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Abstract

We propose an approach for pricing and hedging weather deriva-
tives based on including forward looking information about the tem-
perature available to the market. This is achieved by modeling tem-
perature forecasts by a finite dimensional factor model. Temperature
dynamics are then inferred in the short end. In analogy to interest
rate theory, we establish conditions which guarantee consistency of a
factor model with the martingale dynamics of temperature forecasts.
Finally, we consider a specific two-factor model and examine in more
detail pricing and hedging of weather derivatives in this context.
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1 Introduction

Pricing and hedging of weather derivatives has attracted a lot of attention, by
a variety of different approaches. One possibility, as employed in e.g. Dornier
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& Queuel [9], Alaton, Djehiche & Stillberger [1] and Benth & Šaltytė-Benth
[2], is to model the temperature as an Ornstein-Uhlenbeck process plus a
seasonality function, and to obtain the risk-neutral dynamics by adding a
market price of risk which is obtained by calibration. Long-range effects
have been incorporated in Brody, Syroka & Zervos [5]. As the market for
weather derivatives in general is incomplete, Davis [7] proposes to consider
the ‘zero marginal rate of substitution’ price, whereas Platen & West [15]
use a benchmark approach to derive a fair price. Density weather forecasts
via time series for weather derivatives pricing are studied in Campbell &
Diebold [6], whereas Jewson & Caballero [14] propose a ‘pricing by pruning’
approach: the price is obtained as an expectation under a measure change
which incorporates probabilistic weather forecasts. A detailed account on
various methods is given in Dischel [8], Geman [10], Geman & Leonardi [11]
and Jewson & Brix [13].

In this paper, the primary objective is to specify a temperature mar-
ket model for pricing and hedging of temperature derivatives which also in-
cludes forward looking information about future temperature available to
the market. Contrary to traded underlyings, temperature does not reveal
all forward looking information available to the market only by its past evo-
lution. Thus all models that consider the filtration generated by the tem-
perature only as market information are built on a fundamental information
miss-specification. Instead, we start with a model for the complete curve
of meteorological temperature forecasts as an unbiased estimator of future
temperature. This can be realized as a conditional expectation with respect
to the market filtration. We assume the market filtration is generated by a
multidimensional Brownian motion and aim for setting up a parsimonious
factor model. In a sense we take a reduced form approach to information
modeling: rather then including explicitly specific forward looking informa-
tion we model a phenomenon (meteorological temperature forecasts) that is
assumed to integrate all information about temperature available to the mar-
ket. The current temperature is then read off in the short end of the forecast
curve. An important issue hereby is that the forecast curve has to be consis-
tent. This means that it should satisfy a martingale dynamics in view of our
interpretation of it as a conditional expectation of future temperature. One
of our main contributions is to characterize consistent factor models for the
most popular curve families. We then study in detail a consistent two-factor
model. This model is rich enough to capture different types of qualitative
behavior of forecast curves in the shorter end, including a temporary increase
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in forecasted temperature prior to reversion to the seasonal function. More-
over, we address pricing and in particular hedging of temperature derivatives
by futures contracts in this in general incomplete market context.

For a more detailed formulation, we move now to a more precise math-
ematical description of our approach. Let (Ω,F , (Ft)t≥0,P) be a filtered
probability space fulfilling the usual conditions. We denote by τ(t) the tem-
perature at time t at a geographical location of interest and, without loss of
generality, we assume the risk free interest rate to be zero. Consider a tem-
perature sensitive derivative with maturity T and payoff g(τ(.)) depending
on the temperature path. Then the arbitrage free price process π(t) of the
derivative is given by

π(t) = EQ[g(τ(.))|Ft] , (1)

where Q is an equivalent local martingale measure (which in our situation
can be any measure equivalent to P since the underlying temperature is not
a traded asset) and the filtration (Ft)t≥0 represents the information available
to the market at time t. As mentioned above, to compute (1), one approach
in the literature is to specify a reduced form model for the temperature. For
example, in [2] the following mean reverting dynamics is proposed:

τ(t) = Λ(t) +X(t) (2)

dX(t) = −λX(t) dt+ σ(t) dW (t) ,

where Λ(t) is a deterministic seasonality function, λ > 0 is the mean reversion
rate, σ(t) is the deterministic and seasonal varying volatility, and W (t) is
Brownian motion. The model is then estimated on historical temperature
time series, and it appears that already the fairly simple model (2) together
with an appropriately chosen volatility function σ(t) yields a rather good fit
to temperature dynamics.

To compute derivative prices in analogy to model approaches on classical
financial markets, one can assume that the information filtration (Ft)t≥0
in (1) is generated by the underlying temperature or respectively by the
temperature driving noise. Further, in order to identify the pricing measure
Q the market price of risk could be determined by calibration to market
prices. See for example [1] or [2].

However, the transfer of assumptions from classical financial markets with
stocks as traded underlyings to new illiquid markets where the underlying
(like temperature) might even not be traded at all appears to be problematic.
In particular, the assumption that all information available to the market is
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incorporated in the past evolution of the underlying might be acceptable for
storable assets, but for non-storable underlyings (like temperature or electric-
ity) this assumption is fundamentally wrong. In contrast to storable assets,
one cannot profit from forward looking information about non-storable assets
by taking long or short positions today. Thus, forward looking information
available to the market is not reflected in the past evolution of the non-
storable underlying and is therefore not included in the filtration generated
by the underlying. In the case of temperature there is obviously lots of me-
teorological forward looking information available to the market that is not
included in the past evolution of the temperature.

One way to deal with this information misspecification in the model could
be to enlarge the filtration (Ft)t≥0 by forward looking information. This
ansatz is proposed in [4] in the context of electricity markets. It seems,
however, rather difficult to explicitly enlarge the filtration by all forward
looking information available to the market. Further, from a mathematical
point of view, one encounters the theory of enlargement of filtrations which
restricts the type of included forward looking information by its analytic
tractability.

Instead, the idea of this paper is to set up a reduced form model for an
indicator which integrates all forward looking market information in addition
to the evolution of the underlying. More precisely, in this paper about tem-
perature markets we suggest to set up a model for meteorological temperature
forecasts

f(t;T ) = E[τ(T )|Ft] . (3)

Here f(t;T ) denotes the forecast given by the meteorologists at time t of
the temperature at time T , and (Ft)t≥0 is the filtration of all available in-
formation. Given Ft, the forecast f(t;T ) is thus an unbiased estimator of
the temperature τ(T ) and can be expressed as conditional expectation in
(3) under the real world probability measure P. To compute the derivative
price in (1), the temperature τ(t) = f(t; t) is inferred in the short end of the
forecasts and the evolution of the temperature will now also be governed by
the forward looking meteorological information integrated in the forecasts.
Note that by assumption the filtration (Ft)t≥0 now represents all information
available to the market.

In this paper we propose to model the complete forecast curve by finite
dimensional factor models. In Section 2 the general theoretical foundations
are laid down for consistent forecast factor models, in analogy to consistent
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factor models in interest rate theory (see ([12], Ch.9) and references therein).
Consistent factor models of affine, polynomial, and exponential-polynomial
type are examined in more detail. In Section 3 we present a specific con-
sistent 2-factor model for temperature forecasts, before we consider pricing
and hedging of derivatives written on temperature futures in this model in
Section 4. In general, the resulting market is incomplete and we compute
mean-variance hedging strategies in terms of solutions of associated partial
differential equations.

2 Consistent factor models for temperature

forecasts

Let now W (t) be a d-dimensional Brownian motion generating the filtration
(Ft)t≥0 on our filtered probability space (Ω,F , (Ft)t≥0,P). We propose to
model the complete temperature forecast curve in (3) by an m-dimensional
factor model adapting the approach to factor models in interest rate theory
as presented in [12]. More precisely, we set

f(t, t+ x) = H(x, Z(t)), (4)

where the m-dimensional state process (Z(t))t≥0 is given by the diffusion
dynamics

dZ(t) = b(Z(t)) dt+ ρ(Z(t)) dW (t), Z(0) = z0, (5)

and H : R+ × Rm → R is a deterministic function. Note that we have
parameterized the model in terms of time to forecast x := T − t (which
corresponds to the Musiela parametrization in interest rate theory) rather
than in terms of forecast time T . This is a convenient parametrization when
modeling the evolution of a complete curve. The actual temperature is then
given for x = 0 by the short end of the curve: τ(t) = f(t, t).

We call a factor model admissible if it fulfills the following three assump-
tions:

• A1 H ∈ C1,2(R+ × Rm);

• A2 b : Rm → Rm is continuous and ρ : Rm → Rm×d is measurable and
such that the diffusion matrix

a(z) := ρ(z)ρ(z)T
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is continuous in z ∈ Rm;

• A3 The stochastic differential equation (5) has a unique Rm-valued
solution Z(t), for every z0 ∈ Rm;

Further, an admissible factor model will be called consistent if in addition
the following assumption is fulfilled

• A4 For fixed T > 0, the process f(t;T ) = H(T − t, Z(t)) is a P-
martingale with respect to the filtration (Ft)t≥0.

While the three conditions defining an admissible factor model are of a
technical nature, the consistency condition A4 stems from (3). Indeed, by
assumption A1 we can apply Itô’s formula on H and obtain

df(t, T ) = −∂xH(T − t, Z(t))dt+
m∑
i=1

∂ziH(T − t, Z(t))dZi(t)

+
1

2

m∑
i,j=1

∂zi∂zjH(T − t, Z(t))d 〈Zi, Zj〉t

=

(
−∂xH(T − t, Z(t)) +

m∑
i=1

bi(Z(t))∂ziH(T − t, Z(t))

+
1

2

m∑
i,j=1

aij(Z(t))∂zi∂zjH(T − t, Z(t))

)
dt

+
m∑
i=1

d∑
j=1

∂ziH(T − t, Z(t))ρij(Z(t))dWj(t), (6)

where a(z) = ρ(z)ρT (z) as defined above. For f(t;T ) to be a martingale, the
drift in (6) has to vanish. Letting t→ 0 in (6) and replacing T − t by x this
is the case if and only if

∂xH(x, z) =
m∑
i=1

bi(z)∂ziH(x, z) +
1

2

m∑
i,j=1

aij(z)∂zi∂zjH(x, z) (7)

for all (x, z) ∈ R+ ×Rm. Integrating both sides with respect to x thus leads
to the following result.
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Theorem 1. An admissible factor model is consistent if and only if the
following two conditions are fulfilled:
1)

∂xG(x, z) = H(0, z) +
m∑
i=1

bi(z)∂ziG(x, z) +
1

2

m∑
i,j=1

aij(z)∂zi∂zjG(x, z), (8)

for all (x, z) ∈ R+×Rm, where G(x, z) =
∫ x
0
H(u, z)du and a(z) = ρ(z)ρT (z)

as above.
2) The process

Y (s) :=
m∑
i=1

d∑
j=1

∫ s

0

∂ziH(T − t, Z(t))ρij(Z(t))dWj(t) (9)

is a P-martingale.

Condition (8) is the analogy to the consistency condition of factor models
for forward interest rates. Compared to the forward rate case, our consistency
condition has one term less and is therefore simpler: there is no term with
products of the derivatives of G(·, z) (see ([12], Ch.9) for further details). But
contrary to the forward rate case we require f(t;T ) to be a martingale and
not only a local martingale and thus have to check the additional condition
2) in Theorem 1 for a consistent factor model.

We make the following

Definition 2. The pair of diffusion characteristics {b, a} = {b(z), a(z)} and
the forecast curve parametrization H = H(x, z) are said to be consistent if
the corresponding factor model is consistent.

Suppose now that we are given a family of forecast curves H = H(x, z)
parameterized by the vector z ∈ Rm. A criterion to choose such a family
could for example be obtained by a principle component analysis performed
on historically observed forecast curves. The essential question then is if
at all there exists a factor process Z(t) which together with H yields an
admissible factor model. Or, in terms of Definition 2, if at all there exists
a pair of diffusion characteristics {b, a} that is consistent with the forecast
curve parametrization H. In the rest of this section we want to examine this
question in more detail where in particular we focus on the verification of
condition (8). To this end, we make the following
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Assumption 3. For the remaining part of this section we assume the factor
models to be admissible and such that condition 2) in Theorem 1 is fulfilled.

By Theorem 1 and the above assumption it is thus sufficient to check
condition (8) to verify consistency. A criterion for uniqueness and existence
of consistent factor models is given by the following result.

Theorem 4. Under Assumption 3, suppose that the functions

∂ziG(·, z) and
1

2
∂zi∂zjG(·, z) (10)

for 1 ≤ i ≤ j ≤ m, are linearly independent for all z in some dense subset
D ⊂ Rm. Then there exists one and only one consistent pair {b, a}.

Proof. Set M = m+m(m+ 1)/2, the number of unknown functions bk and
akl = alk. Let z ∈ D. Then there exists a sequence 0 ≤ x1 < ... < xM such
that the M ×M -matrix with k-th row vector built by

∂ziG(xk, z) and
1

2
∂zi∂zjG(xk, z),

for 1 ≤ i ≤ j ≤ m, is invertible. Thus, b(z) and a(z) are uniquely determined
by (8). This holds for each z ∈ D, and by the continuity of b and a hence for
all z ∈ Rm.

This Theorem tells us the following: if we use a parameterized curve
family {H(·, z)|z ∈ Rm} which fulfills condition (10) for daily estimation
of the temperature forecast curve, then any consistent P-diffusion model Z
for z is fully determined by H. However, in many situations condition (10)
is not fulfilled and one has greater flexibility to choose a consistent factor
process. In the remaining part of this section we will investigate this for the
most popular curve families: affine, polynomial, and exponential-polynomial
(in particular Nelson-Siegel and Svensson) curve families. Also we shortly
indicate how the consistency restrictions for forecast models compare to the
analogous consistency restrictions for forward rate models.

2.1 Affine curve families

From a mathematical point of view, the most tractable curve families are
functions H which are affine in z:

H(x, z) = g0(x) + g1(x)z1 + ...+ gm(x)zm. (11)
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In this case the second-order z-derivatives vanish and the consistency condi-
tion (8) reads

g0(x)− g0(0) +
m∑
i=1

zi (gi(x)− gi(0)) =
m∑
i=1

bi(z)Gi(x), (12)

where we define

Gi(x) =

∫ x

0

gi(u)du. (13)

Since all second-order z-derivatives of G(·, z) are equal to zero, they are
not linearly independent, and therefore condition (10) is not fulfilled: there
exists no unique solution for the pair {a, b}. In fact, we will see that b still
is uniquely determined but the matrix a is not subject to any consistency
restriction.

If the m functions Gi(x) are linearly independent, we can invert and solve
the linear equation (12) for a and b, as we did in the proof of Theorem 4.
Since the left-hand side of (12) is affine in z and if we assume the Gi(x) to
be independent, we obtain that b is also affine of the form

bi(z) = ci +
m∑
j=1

γijzj, (14)

for some constants ci and γij. Inserting this into (12) and matching constant
terms and terms with zk’s, we obtain the following system of differential
equations: 

∂xG0(x) = g0(0) +
m∑
i=1

ciGi(x)

∂xGk(x) = gk(0) +
m∑
i=1

γikGi(x), k = 1, ...,m.
(15)

We have thus proved:

Theorem 5. Suppose the functions Gi, 1 ≤ i ≤ m, are linearly independent.
If the pair {b, a} is consistent with the z-affine function H in (11) then b
is necessarily affine of the form (14). Moreover, the functions Gi solve the
system of equations (15) with initial conditions Gi(0) = 0.
Conversely, suppose Assumption 3 and that b is affine of the form (14), and
let gi(0), 1 ≤ i ≤ m, be some given constants. If the functions Gi solve the
system of equations (15) with initial conditions Gi(0) = 0, then the z-affine
function H in (11) is consistent with {a, b}.
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As announced above, there are no additional consistency restrictions on
the diffusion matrix a(z). This is in contrast to affine forward rate curve
models where also a(z) has to be affine and thus gives more freedom to choose
a consistent affine forecast model. As we have seen before, the reason for
this greater flexibility compared to forward rate models is the less restrictive
consistency condition (8).

2.2 Polynomial curve families

Polynomial curve families are given by a function H of the form

H(x, z) =
n∑
|i|=0

gi(x)zi, (16)

where we use the multi-index notation i = (i1, ..., im), |i| = i1 + ... + im and
zi = zi11 · · · zimm . Here n > 1 denotes the degree of the z-polynomial function,
which means that there exists an index i with |i| = n and gi 6= 0. Note that
the case n = 1 is the one of affine curve families treated above. In interest rate
theory it has been shown that consistent z-polynomial forward curve families
can have only degree n ∈ {1, 2} (see [12], Sec. 9.4). For polynomial factor
models for temperature forecasts this is not true anymore: the term which
induces restrictions on n in the forward rate case lacks in the consistency
condition for temperature forecasts. However, there will be restrictions on
the diffusion characteristics {b, a} (note that contrary to the case n = 1, also
the diffusion matrix a(z) is restricted for n > 1). Indeed, we will see that
consistency implies a factor process whose coefficients can be freely chosen
only up to degree one.

For notational simplicity we only focus on the special case m = 1, where
we simply identify i ≡ |i| = i1 ∈ {0, ...n} and can write equation (16) as

H(x, z) =
n∑
i=0

gi(x)zi.

Furthermore, we define Gi as in (13). We remark that the general case goes
through analogously.

Theorem 6. Suppose that Gi, 1 ≤ i ≤ n, are linearly independent functions.
Then consistency implies that the drift b(z) and the diffusion characteristics
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a(z) are of the form

b(z) = b1(z) + f(z) ; a(z) = a1(z)− 2zf(z)

n− 1
, (17)

where b1(z) is a polynomial of maximal order one, and a1(z) and f(z) are a
polynomials of maximal order two.

Proof. Equation (8) can be rewritten in the z-polynomial case as

n∑
i=0

(gi(x)− gi(0)) zi =
n∑
i=0

Gi(x)Bi(z), (18)

where we define

Bi(z) := b(z)izi−1 +
1

2
a(z)i(i− 1)zi−2.

By assumption we can solve the linear equation (18) for B, and thus Bi(z)
are polynomials in z of order less than or equal n for all 0 ≤ i ≤ n. Thus,
considering the case i = n, it follows that b(z) and a(z) are of the form

b(z) = b1(z) + f(z) ; a(z) = a1(z)− 2zf(z)

n− 1
, (19)

where b1(z) is a polynomial of maximal order one, a1(z) is a polynomial of
maximal order two, and f(z) is some function. Considering the case i = n−1,
it then follows that f(z) has to be a polynomial of maximal order two.

2.3 Exponential-Polynomial families

General exponential-polynomial curve families are of the form

H(x) = p1(x)e−α1x + ...+ pn(x)e−αnx,

where pi denote polynomials of degree ni. In the following we will concentrate
on the Nelson-Siegel and Svensson families which are very popular special
cases of exponential-polynomial curve families.

The Nelson-Siegel family. The four-dimensional Nelson-Siegel curves are
given by

HNS(x, z) = z1 + (z2 + z3x)e−z4x.
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Theorem 7. Given Assumption 3, the diffusion characteristics {b, a} are
consistent with HNS if and only if

b1(z) = b4(z) = 0, b2(z) = z3 − z2z4, b3(z) = −z3z4,
and a4k(z) = ak4(z) = 0, ∀k = 1, ..., 4,

whereas there are no further consistency restrictions on aik(z) for i = 1, 2, 3
and k = 1, ...4. The corresponding consistent state process dynamics are thus
given by

dZ1(t) =
d∑
j=1

ρ1j(Z(t))dWj(t),

dZ2(t) = (Z3(t)− z4Z2(t))dt+
d∑
j=1

ρ2j(Z(t))dWj(t),

dZ3(t) = −z4Z3(t)dt+
d∑
j=1

ρ3j(Z(t))dWj(t),

dZ4(t) ≡ 0, (20)

with initial point Z(0) = (z1, ..., z4).

Proof. The partial derivative of HNS with respect to x is

∂xHS(x, z) = (z3 − z2z4 − z3z4x)e−z4x,

the gradient with respect to z reads

∇zHNS =


1

e−z4x

xe−z4x

(−z2x− z3x2)e−z4x

 ,

and the Hessian matrix is given by
0 0 0 0
0 0 0 −xe−z4x
0 0 0 −x2e−z4x
0 −xe−z4x −x2e−z4x (z2x

2 + z3x
3)e−z4x

 .
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Obviously, condition (10) is not fulfilled, and consequently a and b are not
uniquely defined for the Nelson-Siegel family. Nevertheless, the drift coeffi-
cients bi and some of the aij can still be uniquely determined.
The consistency condition in the form (7) here reads

q1(x) + q2(x)e−z4x = 0, (21)

where we assume for the moment that

zi 6= 0 ∀i = 1, ..., 4, (22)

and the two polynomials are given by

q1(x) = b1(z), (23)

q2(x) =

(
1

2
a44(z)z3

)
x3 +

(
−b4(z)z3 − a34(z) +

1

2
a44(z)z2

)
x2

+

(
b3(z)− a24(z) + z3z4

)
x+

(
b2(z)− z3 + z2z4

)
, (24)

where we have used the fact that the diffusion matrix a(z) = ρ(z)ρ(z)T is
symmetric. By (22) we get that for consistency q1(x) = q2(x) = 0. Hence,

b1(z) = 0,

a44(z) = 0,

and since a(z) is a positive semi-definite symmetric matrix we conclude that

a4k = ak4 = 0 ∀k = 1, ...4.

Therefore, the polynomial q2(x) reduces to

q2(x) =

(
− b4(z)z3

)
x2 +

(
b3(z) + z3z4

)
x+

(
b2(z)− z3 + z2z4

)
,

and using this we can solve for the remaining bi’s:

b2(z) = z3 − z2z4,
b3(z) = −z3z4,
b4(z) = 0.

We derived all above results under the assumption (22). But the set of
z where this holds is dense in Rm. By the continuity of a(z) and b(z), the
above results thus extend for all z ∈ Rm.
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The Nelson-Siegel family is a popular parametrization for forward interest
rates since it is able to reproduce the principle changes in interest rate curve
evolution: parallel shift, tilting, and bending. However, it can be shown that
there does not exist any non-trivial factor process Z yielding a consistent
Nelson-Siegel model for forward rates. Again, in the case of forecast models
the situation is thus much less restrictive.

The Svensson family. As an extension of the Nelson-Siegel family,
the Svensson family has been introduced to improve the curve flexibility.
Two parameters were added, and consequently the six-dimensional Svensson
curves are given by:

HS(x, z) = z1 + (z2 + z3x)e−z5x + z4xe
−z6x. (25)

With this extension we are able to create a dent additional to the hump given
by the Nelson-Siegel family. Surprisingly, consistent forecast factor models
do not allow for this additional flexibility as the following Theorem shows.

Theorem 8. Suppose Assumption 3. To fulfill the consistency condition (8)
for HS we have to set z4=0, and thus are back to the case of the Nelson-Siegel
family.

Proof. The partial derivative of HS(x, z) with respect to x is in this case

∂xHS(x, z) = (−z2z5 + z3 − z3z5x)e−z5x + (z4 − z4z6x)e−z6x.

The gradient with respect to z is

∇zHS =


1

e−z5x

xe−z5x

xe−z6x

(−z2x− z3x2)e−z5x
−z4x2e−z6x


and the Hessian matrix with respect to z is given by:

0 0 0 0 0 0
0 0 0 0 −xe−z5x 0
0 0 0 0 −x2e−z5x 0
0 0 0 0 0 −x2e−z6x
0 −xe−z5x −x2e−z5x 0 (z2x

2 + z3x
3)e−z5x 0

0 0 0 −x2e−z6x 0 z4x
3e−z6x

 .
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As is the case for the Nelson-Siegel family, condition (10) is not fulfilled for
the Svensson family as well.
The consistency condition in the form (7) here reads

q1(x) + q2(x)e−z5x + q3(x)e−z6x = 0. (26)

Here we assume for the moment that

z5 6= z6, and zi 6= 0 for all i = 1, ..., 6. (27)

Then the three polynomials are given by:

q1(x) = b1(z), (28)

q2(x) =

(
1

2
a55(z)z3

)
x3 +

(
1

2
a55(z)z2 − a35(z)− b5(z)z3

)
x2

+

(
z3z5 + b3(z)− b5(z)z2 − a25(z)

)
x

+

(
z2z5 − z3 + b2(z)

)
, (29)

q3(x) =

(
1

2
a66(z)z4

)
x3 +

(
− b6(z)z4 − a46(z)

)
x2

+

(
b4(z) + z4z6

)
x− z4, (30)

where we have used the fact that the diffusion matrix a(z) = ρ(z)ρ(z)T is
symmetric.

By (26) and (27) all three polynomials have to be equal to zero, and we
conclude from (30) that

z4 = 0,

and plugging this into (25) we are back to the case of the Nelson-Siegel
family.

3 A specific consistent two-factor model for

temperature forecasts

For the remaining part of the paper we now introduce a specific (time inhomo-
geneous) affine 2-factor model for temperature forecast curves and consider
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pricing and hedging of temperature derivatives in the corresponding market.
To this end, we let in this and the remaining sections W (t) = (W1(t),W2(t))
be a 2-dimensional Brownian motion generating the filtration (Ft)t≥0 on our
filtered probability space (Ω,F , (Ft)t≥0,P).

We suggest that the principle building block in the temperature forecast
model is the following affine curve family

Hτ (x, z) = z1e
−λx + z2

1

λ− ρ
(
e−ρx − e−λx

)
, (31)

where z = (z1, z2) ∈ R2, x > 0, and λ, ρ > 0. Before we have a closer look at
our forecast model and the qualitative features of the induced forecast curves
and temperature dynamics, we employ Theorem 5 to check for 3-dimensional
factor processes

dZ(t) =

 dZ1(t)
dZ2(t)
dZ3(t)

 =

 b1(Z(t)) dt+
∑2

i=1 ρ1i(Z(t)) dWi(t)

b2(Z(t)) dt+
∑2

i=1 ρ2i(Z(t)) dWi(t)

b3(Z(t)) dt+
∑2

i=1 ρ3i(Z(t)) dWi(t)


that are consistent with Hτ in (31). Note that although the curve family
in (31) only depends on the first two components (z1, z2) ∈ R2, we enlarge
the factor state space by a third component to be able to consider time
inhomogeneous dynamics for Z(t) (the third component will be set equal to
time later on: Z3(t) = t).

Proposition 9. The 3-dimensional factor process Z(t) is consistent with our
affine curve model Hτ in (31) if and only if the drift is given by

b1(z) = −λz1 + z2,

b2(z) = −ρz2,
b3(z) = c3 + γ31z1 + γ32z2 + γ33z3,

where the coefficients of b3(z) can be chosen arbitrarily.

Proof. With the notation in Subsection 2.1 we have

g0(x) = 0,

g1(x) = e−λx,

g2(x) =
1

λ− ρ
(
e−ρx − e−λx

)
,

g3(x) = 0,
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where g0(0) = g2(0) = g3(0) = 0 and g1(0) = 1. The integrals of the gi(x)
read

G0(x) = 0,

G1(x) = −1

λ
e−λx +

1

λ
,

G2(x) =
1

λ− ρ

(
−1

ρ
e−ρx +

1

λ
e−λx +

1

ρ
− 1

λ

)
,

G3(x) = 0,

and therefore G1(x), G2(x), G3(x) are linearly independent. Hence, we can
apply part one of Theorem 5 and conclude that the bi(z) are affine of the
form (14):

b1(z) = c1 + γ11z1 + γ12z2 + γ13z3,

b2(z) = c2 + γ21z1 + γ22z2 + γ23z3,

b3(z) = c3 + γ31z1 + γ32z2 + γ33z3,

for some constants ci and γij, 1 ≤ i, j ≤ 3. The system of differential
equations (15) now reads:

∂xG0(x) = g0(0) + c1G1(x) + c2G2(x) + c3G3(x), (32)

∂xG1(x) = g1(0) + γ11G1(x) + γ21G2(x) + γ31G3(x), (33)

∂xG2(x) = g2(0) + γ12G1(x) + γ22G2(x) + γ32G3(x), (34)

∂xG3(x) = g3(0) + γ13G1(x) + γ23G2(x) + γ33G3(x), (35)

We solve these equations for the constants of the bi(x). We can rewrite (32)
as

0 = e−λx
(
−c1

1

λ
+ c2

1

(λ− ρ)λ

)
+ e−ρx

(
−c2

1

(λ− ρ)ρ

)
+

(
c1

1

λ
+ c2

1

λρ

)
.

From the second term we get that c2 = 0. Inserting this into the first term
gives c1 = 0.

We can rewrite (33) as

− 1 = e−λx
(
−1− γ11

1

λ
+ γ21

1

(λ− ρ)λ

)
+ e−ρx

(
−γ21

1

(λ− ρ)ρ

)
+

(
γ11

1

λ
+ γ21

1

λρ

)
.
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From the second term we see that γ21 = 0, and plugging this into the first
term gives γ11 = −λ.

We can rewrite (34) as

0 = e−λx
(

1

λ− ρ
− γ12

1

λ
+ γ22

1

(λ− ρ)λ

)
+ e−ρx

(
− 1

λ− ρ
− γ22

1

(λ− ρ)ρ

)
+

(
γ12

1

λ
+ γ22

1

λρ

)
.

From the second term we conclude γ22 = −ρ. Inserting this into the first
term leads to γ12 = 1.

We can rewrite (35) as

0 = e−λx
(
−γ13

1

λ
+ γ23

1

(λ− γ)λ

)
+ e−ρx

(
−γ23

1

(λ− γ)γ

)
+

(
γ13

1

λ
+ γ23

1

λγ

)
.

From the second term we deduce γ23 = 0, and inserting this into the first
term gives γ13 = 0.

We see that the coefficients c3, γ31, γ32, γ33 are not further determined and
therefore can be chosen arbitrarily.

We are now ready to introduce our temperature forecast curve model.
The forecast at time t of the temperature at time t+ x is given by

f(t; t+ x) = Λ(t+ x) +Hτ (x, Z(t))

= Λ(t+ x) + Z1(t)e
−λx + Z2(t)

1

λ− ρ
(
e−ρx − e−λx

)
, (36)

where Λ(s) is a deterministic seasonality function (average temperature at
time s) and the factor dynamics of Z1(t) and Z2(t) are given by

dZ1(t) = (−λZ1(t) + Z2(t)) dt+ σ1(t) dW1(t) (37)

dZ2(t) = −ρZ2(t) dt+ σ2(t) dW2(t)

for λ, ρ > 0 and deterministic, continuous volatility functions σ1(t), σ2(t).
Note that the time dependence of the volatility specification, ρ11(Z(t)) =
σ1(t), ρ22(Z(t)) = σ2(t), and ρij(Z(t)) = 0 else, is obtained by putting
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Z3(t) = t, i.e. by choosing c3 = 1 and γ31 = γ32 = γ33 = 0. Re-parameterized
in terms of forecast time T we get

f(t;T ) = Λ(T ) + Z1(t)e
−λ(T−t) + Z2(t)

1

λ− ρ
(
e−ρ(T−t) − e−λ(T−t)

)
.(38)

With this choice of factor process we know by Proposition 9 that Hτ (T −
t, Z(t)) and thus also Λ(T ) + Hτ (T − t, Z(t)) is a consistent factor model
(for a given T , adding the constant Λ(T ) obviously does not harm consis-
tency). Further, the choice of ρ(Z(t)) evidently guarantees condition 2) in
Theorem 1, and we see that (38) is a consistent forecast curve model fulfilling
Assumptions A1-A4.

The model proposed in (38) implies the following qualitative behavior of
forecast curves:

• As the forecast horizon T − t gets large, the volatility of forecasted
temperature diminishes and

f(t;T )→ Λ(T ) for (T − t)→∞ .

This behavior is realistic since forward looking information decreases
the larger the forecast horizon becomes, and finally average tempera-
ture is the best prediction.

• Before reverting to the seasonal average temperature in the long end,
there are basically two different types of qualitative behavior of forecast
curves in the shorter end:

1. Direct exponential reversion in temperature forecasts from the
current temperature level f(t; t) to the seasonal function Λ(T ).

2. An increase from f(t; t) (or decrease for current temperatures
f(t; t) below seasonal average Λ(t)) in forecasted temperature prior
to exponential reversion to the seasonal function Λ(T ).

While this type of possible forecast outcomes is certainly a simplification,
we believe that it still catches a substantial part of qualitative forecast curve
formation in reality. A more thorough empirical analysis of temperature
forecast curve data will be part of a future research project.
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Also note that when setting the parallel shift parameter z1 = 0 in the
Nelson-Siegel family presented in Subsection 2.3, HNS(x, z) would produce
the same qualitative behavior of forecast curves. Indeed, in this situation we
get

Hτ (x, z)→ HNS(x, z)

pointwise for λ→ ρ in (31), and our model is seen to be a generalization of the
Nelson-Siegel model without parallel shift parameter. The reason we consider
this generalization is that then the consistent factor components Z1(t) and
Z2(t) are allowed to have different mean reversion parameters λ 6= ρ while in
the Nelson-Siegel model these must be identical.

Finally, for the purpose of temperature derivatives pricing, we are now
able to write down the model for the temperature dynamics implied by our
forecast curve model. The temperature τ(t) = f(t; t) at time t can be read
off in the short end of the forecast curve and is given by

τ(t) = Λ(t) + Z1(t) , (39)

where Z1(t) was introduced in (37). If Z2(t) = 0, our resulting temperature
model would thus be the same as the one proposed in [2] and formulated in
(2) in the introduction. However, compared to the model in (2), the drift in
the evolution of the temperature proposed in (39) is additionally governed
by the factor Z2(t) that integrates the forward looking information contained
in meteorological temperature forecasts.

4 Pricing and hedging of temperature deriva-

tives in the two-factor model

We now turn our attention to the pricing and hedging of temperature deriva-
tives in a market where the temperature dynamics is given by the two-factor
model presented in (39) in the previous section. The most common ex-
change traded temperature derivatives are futures contracts. Depending on
the market place one can find CAT-futures (Cumulative Average Tempera-
ture), HDD-futures (Heating Degree Days), or CDD-futures (Cooling Degree
Days). See below for more details on these contracts. Further, besides in
futures there is organized trade in plain vanilla options written on the re-
spective futures price as underlying.
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Given an option written on a futures price, our aim in the following is
to compute hedging strategies in a corresponding futures contract. It is
shown that in the case of CAT-futures the market is complete, whereas for
general futures contracts (including HDD and CDD futures) the market is
incomplete. In the latter case we proceed to compute optimal mean-variance
hedging strategies.

According to no-arbitrage theory, pricing of financial assets with the tem-
perature as underlying spot price has to be done under some risk-neutral
measure which in our setting can be any probability measure Q equivalent to
P. Hence there are a priori infinitely many choices of pricing measures, and
we will have to find the corresponding market price of risk by calibration to
market data which will be explored in a further study.

We assume that the temperature dynamics under a risk-neutral measure
Q are given as τ(t) = Λ(t) + Z1(t), with

dZ1(t) = (θ(t)− λZ1(t) + Z2(t)) dt+ σ1(t) dW1(t)

and
dZ2(t) = (χ(t)− ρZ2(t)) dt+ σ2(t) dW2(t),

where θ, χ are some bounded deterministic functions; this imposes a certain
restriction on the set of possible pricing measures, but simplifies the cal-
culations considerably. Here W1, W2 are independent Q-Brownian motions,
hence in general different from the Brownian motions in the preceding section
although we use the same letters by a slight abuse of notation.

Also we recall that we assume for convenience that the short rate is r = 0.

4.1 CAT-futures: a complete Gaussian market

A CAT-futures contract emitted at time t is an instrument whose payoff
is the accumulated temperature over a time period [t1, t2] in exchange for
the futures price F (t; t1, t2) agreed on at time t. Given a fixed risk-neutral
measure Q, the CAT-futures price F (t; t1, t2) is chosen such that the value
of the futures contract equals zero at emission time t ≤ t1, i.e.

EQ

[∫ t2

t1

τ(s) ds− F (t; t1, t2)

∣∣∣∣Ft] = 0 ,

or

F (t; t1, t2) = EQ

[∫ t2

t1

τ(s) ds

∣∣∣∣Ft] .
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By Fubini we can rewrite

F (t; t1, t2) =

∫ t2

t1

fQ(t; s) ds,

with
fQ(t; s) = EQ [τ(s)| Ft] .

Now consider an option emitted at time t = 0 with maturity T written on
the futures price F (T ; t1, t2), T ≤ t1. Our objective is to determine a hedge
of the option in the CAT-futures contract emitted at time t = 0. Denote by
F (s) the value of this futures contract at time s, 0 ≤ s ≤ t1. Then

F (s) = EQ

[∫ t2

t1

τ (r) dr − F (0; t1, t2)

∣∣∣∣Fs]
=

∫ t2

t1

fQ(s; r) dr − F (0; t1, t2) ,

and the dynamics of F (s) and F (s; t1, t2) are equal modulo the initial con-
stant F (0; t1, t2). To treat the hedging question of options on the futures
price it is thus sufficient to consider hedging of options in the market with
F (s) as underlying asset price.

As fQ (·; s) is a Q-martingale, there is no finite variation part. Therefore,
it follows from (38) and the fact that the Q-dynamics of the factors Z1, Z2

differ from their P-dynamics only by a deterministic term, that for s fixed

dfQ(t, s) = e−λ(s−t)σ1(t) dW1(t) +
e−ρ(s−t) − e−λ(s−t)

λ− ρ
σ2(t) dW2(t).

By stochastic Fubini ([3], Theorem 2.2) we get

dF (t) = c eλt σ1(t) dW1(t) +
(
cρ e

ρt − cλ eλt
)
σ2(t) dW2(t),

with

c =

∫ t2

t1

e−λs ds, cρ =
1

λ− ρ

∫ t2

t1

e−ρs ds, cλ =
1

λ− ρ

∫ t2

t1

e−λs ds.

Setting

Z(t) =

∫ t

0

(
c2e2λtσ2

1(t) +
(
cρ e

ρt − cλ eλt
)2
σ2
2(t)
)− 1

2
dF (t),
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we note that Z is a martingale with [Z] (t) = t, hence by Lévy’s charac-
terization a Brownian motion. We can re-write then the dynamics of F (t)
as

dF (t) =
(
c2e2λtσ2

1(t) +
(
cρ e

ρt − cλ eλt
)2
σ2
2(t)
) 1

2
dZ(t),

and conclude that the CAT-futures market is complete, and F even has
Gaussian dynamics since the coefficients are deterministic. The delta hedge
is then computed by well-known methods.

4.2 Dynamics of general temperature futures contracts

In this section we assume that the value of our futures contract F (t) emitted
at time 0 is given as

F (t) =

∫ t2

t1

EQ [h (τ(s))| Ft] ds− F (0; t1, t2), t ≤ t1,

for some suitable function h; popular choices are h (x) = (x−K)+ (Heating
Degree Days) or h(x) = (K − x)+ (Cooling Degree Days) for some strike K.
Here the futures price F (t; t1, t2) at time t is

F (t; t1, t2) = EQ

[∫ t2

t1

h(τ(s)) ds

∣∣∣∣Ft] .
By the Markov property of the vector stochastic process (Z1, Z2) there exist
for each s ∈ [τ1, τ2] functions v(s) (t, x, y) which we assume to be in C1,2,2 such
that

v(s) (t, Z1(t), Z2(t)) = EQ [h (τ(s))| Ft] .

By a Feynman-Kac type argument, the function v(s) satisfies the PDE

∂v(s)

∂t
+ (θ(t)− λx+ y)

∂v(s)

∂x
+ (χ(t)− ρy)

∂v(s)

∂y

+
1

2
σ2
1(t)

∂2v(s)

∂x2
+

1

2
σ2
2(t)

∂2v(s)

∂y2
= 0,

with the terminal condition

v(s) (s, x, y) = h(Λ(s) + x) for all (x, y) ∈ R2.
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Moreover, we have

dv(s) =
∂v(s)

∂x
σ1 dW1 +

∂v(s)

∂y
σ2 dW2.

Since the two integrands are in general stochastic, the resulting market is
in general incomplete. By stochastic Fubini (we assume the corresponding
integrability condition to be satisfied), the value F (t) of the futures contract
is given as

F (t) + F (0; t1, t2) =

∫ τ2

τ1

∫ t

0

{
∂v(s)

∂x
σ1(u) dW1(u) +

∂v(s)

∂y
σ2(u) dW2(u)

}
ds

=

∫ t

0

∫ τ2

τ1

∂v(s)

∂x
ds σ1(u) dW1(u) +

∫ t

0

∫ τ2

τ1

∂v(s)

∂y
ds σ2(u) dW2(u).

4.3 Optimal mean-variance hedging strategy

We consider the stochastic value process F of a temperature futures contract
as hedging instrument, and a European option with payoff g (F (T )) for a
suitable function g and maturity T < τ1. For convenience, we assume the
short rate is r = 0. Assuming that g (F (T )) is square-integrable, we associate
to such an option its value process

V (t) = EQ [g(F (T )) |Ft ] ,

which is a square-integrable Q-martingale, with final value V (T ) = g (F (T )).
As we have seen, the resulting futures market is in general incomplete, hence
it is not always possible to replicate the option perfectly with a self-financing
hedging strategy (options written on CAT-futures are an exception). We
follow here the idea of mean-variance hedging : under a fixed martingale
measure Q for F = (F (t)), we want to minimize the difference between
option payoff and the result from trading in the future via initial capital c
and a self-financing hedging strategy ϑ by a quadratic criterion. Formally,
we minimize

EQ

[(
V (T )− c−

∫ T

0

ϑ(t) dF (t)

)2
]

(40)

over all constants c and all predictable ϑ such that
∫
ϑ dF is a square-

integrable martingale.
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Optimizing the quadratic functional (40) can be done via Hilbert space
methods, see [16]. It results that the fair price of the option is the initial
capital V (0) needed to drive the optimal strategy, and can be calculated as

V (0) = EQ [V (T )] .

The optimal hedging strategy is the integrand ξ in the stochastic integral
with respect to F in the Kunita-Watanabe decomposition

V = V (0) +

∫
ξ dF + L. (41)

Here L is a square-integrable martingale strongly orthogonal to F , which
means that the quadratic co-variation [F,L] equals zero (since all martingales
adapted to (Ft) are continuous). It can be interpreted as the residual risk
process, that is the part of the risk which is non-attainable through hedging
via trading in the underlying future.

As seen in the preceding section, the value of the futures contract can in
general be written as

dF (t) = φ(t) dW1(t) + ψ(t) dW2(t)

with (for t ≤ τ1)

φ(t) =

∫ t2

t1

∂v(s)

∂x
(t, Z1(t), Z2(t)) ds σ1(t), (42)

ψ(t) =

∫ t2

t1

∂v(s)

∂y
(t, Z1(t), Z2(t)) ds σ2(t).

Assuming that F is a square-integrable martingale, and since [W1,W2] = 0,
we have that φ, ψ are elements of a space Θ defined as

Θ :=

{
ϑ predictable

∣∣∣∣EQ

[∫ T

0

ϑ2(t) dt

]
<∞ .

}
Here it is understood that we identify ϑ, ϑ̃ ∈ Θ if∫ T

0

(
ϑ(t)− ϑ̃(t)

)2
dt = 0.
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By the Itô-isometry,
∫
φ dW1 and

∫
ψ dW2 are then square-integrable martin-

gales as well. Similarly, fix some square-integrable Q-martingale G strongly
orthogonal to F , and write its decomposition with respect to the basis
(W1,W2) as

dG(t) = φG(t) dW1(t) + ψG(t) dW2(t),

with φG, ψG ∈ Θ. Such a G always exists, in a complete market one
may choose the zero-martingale. However, in an incomplete setting we will
choose a non-constant G from the orthogonal complement of F within the
Hilbert space of square-integrable martingales. The orthogonality require-
ment [F,G] = 0 yields the condition

φφG + ψψG = 0. (43)

The choice of G is not unique, but once we have picked a G we shall fix it
once and for all. Our goal is now to find the Kunita-Watanabe decomposition

V = V0 +

∫
ξ dF +

∫
ζ dG,

from which we get the optimal mean-variance hedging strategy ξ and the
residual risk process L =

∫
ζ dG. This can be done by first finding the

martingale representation of the value process associated with the actual
option payoff,

dV (t) = vB(t) dW1(t) + vG(t) dW2(t), νB, vG ∈ Θ, (44)

and then calculating the optimal hedging strategy as

ξ =
d [V, F ]

d [F, F ]
=
vBφ+ vGψ

φ2 + ψ2
.

Similarly, we get ζ as

ζ =
d [V,G]

d [G,G]
=
vBφG + vGψG

(φG)2 + (ψG)2

which allows us to calculate the conditional variance of the non-attainable
risk process,

Rt (ξ) = EQ

[(∫ T

t

ζ(s) dG(s)

)2
∣∣∣∣∣Ft
]
.
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To find the martingale representation (44) of the value process corre-
sponding to an European option on the temperature futures contract with
payoff function g, maturing at time T ≤ τ1, we note that by the Markov
property of the vector process (F,Z1, Z2) there exists a function u (t, x, y, z)
such that for 0 ≤ t ≤ T we have

u (t, Z1(t), Z2(t), F (t)) = EQ [g (F (T ))| Ft] .

Furthermore, note that by (42), φ(t) and ψ(t) are measurable functions of
(Z1(t), Z2(t)), hence we will write φ(t) = φ (t, x, y) and ψ(t) = ψ (t, x, y).

Assuming that the function u is smooth enough, we get, by applying Itô’s
formula and setting the drift equal to zero, the linear PDE

Lu = 0,

with terminal condition

u (T, x, y, z) = g (z) for all x, y, z ∈ R3,

where L denotes the linear second order differential operator

∂

∂t
+ (θ(t)− λx+ y)

∂

∂x
+ (χ(t)− ρy)

∂

∂y
+

1

2

(
φ2(t) + ψ2(t)

) ∂2
∂z2

+
1

2
σ2
1(t)

∂2v

∂x2
+

1

2
σ2
2(t)

∂2v

∂y2
+

ψ(t)σ1(t)
∂2

∂x∂z
+ φ(t)σ2(t)

∂2

∂y∂z
.

Moreover, the martingale dynamics of the value process are

dV (t) =

(
φ(t)

∂u

∂z
+ σ1(t)

∂u

∂x

)
dW1(t) +

(
ψ(t)

∂u

∂z
+ σ2(t)

∂u

∂y

)
dW2(t).
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[3] Benth F.E. & Šaltytė-Benth, J. & Koekebakker, S. (2008): Stochastic
Modelling of Electricity and Related Markets. World Scientific, Singa-
pore.

[4] Benth F.E. & Meyer-Brandis T. (2009): The information premium for
non-storable commodities. Journal of Energy Markets, 2(3), 111-140.

[5] Brody D.C., Syroka J.I. & Zervos M. (2002): Dynamical pricing of
weather derivatives. Quantitative Finance, 2, 189-198.

[6] Campbell S.D. & Diebold F.X. (2005): Weather forecasting for weather
derivatives. Journal of the American Statistical Association 100(469), 6-
16.

[7] Davis M.H.A. (2001): Pricing weather derivatives by marginal value.
Quantitative Finance, 1, 305-308.

[8] Dischel R.S. (editor) (2002): Climate Risk and the Weather Market: Fi-
nancial Risk Management with Weather Hedges. Risk Books.

[9] Dornier F. & Queruel M. (2000): Caution to the wind. Energy Power and
Risk Management Weather Risk Report 8, 30-32.

[10] Geman H. (editor) (1999): Insurance and Weather Derivatives. Risk
Books.

[11] Geman H. & Leonardi M.-P. (2005): Alternative approaches to weather
derivatives pricing. Managerial Finance, January, 46-72.

[12] Filipovic D. (2009): Term-Structure Models. A Graduate Course.
Springer Finance, Berlin Heidelberg, Germany.

[13] Jewson S. & Brix A. (2000): Modelling Weather Derivative Portfolios.
Environmental Finance, vol. 11. Cambridge University Press.

[14] Jewson S. & Caballero R. (2003): The use of weather forecasts in the
pricing of weather derivatives. Meteorological Applications, 10(4), 377-
389.

[15] Platen E. & West J. (2005): A fair pricing approach to weather deriva-
tives. Asia-Pacific Financial Markets 11 23-53.

28



[16] Schweizer M. (2001): A guided tour through quadratic hedging ap-
proaches. In: Jouini E., Cvitanic J., Musiela M. (eds.), Option Pricing,
Interest Rates and Risk Management. Cambridge University Press, 538-
574

29


