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Abstract

Systemic risk, i.e. the risk that a local shock propagates throughout a given system due
to contagion effects, is of great importance in many fields of our lives. In this summary
article we show how asymptotic methods for random graphs can be used to understand
and quantify systemic risk in networks. We define a notion of resilient networks and present
criteria that allow us to classify networks as resilient or non-resilient. We further examine the
question how networks can be strengthened to ensure resilience. In particular, for financial
systems we address the question of sufficient capital requirements. We present the results in
random graph models of increasing complexity and relate them to classical results about the
phase transition in the Erdds-Rényi model. We illustrate the results by a small simulation
study.

Keywords: systemic risk, financial contagion, capital requirements, inhomogeneous random
graphs, weighted random graphs, directed random graphs

1 Introduction

One possible attempt to define Systemic Risk is that in case of an adverse local shock (infection)
to a system of interconnected entities a substantial part of the system, or even the whole system,
finally becomes infected due to contagion effects. In an evermore connected world systemic risk
is an increasing threat in many fields of our life, examples include the epidemic spread of diseases,
the collapse of financial networks, rumor spreading in social networks, computer viruses infecting
servers or breakdowns of power grids. However, as for example the recent financial crisis has
demonstrated, traditional risk management strategies and techniques often only inadequately
account for systemic risk as they predominantly focus on the single system entities and only
insufficiently consider the whole system with its potentially devastating contagion effects. It
is thus of great interest to develop new quantitative tools that can support the process of
identifying, measuring, and managing systemic risk. This problem has been addressed in a
number of papers now and the literature is still growing. One active line of research is the
extension of the axiomatic approach to monetary risk measures from Financial Mathematics,
initiated in [7], to systemic risk measures, see e. g. [111, B0, 24} 25, Bl 19, 6]. Another interesting
analysis of systemic risk is based on an explicit modeling of the underlying network of interacting
entities and potential contagion effects, see [17, 22, BI, B, B2, 12]. For a further overview
of different methods and concepts to address systemic risk, the reader is referred to the two
monographs [20] and [27]. In this chapter, we give an account of how such tools can be developed
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for large networks in the framework of random graph models, which allows both for an explicit
modeling of the underlying network structure as well as of the contagion process propagating
systemic risk. This area of research has been initiated by the work [21], [2] and further developed
in [I5] and [16].

For a system with n entities (nodes) with labels in [n] := {1,...,n}, rather than dealing
with a specific deterministic network we consider a random graph model G on a given proba-
bility space (€2, F,P), where for each scenario w € €2 the realized network is represented by its
adjacency matrix G(w) € {0,1}"*". We want to exclude self-loops from the graph and hence
assume G;; = 0 almost surely for all ¢ € [n]. Further, if we consider undirected networks, then
Gij(w) = Gj;(w) for all 4,5 € [n]. If G; ;(w) = 1, then we say that (7,7) is an edge of G.

The motivation for choosing such a random graph framework is twofold. From a modeling
point of view, risk management deals with the uncertainty of adverse effects at a future point
in time. In many situations, however, not only the future adverse shock is uncertain but also
the specific network structure. While the statistical characteristics (degree distribution, ...) of
the considered network often remain stable over time, the specific configuration of edges may
change. This uncertainty is then represented by a suitable random graph model. Secondly, from
a mathematical point of view, the framework of random graphs allows for the application of the
law of large number effects when the network size gets large. This enables the analytic derivation
of asymptotic results that hold for all “typical” future realizations G(w) of large networks (more
precisely, the results hold with high probability (w.h.p.), that is with probability growing to 1
when n tends towards infinity). In this sense our systemic risk management results are robust
with respect to the uncertainty about the future network configuration and applicable to all
“typical” networks that share the same statistical characteristics.

The random graph models we consider are characterized by the fact that each possible
edge e is included independently with some probability p.. Our models differ in the way the
marginal probabilities are actually specified: if all p, are equal, then we call this the homogeneous
setting. This is the classical Erdos-Rényi model. We refer the reader to 9, I, 28] for an excellent
introduction to the model and its asymptotic properties. All other cases are called heterogeneous
and the resulting model is often called the inhomogeneous random graph in the literature. In
the latter case the actual degree of heterogeneity has an important effect on several structural
characteristics of the resulting graphs (as for example the distribution of the edges in the graph,
or the emergence of a core-periphery structure), and we will exploit this effect to capture realistic
situations. The recent monograph [26] gives an extensive introduction to this heterogeneous
model and its alternatives including the configuration model.

In addition to the specification of a random graph model, we explicitly model the conta-
gion effects by which an initial local shock propagates throughout the system. The contagion
processes we consider in this chapter are generalizations of the so-called bootstrap percolation
process. The essential feature specifying the contagion process is the assumption that each node
1 is equipped with a threshold value 7; € N that represents the “strength” of node ¢ to withstand
contagion effects. Given a subset I C [n] of initially “infected” nodes, the contagion process
can then be described in rounds where node i € [n] gets infected as soon as 7; of its neighbors
are infected. This contagion process then clearly ends after at most n — 1 rounds leading to the
set of eventually infected nodes triggered by the initially infected nodes I. The essential risk
indicator underlying our analysis of systemic risk is then the final infection fraction

number of finally infected nodes
Q= (1.1)
n

given by the number of finally infected (or defaulted) nodes triggered by the set I of initially
infected nodes divided by the total number of nodes in the network.



When such a contagion process is studied on a random graph G, the final default fraction
an(w) is a random variable that depends on the realized network G(w), and the first main
question is whether one can quantify the final default fraction. Asymptotically for large networks
this question can be answered positively for the random graph models we consider, and we show
that the final default fraction is given by some deterministic, analytic formula depending on
the statistical network characteristics and the contagion process in the limit in probability as
n — 0o. So roughly speaking, when the network size n is large enough, the final default fraction
can be computed analytically and it will be the same for almost all network realizations G(w)
of the random graph G (and in this sense is robust with respect to the uncertainty about the
future network structure).

Based on the analysis of the final default fraction we then develop a quantitative concept to
asses the systemic riskiness of a network. More precisely, we present a mathematical criterion
formulated in terms of the network statistics that characterizes whether a network is resilient
or non-resilient with respect to initial shocks. Roughly speaking, a network is resilient, and
thus acceptable from a systemic risk point of view, if small shocks remain small, and it is
non-resilient, and thus non-acceptable from a systemic risk point of view, if any initial shock
propagates to a substantial part of the system, no matter how small the initial shock is. We will
see that in terms of this resilience criterion the systemic riskiness of a network heavily depends
on the topology of the graph. In particular, as long as the degree sequence possesses a second
moment only local effects determine whether a network is resilient or not and the absence of
so-called contagious edges in the network guarantees resilience. Here, an edge (i,7) is called
contagious if the mere infection of node j leads to the infection of node i (or vice versa). If,
on the other hand, the degree sequence has infinite second moment, a property that many real
world networks share, many global effects contribute to the contagion process and the absence
of contagious links no longer implies resilience.

Once a measure of systemic risk is introduced, the second important question is how to
manage systemic risk, i.e., how to design or control a system such that it is acceptable from a
systemic risk point of view. In our framework we analyze this question in the following sense:
For a given graph structure, how does one have to specify the threshold values 7;, i € [n],
such that the network becomes resilient? For example in the context of financial networks,
requirements on 7; can be interpreted as capital requirements imposed on a financial institution
i € [n]. Using above mentioned resilience criterion, it follows immediately that for networks
with finite second moment of the degree sequence the requirement 7; > 2, i € [n], is sufficient
for resilience since this excludes contagious edges. For networks without finite second moment
of the degree sequence this management rule is insufficient for securing a system and we will see
that highly connected nodes need to be equipped with higher threshold values. In particular, we
will characterize resilience/non-resilience in terms of a specific functional form for the threshold
values, where the threshold value 7; for node i can still basically be determined locally by
only knowing the profile of node i. This striking feature is possible due to averaging effects in
large random graphs and it is in contrast to other management (or allocation) rules obtained
in deterministic networks that for each node can only be specified in terms of the complete
network structure.

In the course of this chapter we expose the program sketched above in gradually increasing
complexity of both the underlying random graph model and the contagion process. In Sec-
tion [2.1] we consider the homogeneous setting of the well-studied Erdos-Rényi random graph
and the classical bootstrap percolation process with constant threshold values. In Section [2.2
to account for more realistic features of many empirically observed networks, we extend the
homogeneous setting to both heterogeneous random graphs and threshold values, which in par-
ticular allows for graphs with infinite second moment degree sequences. Finally, in Section [2.3



we focus on the modeling of financial networks where the contagion process is driven by capital
endowments and exposures of the financial institutions. This contagion process represents a
further extension/generalization of the threshold-driven contagion process. The results of both
Sections and Were originally derived in [15, [16]. It is the aim of this chapter to summarize
this work and make our results comprehensible to a broad audience of different backgrounds.

2 Models of networks and contagion processes

In this section we will describe various models of random networks and contagion processes,
accompanied by several results characterizing their qualitative behavior. The presentation will
be such that the complexity of both the considered networks models, as well as the contagion
process, increases gradually from a rather homogeneous setting to one that may resemble some
realistic situations quite well.

Random Graph Models Our random graph models have the following common character-
istics. We assume that a number n of nodes with labels in [n] := {1,...,n} is given. The set
of possible edges E,, consists then either of all unordered pairs {i, j}, where i # j (“undirected
graph”) or all ordered pairs (i, j), where again ¢ # j (“directed graph”). The graph G is spec-
ified by including each possible edge e independently with some probability p.. Our models
differ in the way the marginal probabilities (pe)ecr, are actually specified: if all p. are equal,
then we call this the homogeneous setting, and all other cases are called heterogeneous. In the
latter case the actual degree of heterogeneity has an important effect on several structural char-
acteristics of the resulting graphs (as for example the distribution of the edges in the graph, or
the emergence of a core-periphery structure), and we will exploit this effect to capture realistic
situations.

Contagion Processes The contagion processes that we consider here resemble and extend
the well-studied bootstrap percolation process, which has its origin in the physics literature [10].
In the classical setting a graph G is given and initially a subset I of the nodes is declared infected.
We will make the assumption that each node is initially infected with some probability ¢ > 0,
independently of all other nodes. The process then consists of rounds, in which further nodes
may get infected. Similar as with the random graph also the infection rules that we study will
become gradually more complex to represent more realistic settings. We start with the simple
rule 1BP where a node becomes infected as soon as one of its neighbors becomes infected. More
complex rules we study then allow for variation in the nodes’ individual infection thresholds
(for example, rBP stands for the rule in which each node has threshold r) and the impact of
different edges. More concrete rules will be introduced later. In all cases we will be interested
in the size of the set of eventually infected nodes. For each finite graph size n this is a random
number which depends on the realized graph configuration. However, due to averaging effects
we will be able to compute the (random) fraction of eventually infected nodes ay,(€) as in
as a deterministic number «(¢) in the limit 7 — 0o under some mild regularity assumptions.

Resilience to Contagion For many applications the spread of the initially infected set to
the whole graph is of central importance. In some cases it may be favorable if a small fraction
e of initially infected nodes spreads to a large fraction of the whole graph; in other cases such
behavior would be rather worrisome. To capture these two different kinds of possible behavior,
we give the following definitions:

Definition 2.1. A network is said to be resilient if a(e) — 0 as e — 0.



Definition 2.2. A network is said to be non-resilient if there exists some lower bound o > 0
such that a(e) > « for all € > 0.

Definition characterizes a network as being resilient (to small initial infections) if the
final fraction of infected nodes vanishes as the fraction of initially infected nodes € tends to 0. In
this case, small local shocks cannot cause serious harm to the system but they only impact their
immediate neighborhood in the graph. On the other hand, Definition classifies networks
as non-resilient if every howsoever small initial fraction ¢ > 0 causes a positive fraction of at
least @ > 0 of eventual infections. In particular, the amplification factor «(e€)/e explodes as €
becomes small and the effects are not locally confined anymore.

2.1 Homogeneous setting

In this section we study the homogeneous setting which comprises three assumptions. First, the
graph is undirected, i. e. we have n nodes and the set of possible edges is E,, := ([g}) ={{i,j5}:
1 <14,j <n,i#j}. Second, for every e € E, we assume that p. = p, that is, the probability
that an edge is present is the same for all edges. This is a classical and well-studied model of
random graphs that was first introducted in [23], 18] and it has been investigated in great detail
since then, see [9] for an excellent introduction. Our third and final assumption is that in the
contagion process all nodes are initially infected with the same probability ¢ and the infection
thresholds are also equal to some number r € N, which means that any node becomes infected
as soon as (at least) 7 of its neighbors are infected. This infection process is well understood
and treated in detail in [29] and all results in this section are either special cases of results in
[29] or easily arise from them.

We shall use the standard notation G, for a random graph with n nodes and edge prob-
ability p as described in this section. For different choices of p this graph shows different char-
acteristics and can range from a very sparse, loosely connected graph to a very dense graph. In
particular, note that the number e(G,, ;) of edges in Gy, follows a binomial distribution with
parameters |E,| = (g) and p. Thus, the expected number of edges in G, equals (g) p, and
their actual number is typically close to this value. Here we will focus especially on the case
p =p(n) = c/n for some ¢ > 0, as then E(e(Gyp)) = §(n — 1) ~ cn/2, a quantity that is linear
in the number of nodes and thus most interesting for the applications that we have in mind.
See Figure [1| for an illustration of such a network.

A well-known structural property of the random graph G, ./, that will become quite handy
later is that, as n — oo, the (random) degree deg(i) of each node i € [n] converges weakly to
a Poisson distribution with parameter ¢. Furthermore, if one considers the (random) empirical
degree distribution

Fo(k) :=n""> " 1{deg(i) <k}, keNo

i€[n]

then the following statement is true (see for example [26, Theorem 5.12]):
Lemma 2.3. As n — oo, F, converges to a Poisson distribution with parameter c.

After having introduced the underlying random graph model for this section, we are now
interested in analyzing the contagion mechanism. Recall that regarding the contagion process
we assume that each node is infected initially with some probability ¢ > 0 and independently
of all other nodes. Nodes that are not initially infected shall become so as soon as r € N of
their neighbors are infected, i.e. 7, = r for all nodes ¢ € [n] that are not infected initially. In
the sequel we distinguish the cases » = 1 and r > 2 for the infection threshold of each node.
Our main focus will be to distinguish between two fundamentally different behaviors:



Figure 1: A typical configuration for G,,, with n = 100, ¢ = 4 and p = ¢/n. Node sizes scale
with the corresponding degree.

r = 1: Observe that in this case a node gets infected as soon as any of its neighbors is infected.
In particular, if 4 is a node that was infected at the beginning of the process, then eventually
the whole connected component containing ¢ will become infected; hence the behavior of the
process is intimately related to the component structure of Gy, ). Here, the famous result of
Erdés and Rényi (see [I] for example) regarding a phase transition in the component structure
comes to help. Let us write L(Gy,p) for the random number of nodes in a largest connected
component of Gy, .

Theorem 2.4. Let ¢ > 0 and p = ¢/n. Then, as n — oo,
e if c < 1, then there ewists k € (0,00) such that log~ ' (n)L(Gyp) — Kk in probability.
e if ¢ > 1, then there exists A € (0,00) such that n " L(Gyp) — X in probability.

A first important consequence of this result is that if ¢ > 1, then, no matter how small ¢ > 0
is chosen, w.h.p. (i.e. with probability converging to 1 as n — o0) at least one node in the
largest component will be infected and in turn at least a fraction A of the nodes in the graph
will eventually become infected. We hence derive the following result:

Theorem 2.5. Consider the random graph model Gy, with p = ¢/n and threshold r = 1. If
c > 1, then the system is non-resilient.

Regarding the case ¢ < 1 it turns out that G,, ./, is resilient according to Deﬁnition We
do, however, need more information about the random graph than only the size of its largest
component in order to conclude this. Indeed, from a heuristic point of view, the following
consideration is helpful: Let a(e) € [e, 1] be the (a priori possibly random) fraction of eventually
infected nodes. Each of the eventually infected nodes is either infected from the beginning, which
happens with probability €, or otherwise it must have at least one infected neighbor. We know
that the degree of each node is Poisson distributed with mean ¢ in the limit n — oo. Since a
fraction «a(e) of all nodes is eventually infected, for each node ¢ that becomes infected during the
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Figure 2: Plot of f, for € € {0.05,0.1,0.15,0.2} and ¢ = 0.5 (a) respectively ¢ = 1.5 (b). In
black the diagonal h(z) = z.

process (not initially infected) the number of infected neighbors can be expected to be Poisson
distributed with parameter ca(e). This heuristic argument yields the identity

ae) = e+ (1 — ¢)P(Poi(ca(e)) > 1)
The fraction «(e) should then be a fixed point of the function
fe(z) == e+ (1 — ¢)P(Poi(cz) > 1).

Since fe is continuous, f(0) =€ > 0, and fc(1) < e+ (1 —¢€) = 1, there always exists at least
one fixed point of f. within (0, 1]. Further, since f”(2) = —c*(1 — €)e=%* < 0 for all z € [0, 00),
there can only exist one solution Z to fc(z) = z. This solution must hence coincide with the
final fraction of infected nodes. Making this heuristic argument rigorous (compare to Theorem

, we derive the following result.

Theorem 2.6. Consider the random graph model Gy, ;, with p = ¢/n and threshold r = 1. Let z
denote the unique fixed point of fc(z). Then the fraction of eventually infected nodes converges
to a(e) = z in probability.

Regarding the case ¢ < 1, note that as the initial infection probability € — 0, the fixed point
of f.(z) also converges to 0 since f.(z) < e+ (1 — €)cz and hence 2 < €(1 — ¢)~!. See Figure
for an illustration. This means that the final fraction of infected nodes vanishes and the
network is thus resilient according to Definition [2.1

Theorem 2.7. Consider the random graph Gy, with p = ¢/n and threshold r = 1. If ¢ < 1,
then the system is resilient.

On the other hand, for the case that ¢ > 1 the fixed point of f. is lower bounded for all
€ > 0 which is in line with Theorem see Figure

r > 2: Also in this case the same heuristic reasoning as for » = 1 shows that
ale) = e+ (1 — ¢)P(Poi(ca(e)) > r)

for the fraction a(e) of eventually infected nodes. This time, however, it is possible in general
that the function
fe(z) == e+ (1 — ¢)P(Poi(cz) > 1)



has one, two, or three different fixed points in (0, 1], depending on the values of ¢ and e. We
can still describe the final infection fraction by choosing the smallest fixed point but we require
an additional condition: A fixed point Z of f, is called stable if f!(Z) < 1. The following result
is then a special case of [29, Theorem 5.2.]:

Theorem 2.8. Let z be the smallest fized point of fe(z) in (0,1] and assume that it is stable.
Then the fraction of eventually infected nodes converges to a(e) = Z in probability.

The theorem gives us a way to compute the final infection fraction for any given ¢ and e.
In order to derive a statement about resilience of the network, note that P(Poi(cz) > r) <
P(Poi(cz) > 2) < (cz)?/2 and hence f.(z) < € + (cz)?/2. Thus the smallest fixed point 2 of f.
is upper bounded by (1 — v/1 — 2ec?)c2 which tends to 0 as € — 0. Regardless of ¢ we then

obtain the following statement.

Theorem 2.9. Consider the random graph model Gy, , with p = c/n. If r > 2 (no contagious
links), then the system is resilient.

After having introduced our measure of systemic risk, we can now employ the resilience
criteria formulated in Theorems and to derive the following management rules for the
network thresholds to control systemic risk in the homogeneous random graph: In the case that
¢ < 1, we do not need to impose any restrictions on the thresholds 7;, ¢ € [n]. For the case that
¢ > 1, it will be sufficient to require that 7; > 2 for all i € [n].

2.2 Getting heterogeneous

As a matter of fact, only few networks are homogeneous enough to be well described by an
FErdos-Rényi random graph. Most networks exhibit a strong degree of heterogeneity. The
aim in this section is to describe an enhanced random graph model that overcomes this issue.
Further, we change from the undirected random graph G, to a directed one since many real
world networks such as the network of interbank lending are directed. The model we present
here was proposed in [I5] and is a directed version of the Chung-Lu inhomogeneous random
graph, see [13, [I4]. The results presented in this section are special cases of results in [15] [16].
Notable earlier works on the contagion process rBP in an undirected inhomogeneous random
graph can be found in [5] 4].

We begin with a detailed description of the random graph model. We assign to each node
i € [n] two weights: an in-weight w; and an out-weight w;r. The in-weight describes the
tendency of i to develop in-coming edges (that is, edges pointing towards i), whereas the out-
weight describes the tendency of developing out-going edges (that is, edges pointing away from
i). To formalize this, define for each possible edge e = (i, j) going from node i € [n] to i # j € [n]
the edge probability p. by

Pe 1= min{l,n_lw;"wj_}. (2.1)
We denote the resulting random graph by G, (w~, w™), where w™ := (w,...,w,) and wt :=
(wf, ..., w}). The heterogeneity of the graph stems from assigning different weights to different

nodes. In order to make statements about the graph in the limit n — oo, it is required that
the graph grows in a somehow regular fashion. In fact, we require that the fraction of nodes
with weight level in any given interval stabilizes. To make this more precise define the empirical
distribution function
Fu(z,y) :==n"" Z H{w; <x,wl <y}
1€[n]



and let (W, ,W,) be a random vector distributed according to F,,. We shall assume that
(W,7,W,) converges in distribution to some random vector (W=, W), and that furthermore
E[W, ] = EW ] =: A" <ocoand E[W,[] — E[WT] =: A" < occ.

The random vector (W=, W) serves as a limit object that is stongly associated to the
sequence of random graphs G,(w~,w™) for n € N. We will see that it fully determines the
degrees of its nodes and the outcome of the contagion process. As for the homogeneous random
graph G, ,, also in the heterogeneous setting we can describe the degree of each node in the
limit n — oo. This time, every node i € [n] has an in-degree deg™ (i) and an out-degree deg™ (7).
As in the homogeneous setting, their distribution is based on a Poisson distribution but also
the weights w,” and wj play a role. More precisely, for large network sizes n it holds that
deg™ (i) ~ Poi(w; AT) and deg™ (i) ~ Poi(w; A~). To reverse the logic, it can be shown that in-
and out-degree of each node function as maximum-likelihood estimators of its in- and out-weight
(up to normalizing factors) when we want to calibrate our model parameters to some observed
network structure. One can thus basically think of the weights in our model as the realized
degrees of each node. It is hence no surprise that also the whole degree sequence is intimately
related to the weight distribution. Consider the (random) empirical degree distribution

Fo(k, 1) =n~" ) 1{deg™ (i) < k,deg™ (i) < 1}.

i€[n]

For a two-dimensional random vector (X,Y") let Z = (Poi(X), Poi(Y")) denote a two-dimensional
mixed Poisson random vector with probability mass function given by

o
Pz = k -k e—(X+Y)M.
J k! 4!

Then the degrees in the network are described as follows:

Lemma 2.10. The (random) empirical in- and out-degree distributions over all nodes converge
to the distribution of the random vector (Poi(W~A1), Poi(WtA™)).

In particular, G,,(w~,w™) has much more flexibility in its degree distribution than Ghe/n-
By choosing weights W~ and W with infinite variance it is even possible to describe networks
whose degree distributions have unbounded second moment — a feature that is often observed in
real networks. See Figures and for an illustration of the heterogeneity of G, (w =, w™).
Also compare with Figure [l} All three figures show graphs with exactly 200 edges but differ in
the realized degree sequences due to the different choices for the weight distributions.

For the description of the contagion process, note that in real networks not only the network
topology is very heterogeneous, but also the strengths of the different nodes. In the previous
section, we described the contagion process by rBP. However, there might be nodes that can
endure more defaults of their neighbors than others. Therefore, we assign an individual threshold
7; € NU{o0o} to each node describing the number of neighbors of i that need to become infected
before i becomes infected as well. For example, in a banking network, 7; can be thought of
as the capital of some bank 4. Let similarly as before (W, ,W,7,T,) be a random variable
with distribution equal to the empirical distribution of the weights and thresholds and assume
that also for the extended network, (W, , W, ,T,,) converges in distribution to some random
vector (W=, W, T). Similar as in the previous section, under these mild assumptions it is then
possible to determine the fraction of eventually infected nodes by computing the smallest fixed
point of a certain function. For € > 0 let

fo(2) == E[WH] + (1 — E[WHP(Poi(W™2) > T)],



Figure 3: Typical configurations for G,,(w~,w™) with n = 100 and Pareto-distributed weights
with shape parameter (a) 3.5 (bounded second moment) respectively (b) 2.5 (unbounded sec-
ond moment). For simplicity the graphs are depicted undirected. Node sizes scale with the
corresponding degree.

which is clearly a continuous function. Since f.(0) = € and f(E[W™]) < E[WT], there will
always exist at least one fixed point 2 of f. within (0, E[WT]]. As before we call such a fixed
point stable if f. is continuously differentiable at 2 with f/(Z) < 1. Then the following holds:

Theorem 2.11. Let Z be the smallest fixed point of fo and assume that it is stable. Then, the
fraction of eventually infected nodes converges in probability to

ale) =e+ (1 —¢)E[P(Poi(W™2) > T)].

For the sake of readability we restrict ourselves to the typical case that Z is stable in Theo-
rem For more general results see [15] [16].

Having quantified the final infection fraction we can then turn our attention to investigating
the resilience properties of the generalized heterogeneous networks. These are intimately related
to the behavior of fy(z) near z = 0. Assume that there is some zp > 0 such that fy(z) > z for
all z € (0, zp). Then for each € > 0 the smallest fixed point Z of f.(z) will always be larger than
2o (see Figure and the final fraction of infected nodes in the graph will w.h.p. be larger
than E[P(Poi(W~zp) > T)]). In particular, we derive the following theorem:

Theorem 2.12. Assume that there is zg > 0 such that fo(z) > z for all z € (0,29). Then the
system is non-resilient.

The assumption of this theorem is satisfied in particular if fy has right derivative larger
than 1 at z = 0. The remaing cases, see also Figure for an illustration, are covered by the
following result:

Theorem 2.13. Assume that fy(z) is continuously differentiable from the right at z = 0 with
derivative f}(0) < 1. Then the system is resilient.

We again refer to [15] for a version of Theorem which makes weaker but also more
technical assumptions on fj.
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Figure 4: Plot of the functions fy (dashed) and f. (solid) for € > 0, T' = 2 and weights W~ = W+
Pareto-distributed with shape parameter (a) 2.5 and (b) 3.5.

Let us now discuss some consequences of Theorems and in more detail. Let us
make the technical assumption E[W~W ™| < co. This is of course always satisfied if W~, W+
are independent, but it also captures many other cases in which there are significant correlations
between the in- and out-degrees of the nodes: a characteristic setting is for example when W~ ~
W, and then the condition guarantees that both W~—, W™ have bounded second moment.
Under the assumption E[W~ W] < co we get the explicit representation

f6(z) =EW " WTPPoi(W™ 2) =T — 1)]

and this is continuous for z € [0, c0). Hence Theorems and almost entirely characterize
resilience in this case. In particular, if 7 > 2 almost surely, we get f}(0) = 0 and hence by
Theorem [2.13] such networks are always resilient, which is consistent with our findings in the
previous section. This readily yields sufficient requirements to make the system resilient.

However, note that the condition E[W~W™] < oo is typically not satisfied for weights
(i.e. degrees) with unbounded second moment which are frequently observed for real networks,
such as interbank networks. It is then the case that also networks with 7 > 2 (or also T' > r for
any 7 € N) almost surely can satisfy the condition in Theorem and are hence non-resilient.
See Figure for simulations on networks of finite size with weights W~ = W™ according to
a Pareto distribution with shape parameter 2.5 (i. e. with finite first moment but infinite second
moment) and constant threshold 7' = 2. The final fraction of infected nodes concentrates around
the asymptotic lower bound of 92.7% and the networks are hence non-resilient (with exception
of only a few networks of very small size).

While the non-resilience property might be a favorable one in some applications where a
large coverage of the network is targeted, for many others, such as financial networks, resilience
is the desirable property. A characterization of resilient and non-resilient networks also in the
case that E[W~W™] = oo is hence of high interest. The reason why 7' > 2 is not sufficient
for resilience anymore is that there exist very strongly connected nodes in the network which
either receive a lot of edges (have high in-weight) and are hence very susceptible or send a lot
of edges (have high out-weight) and hence infect a large proportion of the network once they
become infected. Typically in networks there are nodes which have both high in-weight and
high out-weight which further increases the importance of their role in the infection process.
Exactly these nodes are the ones that have to be equipped with higher thresholds when it comes
to controlling systemic risk in the network.

Typically, as for example in the regulation of the financial sector, risk management strategies
intend to ensure the survival of some given node by focusing on the risk exposures towards
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Figure 5: Scatter plot of the final infection fraction for 10% simulations of finite networks.
Weights w,” = wf are drawn from a Pareto distribution with shape parameter 2.5 and initially
1% of all nodes are infected. The thresholds are given by (a) 7; = 2 respectively (b) 7, =
max{2, a.(w; )?}. In (a), the red line marks the asymptotic lower bound on the final infection
fraction of about 92.7%.

(i. e. infections from) other nodes and hence incoming links in the network. In this spirit we aim
to state threshold requirements which depend on a node’s in-weight. More precisely, we intend to
characterize resilience/non-resilience properties for heterogeneous networks where the thresholds
7; are given by 7(w; ) for some non-decreasing integer-valued function 7 : R — N. This then
allows for the management of systemic risk by deriving sufficient threshold requirements for
each particular node simply by observing (estimating) the respective in-weight and plugging it
into function 7.

We will see that the threshold requirements strongly depend on the tail of the weight dis-
tributions. What is typically observed for degree (weight) distributions of real networks is that
they closely resemble Pareto distributions in their tail. We thus assume in the following that the
weight distributions are Pareto distributions and refer to [16] for results on more general weight
distributions. That is, there exist parameters 5=, 37 > 2 (in order to ensure integrability of
W~ and W) and minimal weights w_. and w:ﬁn such that the weight densities are given by

fwre = (5 = D(wk,) 1w 1{w > w

min min/J*
It will turn out that the quantities

- Bt —1 ~ -
ng -1 B~ and ac:= mwr—;in(wmin)l b

Ve : =2+

play a central role in determining sufficient threshold requirements. It holds that +. < 0 only
if E[W-W*] < co. In this case it is hence sufficient to require 7; > 2 for all i € [n] as has
been discussed above. For all other cases, we investigate systems with 7; = a(w, )” for certain
constants a and 7.

Theorem 2.14. Let the weights W~ and W be Pareto distributed with parameters 3=, 31T > 2
and w, . wh. >0 and assume that 7; = 7(w; ) for some function T : R — N\{1}. Then the

min’ 2 min
system is resilient, if one of the following holds:

1. v <0,

2. 7. =0 and liminf, o 7(w) > . + 1,
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3. ve > 0 and liminf, oo w7 (W) > .

Note that Theorem only derives sufficient requirements to make the system resilient. In
[16], it is shown that these requirements are actually sharp in the sense that networks become
non-resilient for thresholds 7; = 7(w; ) if 7 satisfies limsup,,_,,, w™7T(w) < @&, for a certain
&, > 0 which depends on the dependence structure between W~ and WT. In the case that
the weights are comonotone (nodes with larger in-weights also have larger out-weights and vice
versa), @, coincides with a, from Theorem

Moreover, Theorem only ensures resilience in the limit n — oo and € — 0. The de-
rived threshold requirements are, however, also applicable to reasonably sized finite networks
with positive initial infection probability. See for example Figure for simulations on net-
works with sizes in [10%,10%] and enforced threshold requirements 7; = max{2, a.(w; )} for
all i € [n]. The observed amplification is almost negligible. It is hence possible to implement
risk management strategies based on Theorem for real networks. Usually (if 7. > 0) such
strategies require larger (more connected) nodes to ensure higher resistance (threshold). How-
ever, since 37,37 > 2, it holds that . < 1 and the threshold function 7 thus only needs to
increase sublinearly with the weight. Finally, it is an appealing feature of our formula that for
each node i the required threshold 7; can be computed locally, i. e. only using information about
its own edges once a, and . are known. This contrasts our risk management strategies from
other approaches, where always knowledge about the entire system needed to be assumed.

2.3 A weighted contagion process

In the previous sections, the contagion process was always based on counting the number of
infected neighbors. In the first step, a node became infected as soon as any of its neighbors
became infected. Later, we allowed for » > 2 neighbors to default before a certain node became
infected and finally we assigned to each node i € [n] an individual threshold value 7;. For many
applications, however, the mere counting of infected neighbors is not enough, since rather the
strength of the links to these infected neighbors is the determining quantity. For instance, in an
interbank network, it is not the number of defaulted loans but rather their total amount that
is relevant for the infection process. In this section, we therefore enhance our previous model
once more to account for weighted edges.

In the specification of the random graph, we model the occurrence of edges as before by
. Additionally, we assign to each node j € [n] a sequence of possible exposures F j,. .., Ey
modeled by exchangeable R -valued random variables, meaning that the order of the exposures
does not influence their joint distribution. The random variable E;; shall then describe a
possible exposure from node ¢ to node j. That is, we want to place it on an edge going from
i to j if this edge is present in the graph. The assumption that the exposure list consists
of exchangeable random variables is sensible for networks in which the strength of a link is
determined by the receiving edge rather than by the sending edge (note that the exposure lists
can significantly vary between different nodes j € [n]).

In order to describe the contagion mechanism, we now assign to each node i € [n] an R-
valued parameter ¢; resembling the strength of ¢. Motivated by the application to financial
networks we will call ¢; the capital of ¢ hereafter. Similarly as previously we then describe the
contagion process in the network as follows: At the beginning a fraction € > 0 of all nodes is
infected. Other nodes in the network become infected as soon as their total exposure to infected
nodes exceeds their capital. Note that our previous model is incorporated in this new model
simply by choosing integer-valued capitals and F; ; = 1 for all 7 # j. In this case, the capitals
¢; had the interpretation of threshold values. In analogy to the previous model, we therefore
introduce for each node i € [n] a threshold value 7; which shall count the number of neighbors
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that can cause the infection of . To be more precise, 7; shall be the smallest integer value such
that Zé<n Ey; > ¢; if such a value exists. If Y7 | Ey; < ¢;, we simply set 7; = co. Then 7; is
a random variable and it only describes a hypothetical threshold value since usually the nodes
will not become infected in their natural order during the infection process. We now assume
that still in the limit when the network size n — oo the thresholds are described by a random
variable T. Then due to exchangeability of the exposure random variables and large network
effects we can restate Theorem for this new model, where again

fe(2) = EWT] + (1 — ) E[WTP(Poi(W~2) > T)].

Theorem 2.15. Let Z be the smallest fixed point of f. and assume that it is stable. Then, the
fraction of eventually infected nodes converges in probability to

ale) = e+ (1 —¢)E[P(Poi(W™2) > T)].

Also the results about non-resilience and resilience of the network generalize to the more
complex setting.

Theorem 2.16. Assume that there is zg > 0 such that fo(z) > z for all z € (0,29). Then the
system non-resilient.

Theorem 2.17. Assume that fo(z) is continuously differentiable from the right at z = 0 with
derivative f}(0) < 1. Then the network is resilient.

Finally, under some rather mild assumptions on the exposure sequences such as E[E; ;| = u;
for all j € [n], we can also reformulate Theorem for the new model which equips us with a
formula for sufficient capital requirements to secure a system. See [16] for a precise formulation
of Theorem [2.18| and its assumptions.

Theorem 2.18. Let the weights W~ and W be Pareto distributed with parameters 3=, 3T > 2
andw, ., wntm > 0. Further assume that ¢; > maxX;ep,) Ej; (the capital is larger than the largest

exposure) almost surely for all i € [n]. Then the following holds:
1. Ifv. <0, then the system is resilient.

If additionally, there exists a function 7 : R — N such that the capitals satisfy ¢; > T(w; )i
almost surely for all i € [n], then the system is resilient if one of the following holds:

2. 7. =0 and liminf, oo w™7(w) > 0 for some v > 0,
3. 7e > 0 and liminf, oo w7 (W) > .

In particular, in the usual case that 7. > 0 (for example 83—, 7 < 3) Theorem ensures
resilience if each institution ¢ holds capital larger than a.(w; ) u; (and not less than its largest
exposure). As before, this is a quantity that can be computed by each institution individually
simply by counting and averaging their exposures in the system. The theorem hence provides
us with an easy applicable risk management policy to prevent networks from systemic risk. To
test its applicability we pursue simulations similar to the ones from Figures and but
enrich the network with Pareto distributed exposures with shape parameter 2.5. As can be seen
from Figure it is not sufficient to only prohibit contagious links in the network in order to
make the system resilient. The derived capital requirements from Theorem [2.18] on the other
hand ensure resilience of the system as can be seen from Figure Note that the outcome
of the simulation is more volatile than for the threshold model from Section 2.2] since also the
exposure sizes carry a lot of randomness. Still our derived capital requirements work very well
to contain the infection.
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Figure 6: Scatter plot of the final infection fraction for 10* simulations of finite weighted net-
works. Node-weights w,;” = wf are drawn from a Pareto distribution with shape parameter 2.5
as are the edge-weights F;;, and initially 1% of all nodes are infected. The capitals are given by
(a) ¢; = 1.001 max;¢, Fj; respectively (b) ¢; = max{1.001 max;cf, Eji, ac(w; )epi}. In (a),
the red line marks the average final fraction over all 100 simulations for each network size.
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