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Abstract

In all sorts of regression problems it has become more and more impor-
tant to deal with high dimensional data with lots of potentially influential
covariates. A possible solution is to apply estimation methods that aim at
the detection of the relevant effect structure by using penalization meth-
ods. In this work, the effect structure in the Cox frailty model, which is the
most widely used model that accounts for heterogeneity in survival data, is
investigated. Since in survival models one has to account for possible vari-
ation of the effect strength over time the selection of the relevant features
has to distinguish between several cases, covariates can have time-varying
effects, can have time-constant effects or be irrelevant. A penalization
approach is proposed that is able to distinguish between these types of
effects to obtain a sparse representation that includes the relevant effects
in a proper form. It is shown in simulations that the method works well.
The method is applied to model the time until pregnancy, illustrating that
the complexity of the influence structure can be strongly reduced by using
the proposed penalty approach.

Keywords: Variable selection; LASSO; Cox frailty model; Time-varying coeffi-
cients; Penalization.

1 Introduction

Proportional hazards (PH) models, and in particular the semi-parametric Cox
model (Cox, 1972) play a major role in the modeling of continuous event times.
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The Cox model assumes the semi-parametric hazard

Atlz:) = Xo(t) exp(z; B),

where A(t|z;) is the hazard for observation ¢ at time ¢, conditionally on the co-
variates ;7 = (z;1,...,%ip). Ao(t) is the shared baseline hazard, and 8 the fixed
effects vector. Note that for continuous time the hazard rate A(t|z;) is defined as

Atlz:) = lim P(t <T < t+ At|T > t,x;) /AL,
At—0

representing the instantaneous risk of a transition at time ¢. Inference is usually
based on maximization of the corresponding partial likelihood. This approach al-
lows estimation of 8 while ignoring \y(¢) and performs well in classical problems
with more observations than predictors. As a solution to the p > n problem,
Tibshirani (1997) proposed the use of the so-called least absolute shrinkage and
selection operator (LASSO) penalty in the Cox model. Since then, several exten-
sions have been proposed. In order to fit the penalized model, Gui and Li (2005)
provided an algorithm using Newton-Raphson approximations and the adjusted
LARS solution. Park and Hastie (2007) applied the elastic net penalty to the
Cox model and proposed an efficient solution algorithm, which exploits the near
piecewise linearity of the paths of coefficients to approximate the solution with
different constraints. They numerically maximize the likelihood for each con-
straint via a Newton iteration. Also Goeman (2010) addressed this problem and
developed an alternative algorithm based on a combination of gradient ascent
optimization with the Newton-Raphson algorithm. Another fast algorithm to fit
the Cox model with elastic net penalties was presented by Simon et al. (2011),
employing cyclical coordinate descent.

Frailty models aim at modeling the heterogeneity in the population. They can
be used to account for the influence of covariates that have not been observed.
They are especially useful if observations come in clusters, for example, if one
models survival of family members or has repeated events for the same individual
as in unemployment studies. The extreme case occurs if each individual forms its
own cluster. For a careful investigation of identifiability issues see Van den Berg
(2001). Parameter estimation in frailty models is more challenging than in the
Cox model since the corresponding profile likelihood does not have a closed form
solution. In the Cox PH frailty model also known as mixed PH model the hazard
rate of the j-th subject belonging to cluster 7, conditionally on the covariates x;;
and the shared frailty b;, is given by

Azj(ﬂng?bz) = bz>\0(t) exp(xz; ), 1=1,... ,n,j =1,..., N;

where the frailties b; are frequently assumed to follow a gamma distribution be-
cause of its mathematical convenience. The R package frailtypack (Rondeau
et al., 2012) allows to fit such a Cox frailty model, covering four different types
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of frailty models (shared, nested, joint and additive frailties). In the R package
survival (Therneau, 2013) a simple random effects term can be specified, fol-
lowing a gamma, Gaussian or t-distribution. A different fitting approach based
on hierarchical likelihoods allowing for log-normal and gamma frailty distribu-
tions is implemented in the R package frailtyHL, see Do Ha et al. (2012). A
first approach to variable selection for gamma frailty models was proposed by
Fan and Li (2002). They used an iterative, Newton-Raphson based procedure to
find the penalized maximum likelihood estimator and considered three types of
penalties, namely the LASSO, the hard thresholding and the smoothly clipped
absolute deviation (SCAD) penalty. However, no software implementation is
available yet. The penalized gamma frailty model methodology of Fan and Li
(2002) was extended to other frailty distributions, in particular to inverse Gaus-
sian distributed frailty by Androulakis et al. (2012). They imposed the penalty
term on a generalized form of the full likelihood function designed for clustered
data, which allows the direct use of different distributions for the frailty term
and which includes the Cox model and the gamma frailty model as special cases.
For the gamma frailty case they modified the likelihood presented by Fan and Li
(2002). However, again, no corresponding software package is available yet.

While some multiplicative frailty distributions, such as, for example, the
gamma and the inverse Gaussian, have already been extensively studied (compare
Androulakis et al., 2012) and closed form representations of the log-likelihoods
are available, in some situations the log-normal distribution is more intuitive and
allows for more flexible and complex predictor structures though the correspond-
ing model is computationally more demanding. The conditional hazard function
of cluster ¢ and observation j with multiplicative frailties following a multivariate
log-normal distribution has the general form

/\(t\mij7 uij7 bz) = )\0(t> exp(.’v;‘gﬂ -+ ’U:Z;bl),

where uijT = (Wij1, ..., Uijq) is the covariate vector associated with random ef-
fects and the random effects b; follow a multivariate Gaussian distribution, i.e.
b, ~ N(0,Q(0)), with mean vector 0 and covariance matrix Q(@), which is de-
pending on a vector of unknown parameters 6. Ripatti and Palmgren (2000)
show how a penalized quasi-likelihood (PQL) approach based on the Laplace
approximation can be used for estimation. The method follows the fitting ap-
proach proposed by Breslow and Clayton (1993) for the generalized linear mixed
model (GLMM). If, additionally, penalization techniques are incorporated into
the procedure, it becomes especially important to provide effective estimation
algorithms, as standard procedures for the choice of tuning parameters such as
cross validation are usually very time-consuming.



2 Cox Frailty Model with Time-Varying Coefficients

While for Cox frailty models with the simple predictor structure 7;; = :1:3;-,3 +
ugbl in the hazard function some solutions have already been given (Fan and
Li, 2002, and Androulakis et al., 2012), often more complex structures of the
linear predictor need to be taken into account. In particular, the effects of certain
covariates may vary over time yielding time-varying effects v, (¢). A standard way
to estimate the time-varying effects v (t) is to expand them in equally spaced B-
splines yielding v, (t) = fozl Qpm B (t; d), where oy, m = 1,..., M, denote
unknown spline coefficients that need to be estimated, and B,,(t;d) denotes the
m-th B-spline basis function of degree d. For a detailed description of B-splines,
see for example Wood (2006) and Ruppert et al. (2003).

At this point, we address the specification of the baseline hazard Ay(t). In
general, for the cumulative baseline hazard Ag(:) often the “least informative”
nonparametric modeling is considered. More precisely, with t{ < .... < % de-
noting the observed event times, the least informative nonparametric cumulative
baseline hazard Ay(t) has a possible jump h; at every observed event time t?,
ie. Ag(t) = Zjvzl hiI(t <t). The estimation procedure may be stabilized, if,
similar to the time-varying effects, a semi-parametric baseline hazard is consid-
ered, which can be flexibly estimated within the B-spline framework. Hence, in
the following we use the transformation 7y (t) := log(Ag(t)) and expand Ao(t) in
B-splines.

Let now zijT = (1, zij1, ..., zijr) denote the covariate vector associated with
both baseline hazard and time-varying effects and let ol = (a1, sapm), k=
0,...,7, collect the spline coefficients corresponding to the baseline hazard

or the k-th time-varying effect 7 (t), respectively. Further, let BT (t) :=
(Bi(t;d), ..., By(t;d)) represent the vector-valued evaluations of the M basis
functions in time ¢. Then, with v, := 2, - B(t), one can specify the hazard
rate as

A(tlzij, 25, i, b;) = exp (13;(1)) ,
with

i (t) =zl B+ > vl o +ulb;. (1)
k=0

In general, the estimation of parameters in the predictor (1) can be based on
Cox’s well-known full log-likelihood, which is given by

(Bb) = 3D dm) — [ explag (o), 2

i=1 j=1

where n denotes the number of clusters, N; the cluster sizes and the survival
times ¢;; are complete if d;; = 1 and right censored if d;; = 0.



As mentioned in the introduction, a possible strategy to maximize the full log-
likelihood (2) is based on the PQL approach, which was originally suggested for
GLMDMs by Breslow and Clayton (1993). Typically, the covariance matrix @ () of
the random effects b; depends on an unknown parameter vector 8. Hence, the joint
likelihood-function can be specified by the parameter vector of the covariance
structure  and parameter vector 87 := (87, a”,b"). The corresponding marginal
log-likelihood has the form

" (8,6) = Zlog (/ i(B,a,b;)p (bi|0)dbi) ,

where p(b;]0) denotes the density function of the random effects and the quanti-
ties L;(B,a,b;) := [ exp(ni;(ti;))% exp <— fot” exp(mj(s))ds> represent the like-
=1

lihood contribution; of the single clusters 7,7 = 1,...,n. Approximation along
the lines of Breslow and Clayton (1993) yields

1 (5,0) = anlogLi(,B,a,bi)—%bTQ(e)b

i=1

= 3 (amte) - [ eatnnes) - awn. )

i=1 j=1

with the penalty term b7Q(6)b resulting from the approximation based on the
Laplace method. The PQL approach usually works within the profile likelihood
concept. It is distinguished between estimation of 4, given the plug-in estimate
0 and resulting in profile likelihood [%P(§,0), and estimation of 6.

3 Penalization

In general, the roughness or “wiggliness” of the estimated smooth functions can be
controlled by applying a difference penalty directly on the spline coefficients, see,
for example, Eilers (1995) and Eilers and Marx (1996). However, with potentially
varying coefficients in the predictor, model selection becomes more difficult. In
particular, one has to determine which covariates should be included in the model,
and, which of the covariates included have a constant or time-varying effect. So
far, in the context of varying coefficient models in the literature only parts of
these issues have been addressed. For example, Wang et al. (2008) and Wang and
Xia (2009) used procedures that simultaneously select significant variables with
(time-)varying effects and produce smooth estimates for the nonzero coefficient
functions, while Meier et al. (2009) proposed a sparsity-smoothness penalization
for high-dimensional generalized additive models. Also for functional regression



models several approaches to variable selection have been proposed, see, for ex-
ample, Matsui and Konishi (2011), Matsui (2014) and Gertheiss et al. (2013).
On the other hand, for example, Leng (2009) presented a penalty approach that
automatically distinguishes between varying and constant coefficients.

The objective here is to develop a penalization approach to obtain variable
selection in Cox frailty models with time-varying coefficients such that single
varying effects are either included, are included in the form of a constant effect
or are totally excluded. The choice between this hierarchy of effect types can be
achieved by using a specifically tailored penalty. We propose to use

£ Je(a) <§waMHAMakH2+ (1-¢ Z¢wkH0¢kHz>> (4)

where || -||2 denotes the Ly-norm, £ > 0 and ¢ € (0, 1) are tuning parameters and
A}y denotes the (M — 1) x M)-dimensional difference operator matrix of degree
one, defined as

-1 1

-1 1
Ay = N (5)

-1 1

The first term of the penalty controls the smoothness of the time-varying covariate
effects, whereby for values of { and ¢ large enough, all differences o — o 1,1 =
2,...,M, are removed from the model, resulting in constant covariate effects.
As the B-splines of each variable with varying coefficients sum up to one, a
constant effect is obtained if all spline coefficients are set equal. Hence, the
first penalty term does not affect the spline’s global level. The second term
penalizes all spline coefficients belonging to a single time-varying effect in the
way of a group LASSO and, hence, controls the selection of covariates. Both
tuning parameters £ and ¢ should be chosen by an appropriate technique, such
as, for example, K-fold cross validation (CV). The terms ¢ := M — 1 and
¢ := /M represent weights that assign different amounts of penalization to
different parameter groups, relative to the respective group size. In addition, we
use the adaptive weights wa j == 1/HAMd,(€ML)H2 and wy, == 1/]|d,(€ML)H2, where
&™MD) denotes the corresponding (slightly ridge-penalized) maximum likelihood
estimator. Within the estimation procedure, i.e. the corresponding Newton-
Raphson algorithm, local quadratic approximations of the penalty terms are used
following Oelker and Tutz (2013). Note that the penalty from above may be
easily extended by including a conventional LASSO penalty for time-constant
fixed effects G, k=1,...,p

Since the baseline hazard in the predictor (1) is assumed to be semi-
parametric, another penalty term that controls the roughness of the baseline
should be included. If the smooth log-baseline hazard v (t) = log(\o(t)) is twice
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differentiable, one can, for example, penalize its second order derivatives, simi-
lar to Yuan and Lin (2006). Alternatively, if vo(¢) is expanded in B-spline basis
functions, i.c. 7(t) = S0 @mBm(t;d), one can simply penalize the second
order differences of adjacent spline weights o, { =1,..., M. Hence, in addition
to & - Je(a), the penalty term

&0+ Jo(ao) = &ol| A%l (6)

has to be included. Although this adds another tuning parameter &g, it turns out
that in general it is not worthwhile to also select &, on a grid of possible values.
Similar findings with regard to penalization of the baseline hazard have been ob-
tained for discrete frailty survival models, see Tutz and Groll (2014). While some
care should be taken to select £ and (, which determine the performance of the
selection procedure, the estimation procedure is already stabilized in comparison
to the usage of the “least informative” nonparametric cumulative baseline hazard
Ao(t) = Z;\jzl h;I(t9 < t) for a moderate choice of &.

4 Estimation

Estimation is based on maximization of the penalized log-likelihood, which is ob-
tained by expanding the approximate log-likelihood [*P(4, ) from (3) to include
the penalty terms &, - Jo(ap) and & - Je(a), i.e.

[7"(8,0) = 17(8,0) — &o - Jo(aw) — & - Je(a). (7)

The estimation procedure is based on a conventional Newton-Raphson algorithm,

while local quadratic approximations of the penalty terms are used, following Fan
and Li (2001).

4.1 Fitting Algorithm

In the following, an algorithm is presented for the maximization of the penalized
log-likelihood 1P¢"*(§,0) from equation (7). For notational convenience we omit the
argument @ in the following description of the algorithm and write [P°"(§) instead
of [P"(4, ). For fixed penalty parameters &y, £ and , the following algorithm can
be used to fit the model:

Algorithm PenCoxFrail

1. Initialization
~(0)

Choose starting values B(O), &\, i)(o), 0 " (see Section 4.2.3).



2. Iteration
For [ =1,2,... until convergence:

~ (-1
(a) Computation of parameters for given 9( )

Based on the penalized score function sP*(§) = 0IP*"/0d and the
penalized information matrix F?P*"(d) (see Section 4.2.1) the general
form of a single Newton-Raphson step is given by

(1)

_ S(lfl) + (Fpen((s ~(1-1)

5" )lsn (8

E) ).

Because the fit is within an iterative procedure it is sufficient to use
just one single step.

(b) Computation of variance-covariance components
Estimates Q(l) are obtained as approximate EM-type estimates (see
Section 4.2.2), yielding the update é(l).

4.2 Computational Details of PenCoxFrail

In the following we give a more detailed description of the single steps of the
PenCoxFrail algorithm. First, we describe the derivation of the score function
and the information matrix. Then, an estimation technique for the variance-
covariance components is given. Finally, we give details for the computation of
starting values and the determination of optimal tuning parameters.

4.2.1 Score Function and Information Matrix

In this section we specify more precisely the single components which are derived
in Step 2 (a) of the PenCoxFrail algorithm. Based on the B-spline design vector
B(t), we define ®” () := (20 - B"(t),2ij1 - B*(t), ..., 2ijr - B"(t)). Then, the
penalized score function sP¢"*(§) = JIP"(§)/0d, obtained by differentiating the
log-likelihood from equation (7), has vector components

“6) = 33, (dij -/ exp(nij<s>>ds) |

i=1 j=1

2 (3) = fjff(difb(tij)— / () (5)d5) — Agecan

i=1 j=1

N; tij
sP() = Zuij <dij - /0 exp(mj(s))ds> -Q'O)b;, i=1,...,n.
j=1



Note here that the linear predictors 7;;(t) depend on the parameter vector 4,
compare equation (1). This is suppressed here for notational convenience. The
vectors sy and sh™ have dimension p and (r + 1)M, respectively, while the
vectors 8§ are of dimension g¢.

The penalty matrix Ag ¢ is a block-diagonal matrix of the form Ag ¢ =
diag(Ag,, A¢c). The first matrix A, = AL, Ay corresponds to the penaliza-
tion of the squared differences between adjacent spline coefficients g of the base-
line hazard from equation (6), with A,; denoting the ((M — 1) x M )-dimensional
difference operator matrix of degree one from equation (5). The second ma-
trix Ag ¢ results from a local quadratical approximation of the penalty in equa-
tion (4), following Oelker and Tutz (2013). It is a block-diagonal penalty matrix
A¢e = diag(Argec, ..., Argc), where for kK = 1,...,r the single blocks have the
form

~T ~ ~T ~
Aree = & (CUnlal Al Aoy + ) 2AL Ay + (1= Qonlafan +)72),

where c is a small positive number (in our experience ¢ ~ 10~ works well) and
the matrix A, is equal to Ay, except that its first row consist of zeros only.
The penalized information matrix F7*"(d), which is partitioned into

Fﬁg F,ga F,gl F,gg F,gn
Faﬁ Faa Fal Fa2 Fom
. Fg F,, Fy 0 ... 0
Fre(d) = Fos Fion 0 Fop 0 ’ (®)
| F.g Foa 0 0 F., |
has single components
7 82 pen( n N T /ti]‘ (1 (5))d
= :131 wl eXp /)77, S 37
B8P 8,66,8 ~ = I 0 J
82lpen ) n_ Ni
T T
Fn = Flo = grar = - L / xp (1 () @7 (s)ds,
anpen n N T
Faa - aaﬁaT - ; ~ A e€xp 771] ( )@ (S)dS + A&O,E’Q
a?zpen Ni
— T _ .
Fa = Fy =20 abT = - Yeud / exp(in(s))ds,



an;Den((s) Ni Lij
Foo = Fly= =52l = = ul [ ety () B(e)s

82 l pen

Fo = 20 abT _ Zuu ol / exp(a(s))ds + Q"

4.2.2 Variance-Covariance Components
Variance estimates for the random effects can be derived as an approximate EM
algorithm, using the posterior mode estimates and posterior curvatures. If we

define ,@T = (B, a”), we get the following simpler block structure for the infor-
mation matrix from equation (8):

11-2 BB ? A1 F 5*”
Fpen(é) _ .1:3 1
Fj; 0 Fo,

If the cluster sizes NN; are large enough, the estimator & becomes approximately
normal,

& L N(8, Fren(8)71),

see Fahrmeir and Tutz (2001). Hence, the (expected) curvature of (&) eval-
uated at the posterior mode, i.e. Fpen(S)_l, is a good approximation to the
covariance matrix. Then, using standard formulas for inverting partitioned ma-
trices (see, for example, Magnus and Neudecker, 1988), the required posterior
curvatures V; can be derived via the formula

_ -1 1 (.. -l \lp. -l
Vi=F, +F; Fi,@(Fﬁﬂ — g FyF,; Fiﬁ) FgF,; .
=1

Now, Q(l) can be computed by
~ (l) (l) (l) (l)
= - Z b; )"). (9)

4.2.3 Starting Values

For fixed penalty parameters & and (, we propose to first fit the model with
~ (0 ~ (0 - (0
a moderate choice of the parameters 5( ),d(o),ﬁ(o) and 0( ) (typically 6( )
~ (0
& =4 =0 0( ) such that Q) is moderate) and a high value for the penalty
parameter &, such that all spline coefficients & are shrunk down to zero. Next,

the penalty parameter £ is successively decreased and for each new fit of the
algorithm the previous parameter estimates serve as suitable starting values.
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4.2.4 Determination of Optimal Tuning Parameters

As we have already mentioned in Section 3, the tuning parameter &;, which
controls the smoothness of the log-baseline hazard ~y(t) = log(Ao(%)), in general
needs not to be selected by a complex procedure but the estimation procedure
is already stabilized for a moderate choice of ;. However, some care should be
taken to select ¢ and especially &, which essentially determine the performance
of the selection procedure.

A possible strategy is to specify for both ¢ and ¢ suitable grids of possible
values and then use K-fold CV to select optimal values. As the tuning parameter
¢ controls the overall amount of penalization, and hence, both smoothness and
variable selection, it is of particular importance and we recommend to use a fine
grid for this parameter. On the other hand, it turned out that for the second
tuning parameter (, which controls the apportionment between smoothness and
shrinkage, a rougher grid is sufficient. A suitable CV error measure on the test
data is given by the model’s log-likelihood (2), evaluated on the test data, i.e.

ntest ]\/'it'SSt s
~train ~ Y ~
cve(6 ) =D digiis(tiy) — / exp(7i;(s))ds,
i=1 j=1 0
where n'* denotes the number of clusters in the test data and N*' the corre-

sponding cluster sizes. The estimator 5" is obtained by fitting the model to
the training data, resulting in the linear predictors 7;;(t). As K-fold CV can
generally be time-consuming, it is again advisable to successively decrease the
penalty parameter & and use the previous parameter estimates as starting values
for each new fit of the algorithm while fixing the other penalty parameters &, and
(. This strategy can considerably save computational time.

5 Simulation Studies

The underlying models are random intercept models with balanced design

)\”(t|zw,uz) = exp (T]Zj(t>), L= 1,...,71, j: 1,...,NZ'
ni(t) = 7(t) + Z Ziji e (t) + b;
k=1

with different selections of (partly time-varying) effects out of the set:

Yo(t) =5 fr(t) + 0.1, 7(t) =1.2,

12(t) = —1.4, v3(t) = —0.8,

4(t) = 0.7, v5(t) = 0.8,

2(t) = 0.7, Je{t) = (¢4 1) — 2,

78(t) = 0.3 - sin(0.25t) + 0.4 + 0.03t, ~o(t) = —15- gr(t) + 1,

mo(t) = Vit =2, Y11(t) = 1/(t +0.5),

m2(t) = 1.5 -sin(0.25t) — 1 4+ 0.2t,  y13(t) = 114(t) = 715(t) = 716(t) = 0,
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where exp(vo(t)) reflects the baseline hazard and fr denotes the density of
a Gamma distribution I'(¢,#). Shape and scale parameter were chosen as
¢ =4,0 = 2. Also gr denotes the density of a Gamma distribution with shape
and scale parameter chosen to be 5 and 2, respectively. So v;(t) to vs(t) rep-
resent time-constant and 77(t) to v2(t) time-varying effects, while the covari-
ates corresponding to the remaining effects are noise variables. All covariates
Zijk,k = 1,...,16 have been drawn independently from a uniform distribution
on [—0.5;0.5]. The number of observations is either fixed by n = 100 or n = 500
clusters, each with V; =5 or N; = 1 replicates, respectively. The random effects
are specified by b; ~ N(0,0?) with three different scenarios o, € {0,0.5,1}. In
the following, we consider three different simulation scenarios:

Scenario A : mii(t) = () + Z Zije Ve(t) + bi s
ke{1,2,3,4,7,8,13,14,15,16}

Scenario B : nii(t) = (t) + Z Zige ke (t) + bi
ke{5,6,9,10,11,12,13,14}

Scenario C : Nij (t) = ’70(15) + Z ZijkVk (t) + bz .

ke{1,2,3,4,13}

For the three scenarios, the performance of estimators is evaluated separately for
the structural components and the random effects variance. In order to show
that the penalty (4), which combines smoothness of the coefficient effects up to
constant effects together with variable selection, indeed improves the fit in com-
parison to conventional penalization approaches, we compare the results of the
PenCoxFrail algorithm with the results obtained by three alternative penaliza-
tion approaches. The first approach, denoted by Ridge, is based on a penalty sim-
ilar to the first term of the penalty (4), but with a ridge-type penalty on the spline
coefficients, that is & - J(a) = & (35— [|AT 0| [3). Hence, smooth coefficient ef-
fects are obtained, though neither constant effect estimates are available nor
variable selection is performed. The alternative competing approaches, denoted
by Linear and Select, are obtained as the extreme cases of the PenCoxFrail
algorithm, by setting the penalty parameter ¢ either to 1 or 0, respectively. The
former choice yields a penalty that can choose between smooth time-varying and
constant effects, while the latter one yields a penalty that simultaneously selects
significant variables with time-varying effects and produces smooth estimates for
the nonzero coefficient functions.

In addition, we compare the results of the PenCoxFrail algorithm with the
results obtained by using the R functions gam (Wood, 2011) and coxph (Therneau,
2013), which are available from the mgcv and survival library, respectively.
However, it should be noted that although both functions can in principle be
used to fit Cox frailty models with time-varying effects, the use of these packages
is not straightforward.
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Even though the gam function has recently been extended to include the Cox
PH model, the estimation is based on penalized partial likelihood maximization
and, hence, no time-varying effects can be included in the linear predictor. How-
ever, Holford (1980) and Laird and Olivier (1981) have shown that the maximum
likelihood estimates of a piece-wise PH model and of a suitable Poisson regres-
sion model (including an appropriate offset) are equivalent. In the piece-wise PH
model time is subdivided into reasonably small intervals and the baseline hazard
is assumed to be constant in each interval. Therefore, after construction of an
appropriate design matrix by “splitting” the data one can use the gam function
to fit a Poisson regression model with time-varying coefficients and obtains esti-
mates of the corresponding piece-wise PH model. In the gam function an extra
penalty can be added to each smooth term so that it can be penalized to be zero.
This means that the smoothing parameter estimation that is part of the fitting
procedure can completely remove terms from the model. Though, in general,
the equivalence between the piece-wise PH model and the offset Poisson model
is well-known, to the best of our knowledge the concept of combining it with
the flexible basis function approach implemented in the gam function, including
time-varying effects, has not been exploited before.

In order to fit a time-varying effects model with coxph, we first constructed the
corresponding B-spline design matrices. Next, we reparametrized them following
Fahrmeir et al. (2004), such that the spline coefficients are decomposed into an
unpenalized and a penalized part, and then incorporated the transformed B-
spline matrices into the design matrix. Finally, to obtain smooth estimates for
the time-varying effects, we put a small ridge penalty on the penalized part of
the corresponding coefficients. However, for this fitting approach no additional
selection technique for the smooth terms, in our case the time-varying coefficients,
is available. The fit can be considerably improved if the data set is again enlarged
by using a similar time-splitting procedure as for the gam function.

By averaging across 50 data sets we consider mean the squared errors for the
baseline hazard, the smooth coefficient effects and o, given by:

T r T
msep Z (Y0 —F0)%, mse, = ZZ (e — 4)?,  mseq, = (0, — 63)%.

k=1 t=1

To evaluate the estimated and true coefficient functions in the relevant part
weights v; are included that are defined by use of the cumulative baseline hazard

Ao(+). They are given by vy = (Ao(T") — Ao(%))/Ao(T).

Simulation Study I (n = 100, N; = 5)

Table 1-3 show the results of these quantities for the Ridge, the Linear, the
Select, the gam, the coxph and the PenCoxFrail method for the three different
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simulation Scenarios A, B and C'. In Figure 1 the performance of the methods is
compared to PenCoxFrail.

First of all, it is obvious that the Ridge and gam method are clearly out-
performed by the other methods in terms of mse; and mse,. It turns out that
in terms of msey the Select and PenCoxFrail procedures always perform very
well, while the best performer in terms of mse, is changing over the scenarios:
in Scenario A and C', where mostly time-constant or only slightly time-varying
effects are present, the Linear procedure performs very well, while in Scenario
B, where several strongly time-varying effects are present, the Select and gam
procedures perform best. Altogether, here, the flexibility of the combined penalty
(4) becomes obvious: regardless of how the underlying set of effects is composed
of, the PenCoxFrail procedure is consistently among the best performers and
yields estimates that are close to the estimates of the respective “optimal type
of penalization”. As this optimal type of penalization can change from setting
to setting and is usually not known in advance, its automatic selection provides
a substantial benefit in the considered class of survival models. With respect to
the estimation of the random effects variance o7 all approaches yield satisfactory
results, with slight advantages for the Select, gam and PenCoxFrail methods.

Scenario oy, Ridge Linear Select PenCoxFrail gam
0 185 (1 205) 27 ( 27) 36 (51) 30 (47) 559 (2710) 912 (1290
A 0.5 494 (1652) 48 ( 68) 52 (69) 42 (58) 600 (2034) 817 ( 589
1 391 ( 52) 96 (119) 66 (84) 66 (78) 187 ( 307) 583 ( 554
0 50 ( 78) B8 ( 75) 17 (37) 30 (73) 91 ( 114)
B 0.5 90 (1 92) 67 ( 74) 34 (44) 35 (41) 89 ( 43)
1 180 (403) 100 (117) 46 (55) 48 (57) 350 (1725)
0 118 (144) 29 (36) 16 (22) 15 (17) 595 (2524) 650 (
C 0.5 132 (130) 42 (60) 29 (30) 22 (18) 362 ( 701) 623 (
1 220 (321) 60 (81) 46 (62) 43 (54) 372 ( 905) 794 (224

TABLE 1: Results for msey (standard errors in brackets).
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Scenario oy, Ridge Linear Select PenCoxFrail gam coxph
0 3150 ( 1984) 239 (136) 673 (408) 411 (496) 548 (337) 4977 (2811)
A 0.5 17270 (84558) 312 (329) 891 (380) 621 (448) 811 (656) 4709 (2295)
1 9894 (20740) 361 (327) 973 (341) 683 (422) 666 (365) 3994 (2457)
0 1401 ( 958) 1178 ( 966) 675 (891) 793 (991) 586 (865) 2572 (2175)
B 0.5 6333 ( 22140) 1862 ( 931) 787 (339) 839 (433) 486 (316) 2434 (1579)
1 27218 (153493) 2837 (1423) 1213 (676) 1307 (765) 761 (541) 2523 (1742)
0 1474 (1820) 228 (431) 416 (210) 240 (231) 460 (635) 3030 (2477)
C 0.5 1558 (1767) 182 (261) 475 (256) 305 (276) 395 (290) 2420 (1980)
1 5024 (8620) 220 (318) 640 (393) 474 (418) 399 (265) 1401 (1079)
TABLE 2: Results for mse, (standard errors in brackets).
Scenario oy, Ridge Linear Select PenCoxFrail gam coxph
0 032 (.031) .019 (.021) .009 (.016) .011 (.017) .006 (.013) .002 (.003)
A 0.5 .010 (.011) .007 (.013) .011 (.026) 010 (.024) .008 (.012) .049 (.041)
1 012 (.018) .012 (.019) .018 (.025) .017 (.024) .008 (.009) .032 (.040)
040 (.041) .045 (.041) .021 (.030) .025 (.034) .019 (.028) .003 (.006)
B 0.5 .008 (.019) .008 (.018) .007 (.013) .007 (.013) .007 (.012) .056 (.037)
1 011 (.019) .009 (.017) .013 (.014) 013 (.014) .012 (.016) .037 (.045)
.037 (.030) .029 (.027) .014 (.020) .016 (.021) .010 (.016) .002 (.003)
C 0.5 .007 (.009) .007 (.009) .010 (.014) 009 (.012) .009 (.014) .067 (.043)
1 012 (.013) .013 (.016) .018 (.021) 018 (.021) .014 (.018) .054 (.062)

TABLE 3: Results for mse,, (standard errors in brackets).

Next, we investigate the performance of the four different procedures focussing
on the time-varying coefficient functions. Exemplarily, Figure 2-4 show the esti-
mated effects of the coefficient functions obtained by all six methods in Scenario
B with o, = 1. Though generally capturing some features of the coefficient func-
tions, the Ridge and coxph methods do not yield satisfying results, in particular
with respect to coefficient functions that are zero (compare 413(t) and 414(¢) in
In the chosen scenario, the Select, the gam and the PenCoxFrail
procedure do a very good job in shrinking the coefficients of noise variables down
to zero, see again 73(t) and 714(¢), as well as in capturing the features of the
strongly time-varying coefficient functions ~9(t) to v12(¢). With respect to these

Figure 4).

effects, the three procedures clearly outperform the other approaches.

For the

time-constant coefficient functions 7;(¢) and 76(¢) the Linear method yields the
best estimates. In general, note that though the Select and the PenCoxFrail
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FIGURE 2: Estimated (log-)baseline hazard 7y (t), exemplarily for Scenario B and

op = 1; left: Ridge (yellow), Linear (blue), Select (green) and PenCoxFrail

(red); right: gam (blue), coxph (green) and PenCoxFrail (red); true effect in

black

method capture the features of the coefficient functions quite well, there is a
substantial amount of shrinkage noticeable in the nonzero coefficient estimates,
75(t), ¥6(t) and Yo(t) to J12(t). The resulting bias is a typical feature of LASSO-
type estimates and is tolerated in return for the obtained variance reduction.

Simulation Study II (n =500, N; = 1)

Similar to the simulation study from above, we now investigate classical frailty
scenarios, with no cluster structure or repeated measurements, but where each
observation obtains its own random intercept for modeling possible unobserved
heterogeneity. Hence, the underlying models are basically the same random in-
tercept models from above, but now with the number of observations fixed by
n = 500 clusters without replicates, i.e. N; = 1. Note that the underlying mod-
els fulfill all necessary assumptions from Van den Berg (2001), which guarantee
identifiability in the sense that there is a unique choice of the linear predictor
and the random effects density that is able to generate these data.

The random effects are again specified by b; ~ N(0,0?) with three different
scenarios o, € {0,0.5,1} and we consider the same three different simulation
Scenarios A, B and C' from above.

The performance of estimators is again evaluated separately for the struc-
tural components and the random effects variance and we again compare the
PenCoxFrail method with several alternative approaches. In Figure 5, the com-
parison of the PenCoxFrail procedure with the other methods is visualized.

It is obvious that the Ridge and coxph method are again clearly outperformed
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by all other methods in terms of mse; and mse,. In addition, it turns out that
in terms of mseq all other procedures perform well, but considerably deteriorate
for the o, = 1 cases in all scenarios. The best performer in terms of mse, is
changing over the scenarios, similar to Simulation Study I. Again, the flexibility
of the combined penalty (4) becomes obvious: regardless of how the underlying
set of effects is composed of, again, the PenCoxFrail procedure is consistently
among the best performers and yields estimates that are close to the estimates
of the respective “optimal type of penalization”. With respect to the estimation
of the random effects variance o7 all approaches yield satisfactory results, but
have considerably deteriorated in comparison to Simulation Study I as no cluster
structure is present, but each observation got its own random intercept.

Altogether, the simulations show that the proposed penalty (4) yields im-
proved estimators in comparison to all conventional penalization approaches, as
it can flexibly adopt to the underlying data driving mechanisms.

6 Application

In the following we will illustrate the proposed method on a real data set that is
based on Germany’s current panel analysis of intimate relationships and family
dynamics (pairfam), release 4.0 (Nauck et al., 2013). The panel was started in
2008 and contains about 12.000 randomly chosen respondents from the birth co-
horts 1971-73, 1981-83 and 1991-93. Pairfam follows the cohort approach, i.e. the
main focus is on an anchor person of a certain birth cohort, who provides detailed
information, orientations and attitudes (mainly with regard to their family plans)
of both partners in interviews that are conducted yearly. A detailed description
of the study can be found in Huinink et al. (2011).

The present data set was constructed similar to Groll and Abedieh (2015)
and Schroder and Briiderl (2008). For a subsample of 2,501 women the retention
time (in days) until the birth of the first child is considered as the dependent
variable, starting at their 14th birthdays. In order to ensure that the independent
time-varying covariates are temporally preceding the events, the duration until
conception (and not birth) is considered, i.e. the time of event is determined
by subtracting 7.5 months from the date of birth, which is when women usually
notice pregnancy. For each woman the employment status is given as a time-
varying categorical covariate with six categories, compare Table 6. Note that
due to gaps in the women’s employment histories a category called “no info”
is introduced. As in the studies of Schroder and Briider]l (2008) and Groll and
Abedieh (2015), for women who belong to this category for longer than 24 months
it is set to “unemployed”. Besides, several other time-varying and time-constant
control variables are included. Table 5 and 6 give an overview of all considered
variables together with their proportions in the sample. An extraction of the
data set is shown in Table 4.
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start stop child job rel.status religion siblings S federal state

d

1 0 365 0 school single Christian 1 Niedersachsen
1 365 730 0 no info single Christian 1 Niedersachsen
1 730 2499 0 unempl./job-seeking/housewife single Christian 1 Niedersachsen
1 2499 3261 0 full-time/self-employed single Christian 1 Niedersachsen
1 3261 3309 1 full-time/self-employed partner Christian 1 Niedersachsen
2 0 365 0 school single none 0 Thiiringen

2 365 730 0 no info single none 0 Thiiringen

TABLE 4: Structure of the data

Note that due to the incorporated time-varying covariates, the 2,501 observa-
tions have to be split whenever a time-varying covariate changes. This results in
a new data set containing 20,550 lines. In order to account for regional fertility
differences, we incorporate a random intercept for the German federal state where
the women were born. Though this model could generally be fit with the gam
function by construction of an appropriate design matrix, further splitting the
data and then fitting a Poisson regression model with time-varying coefficients,
in the present application this strategy would create an extremely large data set,
which is not manageable. For this reason, we abstain from using the gam func-
tion. Moreover, as already pointed out in Section 5, in order to fit a time-varying
effects model with coxph, again the data would have to be manually enlarged by
using a similar time-splitting procedure. So we restrict our analysis to a conven-
tional Cox model with time-constant effects, which we use for comparison with
our PenCoxFrail approach.

When fitting the data with PenCoxFrail, because of the quite large sample
size we use an ad-hoc strategy for determining the optimal tuning parameter &
proposed in Chouldechova and Hastie (2015) and Ravikumar et al. (2007). In
addition to considering the original variables in the dataset, we generate 10 noise
variables and include them in the analysis. We simply fix the second tuning
parameter to ¢ = 0.5 and fit PenCoxFrail using 5 basis functions for all 16
covariates. Figure 6 shows the regularization plots, which display ||a||2 across
the sequence of £ values. It becomes obvious that there are two strong predictors
that enter well before the “bulk”, namely the “relationship status” (red) and the
“education level” (blue).

Figure 7 and 8 show the estimated baseline hazard as well as the time-varying
effects of the two strongest predictors, the “relationship status” and the “educa-
tion level” right before the noise variables enter (i.e. their corresponding spline
coefficients excess the threshold ||a|; > 0.05), which corresponds to a tuning
parameter choice &6 = 7.79.  The baseline hazard exhibits a bell shape, which
is in accordance with the typical female fertility curve: it is increasing from
early adolescence with a maximum in the early thirties, before it decreases when
the female menopause approaches. For the conventional Cox model with sim-
ple time-constant effects (red dashed line) the bell shape is more pronounced in
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proportion

Religion

Christian 0.667
other 0.040
none 0.293
# siblings

no siblings 0.19
one sibling 0.43
two siblings 0.22
three or more siblings 0.16
Education level of parents

high 0.271
medium 0.061
low 0.570
no info 0.098
Number of women 2,501
Number of events 1,591

TABLE 5: Distribution of the time-constant covariates in the sample

# days proportion

Employment status

full-time employed/self-employed 3,369,964 0.276
marginal /part-time employed 405,473 0.033
education 187,972 0.015
school 2,832,410 0.232
unempl. /job-seeking /housewife 5,023,955 0.412
no info 388,936 0.032
Education level

high 7,004,695 0.574
medium 4,301,786 0.352
low 837,023 0.069
no info 65,206 0.005
Relationship status

single 6,463,726 0.529
partner 3,190,299 0.261
cohabitation 1,842,180 0.151
married 712,505 0.058
Number of women 2,501

Number of events 1,591

Number of days 12,208,710

TABLE 6: Distribution of the time-varying covariates in the sample
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FIGURE 6: Coefficient built-ups for the pairfam data vs. log(§). The colored solid
lines correspond to the original 6 variables, black dashed lines to the simulated
noise variables; the horizontal dotted line represents the chosen tuning parameter

log(&46) = log(7.79).

comparison to our time-varying effects approach (black solid line), where covari-
ates are allowed to have a more complex effect over time. As to be expected, in
comparison to the reference level single there is a positive effect on the transition
rate into motherhood if the women have a partner in the sense that the closer
the relationship the stronger the effect. The strongest positive effect is observed
for married women, though this effect clearly declines when women are getting
older and approach menopause. Besides, it turns out that a low or a high educa-
tion level of the women clearly increases or decreases, respectively, the transition
rate into motherhood in comparison to the reference level medium education.
Again, it is remarkable that these effects on the fertility are clearly vanishing
when women approach menopause. Furthermore, for young women there is a
negative influence on the fertility, if no information regarding their education
level is available. However, after a few years, this effect fundamentally changes
and becomes positive when women approach menopause. For the remaining co-
variates we obtained the following results: all levels of the employment status
seem to have no effect on the transition into motherhood, with the exception of
the category school for which the probability of a transition into motherhood is
clearly reduced as woman are usually quite young when attending school. Fur-
thermore, we found a clear positive, time-constant effect of women having three
or more siblings (reference category: no siblings), a positive effect of the women’s
parents educational level belonging to the category no information (reference

24



4e-04 5e-04

3e-04

A
o)
2e-04

le-04

O O AT AR

14 16 18 20 22 24 26 28 30 32 34 36 38 40

0e+00
L

FIGURE 7: pairfam data: estimated baste]ine hazard vs. time (women’s age in
years) at the chosen tuning parameter £46 = 7.79; for comparison, the estimated
baseline hazard of a simple Cox model with time-constant effects is shown (red
dashed line)

category: medium education) and a negative effects of the categories other re-
ligion and Christian (reference category: no religion), which both are declining
when women approach menopause. Finally, a certain amount of heterogeneity
is detected between the German federal states with an estimated random effects
variance g, = 0.179.

7 Concluding Remarks

It turns out that the combination of the proposed penalization approach for model
selection in Cox frailty models with time-varying coefficients with the promising
class of multivariate log-normal frailties results in very flexible and sparse haz-
ard rate models for modeling survival data. The conducted simulation study has
illustrated the flexibility of the proposed combined penalty: regardless of the un-
derlying set of true effects, the PenCoxFrail procedure can automatically adopt
to it and yields estimates that are close to the “optimal type of penalization”. As
this optimal type of penalization can change from setting to setting and is usually
not known in advance, its automatic selection provides a substantial benefit in
the considered class of survival models.
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effects of a conventional Cox model are shown (red solid line) together with 95%

confidence interval.
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