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Abstract In this article an approach for the analysis and prediction of soc-
cer match results is proposed. It is based on a regularized Poisson regression
model that includes various potentially influential covariates describing the
national teams’ success in previous FIFA World Cups. Additionally, sim-
ilar to Bradley-Terry-Luce models, differences of team-specific effects of
the competing teams are included. It is discussed that within the gener-
alized linear model (GLM) framework the team-specific effects can either
be incorporated in the form of fixed or random effects. In order to achieve
variable selection and shrinkage, we use tailored Lasso approaches. Based
on the three preceding FIFA World Cups, two competing models for the
prediction of the FIFA World Cup 2014 are fitted and investigated.
Keywords Football, FIFA World Cup 2014, Sports tournaments, Gener-
alized linear model, Lasso, Variable selection.

1 Introduction

In the last few years various approaches to the statistical modeling of ma-
jor soccer events have been proposed, among them the Union of Euro-
pean Football Associations (UEFA) Champions League (CL; Karlis and
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Ntzoufras, 2003, Leitner et al., 2011, Eugster et al., 2011), the European
football championship (EURO; Leitner et al., 2008, Leitner et al., 2010a,
Zeileis et al., 2012, Groll and Abedieh, 2013) or the Fédération Interna-
tionale de Football Association (FIFA) World Cup (Leitner et al., 2010b,
Stoy et al., 2010, Dyte and Clarke, 2000). In particular, the current FIFA
World Cup 2014 in Brazil is accompanied by various publications trying
to predict the tournament winner, see, e.g., Zeileis et al. (2014), Goldman-
Sachs Global Investment Research (2014), Silver (2014) and Lloyd’s (2014).

In general, statistical approaches to the modeling of soccer data can be
divided into two major categories: the first ones are based on the eas-
ily available source of “prospective” information contained in bookmakers’
odds, compare Leitner et al. (2008), Leitner et al. (2010b), Zeileis et al.
(2012) and Zeileis et al. (2014). They already correctly predicted the finals
of the EURO 2008 as well as Spain as the 2010 FIFA World Champion and
as the 2012 EURO Champion. The winning probabilities for each team were
obtained simply by aggregating winning odds from several online bookmak-
ers. Based on these winning probabilities, by inverse tournament simulation
team-specific abilities can be computed by paired comparison models. Us-
ing this technique the effects of the tournament draw are stripped. Next,
pairwise probabilities for each possible game at the corresponding tourna-
ment can be predicted and, finally, the whole tournament can be simulated.
Using this approach, Zeileis et al. (2014) predict the host Brazil to win the
FIFA World Cup 2014 with a probability of 22.5%, followed by Argentina
(15.8%) and Germany (13.4%).

It should be noted that this method will always predict the team that
has the lowest (average) bookmaker odds as the tournament winner and,
hence, is implicitly assuming that all available information is covered by
the bookmakers expertise. This is not unrealistic, as one can indeed expect
bookmakers to use sophisticated models when setting up their odds, as they
have strong economic incentives to rate the team strengths of soccer teams
correctly. Nevertheless, from time to time a clear underdog wins a major
tournament, as, for example, Greece at the EURO 20041. Although any
statistical model will have serious difficulties to correctly predict such an
unexpected event, it would be desirable to at least draw conclusions from
such an event with regard to future tournaments. This is only possible
if models are used, which incorporate covariates of the competing teams,
while methods based solely on bookmakers’ odds (or solely on the market

1The German state betting agency ODDSET ranked Greece on place twelve among
the favorites for the EURO 2004 with odds of 45.00 (usually, in statistics odds represent
the ratio of the probability that an event will happen to the probability that it will not
happen; however, European bookmakers specify the gross ratio, which represents the
ratio of paid amount to stake. So putting 1 Euro on Greece as the EURO 2004 champion
would have given back 45 Euro. Thus, European odds can be directly transformed into
probabilities by taking the inverse and adjusting for the bookmakers’ margins).
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value instead) have no chance to account for such information. Hence, our
goal is to determine additional relevant influence variables that may provide
further information regarding the teams’ abilities.

This task leads to the second category of approaches that are based on
regression models. A simple standard linear regression approach was used
by Stoy et al. (2010) to analyze the success of national teams at FIFA
World Cups. The success of a team at a World Cup is measured by a
defined point scale that is supposed to be normally distributed. Beside some
sport-specific covariates also political-economic, socio-geographic as well as
some religious and psychological influence variables are considered. Based
on this model, a prediction for the FIFA World Cup 2010 was obtained.

In contrast to Stoy et al. (2010), most of the regression approaches di-
rectly model the number of goals scored in single soccer matches, assuming
that the number of goals scored by each team follows a Poisson distribu-
tion model, see, e.g., Maher (1982), Lee (1997), Dyte and Clarke (2000),
Rue and Salvesen (2000) and Goldman-Sachs Global Investment Research
(2014). For example, Dyte and Clarke (2000) predict the distribution of
scores in international soccer matches, treating each team’s goals scored
as conditionally independent Poisson variables depending on two influence
variables, the FIFA world ranking of each team and the match venue. Pois-
son regression is used to estimate parameters for the model and based on
these parameters the matches played during the 1998 FIFA World Cup can
be simulated.

Similarly, Goldman-Sachs Global Investment Research (2014) set up a re-
gression model based on the entire history of mandatory international foot-
ball matches—i.e., no friendlies—since 1960, ending up with about 14,000
observations. The dependent variable is the number of goals scored by
each side in each match, assuming that the number of goals scored by a
particular side in a particular match follows a Poisson distribution. They
incorporate six explanatory covariates: the difference in the Elo rankings2

between the two teams, the average number of goals scored/received by the
competing teams over the last ten/five mandatory international games, a
dummy variable indicating whether the regarding match was a World Cup
match, a dummy variable indicating whether the considered team played in
its home country, a team-specific dummy variable indicating whether the
considered team played on its home continent. Finally, based on the esti-
mated regression parameters, a probability distribution for the outcome of
each game is obtained and a Monte Carlo simulation with 100,000 draws is
used to generate the probabilities of teams reaching particular stages of the
tournament, up to winning the championship. The forecast tournament

2The Elo ranking is a composite measure of national football teams’ success, which is
based on the entire historical track record and which, in contrast to the FIFA ranking,
is available for the entire history of international football matches (see Elo, 2008).
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winner at the FIFA World Cup 2014 is Brazil with a rather high winning
probability of 48.5%, followed by Argentina (14.1%) and Germany (11.4%).

At this point, we also want to mention two other, completely different
prediction approaches, which cannot be classified into one of the two afore-
mentioned major categories of statistical approaches for modeling soccer
data. The first one was proposed by Silver (2014) and is based on the so-
called Soccer Power Index (SPI). The SPI is a rating system, which uses
historical data on both the international and club level to predict the out-
come of a match. The algorithm uses several years of data, taking into
account goals scored and allowed, quality of the lineup fielded, and the
location of the match. In addition, the index weights recent matches more
heavily, and also takes into account the importance of the match – e.g.,
World Cup matches count much more than friendly matches. Based on
the SPI, Silver (2014) forecasts again Brazil as the tournament winner at
the FIFA World Cup 2014, also with a rather large winning probability of
45.2%, followed by Argentina (12.8%) and Germany (11.9%).

The other alternative approach is from a more economical perspective:
Lloyd’s (2014) use players wages and endorsement incomes together with a
collection of additional indicators to construct an economic model, which
estimates players incomes until retirement. These projections form the
basis for assessing insurable values by players age, playing position and
nationality. As Germany and Spain are associated with the largest esti-
mated insured values, according to this approach they turn out to be the
top favorites for winning the current World Cup.

The approach that we propose here is based on a model similar to Goldman-
Sachs Global Investment Research (2014). We focus on FIFA World Cups
and use a Poisson model for the number of goals scored by national teams
in the single matches of the tournaments. Several potential influence vari-
ables are considered and, additionally, team-specific effects are included,
either in the form of fixed or random effects, resulting in a flexible gen-
eralized linear (mixed) model, in short GL(M)M. The 192 matches of the
FIFA World Cups 2002-2010 serve as basis for our analysis3, where each
match occurs twice in the data set in the form of two different rows, one
for each team. Each row contains the differences between the covariates
corresponding to the team whose goals are considered and those of its op-
ponent. Incorporating a method for the selection of relevant predictors, we
obtain a regularized solution for our model.

3Though this represents a quite small basis of data, we abstain from using earlier
FIFA World Cups, as one of our main objectives is to analyze the explanatory power
of bookmakers’ odds together with many additional, potentially influential covariates.
Unfortunately, the possibility of betting on the overall cup winner before the start of
the tournament is quite novel. For example, the German state betting agency ODDSET
offered the bet for the first time at the FIFA World Cup 2002.
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The variable selection is based on L1-penalization techniques and two
different methods are used modeling either fixed or random team-specific
effects. For the model with fixed team-specific effects the grplasso function
from the corresponding R-package (see Meier et al., 2008) can be used, while
for the model with random team-specific effects a fitting approach is used,
which works by combining gradient ascent optimization with the Fisher
scoring algorithm and is presented in detail in Groll and Tutz (2014). It
is implemented in the glmmLasso function of the corresponding R-package
(Groll, 2014; publicly available via CRAN, see http://www.r-project.org).

Finally, we compare the results of both approaches in order to determine
a final model, which is then used to predict the current FIFA World Cup
2014. It should be noted that in contrast to other team sports, such as bas-
ketball, ice-hockey or handball, in soccer pure chance plays an important
role. A major reason for this is that, compared to other sports, in soc-
cer fewer points (goals) are scored and thus singular game situations can
have a tremendous effect on the outcome of the match. One consequence is
that every now and then alleged (and unpredictable) underdogs win tour-
naments4. Nevertheless, it can be interesting to investigate the relationship
and dependency structure between different potentially influential covari-
ates and the success of soccer teams (in our case in terms of the number of
goals they score). Besides, we hope to get more insight into which covari-
ates are already covered by bookmakers’ odds and which covariates may
give some additional useful information.

The rest of the article is structured as follows. In Section 2, we introduce
the team-specific Poisson model for the number of goals. A list of several
possible influence variables that will be considered in our regression analysis
and the data are presented in Section 3. Next, a final model is determined
in Section 4, which is then used to predict the FIFA World Cup 2014. Note
that all computations have been performed by use of the statistical software
R (R Core Team, 2014).

2 Model and estimation

The underlying model of our analysis concentrates on the number of goals
a team scores against a specific opponent. For every team, specific attack
and defense parameters are considered. Furthermore, the covariates of both
teams, which might have an influence on the number of scored goals, are
considered in the form of differences.

4There are countless examples in history for such events, throughout all competitions.
We want to mention only some of the most famous ones: Germany’s first World Cup
success in Switzerland 1954, known as the “miracle from Bern”; Greece’s victory at
the EURO 2004 (compare Footnote 1); FC Porto’s triumph in the UEFA CL season
2003/2004.
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Let for n teams yijk, i, j ∈ {1, . . . , n}, i 6= j, denote the number of goals
scored by team i when playing team j at World Cup k. The considered
model has the form:

yijk|xik,xjk ∼ Pois(λijk)

log(λijk) = β0 + (xik − xjk)ᵀ β + atti − defj.

It is assumed that the number of goals that team i scores follows a Poisson
distribution with given team-specific parameters and covariates. In addi-
tion, the two observations of one match are assumed to be independent,
given the team-specific parameters and covariates.

The linear predictor consists of the attacking parameter atti of the team i
and the defending parameter defj of its opponent j. The covariates of team
i at World Cup k are collected in a vector xik = (xik1, . . . , xikp)

ᵀ of length
p. Note that the covariates of each team can vary over different World
Cups (but not within a tournament). Each covariate is incorporated as the
difference between the respective covariates of both teams. The covariate
effects are collected in the vector β = (β1, . . . , βp)

ᵀ and β0 represents the
intercept.

Generally, the estimation of the covariate effects will be obtained by reg-
ularized estimation approaches. The idea is to first set up a model with a
rather large number of possibly influential variables and then to regularize
the effect of the single covariates. This regularization aims at diminishing
the variance of the parameter estimates and, hence, to provide lower pre-
diction error than the unregularized maximum likelihood estimator. The
basic idea of regularization is to maximize a penalized version of the log-
likelihood l(α) where α = (α1, . . . , αp)

ᵀ represents a general parameter
vector. More precisely, one maximizes the penalized log-likelihood

lp(ααα) = l(ααα)− λJ(ααα) , (1)

where λ represents a tuning parameter, which is used to control the strength
of the penalization. In practice, this tuning parameter has to be chosen
either by suitable criteria for model selection, like AIC (Akaike, 1973) or
BIC (Schwarz, 1978) or by cross-validation. The penalty term J(ααα) can
have many different shapes. Hoerl and Kennard (1970) suggested the so-
called Ridge penalty

J(ααα) =

p∑
i=1

α2
i ,

6



where the sum over the squares of all parameters in the model is penalized.
The Ridge penalty has the feature to shrink the respective parameter esti-
mates towards zero. After all, Ridge cannot set estimates to zero exactly
and, therefore, can not perform variable selection. In our analysis, we will
use a penalty based on the absolute values of the parameters instead of the
squared values resulting in a so-called Lasso penalty. The Lasso estimator
was originally proposed by Tibshirani (1996) and uses the penalty

J(ααα) =

p∑
i=1

|αi|.

In contrast to the Ridge penalty, Lasso can provide parameter estimates,
which are exactly zero and, therefore, enforces variable selection.

The team-specific attack and defense parameters can be modeled in two
different ways, namely either by fixed or random effects. This distinction
leads us to two different estimation procedures.

Model 1. If the team-specific ability parameters atti and defj are consid-
ered as fixed effects, they are coded by dummy variables within the design
matrix. From this perspective, the attack (and, analogously, the defense)
variables are seen as categorical covariates with as many categories as there
are teams5. One assigns -1 to the dummy variables associated with atti, if
the goals of team i are considered, and 0 otherwise. Similarly, one assigns
-1 to the dummy variables associated with defj, if team j is the opponent,
and 0 otherwise. An extract of the corresponding design matrix is given in
Table 2.

Since the attack and defense abilities are considered to be covariates,
the corresponding parameters are regularized similar to the parameters of
the covariates. Commonly, for categorical covariates a so-called Group
Lasso penalty (Yuan and Lin, 2006) is used so that all dummy variables
corresponding to either the attack or the defense abilities are treated as
two groups of variables. The Group Lasso penalizes the L2-norm of the
respective parameter vector att = (att1, . . . , attn)ᵀ or, equivalently, def =
(def1, . . . , defn)ᵀ. Hence, the single parameters within the groups of attack
or defense abilities are shrunk towards each other and, if shrunk to zero,
the whole parameter group is excluded from the model The penalty term
for this model is given by

J(α) =

p∑
i=1

|βi|+

√√√√ n∑
i=1

att2i +

√√√√ n∑
i=1

def 2
i .

5Usually, for reasons of identifiability, categorical predictors with k factor levels are
coded by k − 1 dummies. However, the regularization approach (with λ > 0) provides
unique estimates despite the issues of identifiability.
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The model can easily be fitted by use of the grplasso function from the
corresponding R-package (see Meier et al., 2008).

Model 2. Alternatively, the team-specific effects can be estimated as
random effects. Then, the attack and the defense parameter of team i are
assumed to be normally distributed

(atti, defi) ∼ N(0,Σ) , (2)

where ΣΣΣ is an unknown 2× 2 covariance matrix.
In this case, the ability parameters are automatically regularized by the

assumption of a distribution and only the covariate effects βββ are explicitly
penalized by using

J(α) =

p∑
i=1

|βi|.

When integrating out the random effects from the corresponding log-likelihood
function, the Laplace approximation proposed in Breslow and Clayton
(1993) results in a penalized quasi-likelihood, see, for example, Fahrmeir
and Tutz (2001) and Tutz (2012).

For this model, a fitting approach is used that works by combining gradi-
ent ascent optimization with the Fisher scoring algorithm and is presented
in detail in Groll and Tutz (2014). It is implemented in the glmmLasso func-
tion of the corresponding R-package (Groll, 2014) and is publicly available
via CRAN, see http://www.r-project.org.

In general, Model 2 can be seen as an extension of the model used in
Groll and Abedieh (2013) with a more realistic random effects structure,
now considering random effects of both competitors.

3 Data

In addition to the team-specific dummy variables for attack and defense, the
model introduced above uses additional covariates. For each participating
team, the covariates are observed either for the year of the respective World
Cup (e.g. GDP per capita) or shortly before the start of the World Cup (e.g.
FIFA ranking). Therefore, the covariates of a team vary from one World
Cup to another and, hence, the model allows for a prediction of a new
World Cup based on the current covariate realizations. In the following,
we give a brief description of the covariates that are used.

Economic Factors:

GDP per capita. The gross domestic product (GDP) per capita rep-
resents the economic strength of a country. To account for the
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general increase of the GDP, a ratio of the GDP per capita of the
respective country and the worldwide average GDP per capita
is used. The GDP data were collected from is the website of the
United Nations Statistics Division (http://unstats.un.org/
unsd/snaama/dnllist.asp).

Population. The population size of a country may have an influence
on the success of a national team as small countries will have a
smaller amount of players to choose from. The population size is
used as a ratio with the respective global population to account
for the general growth of the world population. The data source
is the website of the world bank (http://data.worldbank.org/
indicator/SP.POP.TOTL).

Sportive factors:

ODDSET odds. Bookmakers’ odds on the probability to win a World
Cup already entail a great amount of covariates and information
about the respective team and, therefore, can be assumed to be
a good predictor for the success of a country. The odds were
provided by the German state betting agency ODDSET. The
bookmakers’ odds are converted into winning probabilities by
taking the inverse of the odds followed by elimination of the
bookmakers’ margin. Hence, the variable reflects the probabili-
ties of ODDSET for each team to win the respective World Cup.

FIFA ranking. The FIFA ranking provides a ranking system for all
national teams measuring the performance of the team over
the last four years. The exact formula for the calculation of
the FIFA points and all rankings since implementation of the
FIFA ranking system can be found at the official FIFA website
(http://de.fifa.com/worldranking/index.html). Since the
calculation formula of the FIFA points changed after the World
Cup 2006, the rankings according to FIFA points are used in-
stead of the points.

Home advantage:

Host. The host of the World Cup could have an advantage over its
opponents because of the stronger support of the crowd in the
stadium. Therefore, a dummy variable for the respective host of
the World Cup is included.

Continent. Before the World Cup 2014, many discussions revolved
around the climatic conditions in Brazil and who would deal best
with these conditions. One could assume that teams from the
same continent as the host of the World Cup (including the host
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itself) may have advantages over teams from other continents,
as they might better get along with the climatic and cultural
circumstances. A dummy variable for the continent of the World
Cup host is included.

Factors describing the team’s structure:

The following variables are thought to describe the structure of the
teams. Each variable was observed with the final squad of 23 players
nominated for the respective World Cup.

(Second) maximum number of teammates. If many players from one
club play together in a national team, this could lead to an
improved performance of the team as the teammates know each
other better. Therefore, both the maximum and the second
maximum number of teammates from the same club are counted
and included as covariates.

Average age. The average age of all 23 players is observed to include
possible differences between rather old and rather young teams.

Number of Champions League (Europa League) players. The Europe-
an club leagues are valuated to be the best leagues in the world.
Therefore, the competitions from teams between the best Eu-
ropean teams, namely the UEFA Champions League and the
UEFA Europa League (previously UEFA Cup) can be seen as the
most prestigious and valuable competitions on club level. As a
measurement of the success of the players on club level, the num-
ber of players in the semi finals (taking place only weeks before
the respective World Cup) of these competitions are counted.

Number of players abroad. Finally, the national teams strongly differ
in the numbers of players playing in a league of the respective
country and players from leagues of other countries. For each
team, the number of players playing in clubs abroad (in the
season previous to the respective World Cup) are counted.

Factors describing the team’s coach:

Also covariates of the coach of the national team may have an in-
fluence on the performance of the team. Therefore, the age of the
coach and the duration of the tenure of the coach are observed. Fur-
thermore, a dummy variable is included, if the coach has the same
nationality as his team or not.

Note that the differences of the three binary variables host, continent and
nationality lead to new categorical variables with the three factor levels -1,

10



0 and +1. Each of these categorical variables is represented by two new
dummy variables with -1 as the reference category.

At this point we also want to mention that at the FIFA World Cup 2014
two teams participate, which have not participated in any of the World
Cups from 2002-2010, namely Bosnia and Herzegovina and Colombia. In
order to obtain nonetheless reasonable estimates for the team-specific ef-
fects of both teams, which can then be used for the prediction of the FIFA
World Cup 2014, we collect all teams that have only participated once in
the tournaments between 2002 and 2014 in a group called NEWCOMERS.
This concerns the following 12 teams: Angola, China, Czech Republic,
Ireland, New Zealand, North Korea, Senegal, Slovakia, Togo, Trinidad &
Tobago, Turkey, Ukraine.

As already mentioned, in the model specifications of Model 1 and 2 from
Section 2 all covariates are considered in the form of differences. For ex-
ample, in the first match of the FIFA World Cup 2002 in Japan and South
Korea, where France played against Senegal (which is among the group
of NEWCOMERS in our sample), the French team had an average age
of 28.30 years, was on first place in the current FIFA ranking and had a
winning probability given by the ODDSET odds of 15%, while Senegal’s
team had an average age of 24.30 years, was on 42th place in the current
FIFA ranking and had a winning probability of 1%. Hence, when the goals
of France are considered, this results in the following differences for the
metric covariates: age = 28.30 − 24.30 = 4.00, rank = 1 − 42 = −41,
odd = 0.15− 0.01 = 0.14. For the categorical variable host ∈ {−1, 0, 1} we
get host = 0 − 0 = 0, resulting in the dummies host0 = 1 and host1 = 0,
as the factor level −1 was chosen as the reference category. An extract of
the design matrix part, which corresponds to the covariates is presented
in Table 1. The matrix resulting from the encoding of the team-specific
effects is illustrated in Table 2.

goals team opponent age rank odds host0 host1 ...
0 France Newcomer 4.00 -41 0.14 1 0 ...
1 Newcomer France -4.00 41 -0.14 1 0 ...
1 Uruguay Denmark -2.10 4 -0.00 1 0 ...
2 Denmark Uruguay 2.10 -4 0.00 1 0 ...
1 Denmark Newcomer 3.10 -22 0.01 1 0 ...
1 Newcomer Denmark -3.10 22 -0.01 1 0 ...
0 France Uruguay 3.00 -23 0.14 1 0 ...
0 Uruguay France -3.00 23 -0.14 1 0 ...
...

...
...

...
...

...
...

...
. . .

Table 1: Extract of the design matrix part which corresponds to the covariates.
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FRA.att FRA.def NEW.att NEW.def URU.att URU.def DEN.att DEN.def
1 0 0 -1 0 0 0 0
0 -1 1 0 0 0 0 0
0 0 0 0 1 0 0 -1
0 0 0 0 0 -1 1 0
0 0 0 -1 0 0 1 0
0 0 1 0 0 0 0 -1
1 0 0 0 0 -1 0 0
0 -1 0 0 1 0 0 0
...

...
...

...
...

...
...

. . .

Table 2: Encoding of the team specific-effects

4 Results and prediction of the FIFA World

Cup 2014

In this section, first we compare the fit of Model 1 and Model 2 from Sec-
tion 2, in order to select a final model, which is then used for the prediction
of the FIFA World Cup 2014.

4.1 Comparison of team-specific Poisson models

As pointed out in Section 2 we use Lasso-type penalization approaches
to fit Model 1 and Model 2, with the major difference that in Model 1
the team-specific effects are treated as fixed effects and hence, are also
penalized directly by the L1-penalty term, while in Model 2 they are treated
as random effects and, hence, are penalized implicitly by the restrictions
imposed by the corresponding normal distribution assumption. The crucial
step is now to determine the optimal value of the tuning parameter λ
from Equation (1). Note that different levels of sparseness are obtained
depending on the selection of the optimal tuning parameter λ. In general,
information criteria such as Akaike’s information criterion (AIC, see Akaike,
1973) or the Bayesian information criterion (BIC, see Schwarz, 1978), also
known as Schwarz’s information criterion, could be used, but as our main
focus is on achieving good prediction results in order to be able to provide
a realistic forecast of the FIFA World Cup 2014, we decided to use 10-fold
cross validation (CV) based on the conventional Poisson deviance score 6.
The corresponding 10-fold CV results are illustrated in Figure 1 and 2.
There, also the coefficient paths for the (scaled) covariates are shown along
the penalty parameter λ. Note that in order to correctly apply the Lasso
algorithms, all covariates were scaled to have mean 0 and variance 1. In

6As two observations corresponding to the goals of the same match belong together,
we do not exclude single observations from the training data, but single matches.
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Table 3, the fixed effects estimates for the (unscaled) covariates are shown
for both models.
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Figure 1: Deviance for 10-fold CV (top) together with coefficient paths (bot-
tom) vs. the penalty parameter λ for Model 1; the optimal value of the penalty
parameter λ is shown by the vertical lines.

It is seen that for Model 1, where the team-specific effects are treated
as fixed effects and, hence, are directly penalized by the L1-penalty in the
same way as the covariate effects, in addition to the team-specific effects
also most of the covariates are selected at the optimal value for λ. The
strong explanatory power of the bookmakers’ odds is reflected by the fact
that this is the first covariate to enter the model. Next, the FIFA ranking
and the number of CL players are included. In the final model all covari-
ates except for the host dummy, the number of players abroad and the
maximum number of teammates are included, which indicates that in fact
there is additional information provided by other covariates, which is not
yet covered by the odds.

Meanwhile, for Model 2, where the team-specific effects are treated as
random effects, not a single covariate is selected and the model contains
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Figure 2: Deviance for 10-fold CV (top) together with coefficient paths (bot-
tom) vs. the penalty parameter λ for Model 2; the optimal value of the penalty
parameter λ is shown by the vertical lines.

only random effects for each team’s attacking and defending abilities (σ̂2
att =

1.145, σ̂2
def = 0.387, ĉov(att, def) = 0.008). This seems surprising at first

glance. In particular, the first covariates to enter in Model 2 are population
and continent and, therefore, not the covariates one would expect from
intuition (or from the results of Model 1). But, the team-specific effects of
Model 1 and Model 2 have to be interpreted completely different. Model 2,
at a strong level of penalization, is completely dominated by the random
effects. Furthermore, as was to be expected, we found high correlations be-
tween the team-specific effects and several covariates. For example, rather
strong teams like Brazil or Germany always had low values for the FIFA
ranking or high values for the ODDSET odds or for the number of CL
players. It is well known that estimates of random effects models suffer
strongly if the random effects are correlated with covariates, see, for ex-
ample, Verbeke et al. (2001), Neuhaus and McCulloch (2006). The bias is
strongly reduced in fixed effects models (Tutz and Oelker, 2014).
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Model 1 Model 2
0.051 -0.174

CL.players 0.034 0
UEFA.players 0.008 0

age.Coach -0.004 0
tenure.Coach -0.036 0

legionnaires 0 0
max.teammates 0 0

sec.max.teammates -0.035 0
age -0.014 0

rank -0.006 0
GDP 0.035 0
odds 1.907 0

population -2.722 0
continent0 0.071 0
continent1 -0.006 0

nationality.coach0 0.003 0
nationality.coach1 -0.001 0

host0 0 0
host1 0 0

Table 3: Estimates of the covariate effects for Model 1 and Model 2.

This phenomenon is also reflected in the different ways Model 1 and Mo-
del 2 build up their coefficients. At the point of the highest penalization,
Model 1 starts with nothing but an intercept, whereas Model 2 starts with
(almost unpenalized) team-specific random effects. With decreasing level
of penalization, either covariate effects or team-specific effects can enter
Model 1, depending on which effects contribute the largest part of infor-
mation. In contrast, Model 2 can only be improved by covariate effects, if
these contain additional information not yet covered by the random effects.
Nevertheless, the goodness-of-fit criterion presented in the next paragraph
shows that both models lead to an adequate fit (at least “in sample”).

Goodness-of-fit. In order to assess the performance of our models, we
use a possible goodness-of-fit criterion. In addition to the 32 odds corre-
sponding to all possible tournament winners, which are fixed before the
start of the tournament, also the “three-way” odds7 were provided from
the German state betting agency ODDSET for all 192 games of the FIFA
World Cups 2002-2010. By taking the three quantities p̃i = 1/oddsi, i ∈

7Three-way odds consider only the tendency of a match with the possible results
victory of team 1, draw or defeat of team 1 and are usually fixed some days before the
corresponding match takes place.

15



I := {1, 2, 3} and by normalizing with c :=
∑

i∈I p̃i in order to adjust for
the bookmakers’ margins, the odds can be directly transformed into proba-
bilities using p̂i = p̃i/c

8. On the other hand, let Gi denote the random vari-
ables representing the number of goals scored by team i in a certain match
and Gj the goals of its opponent, respectively. Then, we can compute the
same probabilities by approximating p̂1 = P (Gi > Gj), p̂2 = P (Gi = Gj)
and p̂3 = P (Gi < Gj) for each of the 192 matches using the correspond-

ing Poisson distributions Gi ∼ Poisson(λ̂i), Gj ∼ Poisson(λ̂j), where the

estimates λ̂i and λ̂j
9 are obtained by our regression models. Hence, we

can provide a goodness-of-fit criterion by comparing the values of the log-
likelihood of the 192 matches for the ODDSET odds with those obtained
for our regression models. For ωj ∈ I, j = 1, . . . , 192, the likelihood is

given by the product Lthree-way :=
∏192

j=1 p̂
δ1ωj

1j p̂
δ2ωj

2j p̂
δ3ωj

3j , with δij denoting
Kronecker’s delta. Based on this log-likelihood, we can compute a corre-
sponding deviance-type score Dthree-way = −2 log(Lthree-way). The deviance
results corresponding to Model 1 and 2 and for the ODDSET odds are
found in Table 4. In general, the regression models should be able to pro-
duce lower deviance scores compared to the deviance score corresponding
to the ODDSET odds, indicating a better fit to the realized “three-way”
tendencies. If the fits obtained by our models would not even be able
to beat the bookmakers’ odds “in sample”, the whole regression analysis
would be useless. That would mean that one would achieve a better fit just
by following the bookmakers’ odds, which are publicly available shortly
before the matches and thus are “out-of-sample”. The results in Table 4
show that for both settings the fit obtained by our regression models clearly
outperforms the deviance score corresponding to the ODDSET odds and,
hence, both models seem reasonable.

glmmLasso ODDSET odds
Model 1 Model 2
338.880 333.814 365.472

Table 4: Deviance scores Dthree-way for Model 1 and Model 2 and the ODDSET
odds.

At this point of our analysis, we finally have to choose between Model 1
and Model 2 for the prediction of the current FIFA World Cup 2014.

8The transformed probabilities only serve as an approximation, based on the assump-
tion that the bookmakers’ margins follow a discrete uniform distribution on the three
possible match tendencies.

9For convenience we suppress the index k for both teams here, which indicates the
corresponding World Cup, as well as the indices corresponding to the opponent. One
should correctly write λ̂ijk and λ̂jik, if team i and team j are facing each other at World
Cup k.
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The final decision was primarily based on the expected prediction accu-
racy of both models for a new World Cup. The deviances plotted in Fig-
ures 1 and 2 clearly showed better results for Model 1 (min(devMod 1) ≈
440,min(devMod 2) ≈ 520). This is not surprising. For the model fit, it does
not matter whether (in the case of high correlations between teams and
covariates) an effect is included in a team-specific effect or in a covariate
effect. However, for the prediction, especially the prediction of a new World
Cup, one can assume that strong covariate effects are better than strong
team-specific effects, which vary over time. If the strength of a team differs
strongly from the respective strength from the previous World Cups, this
can only be covered by current covariates of the respective team. Belgium,
for example, did not perform very well in the previous World Cups cov-
ered by our sample. For the World Cup 2014, however, they are ranked
among experts as a secret favorite of the tournament. This cannot be taken
into account by Model 2 solely consisting of team-specific random effects.
Model 1, however, includes covariates as, for example, the FIFA ranking
and the bookmakers’ expectations, which show an improvement of Belgium
with respect to the previous tournaments and, therefore, improve Belgium’s
predicted chances for the current World Cup. Based on these considera-
tions, Model 1 was chosen as the final model to predict the outcome of the
World Cup 2014.

In Table 5 and Table 6, the corresponding estimates of the (unscaled)
fixed team-specific attacking and defending effects are summarized. It is
striking that compared to all other teams Germany and Brazil both have
rather high attacking and defending abilities: Germany’s attack is on 4th
place, its defense is on 6th place; Brazil’s attack is on 5th place, its de-
fense on 10th place. Most other teams have either a rather bad attacking
or defense parameter. Nevertheless, one has to keep in mind that these
team-specific effects cannot be interpreted independently from the covari-
ate effects. In particular, they rather have to be seen as remaining effects
not yet covered by the covariates. In this context, also the parameters of
Switzerland are interesting. Switzerland has a rather bad attack, but the
best defense parameter among all the teams. This can be easily explained,
as Switzerland has received only a single goal in its seven games at the
World Cups 2006 and 2010, but on the other hand only scored five goals in
these seven matches.

4.2 Probabilities for FIFA World Cup 2014 winner

In the following, we have used the estimates from Model 1 to simulate the
tournament progress of the FIFA World Cup 10,000 times. Note here that
one advantage in comparison to several other prediction approaches is that
we are able to draw exact match outcomes for each match by drawing the
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1. RSA 0.210 11. DEN 0.075 21. JPN -0.020 31. IRN -0.094
2. URU 0.204 12. USA 0.073 22. MEX -0.023 32. NED -0.100
3. CIV 0.157 13. ARG 0.071 23. NEW -0.023 33. CRO -0.126
4. GER 0.153 14. POR 0.068 24. SWE -0.033 34. SUI -0.173
5. BRA 0.137 15. ECU 0.054 25. POL -0.053 35. TUN -0.193
6. BEL 0.123 16. PAR 0.015 26. SRB -0.059 36. FRA -0.223
7. KOR 0.123 17. CHI 0.001 27. SVN -0.061 37. KSA -0.227
8. RUS 0.114 18. GHA -0.007 28. GRE -0.067 38. CMR -0.235
9. CRC 0.104 19. ESP -0.011 29. ENG -0.078 39. HON -0.256

10. AUS 0.079 20. ITA -0.019 30. NGA -0.090 40. ALG -0.371

Table 5: Estimates of the (fixed) team-specific attacking effects atti for Model 1.

1. SUI 0.407 11. CRO 0.082 21. ESP 0.002 31. DEN -0.143
2. HON 0.324 12. NED 0.077 22. NGA 0.001 32. POL -0.169
3. ALG 0.265 13. FRA 0.059 23. ARG -0.006 33. AUS -0.196
4. PAR 0.209 14. JPN 0.047 24. URU -0.010 34. SRB -0.211
5. POR 0.162 15. CHI 0.042 25. RUS -0.045 35. SVN -0.219
6. GER 0.130 16. SWE 0.017 26. GRE -0.060 36. BEL -0.264
7. ECU 0.123 17. KOR 0.016 27. RSA -0.092 37. TUN -0.287
8. GHA 0.115 18. MEX 0.014 28. USA -0.126 38. IRN -0.299
9. ENG 0.094 19. NEW 0.009 29. CIV -0.135 39. CRC -0.466

10. BRA 0.089 20. ITA 0.009 30. CMR -0.141 40. KSA -0.622

Table 6: Estimates of the (fixed) team-specific defending effects defi for
Model 1.

goals of both competing teams from the predicted Poisson distributions,
i.e. Gi ∼ Poisson(λ̂i), Gj ∼ Poisson(λ̂j), with estimates λ̂i and λ̂j from
Model 1. This allows us to precisely follow the official FIFA rules when
determining the final group standings10. If a match in the knockout stage
ended in a draw, it was simulated again until a winner was found.

Based on these simulations, for each of the 32 participating teams prob-
abilities to win the tournament are obtained. These are summarized in
Table 7 together with the winning probabilities based on the ODDSET
odds for comparison. In contrast to most other prediction approaches for
the current World Cup clearly favoring Brazil, we get a neck-and-neck race
between Germany and Brazil with slightly better chances for Germany.
The major reason for this is that in the simulations with a high probability

10The final group standings are determined by (1) the number of points, (2) the goal
difference and (3) the number of scored goals. If several teams coincide with respect to
all of these three criteria, a separate chart is calculated based on the matches between
the coinciding teams only. Here, again the final standing of the teams is determined
following criteria (1)-(3). If still no distinct decision can be taken, the decision is taken
by lot.
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both Germany and Brazil finish their groups on the first place and then face
each other in the semi final. In a direct duel, the model concedes Germany
a wafer-thin advantage with winning odds of 50,4% against 49,6%. The
favorites Germany and Brazil are followed by the teams of Spain, Belgium,
Argentina and Portugal. Note that based on the 10,000 simulation runs
also survival probabilities for each team and for each tournament stage can
be obtained, but are skipped here for the sake of simplicity.

team p̂Lasso p̂ODDSET team p̂Lasso p̂ODDSET

1. GER 0.2880 0.1420 17. GHA 0.0022 0.0071
2. BRA 0.2765 0.2028 18. KOR 0.0019 0.0024
3. ESP 0.0900 0.1092 19. ALG 0.0018 0.0071
4. BEL 0.0819 0.0592 20. ECU 0.0017 0.0071
5. ARG 0.0582 0.1420 21. USA 0.0016 0.0071
6. POR 0.0522 0.0237 22. MEX 0.0012 0.0071
7. SUI 0.0413 0.0071 23. JPN 0.0010 0.0047
8. CRO 0.0210 0.0071 24. BIH 0.0008 0.0047
9. ENG 0.0193 0.0355 25. GRE 0.0005 0.0071

10. FRA 0.0135 0.0355 26. RUS 0.0004 0.0118
11. NED 0.0129 0.0355 27. NGA 0.0004 0.0035
12. ITA 0.0094 0.0355 28. AUS 0.0003 0.0024
13. URU 0.0071 0.0284 29. HON 0.0002 0.0005
14. CHI 0.0063 0.0203 30. CRC 0 0.0071
15. COL 0.0052 0.0394 31. CMR 0 0.0024
16. CIV 0.0032 0.0071 32. IRN 0 0.0005

Table 7: Estimated winning probabilities for all 32 teams based on 10,000
simulation runs of the FIFA World Cup 2014 and based on the estimates of
Model 1 together with winning probabilities based on the ODDSET odds.
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4.3 Most probable tournament outcome

Finally, based on the 10,000 simulations, we also provide the most probable
tournament outcome. Here, for each of the eight groups we selected the
most probable final group standing, also regarding the order of the first two
places, but without regarding the irrelevant order of the teams on place
three and four. The results together with the corresponding probabilities
are presented in Table 8.

Group A Group B Group C Group D

44% 24% 16% 18%

1. BRA 1. ESP 1. COL 1. ENG

2. CRO 2. NED 2. CIV 2. ITA

MEX CHI JPN URU

CMR AUS GRE CRC

Group E Group F Group G Group H

22% 36% 37% 26%

1. SUI 1. ARG 1. GER 1. BEL

2. FRA 2. BIH 2. POR 2. KOR

ECU NGA GHA RUS

HON IRN USA ALG

Table 8: Most probable final group standings together with the corresponding
probabilities for the FIFA World Cup 2014 based on 10,000 simulation runs and
on the estimates of Model 1.

It is obvious that there are large differences with respect to the groups’
balances. While in Group A and Group G the model forecasts Brazil fol-
lowed by Croatia as well as Germany followed by Portugal with rather high
probabilities of 44% and 37%, respectively, other groups such as Group C,
Group D and Group E seem to be quite close.

Based on the most probable group standings, we also provide the most
probable course of the knockout stage, compare Figure 3. Finally, accord-
ing to the most probable tournament course the German team will take
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home the World Cup trophy. Although according to the model this reflects
the most probable tournament outcome, it only has a very low overall prob-
ability of 3.991 · 10−6 % (given as the product of all single probabilities of
Table 8 and Figure 3). Hence, deviations of the true tournament outcome
from the model’s most probable one are not only possible, but very likely.

GERGER - ESP

BRA - GER

BRA - ITA

BRA - NED
80%

COL - ITA 54%

84%

SUI - GER

SUI - BIH
77%

GER - KOR 90%

73%
50%

ESP - BEL

ESP - ENG

ESP - CRO
66%

ENG - CIV 63%

69%

ARG - BEL

ARG - FRA
63%

BEL - POR 55%

55%

52
%

66%

Figure 3: Most probable course of the knockout stage together with corre-
sponding probabilities for the FIFA World Cup 2014 based on 10,000 simulation
runs and on the estimates of Model 1.

5 Concluding remarks

Two different team-specific generalized linear (mixed) Poisson models for
the number of goals scored by national teams facing each other in FIFA
World Cup matches are set up. The difference between the two models is
the specification of the team-specific effects, either as fixed or as random
effects. The FIFA World Cups 2002-2010 serve as the data basis for an
analysis of the influence of several covariates on the success of national
teams in terms of the number of goals they score in single matches. Pro-
cedures for variable selection based on an L1-penalty, implemented in the
R-packages grplasso and glmmLasso, are used and compared. An “in-
sample” performance measure is applied that is based on the log-likelihood
corresponding to the three-way tendencies of the considered matches.

With regard to the predictive performance of both models, the model
with fixed team-specific effects was chosen as the final model. This model
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was used for simulation of the FIFA World Cup 2014. According to this
simulation, Germany and Brazil turned out to be the top favorites for
winning the title, with a wafer-thin advantage for Germany. Besides, the
most probable tournament outcome is provided.

In particular, the big differences between Model 1 and Model 2, especially
with regard to the set of selected covariates are noteworthy. While Model 1
incorporates most covariates, for Model 2 not a single covariate was in-
cluded and the model is solely consisting of random effects for each team’s
attacking and defending abilities. This can (at least partly) be explained
by the high correlations that were found between the team-specific effects
and some covariates such as the FIFA ranking, the ODDSET odds or the
number of CL players. In contrast to Model 1, the effects for these co-
variates are (at least to some extent) included in the team-specific random
effects and parameter estimates are biased. Apart from the major aim of
this article, namely the prediction of a major soccer event, we found this to
be an interesting and special data situation. In particular, in combination
with the used regularization approaches, correlations between covariates
and cluster-specific effects lead to interesting statistical challenges.
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