 is positive homogeneous and subadditive univariate risk measure. By
Lemma A.6 we obtain that C; (X) # (. However, we remark that this is in
general not equivalent to the reverse core of p(X,J) := n(—A(X,J)). To be
more precise we only have that C; (X)) # 0 with

ﬁ(X’ J) = ﬁ(X7I) _ﬁ(Xv Jc) = p(X) _n(A(Xv J) _A(X))

In the special case of a linear univariate risk measure n, we also obtain that
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