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ABSTRACT. In this article we develop a new approach to construct strong solutions of stochastic
equations with merely measurable coefficients. We aim at demonstrating the principles of our
technique by analyzing stochastic differential equations driven by Brownian motion. An impor-
tant and rather surprising consequence of our method which is based on Malliavin calculus is
that the solutions derived by A. Y. Veretennikov [45] for Brownian motion with bounded and
measurable drift in R? are Malliavin differentiable. Moreover, it is conceivable that our approach
which doesn’t rely on a pathwise uniqueness argument is also applicable to the construction of
strong solutions of stochastic equations in infinite dimensions.

Key words and phrases: strong solutions of SDE’s, irregular drift coefficient, Malliavin
calculus, relative L?-compactness.
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1. INTRODUCTION

In this paper we are mainly interested to study the following stochastic differential equation

(SDE) given by
dX; = b(t, X;)dt +dB;, 0<t<T, Xo= x¢€R% (1.1)

where the drift coefficient b : [0,7] x RY — R? is a Borel measurable function and B; is a
d—dimensional Brownian motion on a probability space (2, F, 7). We denote by F; the augmented
filtration generated by B;.

If bin is of linear growth and (globally) fulfills a Lipschitz condition it is well known
that there exists a unique global strong solution to the SDE . More precisely, there exists a
continuous JF;—adapted process X; solving such that

T
/ det] < oo0.
0

Important applications, however, of SDE’s of the type to physics or stochastic control theory
show that Lipschitz continuity imposed on the drift coefficient b is a rather severe restriction. For
example, in statistical mechanics, where one is interested in solutions of as functionals of the
driving noise (i.e. strong solutions) to model interacting infinite particle systems, the drift b is
typically discontinuous or singular. See e.g. [I9] and the references therein.

Strong solutions of SDE’s with non-Lipschitz coefficients have been investigated by many au-
thors in the past decades. To begin with we mention the work of Zvonkin [47], where the author
obtains unique strong solutions of in the one-dimensional case, when b is merely bounded
and measurable. The latter result can be regarded as a milestone in the theory of SDE’s. Subse-
quently, this result was generalized by Veretennikov [45] to the multidimensional case. The tools
used by these authors to derive strong solutions are based on estimates of solutions of parabolic
partial differential equations and a pathwise uniqueness argument.

Other important and more recent results in this direction based on a pathwise uniqueness
argument (in connection with other techniques due to Portenko [32] or the Skorohod embedding)
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can be e.g. found in Krylov, Réckner [19], Gyongy, Krylov [14] or Gyongy, Martinez [I5]. We also
refer to [I0], where the authors employ a modified version of Gronwall’s Lemma. In this context
we shall also point out the paper of Davie [7], who even establishes uniqueness of strong solutions
of for almost all Brownian paths in the case of bounded and measurable drift coefficients.

In this paper we further develop the new approach devised in [28] to construct strong solutions
of SDE’s with irregular drift coefficients which additionally yields the important insight that these
solutions are Malliavin differentiable. See also [26] and [34]. More precisely, we derive the results
in [28] without assuming a certain symmetry condition [27, Definition 3] on the drift b in (L.I]),
which severely restricts the class of SDE’s to be studied. In particular, one of our main results is
the extension of [27, Theorem 4] on the Malliavin differentiability of solutions of for merely
bounded Borel functions b from the one-dimensional to the multidimensional case.

Our approach is mainly based on Malliavin calculus. To be more precise, our technique relies on
a compactness criterion based on Malliavin calculus and an approximation argument for certain
generalized processes in the Hida distribution space which we directly verify to be strong solutions
of . We remark that our construction method is different from the above mentioned authors’
ones. The technique proposed in this paper is not based on a pathwise uniqueness argument (or
the Yamada-Watanabe theorem). In fact we tackle the construction problem from the ”opposite”
direction and prove that strong existence in connection with uniqueness in law of solutions of
SDE’s enforces strong uniqueness.

The additional information that strong solutions of SDE’s with merely measurable drift coef-
ficients are Malliavin differentiable has important and interesting implications. For example, it
entails that for all 0 <t < T:

‘Xt(w—l-/ h(s)ds) — X,()| < ClRllL oy (1.2)
0

for almost all w € Q = Cy([0,7]) (Wiener space) and h € L*([0,T]), where C is a constant, see
e.g. [30]. By considering the “initial condition” y = x + B;(w) in the ODE
d
aX? :b(tv Xty)
X =y,

relation in connection with actually gives an interesting “link” to the flow property of
solutions of ODE’s with discontinuous coefficients. This may be of use in perturbation problems
of discontinuous ordinary differential equations and other applications. See e.g. [24]. For recent
advances on the existence of stochastic flows of Holder homeomorphisms for solutions of SDEs
with irregular drift coefficients see e.g. [11].

Finally, we mention that our technique may be applied to examine strong solutions of

dX, = b(t,X,)dt + dB2, Xo =z € H, (1.3)

where BtQ is a @-cylindrical Brownian motion on a Hilbert space H and @) a positive symmetric
trace class operator. Applications to certain classes of SPDE’s are also conceivable. See [25]. We
point out that equations of the type are not accessible within the framework of the above
mentioned authors. For example, the construction method of the authors in [I5] heavily rests on
an estimate of Krylov [I8], which has no extension to infinite dimensions.

The paper is organized as follows: In Section [2] we recall basic concepts of Malliavin calculus
and Gaussian white noise theory. Section [3[is devoted to the study of the SDE (I.1). The main
results of the paper are Theorem Lemma Corollary and Theorem [3.1

2. FRAMEWORK

In this section we recall some facts from Gaussian white noise analysis and Malliavin calculus,
which we aim at employing in Section [3| to construct strong solutions of SDE’s. See [16] [31], 20]
for more information on white noise theory. As for Malliavin calculus the reader is referred to
[30, 221 23], [&].
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2.1. Basic Facts of Gaussian White Noise Theory. A building block of our proof for the
constuction of strong solutions (see Section 3) is based on a generalized stochastic process in the
Hida distribution space which we verify to be a SDE solution. In the following, we shall give the
definition of this space which goes back to T. Hida (see [16]).

From now on we fix a time horizon 0 < T' < co. Consider a (positive) self-adjoint operator A on
L2([0,T]) with Spec(A) > 1. Let us require that A~" is of Hilbert-Schmidt type for some r > 0.
Denote by {e;};>0 a complete orthonormal basis of L*([0,T]) in Dom(A) and let A\; > 0, j > 0
be the eigenvalues of A such that

1< X<\ <. — 0.

Let us assume that each basis element e; is a continuous function on [0, 7). Further let Oy, A € T,
be an open covering of [0, 7] such that

sup A; ) sup le;(t)] < oo
7>0 teO

for a(A) > 0.

In what follows let S([0,7]) denote the standard countably Hilbertian space constructed from
(L2([0,T)), A). See [31]. Then S([0,T]) is a nuclear subspace of L?([0,T]). We denote by &'([0, T)
the corresponding conuclear space, that is the topological dual of S([0,7]). Then the Bochner-
Minlos theorem provides the existence of a unique probability measure 7 on B(S’([0,7])) (Borel
o—algebra of §'([0,7])) such that

/ ei<“’¢>7r(dw) — 6_%“47)”2;2([01])
S’(10,7)

holds for all ¢ € S([0,T]), where (w, @) is the action of w € S'([0,7]) on ¢ € S([0,T]). Set
Q =S'([0,7]), Fi=B(S(0.T]), pi=m,

fori=1,...,d. Then the product measure

on the measurable space

d
(Q,F) = <HQ éﬁ) (2.2)

is referred to as d-dimensional white noise probability measure.
Consider the Doleans-Dade exponential

~ 1
é(6,) = e ({:0) = 3 10l 010 )

for w = (wi,...,wq) € (S([0,T])% and ¢ = (¢M),..., D) e (S([0,1]))%, where (w,d) :=
S (wis ¢5) -

In the following let ((S([0, T]))d)®n be the n—th completed symmetric tensor product of

(S([0,T]))¢ with itself. One verifies that e(qﬁ, w) is holomorphlc 1n ¢ around zero. Hence there
exist generalized Hermite polynomials H,( ( n) such that
1
~ B 1 @n
e w) = ; 1 (Ha (@), 67) (2:3)

for ¢ in a certain neighbourhood of zero in (S([0,77]))?. It can be shown that

{<Hn(w), ¢<">> (9™ e ((5([0,T]))d)®”, ne NO} (2.4)

is a total set of L2(u). Further one finds that the orthogonality relation

. (Ha).6) () 0 i) = 8t (6™ 0™) | 2)
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is valid for all n,m € Ny, ¢(™) € ((S([O,T]))d)®” L0 e ((S([0,T])%) "™ where

1 ifn=m
6"””_{ 0 else

Define EQ([O,T}"; (R%)®™) as the space of square integrable symmetric functions f(z1,...,7,)
with values in (R?)®". Then the orthogonality relation (2.5|) implies that the mappings

PR < Hyo(w), ¢<n>>

®n
from (S ([0, T])d> to L?(u) possess unique continuous extensions

L, - E2([0, T)"; (RY)E"™) — L2()
for all n € N. We remark that I,,(¢("™) can be viewed as an n—fold iterated It6 integral of
#™ e L2(]0,T)™; (R4)®") with respect to a d—dimensional Wiener process
B, = (Bt(l), .. ,Bt(d)> (2.6)
on the white noise space
(0 F ) (2.7)

It turns out that square integrable functionals of B; admit a Wiener-It6 chaos representation which
can be regarded as an infinite-dimensional Taylor expansion, that is

L2 () = @D I (Z*([0, T]"; (RE)=")). (2.8)
n>0

We construct the Hida stochastic test function and distribution space by using the Wiener-1to6
chaos decomposition (2.8). For this purpose let

A= (A,... A), (2.9)

where A was the operator introduced in the beginning of the section. We define the Hida stochastic
test function space (S) via a second quantization argument, that is we introduce (S) as the space
ofall f=3 ., (H,(-),¢™) € L?(p) such that

113, = D2t [ (catyem)” o)

n>0

’ (2.10)

L2([0.7]5 (R E")

for all p > 0. It turns out that the space (S) is a nuclear Fréchet algebra with respect to
multiplication of functions and its topology is given by the seminorms ||-[|, ,, p > 0. Further one
observes that
&6w) € (5) (2.11)
for all ¢ € (S([0,T]))%
In the sequel we refer to the topological dual of (S) as Hida stochastic distribution space (S)*.
Thus we have constructed the Gel’fand triple

(S) = L*(n) = (S)".

The Hida distribution space (S)* exhibits the crucial property that it contains the white noise of
the coordinates of the d—dimensional Wiener process By, that is the time derivatives

. d .
Wi= 2B i=1....d, (2.12)

belong to (S)*.

We shall also recall the definition of the S-transform which is an important tool to characterize
elements of the Hida test function and distribution space. See [33]. The S—transform of a @ € (S)*,
denoted by S(®), is defined by the dual pairing

5(®)(¢) = (P, (9, w)) (2.13)
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for ¢ € (Sc([0,T)))% Here Sc([0,T]) the complexification of S([0,T]). We mention that the
S—transform is a monomorphism from (S)* to C. In particular, if

S(®) = S(P) for ,¥ € (S)*

then
D=0,

One checks that

SWi) @) =o' (), i=1,..d (2.14)
for ¢ = (¢11),...,6!P) € (Sc([0,T7))".

Finally, we need the important concept of the Wick or Wick-Grassmann product, which we

want to use in Section [3] to represent solutions of SDE’s. The Wick product can be regarded as a

tensor algebra multiplication on the Fock space and can be defined as follows: The Wick product
of two distributions ®, ¥ € (S§)*, denoted by ® ¢ ¥, is the unique element in (S)* such that

S(@oW)(d) = S(®)(4)S(¥)(¢) (2.15)
for all ¢ € (Sc([0,7)))4. As an example we find that
<Hn(w)7 ¢(")> o <Hm(w),z/)(m)> = <Hn+m(w), ¢(”'>®w(m)> (2.16)

for (™ € ((S([0, T]))d)®n and (™ € ((S([0,77))9) ®™ The latter in connection with 1) shows
that

(¢, w) = exp®((w, ¢)) (2.17)
for ¢ € (S([0,T)))¢. Here the Wick exponential exp®(X) of a X € (S)* is defined as
1 n
exp®(X) =) X, (2.18)
n>0

where X°" = X o...¢o X, if the sum on the right hand side converges in (S)*.

2.2. Basic elements of Malliavin Calculus. In this Section we briefly elaborate a framework
for Malliavin calculus.
Without loss of generality we consider the case d = 1. Let F € L?(u). Then it follows from

that
F=% <Hn(-), ¢<n>> (2.19)

n>0

for unique ¢(™ € L2([0,T]"). Assume that

2
Z nn! H(b(”) , < 00. (2.20)
et L2([o,T]™)

Then the Malliavin derivative D; of F in the direction of B; is defined by

n>1

We introduce the stochastic Sobolev space Ds 5 as the space of all F' € L?(u) such that (2.20) is
fulfilled. The Malliavin derivative D. is a linear operator from Dq 5 to L?(\ X p1), where A denotes
the Lebesgue measure. We mention that D; 5 is a Hilbert space with the norm ||||12 given by

IFI2 5 = 1122 + ID-F I otixonng (2.22)
We obtain the following chain of continuous inclusions:
(S) = Dyo < L*() <= D_y 9 = (S)*, (2.23)
where D_; 5 is the dual of Dy .
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3. MAIN RESULTS

In this section, we want to further develop the ideas introduced in [2§] to derive Malliavin
differentiable strong solutions of stochastic differential equations with discontinuous coefficients.
More precisely, we aim at analyzing the SDE’s of the form

dX; =b(t,Xy)dt +dB;, 0<t <1, Xg=x€R?, (3.1)

where the drift coefficient b : [0,T] x R? — R? is a Borel measurable function and B; is a
d-dimensional Brownian motion with respect to the stochastic basis

(Qv}—v M) ) {ft}ogtST (32)

for the p—augmented filtration {F;},,~ generated by B;. At the end of this section we shall
also apply our technique to equations with more general diffusions coefficients (Theorem .

Our method to construct strong solution is actually motivated by the following observation in
[21] and [26] (see also [27]).

Proposition 3.1. Suppose that the drift coefficient b : [0, T] x R4— R? in is bounded and
Lipschitz continuous. Then the unique strong solution X; = (X}, ..., X?) of allows for the
explicit representation

@ (6. X1 @) = Bg o (1 BI@)) 40)] (3.3)
for all ¢ : [0,T] x R — R such that ¢ (¢, B}) € L*(n) for all0 <t <T,i=1,...,d,. The object
ES(b) is given by

E4D)w.8) == exp® (X5, fy (Wiw) + (s, Bu(@)) ) dBI (@)
I (W) + 0 (s, B@))ds). (3.4)

Here (ﬁ,f', ﬁ) , (Et) . is a copy of the quadruple (U, F, i), (Bt),;>q in . Further E; denotes
> >

a Pettis integral of random elements ® : QO — (S)" with respect to the measure fi. The Wick
product ¢ in the Wick exponential of 4 is taken with respect to p and Wtj is the white noise
of B in the Hida space (S)" (see ). The stochastic integrals fOT o(t,B)dBI (D) in are
defined for predictable integrands ¢ with values in the conuclear space (S)*. See [I7] for definitions.
The other integral type in s to be understood in the sense of Pettis.

Remark 3.2. Let 0 = t7 <ty < ... <ty =T be a sequence of partitions of the interval
[0, T] with max™ ! |ty —t| — 0 . Then the stochastic integral of the white noise W7 can be
approximated as follows:

My

| Wi)iBi@) = tim 3 (B, (@) - Bl @)W ()

n—>o0 4
=1

in L2(\ x [1;(S)"). For more information about stochastic integration on conuclear spaces the
reader may consult [T7].

In the sequel we shall use the notation Yti’b for the expectation on the right hand side of 1)
for p(t,z) = x, that is
Y= B | B g5 0)]
fori=1,...,d. We set
) — (ytlvb, .. ,Y[“’) . (3.5)
The form of Formula (3.3) in Proposition actually suggests that the expectation on the
right hand side or Y in (3.5) may also represent solutions of (3.1]) for merely measurable drift

coefficients b. The latter naturally leads to the following question: Can one specify conditions on
b under which one succeeds to directly verify the generalized process Y} to be a (strong) solution
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of ? This question was successfully treated for the one-dimensional case using a comparison
argument in [26] and for the multidimensional case under a rather strong symmetry condition on
the drift b using Malliavin calculus in [28]. In this paper we considerably improve the results given
in [28] by removing the symmetry condition on b. Our main result in this paper is the following
theorem:

Theorem 3.3. Suppose that the drift coefficient b : [0,1] x R? — R in (3.1) is a bounded Borel-
measurable function. Then there exists a unique global strong solution X to Equation (3.1]) such
that X; is Malliavin differentiable for all 0 <t < 1.

Remark 3.4. In the one-dimensional case the existence and uniqueness of strong solutions to
for bounded and measurable drift coefficients was first obtained by Zvonkin in his celebrated
paper [A7]. The extension to the multi-dimensional case was given by [A5]. We point out that
our solution technique grants the important additional insight that such solutions are Malliavin
differentiable. We remark that Theorem is a generalization of [27, Theorem 5] from the one-
dimensional to the multi-dimensional case. Let us also mention that we considerably improve the
technique initiated in [28] (see also [20] and [34]) by removing a certain symmetry condition on
the drift coefficients in (see |27, Definition 3]), which severely limits the class of SDE’s to
be analyzed. The removal of the latter condition, however, may actually pave the way for the
construction of strong solutions of discontinuous infinite dimensional stochastic equations of the
type (L.3) or SPDE’s. See [25]. We point out that the methods of the authors mentioned in the
introduction fail in this case.

To prove Theorem [3.3| we follow a procedure consisting of two steps (compare [28]). In the first
step, we show for a sequence of uniformly bounded, smooth coefficients b,, : [0,1] x R — R%,
n > 1, with compact support that for each 0 < ¢t < 1 the sequence of corresponding strong
solutions X, ; = Y;b“, n > 1, is relatively compact in L?(u; R?) (Corollary . The main tool to
prove compactness is the bound in Lemma |3.5|in connection with a compactness criteria in terms
of Malliavin derivatives obtained in [6] (see Appendix. This step is one of the main contribution
of this paper.

Given a merely measurable and bounded drift coefficient b, we then show in the second step
that Y,?, 0 < ¢t < 1 is a generalized process in the Hida distribution space, and we apply the
S-transform to prove that for a given sequence of a.e. approximating, uniformly bounded,
smooth coefficients b,, with compact support a subsequence of the corresponding strong solutions

b,
X, =Y, " fulfills
b,
Y, =Y,
in L2(u;R?) for 0 < ¢ < 1 (Lemma|3.14). Using a certain transformation property for Y (Lemma
3.16)) we directly verify Y;® as a solution to (3.1)) which in addition is Malliavin differentiable.

We now turn to the first step of our procedure. The successful completion of the first step relies
on the following essential lemma:

Lemma 3.5. Let b : [0,1] x RY — R be a smooth function with compact support. Then the
corresponding strong solution X in (3.1)) fulfills

E[|ID:Xs — Dy X|?] < Ca(||blloo) [t — '
foro<t' <t<1,a=as) >0 and

sup E [||D;X,[*] < Ca(l|bllo)
0<t<1

where Cy : [0,00) — [0,00) is an increasing, continuous function, || - || a matriz-norm on R4*4

and || - ||loo the supremum norm.

From Lemma [3.5] together with Corollary [A-3] we immediately obtain the main result of step
one of our procedure:
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Corollary 3.6. Let b, : [0,1] x R — RY, n > 1, be a sequence of uniformly bounded, smooth
coefficients with compact support. Then for each 0 <t <1 the sequence of corresponding strong
solutions X,, ; = Ytb", n > 1, is relatively compact in L*(u; R?).

In order to prove Lemma [3.5| we need the following estimate, which can be considered a gener-
alization of a bound given in [7, Proposition 2.2]:

Proposition 3.7. Let B be a d-dimensional Brownian Motion starting from the origin and
bi,...,b, be compactly supported continuously differentiable functions b; : [0,1] x R? — R for
i=1,2,...n. Let a; € {0,1}¢ be a multiindex such that |a;| = 1 fori =1,2,...,n. Then there
exists a universal constant C (independent of {b;};, n, and {a;};) such that

/ [[ Do biti, B(ta)) | dty ... dt,
to<t1<-<tn<t \;_q

where T' is the Gamma-function. Here D denotes the partial derivative with respect to the j'th
space variable, where j is the position of the 1 in «.

C™ Ty [1billoo (t — to)™/2

E
r(+1)

<

(3.6)

Proof. Without loss of generality, assume that ||bi]lcc < 1 for ¢ = 1,2...,n. Denote by z =
(21 ... 2(D) a generic element of R? and by || - || the usual Euclidian norm. With P(t,2) =
(27rt)_d/26_”2“2/2t, write the left hand side in (3.6) as

n

/ / HDallh(t“Zl)P(tl 7ti_1,Zi 721'_1)d2’1 dantl dtn
to<t1<--<tp <t JRI™ ;T4

Introduce the notation

n

T (fo 1, 20) = /

/ Daibi(ti, ZZ)P(tZ —ti—1,2; — zi,l)dzl .odzpdty .. dty,
to<ty <<ty <t JRIm

where o = (a1, ... a,) € {0,1}". We shall show that |JS(tg,t,0)| < C™(t — to)"/?/T'(n/2 + 1),
thus proving the proposition.

To do this, we will use integration by parts to shift the derivatives onto the Gaussian kernel. This
will be done by introducing the alphabet A(a) = {P,D*' P,..., D% P,D**D*2 P, .. D% -1 D% P}
where D% D D%i+1 denotes the derivatives in z on P(t, z).

Take a string S = Sy --- S, in A(«) and define

Ig(thtv'ZO) = /

to<-<tnp<t

/ H bl(t“ ZZ)SZ(t1 - tifl, Zi — zi,l)dzl ‘e dantl . dtn .
R 501

We will only need a special type of strings, and we say that a string is allowed if, when all the
D% P’s are removed from the string, a string of the form P . D% D*+1P.P.D%+1D%+2P ... P.
Do D*+1P for s > 1, r < n — 1 remains. Also, we will require that the first derivatives D* P
are written in an increasing order with respect to 1.

Before we proceed with the proof of Proposition we will need some intermediate results.

Lemma 3.8. We can write

2n71

T2 (ot 20) = Y €18 (to,t, 20)
j=1

where each €; is either —1 or 1 and each S7 is an allowed string in A(x).
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Proof. The equation obviously holds for n = 1. Assume the equation holds for n > 1, and let by
be another function satisfying the requirements of the proposition. Likewise with cqg. Then

¢
Jr(iofa) (to,t,20) :/ ) Dby (t1, z1)P(ty — to, 21 — 20)Jy; (t1,t, z1)dz1dty
tog /R

t
= — / / bo(tl, Zl)DaOP(t1 — to,Zl — Zo)Jg(tl,t,Zl)dzldtl
to JRE

t

— / bo(tl, Zl)P(tl — to, zZ1 — Zo)DaOJg(tl, t, zl)dzldtl .
to JR4

Notice that
Daolg(tl7 ta Zl) = _Iéao,a) (t17 t7 Zl)

where

g D¥PpP.Sy... 5, ifS=P-Sy---5,

"~ | D¥®D¥pP.Sy...8, ifS=DuP.Sy...S,.
Here, S is not an allowed string in A(a). So from the induction hyptothesis D* J%(tg,t,z9) =

2n71

Zj:l —Ejléama) (to, t, Zo) this gives

2n—1 271,—1
(avo, ) (avo,) _
Tt = E :_EJ'IDuop.sj + § :ejIP~SJ"
j=1 j=1

It is easily checked that when S7 is an allowed string in A(a), both D*P - §7 and P - §7 are
allowed strings in A(ayg, ).
O

For the rest of the proof of Proposition we will bound I§ when S is an allowed string, and
the result will follow from the above representation.

Lemma 3.9. Let ¢,h : [0,1] x R? — R be measurable functions such that |¢(s,z)| < e=lI=I7/3s
and ||h]|oo < 1. Also let o, 8 € {0,1}? be multiindices such that || = |3| = 1. Then there exists a
universal constant C' (independent of ¢, h, o and ) such that

1t
/ / / é(s,2)h(t,y)D*DP P(t — s,y — 2)dydzdsdt| < C.
1/2 Jt/2 Jra JRe

Proof. Let I,m € Z% and denote [I,1 + 1) := I, 1M 4 1) x -+ x [I(4 19 4-1) and similarly for
[ma m+ 1) Define (]5[(8,2:) = (25(8, Z)l[l,l+1)(z) and hm(t>y) = h(tvy)l[m,erl)-

Denote the above integral by I, and I; ,, the integral when ¢, h is replaced by ¢;, hy,. Then
we can write I = ZlﬂnEZd I} . Below we let C' be a generic constant that may vary from line to
line.

Assume ||l — m||oo := max; [ —m@| > 2. For z € [I,l +1) and y € [m,m + 1) we have
lz=vyll > Il = m|loo — 1. If @ # 8 we have that
(2D — y@)(200) — 40

(t—s)?
for a suitable choice of i, j. Then we can find C such that

|IDDPP(t — 5,2 —y)| < Ce(l=mle=2)/4

DDPP(t — 5,2 —y) =

P(t—s,y—2z)

If « = 3, we have

(O =202 |\ Plt=sy—2)
t—s t—s

(2Pl sy =) = (
and similarily we find C' such that
(DY)2P(t — s,y — 2)| < Ce(ll=mll=2%/4
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In both cases we have |I;,,| < Ce /8 e=(ll=mlls=2)*/4 and it follows that

> |ml <C.

l=m|lec 22

Assume ||l — mlls < 1 and let ¢y(s,u) and A, (t,u) be the Fourier transform in the second
variable. By the Plancherel theorem we have that

Si(s,uw)2du= [ di(s,2)2dz < Ce /0
R4 Rd

for all s € [0,1] and

P (£, w)2du = B (t, )2 dy < 1.
R4 R
We can write

1 t
L = / / A1(5, W) hu (t, —u)uDuD e~ =N/ 2y dsqr
1/2 Jt/2 JRe

for a suitable choice of i and j. To see this, notice that with p(u) = u®ul) and f(u) =
e~ (t=9)1ull*/2 we have (p-f)ly —2) = D*DPf(y — z). Also, note that P(1,-) = P(1,-). The
result follows by substituting v = 1/t — su in the integral.

Applying ab < %aQC-i- %bzc’1 with a = q@l(s,u)u(i), b= iLm(t, —u)u) and ¢ = elll?/12 e get

1ot R : > 2
| < 5/ / Bu(s, 1) (u®)2e I/ 12 ==l 2y, s
1/2 Ji/2 JRe
1 t
+1/ / / B (2, —u)2(u(j))2ef””'2/1267(’5*5)"“"2/2dudsdt
2 Ji2Jty2 Jra
1t ! 2 2 2 _|111%/12 2/2
< §/ / Ba(s, )2 [ul 2N/ 12 ==l /2y g g
1/2 Jtj2 JRe

1t
+ 1/ / B (£, =) 2||u]| 2~ WP /12 = =) 1l* /2 gy st
2 Ji2Jiy2 Jra ’
For the first term, integrate first with respect to t in order to get
1 gt
/ / Bi(s, w2 2 12e= (=l 2 gy gsds < Co—MIF/12
172 Jt/2 JRd
and for the second term, integrate with respect to s first to get

1 t
/ / o (2, —10)2 ]| 2= W12/ 126 ==l 2, g < Ce=WIP/12
1/2 Jt/2 Jra N

which gives | ,,| < Ce~I11°/12 and hence

Z |Il,m‘ < C.

ll=mllee <1

O

Corollary 3.10. There exists an absolute constant C such that for measurable functions g and h
bounded by 1

<C

1t
/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — z)dydzdsdt
172 Jt/2 Jra JRd

and

<C.

1 gt
/ / / / g(s,2)DVP(s,2)h(t,y)D*DPP(t — s,y — z)dydzdsdt
172 Jt/2 Jra Jra
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264 Notice that we have [, P(t,z)dz =1 and that

/Rd |DYP(t, z)|dz < Ct~1/2, (3.7)
265
/Rd |D“DPP(t,2)|dz < Ot~ 1. (3.8)

266 Lemma 3.11. There is an absolute constant C such that for every Borel-measurable functions g
267 and h bounded by 1, and r >0

t t1
/ / / / g(tg, Z)P(tQ — to, Z)h(tl, y)DaDﬂp(h — tz, Yy — Z) (t - tl)rdydzdtgdtl
to Rd JR4

<CA4r)"Ht—to) ™!

268

t1
// // (ty,2)DYE(ty — to, 2)h(t1,y)D*DP P(t; — to,y — 2)(t — t1)"dydzdtadt
to R4

< CA+7)"Y2(t —to) T2,

269 Proof. We begin by proving the estimate for ¢ = to = 0. From Corollary [3.10] we have that for
270 each k>0

27kt
/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — 2)(1 — t)"dydzdsdt
2-k=1 Jg/2 JRd JRA

<O —27Fhro=k,
271 To see this, make the substitutions ¢ = 2¥¢ and s’ = 2¥s. Use the easily verified fact that P(at, z) =

272 a~Y2P(t,a=1/2%) and substitute 2/ = 2¥/2z and 3’ = 2¥/2y. Using h(t,y) := %h(t, y) in
273 Corollary (3.10)), the result follows.
274 Summing this equation over k gives

1 gt
/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — 5,y — 2)(1 — t)"dydzdsdt| < C(1 + r)~*
0 Jij2 Jrd Jra

275 Moreover from the bound (3.8))

1 t/2
/ / / / g(s,2)P(s,2)h(t,y)D*DPP(t — s,y — 2)(1 — t)"dydzdsdt
o Jo JreJRre

1 )2
gc/ / (t—8)" 11 —t)"dsdt < C(1+r)""
0 0

276 and combining these bounds gives the first assertion for t =ty = 0. For general ¢ and ¢y use the

277 change of variables t| = G50ty = 25y = (t — to) "%y and 2/ = (t —ty) " V/2z.

278 The second assertion is proved similary. O

We turn to the completion of the proof of Proposition [3.7]by showing that there exists a constant
M such that for each allowed string S in the alphabet A(«) we have

M’n(t _ to)n/Q

0G5+ 1)
279  We will prove this by induction on n. The case n = 0 is immediate, so assume n > 0 and that
280 this holds for all allowed strings of length less than n. There are three cases

Ig(to,t, 20) <

281 (1) S=D*P -85 where S’ is a string in A(¢/) and o := (a2, ..., ay)
282 (2) S=P-D*D*P -5 where S’ is a string in A(a’) and o/ := (as,..., )
283 (3) S =P -D*P...D*mP . D¥m+1D¥m+2P . S where S’ is a string in A(a’) and o :=

284 (mt3s - Q).
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285 In each case, S’ is an allowed string in the given alphabet.

286 (1) We use the inductive hypothesis to bound Ig,/ (t1,t,21) and the bound (3.7) to get

|Ig(t0’t7 ZO)| -

t
/ / bl(tl,Zl)Dalp(tl — to,Zl — Zo)Ig/l(tl,t,Zl)dzldtl
to R4

Mn—l t
< Tl / (t - tl)(n_l)/Q / |Da1P(t1 - t(), 21 — Zo)‘dzldtl
F( 2 ) to R4

Mnflc t 3 B
< — / (t — tl)(n 1)/2(t1 — to) 1/2dt1
to

R
 MMTIO/m(t — to)M?
; L(%+1)
287 The result follows if M is large enough.
288 (2) For this case we can write

S(to, t,20) = ///d db1 (t1,21)ba(t2, 22)
R JR

X P t1 — to, zZ1 — Zo)DalDOQP(tQ — tl, zZ9 — 2’1)]5«/ (tg,t Zg)dzleththl

We set h(ta, z2) := ba(ta, 22) IS (ta, 22)(t — t2)'~™/? so that by the inductive hypothesis we
have

[hloe < M™2/T(n/2).

Use this in the first part of Lemma with ¢ = b; and integrate with respect to to first,

to get
CM"=2(t — to)"/?
IZ(tg,t, 20)| <
| S( 0, 0)‘ = TLF(TL/Q) )
289 and the result follows if M is large enough.
290 (3) We have
m—+2
I5(to, t, 20) = / / P(ty —to, 21 — 20) [ ] bi(t5,2))
to<...tmpa<t JR(M+2)d j=1
X H Da7P j 1, Z] Zj—l)Dam’+1Dam+2P(t7rL+2 - tm-‘rla Zm+2 — Z7n+1)
X IS’ (tm+2, t7 Zm+2)d21 . dZm+2dt1 N dtm+2 .
201 Let h(tmia, Zms2) = bmra(tmeas Zmio) 19 (bmia, t, 2)(E = tmia)2T"™/2 50 that from
292 the inductive hypothesis we have ||| < M™~™72/T((n —m)/2). Write
ma Zm . / / bm+1 (thrla Zm+1)h(tm+27 Zm+2)
t7n m+1 R2d

X (t = tyga) T TAZDOM P (Lt — s 21 — 2)

X DOéerlDaer2P(tm+2 - tm+la Zm+2 — Zerl)dzm+1dzm+2dtm+1dtm+2 )
so that from Lemma (3.11)) we have that
Cln—m —1/2Mn—m—2 t—t (n—m—1)/2
1Q(tm, 2m)| < ( ) (= tm) :

- r(#5")
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Using this in

m
Ig(to,t,ZO):/ / P(tl—to,zl—ZQ)Hbj(tj,Zj)
to<...tmpo<t JR(m+2)d j=1
m—1
X H DY P(t; —tj—1,2j — 2j—1)Qtm, 2m)dz1 . .. dzpmdty ... dly, ,

j=1
and using the bound (3.7) several times gives
Mn—m—2
1S (to, t, 20)] < O™ (n —m) ™2
5 I'((n—m)/2)
X / (ty —t) 7Y% (b = tip1) T2 (= b)Y 208 Lty
to< b <t

Mn7m727r(m71)/21-1(n772n+1)
L(%5=)r((s +1)

_ Cm+1(n_m)—1/2 (t—to)n/2,

and the result follows when M is large enough, thus proving the induction step.

We are now ready to complete the proof of Lemma [3.5]
Proof of Lemma[3.5. Using the chain-rule of the Malliavin derivative D; (see [30]) we find that

DX, =Ty + / (1, Xo) Dy X udu (3.9)
t

p-a.e. for all 1 > ¢ > s, where Zy is the d x d identity matrix and o' = (%b(ﬂ')(t, x)) e is the
’ 1<2,5<

(bounded) space derivative of b.
Fix 0 <# <t < 1. Then, for 1 > s >t we have

Dt’Xs — Dth = / b’(u, Xu)Dt/XudU —/ b/(U,Xu)DtXudu
t’ t

t s
= / b/(u, Xu)Dt/Xudu + / b,(U/7 Xu) (Dt/Xu — DtXu) du
t t

’

= Dt/Xt *Id + / b,(U,Xu) (Dt/Xu - DtXu) du.

t

Applying Picard iteration to the above equation we find that

Dt/Xs - Dth

= Id+Z/ b (s1,Xs,) i b (8, X5, )ds1...dsy | (Dp Xy —Ty) (3.10)
n=17t<s1<-<sp<s

in L?(), uniformly in s, where : denotes (non-commutative) matrix multiplication. On the other
hand we also observe that

Dy X, —1g= Z/ b (s1,Xs,) i o2 b (8n, X, )dsy ... dsy, . (3.11)

n=1vt'<s1<-<sp,<t
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305 Denote by || - || the maximum norm on R4*¢. Then Girsanov’s theorem, Hélder’s inequality and
306 the Novikov condition in connection with (3.10) and (3.11) yield

T+ Z/ V(s1,Bs,) - : b (sn, Bs,)dsy ... ds,
t<s1<--<sp<s

n=1

E|[|Dy X, — DiX,|?] =E

o 2
X Z/ b'(s1,Bs,) i+ : b (sp, Bs,)ds1 ...dsy,
=1Vt <s1<--<s, <t
d 1
xE Z/ b9 (u, B,)dBY)
j=1"0
o 2
<Cy ||Z4 + Z/ b (s1,Bg,): - : b (sn, B, )dsy ... dsy
n=17t<s1<<sn <5 L3 (p;Rdxd)
o 2
X Z/ b'(s1,Bs;) - : U (sp, Bs,)dsy ...dsp
n=1vt' <s1<--<s, <t L8 (R xd)

307 where C] is a constant and £(M;) denotes the Doleans-Dade exponential of a martingale M;.
308 So we obtain that

E[|Dy X, — D X7

o 2
<0 Id+Z/ V(s1,Bs,) - : b (sp, Bs,)dsy ... ds,
n=17t<s1< <8, <s L8(p;Rdxd)
oo 2
X Z/ b'(s1,Bs,) i+ : b (sp, Bs, )ds1 .. .ds,
n=1vt' <s1<-<sp<t L8 (u;R4x )
0o d d P 9
(@) (1)
= Ol L+ Z Z Z »/t<s < <sp<s amh ’ (51’ BSl)a‘le " (527 BS2) o
n=14,j=111,...l, _1=1 1 N
5 2
b= (s, B, )dsy ...dsy
Ox; L8(;R)
[e%S) d d 9 9
() (1)
AT X | B gt s B
n=14,j=111,..01p_1=1 t<s1 < <sp <t 1 2
309
5 2
. =—b= (s, By )dsy .. .dsy . (3.12)
0z; L8 (w:R)
310 Now, look at the expression
d 0 0
A;:/ b (s1, B, b (s, By,) ... ——b) (s, By dsy ...ds,. (313
t<s1<--<sp<t axll ( b )axlz ( ? ) axln ( ' n) ' " ( )

311 Then, using (deterministic) integration by parts, repeatedly, one finds that A% can be written as
312 a sum of at most 22" summands of the form

/ 91(51) .. .ggn(82n)d$1 e dSQn 5 (314)
t<s1< <82, <t

313 where g; € {%b“%,B.) 11<4,5 < d}, I=1,2...2n. Since A* = A2A?, we can argue similarly

314 and conclude that there are at most 25" such summands (of length 4n). Using this principle once
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more we see that A% can be represented as a sum of at most 232" summands of the form (3.14])

now with lenght 8n.

Combining this with Proposition [3.7] we get that

/t’<s1<---<sn<t axll

o )
b (s1, By, ) 5

b(ll)(SQ,BS2) o ib(ln—l)(Sn,Bsn)dsl ...ds,

Z1, O0x;

(2Pl — vt Y
- I'(4n+1)

2 bl — )
= (4n!)1/8

Then it follows from (3.12)) that

E[|DiX, — Dy X,|I’] < G4 (1 + Z

2
s d”+224”0"||b||20\t _ s|n/2
(4n!)1/8

n=1

(4n!)178

n=1

2
0 dn+224”0"||b”go|t _ t/|(n—1)/2 ,
X [t —¢|

< Ca([[blloo) [t — '

for a function Cy as claimed in the theorem.
Similarly, we deduce the estimate for supg<, <, E[||D: X||?].

L8(;R)

(3.15)

O

This concludes step one in our program and we are now coming to the second step. For a
Borel-measurable, bounded coefficient b we gradually show the following:

e Y in (3.5) is a well-defined object in the Hida distribution space (S)*, 0 <t < 1, (Lemma

3.12).

e For any a.e. approximating sequence of uniformly bounded, smooth coefficients b,, with

b
compact support a subsequence of the corresponding strong solutions X,,; ; =Y, 7, fulfills

b ) . .
Y, — Y?in L?(u) for 0 <t <1 (in particular Y? € L?(u), 0 <t < 1), (Lemma .
e We apply a transformation property for Y;* (Lemma [3.16) and identify Y}? as a Malliavin

differential strong solution to (3.1)).

The first lemma gives a criterion under which the process Y;? belongs to the Hida distribution

space.

Lemma 3.12. Suppose that

Then the coordinates of the process Y°, defined in

E, [exp <36/01 |b(s,Bs)|2d3)] < 00,

where the drift b : [0,1] x RI— R is measurable (in particular, [3.16)) is valid for b bounded).
(ﬁ)

, that is

Y = Bx [Bg )]

are elements of the Hida distribution space.

Proof. See [28]

(3.16)

(3.17)

O

Lemma 3.13. Let b, : [0,1] x R — R be a sequence of Borel measurable functions with by = b

such that

sup £
n>0

{exp (512 /01 ||bn(s,Bs)2ds)] < 00

(3.18)
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holds. Then .
S = Yi0)| < const - B -exp(31 [ lo(s)] ds)
0

for all ¢ € (Sc([0,1)))%, i =1,...,d, where the factor J,, is defined by
d

T :2 (2/01 (bgﬂ(u, By) — b(j)(u,Bu))Qdu

(f 9, B - 69w, B du)> . (3.19)

In particular, if b, approximates b in the following sense
E[J,] =0 (3.20)
as n — 00, it follows that
Yir =YY in (8)*
asn—oo forall0<t<1,i=1,...,d.
Proof. See [28] O

Lemma 3.14. Let b, : [0,1] x R¥——=R? be a sequence of Borel-measurable, uniformly bounded,
smooth functions with compact support which approzimates a Borel-measurable, bounded coefficient
b:[0,1] x RE—R? a.e. with respect to the Lebesque measure. Then for any 0 <t < 1 there exists

bn,; .
a subsequence of the corresponding strong solutions X, =Y, 7, j =1,2..., such that
b b
Y, ' —Y,
for j — oo in L?(p). In particular this implies Y,> € L?(n), 0 <t < 1.
b, . o
Proof. By Corollary we know that there exists a subsequence Y, 7, j = 1,2..., converging in

le,‘ .
L?(p). Further, by boundedness obviously E[J,,] — 0 in (3.20), and thus ;™ — Y} in (S)*.
bo. .
But then, by uniqueness of the limit, also Y, "/ — Y,? in L2(u). O

Remark 3.15. Note that by well known approrimation results there always exists a sequence of
functions b,, n > 1, fulfilling the assumptions in Lemma([3.1]} Then Lemma[3.1]] guarantees that
we are now ready to state the following “transformation property” for Y.

Lemma 3.16. Assume that b : [0,1] x R4— R is Borel-measurable and bounded. Then

oD (6Y)) = Eq [¢V (t.B:) £4.0)] (3.21)
ae. forall0<t<1,i=1,...,d and o = (M, ..., D) such that ¢(B;) € L?(u; R?).
Proof. See [34, Lemma 16] or [26]. O

Using the above auxiliary results we can finally give the proof of Theorem

Proof of Theorem[3.3 We aim at employing the transformation property (3.21) of Lemma
to verify that Y} is a unique strong solution of the SDE (3.1). To shorten notation we set

fot o(s,w)dBg := 25:1 fot go(j)(s,w)ngj) and z = 0. Also, let b,, n = 1,2, ..., be a sequence of

functions as required in Lemma (see Remark |3.15]).
We first remark that Y has a continuous modification. The latter can be checked as follows:

Since each Y;b" is a strong solution of the SDE (3.1)) with respect to the drift b, we obtain from
Girsanov’s theorem and our assumptions that

E, [(Y;Vbn _ Y‘f’bnﬂ - E; {(Et@ _ 33“)25 </1 bn(sjs)désﬂ
0

const - |t — u

IN
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forall 0 <wu,t<1,n>1,¢=1,...,d By Lemma 3.14 we know that
Y Y i L RY)
for a subsequence, 0 <t < 1. So we get that
, SN2
E, [(Ytb - YJ”’) } < const - |t — ul (3.22)

for all 0 <wu,t <1,i=1,...,d. Then Kolmogorov’s Lemma provides a continuous modification of
Yp.

Since B; is a weak solution of (3.1) for the drift b(s,z) + ¢(s) with respect to the measure
dp* =& (fol (b(s, B,) + ¢(8)> dés) dp we obtain that

50740 = B [B0e ([ (o6 + o06)) aB.)|
= B, |BY")]
= E,- [ /0 1 (b@)(s,és) + ¢<i>(s)) ds}

t 1 ,
= [ [0 Bae ([ (B +o00) aB) | s+ 5 (59 ).
0 0
Hence the transformation property (3.21)) applied to b gives
t .
SE@) =S| 60, ¥i0)du)(6) + SB)).
0
Then the injectivity of .S implies that
t
vh = / b(s,Y)ds + B;.
0
The Malliavin differentiability of Y} follows from the fact that

i,b
sup H}/tla n
n>1

<M< oo
1,2

foralli=1,...,d and 0 <t < 1. See e.g. [30].

On the other hand our conditions allow the application of Girsanov’s theorem to any other
strong solution. Then the proof of Proposition (see e.g. [34, Proposition 1]) shows that any
other solution necessarily takes the form Y.

O

Finally, we give an extension of Theorem to a class of non-degenerate d—dimensional Ito-
diffusions.
Theorem 3.17. Consider the time-homogeneous R*—valued SDE
dX, = b(X,)dt + o(X,)dB;, Xo=xz€R? 0<t<T, (3.23)

where the coefficients b : RY — R? and o : R — Rx R%are Borel measurable. Require that
there ezists a bijection A : R4 — R®, which is twice continuously differentiable. Let A, : R4 —»
L (Rd,Rd) and Agy - R — L (Rd X Rd,Rd) be the corresponding derivatives of A and assume
that

A (y)o(y) = idra fory a.e.
as well as

A7 is Lipschitz continuous.
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Suppose that the function b, : RT — R? given by
bi(z) == Ay (A7" (z)) [B(A™" (2))]

d
+ %AM (A7 (2)) Z o(A™H (@) [e], Z o(A™ (@) [ed]

1=1
satisfies the conditions of Theorem where e;, i =1,...,d, is a basis of R?. Then there exists
a Malliavin differentiable solution Xy to .

Proof. The proof can be directly obtained from It6’s Lemma. See [2§]. O

APPENDIX A.

The following result which is due to [6, Theorem 1] provides a compactness criterion for subsets
of L?(u; R?) using Malliavin calculus.

Theorem A.1. Let {(, A, P); H} be a Gaussian probability space, that is (Q, A, P) is a prob-
ability space and H a separable closed subspace of Gaussian random variables of L*(S), which
generate the o-field A. Denote by D the derivative operator acting on elementary smooth random
variables in the sense that

D(f(h1,-..,hn)) =D if(hy,....ho)hi, hi € H, f € C°(R™).
=1

Further let Dy 2 be the closure of the family of elementary smooth random variables with respect
to the norm

1E N 2 o= I1Fl 2y + IDF L2y -
Assume that C' is a self-adjoint compact operator on H with dense image. Then for any ¢ > 0 the
set

G={GeDiz: Gl e+ [CTD G| o) < ¢}
is relatively compact in L?(£2).

In order to formulate compactness criteria useful for our purposes, we need the following tech-
nical result which also can be found in [6].

Lemma A.2. Let vs,s > 0 be the Haar basis of L?([0,1]). For any 0 < a < 1/2 define the
operator A, on L*([0,1]) by
Aqus =2F%,, if s =2F +
fork>0,0<j<2* and
Al =1.
Then for all § with o < B < (1/2), there exists a constant c1 such that

Lo -l
[Aafll < 1 Hf||L2([O,1])+ o Jo Wdtdt

A direct consequence of Theorem [A]and Lemma[A-2]is now the following compactness criteria
which is essential for the proof of Corollar [3.6}

Corollary A.3. Let a sequence of Fi-measurable random variables X,, € D1 2, n =1,2..., be such
that there exist constants a > 0 and C > 0 with

sup E [||Dy Xy, — Dy X, |I’] < CJt —t'|*

for0<t' <t<1 and

sup sup E [||DX,[*] <C.
n 0<t<1

Then the sequence X, n = 1,2..., is relatively compact in L?(£2).
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