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1 Practicalities and background

Upon passing the exam, attending and solving the exercises give a bonus to the
final grade.

We assume that the following concepts are familiar:

1. Probability space, random variables, expectation, convergence concepts.

2. Conditional expectations, martingales.

3. The fundamentals of discrete time financial mathematics.

For a remote graphical access to Matlab, you can login to the computers

� math12.math.lmu.de

� mathw0g.math.lmu.de

You will need

1. a program supporting X11-forwarding (e.g. Cygwin),

2. SSH program with rdp connections (e.g. Bitvise),

3. a VPN connection to LRZ (Anyconnect client, downloadable from LMU
service portal).

Alternatively, you can use the online version of Matlab.

2 Introduction

2.1 Popular financial products

Throughout the course, Si
t denotes the market price of an asset i at time t.

Example 2.1 (Put and call options). A European call option on the asset i is
a contract where the seller has the obligation to deliver the asset i at the given
maturity time T for a given strike price K. At time T , the buyer has the
possibility to exercise the option, that is, to buy the asset from the seller at price
K. The gain for the buyer is

cC := (Si
T −K)+ := max{Si

T −K, 0},

since he can get the asset from the option seller at price K and sell it immediately
on the market with the market price Si

T . We call cC the payoff of the call option.
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A European put option on the asset i is a contract where the seller has the
obligation to buy the asset i at the given maturity time T for a given strike
price K. At time T , the buyer has the possibility the exercise the option, that
is, to sell the asset to the seller at price K. The payoff for the buyer becomes

cP := (K − Si
T )

+ := max{K − Si
T , 0}.

Put and call options are prototype examples of Vanilla options that depend only
on the terminal price of the underlying asset. When this is not the case, the
option is called path-dependent.

Example 2.2 (Asian options). An Asian call option with maturity T and strike
K has the payoff

cAC := (S̄i
T −K)+,

where S̄i
T is the ”average price” of the asset over the time interval [0, T ]. The

exact form of the average price is part of the contract, e.g., it could be arithmetic
mean of the prices at given time points t1, . . . , tN = T so that S̄i

T = 1
N

∑N
k=1 S

i
tk
.

For a set A, we denote 1A(s) = 1 if s ∈ A and 1A(s) = 0 otherwise.

Example 2.3 (Down-and-out and other Barrier options). Given a strike K, ma-
turity T and a barrier B > 0, the down-and-out call option has the payoff

cDOC := (Si
T −K)+1R+

( min
t∈[0,T ]

Si
t −B).

The payoff of an up-and-in call option with the same strike and maturity is

cUIC := (Si
T −K)+1R+

( max
t∈[0,T ]

Si
t −B).

Barrier put options have similar payoffs. For example, down-and-in put options
have payoffs of the form

cDIP : (K − Si
T )

+
1R+

(B − min
t∈[0,T ]

Si
t).

Options that depend on multiple underlying assets are called rainbow options.

Example 2.4 (Basket options). Given a set of assets indexed by i = 1, . . . , I and
positive coefficients ai, i = 1, . . . I, the payoff of the corresponding basket call
option is

cBC :=

(
I∑

i=1

aiS
i
T −K

)+

.

Similarly, the basket put option has the payoff

cBP :=

(
K −

I∑
i=1

aiS
i
T

)+

.
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Example 2.5 (Spread options). Given two assets S1 and S2, the payoff of the
corresponding spread call option is

cSC :=
(
S1
T − S2

T −K
)+

.

Similarly, the spread put option has the payoff

cSP :=
(
K − S1

T + S2
T

)+
.

Example 2.6 (Calls and puts on max and min). Given to assets S1 and S2, the
payoff of the corresponding call-on-max option is

cMaxC :=
(
max{S1

T , S
2
T } −K

)+
.

Similarly, the put-on-min option has the payoff

cMinP :=
(
K −min{S1

T , S
2
T }
)+

.

Many options depend on quantities that are not tradable on markets.

Example 2.7 (Options on non-tradables). Let ξT be the temperature (somewhere
of interest) at time T , and consider options with the payoffs

(ξT −K)+ and (K − ξT )
+

with a given strike K.

Example 2.8 (American options*). The holder of an American option may
choose to exercise the option at any time before the terminal time T . For exam-
ple, for an American call on Si with strike K, the payoff, if the holder chooses
to exercises the option at time t, is

(St −K)+.

In contrast to all the above options, the holder of an American faces an opti-
mization problem when to exercise the option.

2.2 Exercises

In all the exercises, examples in Matlab online help pages help you to write the
actual code.

Exercise 2.2.1. Write Matlab functions (as .m-files) of the payoff functions in
Examples 2.1–2.6. Write them as functions of the underlying asset prices and
strikes.

Exercise 2.2.2. Using the plot-function, plot the European call option, for a fixed
strike K, as a function of the underlying asset price ST . Plot the European call
option as a function of the underlying asset price ST for two different strikes in
the same figure.

Exercise 2.2.3. Using the mesh-function (or surf-function), draw a 3D-graph of
the spread call option as a function of the underlying asset prices S1

T and S2
T .
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2.3 Basic properties of Brownian motion

Let (Ω,F , (Ft)
T
t=0, P ) be a filtered probability space. We consider continuous

time stochastic processes only on the ”time interval” [0, T ]. A family S :=
(St)t∈[0,T ] of Rd–valued random variables St is called an Rd–valued continuous
time stochastic process. The process is called adapted if St is Ft-measurable for
each t ∈ [0, T ].

Given ω ∈ Ω, the function t 7→ St(ω) is called as a path, or a trajectory or
a realization, of the process S. Instead of considering a stochastic process as
an indexed family of Rd-valued random variables, one may thus think of a
stochastic process as a family of random paths, trajectories, etc. In some cases
(less in this course), it is helpful to think of a stochastic process S as a function
(ω, t) 7→ St(ω) from the product space Ω × [0, T ] to Rd. If the paths of a
continuous time process are P -almost surely continuous, then the process is
called a continuous stochastic process.

For a random variable η ∈ (Ω,F , P ), we denote η ∼ N(µ, σ2) when η is a
normally distributed random variable with mean µ and standard deviation σ.

Remark 2.9. We often use the property that for η ∼ N(0, σ2) and positive integer
m, there is a constant L such that Eη2m = Lσ2m,

Definition 2.10. An adapted continuous stochastic process W is a Brownian
motion, if it has independent increments in the sense that, for all 0 ≤ t0 < t1 <
· · · < tn the random variables {Wti −Wti−1 | i = 1, . . . n} are independent, and
Wt −Ws ∼ N(0, t− s) for all 0 ≤ s < t ≤ T ,

From now on we assume, unless stated otherwise, that given a Brownian motion
W , it starts at zero, that is, W0 = 0.

Exercise 2.3.1. Show that a Brownian motion W is a martingale, that is, for all
s < t ≤ T , s > 0, we have E|Wt| < ∞ and

E[Wt | Fs] = Ws.

Here we assume that the increments of W are independent of the filtration in
the sense that, for all s < t, the random variable Wt − Ws is indenpendent of
Fs. This is the case, .e.g., when the filtration is generated by W .

In the definition of Brownian motion, it possible to omit the assumption that
the paths are continuous. This follows from the famous Kolmogorov’s conti-
nuity criterion. Recall that a continuous function f : [0, T ] → R is α-Hölder
continuous if there is L ∈ R such that

|ft − fs| ≤ L|t− s|α ∀ 0 ≤ s ≤ t ≤ T.

Theorem 2.11 (Kolmogorov’s continuity criterion). Let S be a stochastic pro-
cesses with

E |St − Ss|a ≤ L |t− s|1+b ∀ s < t (2.1)
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for some constants a ≥ 1, b, L > 0. Then there exists a continuous stochastic
process S̃ that is a modification of S in the sense that P (S̃t = St) = 1 for all t.
Moreover, S̃ is α-Hölder continuous almost surely for any α ≤ b/a.

Exercise 2.3.2. Using Remark 2.9, show that, for any ϵ > 0, Brownian motion
has (1/2− ϵ)-Hölder continuous paths almost surely.

From the computational perspective, Brownian motion has the important prop-
erty that it can be approximated by piece-wise constant ”discrete-time random
walks” that have independent increments. Such random random walks are easy
to simulate which is the basis of Monte Carlo methods that is the main topic of
the course.

Recall that a sequence of random variables (ην) converges in distribution to the
random variable η if

P (ην ≤ x) → P (η ≤ x)

for all x ∈ R such that x 7→ P (η ≤ x) is continuous (i.e., for all x such that the
cumulative distribution function of η is continuous at x). A sequence of vectors
of random variables (ην1 , . . . η

ν
k) converges in distribution to (η1, . . . , ηk) if

P ((ην1 , . . . , η
ν
k) ≤ x) → P ((η1, . . . , ηk) ≤ x)

for all x ∈ Rk such that x 7→ P ((η1, . . . , ηk) ≤ x) is continuous.

Theorem 2.12 (The central limit theorem). Let

η(n) =
1√
n

n∑
k=1

ξk,

for an i.i.d. (ξk)
∞
k=1 sequence of random variables with Eξk = 0 and E(ξk)

2 = 1.
We have

η(n)
d−−→ η (2.2)

for a random variable η ∼ N(0, 1).

For continuous time stochastic processes S(n), n = 1, 2, . . . and S, S(n) converges
in finite dimensional distributions to S, denoted by

S(n) fd−→ S,

if, for all integers k and all 0 ≤ t0 < · · · < tk ≤ T ,

(S
(n)
t0 , . . . , S

(n)
tk

)
d−−→ (St0 , . . . , Stk).

Theorem 2.13. Let

Y
(n)
t :=

1√
n

⌊nt⌋∑
k=1

ξk
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for an i.i.d. (ξk)
∞
k=1 sequence of random variables with Eξk = 0 and E(ξk)

2 = 1.
Then

Y
(n)
t

fd−−−→ W

for a Brownian motion W .

Proof. Using the central limit theorem and ⌊nt⌋
n → t when n → ∞, we get

Y
(n)
t =

√
⌊nt⌋√
n

1√
⌊nt⌋

⌊nt⌋∑
k=1

ξk
d−−→ η ∼ N(0, t),

as n → ∞. Let now t < u. The random variables Y
(n)
u − Y

(n)
t are independent

from the variables Y
(n)
t , since

Y (n)
u − Y

(n)
t =

1√
n

⌊nu⌋∑
k=⌊nt⌋+1

ξ
(n)
k

and the random variables ξ
(n)
k are independent. Repeating the previous argu-

ments we get

Y (n)
u − Y

(n)
t

d−→ ηu−t ∼ N(0, u− t).

We observe that the variables ∆Y
(n)
ti := Y

(n)
ti − Y

(n)
ti−1

are mutually independent

for all 0 ≤ t0 < t1 < · · · < tN ≤ T . Thus the process Y (n) has independent
increments, and so

P
(
Y

(n)
ti − Y

(n)
ti−1

≤ xi, i = 1, . . . , N
)
=

N∏
i=1

P
(
Y

(n)
ti − Y

(n)
ti−1

≤ xi

)
−→

N∏
i=1

Φ0,ti−ti−1
(xi) = P (Wti −Wti−1

≤ xi, i = 1, . . . , N).

The proof is finished by the next exercise.

Exercise 2.3.3. Recall the continuous mapping theorem: If (ην0 , . . . , η
ν
k)

d−−→
(η0, . . . , ηk), then f(ην0 , . . . , η

ν
k)

d−−→ f(η0, . . . , ηk) for any continuous function
f : Rk → Rn.

Use the continuous mapping theorem to finish the proof of Theorem 2.13.

2.4 Exercises

In all the exercises, examples in Matlab online help pages help you to write the
actual code. We say that the process defined by

Bt := µt+ σWt
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is a Brownian motion with drift µ and volatility σ. Here W is a (standard)
Brownian motion.

Exercise 2.4.1. Write a Matlab function (as an .m-file) that creates a sample
path of a Brownian motion with terminal time T , n+1 equi-distant discretization
points, drift µ and volatility σ. Write it as a function of these parameters and a
sample of independent standard normally distributed random variable so that the
function maps the sample to a (discretized) sample path of a Brownian motion.

Exercise 2.4.2. Plot sample paths of the Brownian motion with different drifts
and volatilities in the same figure.

Download the .mat files from the course page. They contain ”classes” consisting
of sample paths of a Brownian motion with a given terminal time T .

Exercise 2.4.3. For paths in ”bmpaths.mat”, estimate the volatility of each path.
Plot the paths in the same figure and label the paths with their volatilities.

2.5 Quadratic variation

Let
D :=

⋃
n

Dn,

where Dn is the n-th dyadic partition of [0, T ],

Dn := {i/2n ∈ [0, T ] | i = 0, 1, 2 . . . , }.

EnumeratingDn = {{tn0 , tn1 , . . . } | tni ≤ tni+1}, we define, for each n, the ”discrete
quadratic variation” of a stochastic process S by

QV n
t (S) :=

∑
i≥1

|Stni ∧t − Stni−1∧t|2,

where s ∧ t := min{s, t}.

Theorem 2.14. Let W be a Brownian motion. Then

P (lim
n

QV n
t (W ) = t ∀t) = 1.

Proof. Fix t ∈ D. The almost sure convergence QV n
t (W ) → t is equivalent to

the almost sure convergence
∑

tin≤t Zi → 0 for

Zi := (Wtni+1∧t −Wtni ∧t)
2 − 2−n.

Note first that tni+1−tni = 2−n so thatWtni+1∧t−Wtni ∧t are mutually independent

and N(0, 2−n)-distributed. We have E[ZiZj ] = 0 for i ̸= j and EZ2
i = L2−2n
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for some constant L. Using the monotone convergence theorem, we get

E
∑
n≥1

(
∑
tni ≤t

Zi)
2 = lim

N→∞

∑
n≤N

E(
∑
tni ≤t

Zi)
2

= lim
N→∞

∑
n≤N

(
∑
tni ≤t

L2−2n) = L
∑
n≥1

t2−n < +∞.

Therefore
∑

n≥1(
∑

tni ≤t Zi)
2 is almost surely finite, and thus (

∑
tni ≤t Zi)

2 con-

verge to zero (if an infinite sum of real numbers convergences, then the sum-
mands have to converge to zero). But then also

∑
tni ≤t Zi converges to zero, so

we have shown that QV n
t (W ) → t almost surely.

Since D is countable, we can find a P -null-set N such that QV n
s (W ) → s for

every s ∈ D and ω /∈ N . Since, for each n, t 7→ QV n
t (W ) is increasing, we get,

for sν ∈ D increasing to t, tν ∈ D decreasing to t, and for every ω /∈ N , that

t = lim
ν

sν = lim
ν

lim
n

QV n
sν (W ) ≤ limQV n

t (W ) ≤ lim
ν

lim
n

QV n
tν (W ) = lim

ν
tν = t

Lemma 2.15. Assume that z is an adapted continuous stochastic process with
supt Ez2t < ∞. Then, for every t,

lim
∑

t
(n)
i ≤t

(z
t
(n)
i

(W
t
(n)
i+1

−W
t
(n)
i+1

)2) =

∫ t

0

zsds,

where the convergence is in L2.

Proof. We denote ηi := z
t
(n)
i

, L = supt Ez2t < ∞, ∆t
(n)
i+1 := t

(n)
i+1 − t

(n)
i and

∆W
(n)
i+1 := W

(n)

t
(n)
i+1

−W
(n)

t
(n)
i

so that

∑
t
(n)
i ≤t

(
z
t
(n)
i

(W
t
(n)
i+1

−W
t
(n)
i

)2 − z
t
(n)
i

(t
(n)
i+1 − t

(n)
i )
)
=
∑

t
(n)
i ≤t

ηi((∆W
(n)
i+1)

2−∆t
(n)
i+1).

Recalling that the increments of Brownian motion are independent of the past

and z is adapted, we get from E[(∆W
(n)
i+1)

2−∆t
(n)
i+1)] = 0 and independence that

E
[
ηi(∆W

(n)
i+1)

2 −∆t
(n)
i+1)ηj(∆W

(n)
j+1)

2 −∆t
(n)
j+1)

]
=E

[
(∆W

(n)
i+1)

2 −∆t
(n)
i+1)

] [
Eηiηj(∆W

(n)
j+1)

2 −∆t
(n)
j+1)

]
=0
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for i > j. Combining with Remark 2.9, we get for some constants L (differing
from line to line),

E|
∑

t
(n)
i ≤t

ηi((∆W
(n)
i+1)

2 −∆t
(n)
i+1)|

2 =
∑

t
(n)
i ≤t

E|ηi((∆W
(n)
i+1)

2 −∆t
(n)
i+1)|

2

≤ L
∑

t
(n)
i ≤t

E((∆W
(n)
i+1)

2 −∆t
(n)
i+1)

2

≤ L
∑

t
(n)
i ≤t

(
∆t

(n)
i+1

)2
= Lt2n(2−2n)

→ 0.

Since
∑

t
(n)
i ≤t

z
t
(n)
i

∆tni+1 converges to
∫ t

0
zsds in L2, the claim follows from the

triangle inequality.

Remark 2.16. Choosing z = 1 in Lemma 2.15, we get QV n(W )t → t in L2.

2.6 Stochastic integrals

Theorem 2.14 implies that the paths of the Brownian motion are not of bounded
variation, and thus not differentiable. Indeed,

QV n
t (W ) ≤ max

i≥1
|W

t
(n)
i+1

−Wt(n)i
|
∑
i≥1

|Wt(n)i+1
−Wt(n)i

|,

where, almost surely, QV n
t (W ) converge to t and maxi≥1 |Wt(n)i+1

− Wt(n)i
|

converges to zero (by continuity of BM), so
∑

i≥1 |Wt(n)i+1
− Wt(n)i

| has to
converge to +∞. This means that it is not possible integrate functions with
respect to the paths of Brownian motion in the usual sense of the Lebesque-
Stieltjes integration theory.

However, it is possible to define integrals with respect to the Brownian motion
in the sense of stochastic integrals. An adapted stochastic process z is simple if

zt =

∞∑
i=0

ηi1(ti,ti+1](t)

for some 0 ≤ t1 ≤ t2 ≤ . . . and Fti-measurable ηi with supi ess sup |ηi| < ∞.
For a simple z, we set∫ t

0

ztdWt :=

T∑
i=0

(
ηi(Wt∧ti+1 −Wt∧ti)

)
.
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We extend the definition from simple processes to larger spaces of integrands

H2 := {z | z measurable adapted stochastic process, E

∫ T

0

|zt|2dt < ∞},

which we equip with the norm ∥z∥H2 := (E
∫ T

0
|zt|2dt)1/2. For z ∈ H2, we define

the stochastic integral as the unique limit∫ t

0

zsdWs := lim
n

∫ t

0

z(n)s dWs

in L2, where (z(n)) is any sequence of simple processes converging to z in H2.

Example 2.17. Let z = 2W . For {tn0 , tni , . . . } = Dn, it is possible to show that

the processes z
(n)
t =

∑
i≥0 2Wtni

1(tni ,tni+1]
(t) converge to W in H2. We have∫ t

0

z(n)s dWs :=
∑
i≥0

(
2Wtni

(Wt∧tni+1
−Wt∧tni

)
)

=
∑
i≥1

(W 2
t∧tni+1

−W 2
t∧tni

)−
∑
i≥1

(Wt∧tni+1
−Wt∧tni

)2

= W 2
t −QV

(n)
t (W )

→ W 2
t − t,

where the convergence is in L2, by Remark 2.16. Thus∫ t

0

WsdWs =
1

2
W 2

t − 1

2
t.

Theorem 2.18. Let z ∈ H2 and S be the stochastic process defined by

St =

∫ t

0

zsdWs.

1. The process S is a continuous martingale that belongs to H2,

2. We have the Itô isometry ES2
T = ∥z∥2H2 ,

3. If z is deterministic (and
∫ T

0
|zs|2ds < ∞), then S has independent incre-

ments and (St − Ss) ∼ N(0,
∫ t

s
|zu|2du) .

Next we extend the definition of the stochastic integral to integrands in the
space H2

loc, where

Hp
loc := {z | z measurable adapted stochastic process,

∫ T

0

|zt|pdt < ∞ P -a.s.}.
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For z ∈ H2
loc, we define the stochastic integral as the unique limit∫ t

0

zsdWs := lim
n

∫ t

0

z(n)s dWs

where z
(n)
t = zt1t∧τ(n) and τ (n) = inft{

∫ t

0
|zt|2dt ≥ n} (here τ (n) is a ”localizing

sequence of z). The stochastic process defined via
∫ t

0
ztdWt is a continuous

process, but not necessarily a martingale (it is only a ”local martingale”).

2.7 Exercises

Exercise 2.7.1. Show that a Brownian motion W is a martingale with respect to
its natural filtration Ft = σ(Ws | s ≤ t), that is, for all s < t ≤ T , s ≥ 0, we
have

E[Wt | Fs] = Ws.

Exercise 2.7.2. Using Remark 2.9, show that, for any ϵ > 0, Brownian motion
has (1/2− ϵ)-Hölder continuous paths almost surely.

Exercise 2.7.3. Recall the continuous mapping theorem: If (ην0 , . . . , η
ν
k)

d−−→
(η0, . . . , ηk), then f(ην0 , . . . , η

ν
k)

d−−→ f(η0, . . . , ηk) for any continuous function
f : Rk → Rn.

Use the continuous mapping theorem to finish the proof of Theorem 2.13.

Exercise 2.7.4. In the setting of Example 2.17, show that z(n) → z in H2.

Exercise 2.7.5. Let S be a stochastic process defined by

St = exp{
∫ t

0

zsdWs −
1

2

∫ t

0

|zs|2ds},

where z is deterministic with
∫ T

0
|zs|2ds < ∞.

� Compute E exp(η) for η ∼ N(0, σ2), where σ ∈ R > 0.

� Show that S is a martingale without relying on the first part of Theo-
rem 2.18.

2.8 Itô processes and Itô’s formula

An important difference to the classical integration theory is that the stochas-
tic integral does not satisfy the usual chain rule. Recall that for continuously
differentiable functions g on R and f on [0, T ], we have d

dtg(f) = g′(f)f ′ and so

g(ft) = g(f0) +

∫ t

0

g′(fs)dfs.

13



Example 2.17 shows that this is not the case for the stochastic integral, since
we got

1

2
(Wt)

2 =

∫ t

0

WsdWs +
1

2
t,

where we have an ”Itô correction term” involving the quadratic variation of
W . This observation generalizes to the famous Ito’s formula that we formulate
directly to Itô processes.

Definition 2.19. A stochastic process X is called an Itô process, if there is µ ∈
H1

loc and σ ∈ H2
loc such that

Xt = X0 +

∫ t

0

µsds+

∫
σsdWs.

The definition of the stochastic integral extends to Itô processes. Let

Xt = X0 +

∫ t

0

µsds+

∫
σsdWs

be an Itô process with µ ∈ H1
loc and σ ∈ H2

loc. For any z such that zµ ∈ H1
loc

and zσ ∈ H2
loc, we define∫ t

0

zsdXs :=

∫ t

0

zsµsds+

∫ t

0

zsσsdWs.

We denote by C1,2 the continuous functions (t, x) 7→ f(t, x) on [0, T ] × R that
are continuously differentiable once w.r.t t and twice w.r.t. x.

Theorem 2.20 (Itô’s formula). Assume that f ∈ C1,2([0, T ]× R) and that

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs

for some µ ∈ H1
loc and σ ∈ H2

loc. Then, almost surely,

f(t,Xt) = f(0, X0) +

∫ t

0

∂xf(s,Xs)dXs +

∫ t

0

(∂tf(s,Xs) +
1

2
σ2
s∂xxf(s,Xs))ds.

Proof. We do not give the whole proof, but we only demonstrate how the ”cor-
rection term” 1

2σ
2
s∂xxf(s,Xs))ds appears to the formula in the special case when

X = W , f is constant w.r.t. t-component, f(0) = 0, and ∂xf and ∂xxf
are bounded. For general X, the argument follows similarly while bounded-
ness of the derivatives can be handled using localizing sequences of X. Us-

ing Taylor’s expansion (below η
(n)
i is the appropriate random variable with

14



W
t
(n)
i+1

≤ η
(n)
i ≤ W

t
(n)
i+1

), we get

(f(W
t
(n)
i+1

− f(W
t
(n)
i

)) = ∂xf(Wt
(n)
i

)(W
t
(n)
i+1

− (W
t
(n)
i

)

+
1

2
∂xxf(Wt

(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)2

+
1

2
(∂xxf(η

(n)
i )− ∂xxf(Wt

(n)
i

))(W
t
(n)
i+1

−W
t
(n)
i

)2.

Summing over i we arrive at

f(Wt) =
∑
n

∂xf(Wt
(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)

+
∑
n

1

2
∂xxf(Wt

(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)2

+
∑
n

1

2
(∂xxf(η

(n)
i )− ∂xxf(Wt

(n)
i

))(W
t
(n)
i+1

−W
t
(n)
i

)2.

As n tends to infinity, the first sum converges to
∫ t

0
∂xf(Ws)dWs, the second

sum converges to
∫ t

0
∂xxf(Ws)ds, by Lemma 2.15, and the last term tends to

zero (for this we omit the details).

We will also need the following (local) martingale representation result.

Theorem 2.21 (The martingale representation theorem). Assume that η ∈ L1(FT )
and that the filtration is generated by a Brownian W . Then there exists z ∈ H2

loc

such that, almost surely,

η = E[η] +

∫ T

0

ztdWt.

If η ∈ L2(FT ), then z ∈ H2 and z in the above representation is unique.

2.9 Multi-dimensional results

We denote the Rd×d-identity matrix by 1d.

Definition 2.22. An Rd-valued stochastic process W is a d-dimensional standard
Brownian motion if the components W i are independent standard Brownian
motions and Wt −Ws ∼ N(0, (t− s)1d).

Theorem 2.23. Let W be a d-dimensional standard Brownian motion. Then∑
tni ≤t

(Wtni+1
−Wtnt

)(Wtni+1
−Wtnt

)T
n→∞−−−−−→ t1d

where the convergence is in L2.
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Definition 2.24. A stochastic process X is called a d-dimensional Itô process, if
there is µ ∈ H1

loc(Rd) and σ ∈ H2
loc(Rd × Rn) such that

Xi
t = Xi

0 +

∫ t

0

µi
sds+

∫
σi
sdWs,

where σi
s is the i-th row of the matrix σs and W is an n-dimensional standard

Brownian motion.

Theorem 2.25 (Multi-dimensional Itô’s formula). Assume that f ∈ C1,2([0, T ]×
Rd) and that

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σtdWs

for some a n-dimensional standard Brownian motion and µ ∈ H1
loc(Rd) and

σ ∈ H2
loc(Rd×n). Then, almost surely,

f(t,Xt) = f(0, X0)+

∫ t

0

∂xf(s,Xs)dXs+

∫ t

0

(∂tf(s,Xs)+
1

2
Tr[∂xxf(s,Xs)σsσ

T
s ])ds.

Here ∫ t

0

∂xf(s,Xs)dXs :=

d∑
i=1

∫ t

0

∂xif(s,Xs)dX
i
s.

Exercise 2.9.1 (Integration by parts formula for Itô processes). Let W be one
dimensional Brownian motion and let Xi, i = 1, 2 be one dimensional Itô pro-
cesses, i.e.,

Xi
t = Xi

0 +

∫ t

0

µi
sds+

∫ t

0

σi
sdWs i = 1, 2,

where, for i = 1, 2, µi ∈ H1
loc and σi ∈ H2

loc. Apply Itô’s formula to f(t, (x1, x2)) =
x1x2 to show the integration by parts formula

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

σ1
sσ

2
sds.

Exercise 2.9.2. Let W be a d-dimensional Brownian motion, b ∈ R and σ ∈ Rd,
and consider the process

St = exp{bt+ σ ·Wt}.

For f ∈ C1,2([0, T ] × R), show that f(t, St) is an Itô process. Can you find a
function f such that the process given by Yt := f(t, St) is a local martingale?

2.10 Exercises

We say that the process defined by

Bt := µt+ σWt

16



is a Brownian motion with drift µ ∈ Rd and volatility σ ∈ Rd×d, where W is
a (standard) d-dimensional Brownian motion W . The matrix Cov = σσT is
called the covariation matrix.

Instead of specifying σ, it is more common to specify Cov which can be estimated
from data. It is an exercise to check that volatility matrices with a common
covariance matrix define Brownian motions with common finite dimensional
distributions.

Example 2.26. Assume that η = (η1, . . . , ηd) is a vector of independent standard
normally distributed random variables and let Σ ∈ Rd×d be given. Let σ ∈ Rd×d

be such that σσT = Σ. Then

Cov(ση) = E[(ση)(ση)T ] = σE[ηηT ]σT = σσT = Σ.

Thus the covariance depends on σ only through σσT . We can always use the
Cholesky decomposition Σ = LLT , where L is a triangular matrix.

For Bt this implies the following. When only the covariance is specified, one
can always use L from the Cholesky decomposition as σ. Given any other σ̂ that
gives the same covariance, the processes B and

B̂t := µt+ σ̂Wt

have the same finite dimensional disributions.

Exercise 2.10.1. Write a Matlab function (as an .m-file) that creates a sample
path of a d-dimensional Brownian motion with terminal time T , n + 1 equi-
distant discretization points, drift vector µ and covariation matrix Cov. Write it
as a function of these parameters and an i.i.d. sample of d-dimensional standard
normals. Hint: Use Cholesky decomposition of Cov.

Exercise 2.10.2. Plot a sample path of a 2-dimensional Brownian motion with
terminal time T , n + 1 equi-distant discretization points with a drift vector µ
and covariation matrix Cov. Plot it as a 3D graph, a 2D parametric curve (time
being the parameter), and as each component as a different curve in the same
figure. Which plot is the most informative?

Exercise 2.10.3. Plot sample paths of a 3-dimensional Brownian motion with
terminal time T , n + 1 equi-distant discretization points with a drift vector µ
and with different covariation matrices Cov. Plot it so that each component is
a different curve in the same figure. Vary Cov so that the role of covariance
matrix becomes clear in the figures.

Exercise 2.10.4. For the path in ”bmpath3D.mat” of a 3D Brownian motion, esti-
mate the covariation matrix. Plot the components of the path in the same figure
and label the paths with the rows of the covariance matrix (with the precision of
two digits).
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3 The Black-Scholes model

Let W = (W i
t , . . . ,W

d
t )t∈[0,T ] be a d-dimensional standard Brownian motion.

The financial market consists of d+1 assets. The asset S0 is a ”non-risky” asset
defined by

S0
t = ert,

where r models the instantaneous interest rate. The risky assets are modelled
by

Si
t = Si

0 exp

µi − 1

2

d∑
j=1

|σij |2
 t+

d∑
j=1

σijW j
t

 ,

where Si
0 are the initial prices, and µi and σij are constants, describing ”drifts”

and correlations between the assets, respectively. We assume that the matrix
formed by σij is invertible.

Example 3.1. Consider a model with only one risky asset with S1
0 = 1. Omitting

indices from S1, W i and from the parameters µ1 and σ11, the model of the risky
asset becomes

St = exp

((
µ− 1

2
|σ|2

)
t+ σWt

)
.

Defining

f(t, x) = exp

((
µ− 1

2
|σ|2

)
t+ σx

)
,

we have St = f(t,Wt), so Itô’s formula gives

St = f(t,Wt)

= f(0, 0) +

∫ t

0

∂xf(s,Ws)dWs +

∫ t

0

(∂tf(s,Ws) +
1

2
∂xxf(s,Ws))ds

= 1 +

∫ t

0

σSsdWs +

∫ t

0

(

(
µ− 1

2
|σ|2

)
Ss +

1

2
σ2Ss)ds

= 1 +

∫ t

0

σSsdWs +

∫ t

0

µSsds.

Therefore, S solves the ”stochastic differential equation” (”SDE”)

dSt = St(µdt+ σdWt) S0 = 1.

Applying Itô’s formula to the d-dimensional model, just as in Example 3.1, we
see that the risky assets solve the SDE

dSi
t = Si

t(µ
idt+

d∑
j=1

σijdW j
t ), Si

0 = 1, ∀ i = 1, . . . , d.
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Using the notations µ = (µ1, . . . , µd)), σ ∈ Rd×d with entries σij , and diag[St]
for the diagonal Rd×d-matrix with entries Si

t , this can be written as

dSt = diag[St](µdt+ σdWt), S0 = 1. (3.1)

A portfolio process θ = (θt)t∈[0,T ] is an adapted Rd-valued stochastic process.
The number θit describes the amount in Euros invested in the i-th risky asset at

time t, so the ratio zit :=
θi
t

Si
t
is the amount of i-th asset held in the portfolio at

time t.

Let Xθ = (Xθ
t )t∈[0,T ] denote the R-valued stochastic process describing the

wealth accumulated by the portfolio process θ. Then the amount invested in
the non-risky asset at time t is θ0t := Xθ

t −
∑d

i=1 θ
i
t = Xθ

t − 1 · θt.
When each zit is a piecewise constant (i.e., simple) process zit =

∑∞
k=0 z

i
tk
1(tk,tk+1](t),

0 ≤ t0 ≤ t1 ≤ . . . , zitk ∈ Ftk , the ”self-financing condition” means that

Xθ
tK+1

=
∑
k≤K

(
d∑

i=1

zitk(S
i
tk+1

− Si
tk
) + z0tk(S

0
tk+1

− S0
tk
)

)
,

i.e., the wealth Xθ is generated solely by the portfolio process θ.

For a general θ, the self-financing condition is defined by

dXθ
t =

d∑
i=1

θit
Si
t

dSi
t +

Xt − 1 · θt
S0
t

dS0
t (3.2)

as soon as the stochastic integral is well-defined. Recalling the formula (3.1)
and that S0

t = ert, the self-financing condition can be written as

dXθ
t = θt(µdt+ σdWt) + r(Xθ

t − 1 · θt)dt.

We assume throughout that wealth processes Xθ are self-financing.

3.1 Discounted processes and the change of measure

Students familiar with ”Finanzmathematik I” may recall that ”discounted price
processes” play an important role in the pricing theory. To this end, we define
the risk premium

λ := σ−1(µ− r1)

and the discounted price process

S̃t :=
St

S0
t

.

Exercise 3.1.1. Prove that S̃t satisfies the SDE

dS̃t = diag[S̃t]σ(λdt+ dWt).
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Let X̃θ be the discounted wealth process

X̃θ
t := Xθ

t /S
0
t = e−rtXθ

t .

Likewise, we denote by θ̃ the process

θ̃it := θit/S
0
t .

Example 3.2. Consider the case d = 1. Applying Itô’s formula to f(t, x) =
e−rtx, and recalling

dXθ
t =

θt
St

dSt +
Xt − θt

S0
t

dS0
t ,

dSt = St(µdt+ σdWt),

and the risk premium λ = µ−r
σ and S0

t = ert, we get that

dX̃θ
t = −r

Xθ
t

S0
t

dt+
1

S0
t

(dXθ
t )

= −r
Xθ

t

S0
t

dt+
1

S0
t

(
θt
St

(St(µdt+ σdWt) + r
Xθ

t − θt
S0
t

S0
t dt

)
= θ̃t((µ− r)dt+ σdWt)

= θ̃tσ(λdt+ dWt).

Recalling that dS̃t = S̃tσ(λdt+ dWt), this can be written as

dX̃θ
t =

θ̃t

S̃t

dS̃t.

The above example generalizes to the multidimensional setting and we get

dX̃t = θ̃t diag[S̃t]
−1dS̃t

= θ̃σ(λdt+ dWt).

This means that the discounted wealth process is a stochastic integral of θ̃ with
respect to the Itô process dXt = σ(λdt+ dWt).

Next our aim is to show that the discounted price process is a martingale under
some another probability measure Q. For Q ≪ P , the stochastic process q
defined by

qt := E

[
dQ

dP

∣∣∣∣ Ft

]
is called the density process of Q (with respect to P ).

Lemma 3.3. Let Q ≪ P and q be the density process of Q. For any η ∈ L1(Q)
and t ∈ [0, T ], we have

EQ[η | Ft] =
1

qt
E [qT η | Ft] Q-a.s.
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Theorem 3.4. Let W be a d-dimensional Brownian motion and h be a determin-
istic Rd-valued measurable function on [0, T ] satisfying

∫ T

0
|ht|2dt < ∞. Let Q

be an equivalent probability measure to P with the Radon-Nikodym density

dQ/dP = exp{
∫ T

0

htdWt −
1

2

∫ T

0

|ht|2dt}.

Then the stochastic process B given by

Bt := Wt −
∫ t

0

hsds

is a Brownian motion under Q.

Proof. Evidently, B is a continuous stochastic process. Thus we need to show
that B has independent increments and (Bt −Bs) ∼ N(0, t− s) under Q for all
0 ≤ s < t ≤ T . By Exercise 2.7.5,

exp

{∫ t

0

hsdWs −
1

2

∫ t

0

|hs|2ds
}

defines a martingale, so qt := E[dQ/dP | Ft] satisfies

qt = exp

{∫ t

0

hsdWs −
1

2

∫ t

0

|hs|2ds
}
.

Given λ ∈ R, we have, using Lemma 3.3,

EQ[eλ(Bt−Bs) | Fs] = e−λ
∫ t
s
huduEQ[eλ(Wt−Ws) | Fs]

=
e−λ

∫ t
s
hudu

qs
E[qT e

λ(Wt−Ws) | Fs]

= e−λ
∫ t
s
hudu− 1

2

∫ t
s
|hs|2dsE[e

∫ t
s
(hs+λ)dWs | Fs].

By Theorem 2.18, Yt :=
∫ t

0
(hs+λ)dWs has independent increments and Yt−Ys ∼

N(0,
∫ t

s
|hu + λ|2du). Thus,

E[e
∫ t
s
(hs+λ)dWs | Fs] = E[e

∫ t
s
(hs+λ)dWs ]

= e
1
2

∫ t
s
|hu+λ|2du,

where the last line follows from Exercise 2.7.5. Combining the equalities,

EQ[eλ(Bt−Bs) | Fs] = e−λ
∫ t
s
hudu− 1

2

∫ t
s
|hs|2dse

1
2

∫ t
s
|hu+λ|2du

= e
1
2λ

2(t−s).

Thus (Bt−Bs) is independent of Fs and the Laplace transform of Bt−Bs under

Q at λ equals e
1
2λ

2(t−s). This means that Bt −Bs ∼ N(0, t− s) under Q.
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Theorem 3.4 implies that
Bt := Wt + λt (3.3)

is a Brownian motion under the measure Q with

dQ/dP = e−λWT− 1
2λ

2T . (3.4)

We can write the the price process as

Si
t = Si

0 exp

r − 1

2

d∑
j=1

|σij |2
 t+

d∑
j=1

σijBj
t

 (3.5)

so that, just like in Example 3.1, S solves the SDE (w.r.t B)

dŜt = diag[Ŝt](rdt+ σdBt), Ŝ0 = S0. (3.6)

The discounted price process S̃ satisfies

dS̃t = diag[S̃t]σdBt

while the discounted wealth process can be written as

X̃θ
t = X̃0 +

∫ t

0

θ̃tσdBu. (3.7)

Remark 3.5. It is possible to show that Q is the only probability measure equiv-
alent to P such that the discounted price process is a martingale under Q. In
financial terms, this is equivalent to saying that the Black scholes market model
is complete.

Definition 3.6. The portfolio process is called admissible if θσ ∈ H2
loc and there

exists a Q-martingale M such that such that Xθ
t ≥ Mt for all t.

Here we require the ”credit limit” given in terms of the martingale M so that
we do not allow ”doubling strategies”. We omit the detailed discussion of this
pathology of continuous time market models.

4 The superhedging pricing formula and hedging

We define the superhedging price of a claim c as

πc = inf{X0 | Xθ
T ≥ c P -a.s. for some admissible θ}.

The price is the least amount of initial capital needed to construct a self-
financing wealth process whose terminal wealth exceeds the payoff of the claim
almost surely.
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Note that πc is defined as a convex optimization problem over the set of ad-
missible portfolio strategies and initial capitals X0. It is an infinite dimensional
linear optimization problem and, in principle, hard to solve. The following re-
sult can be seen as an application of ”Lagrange multiplier method” from convex
optimization, but we do not go into further details here.

Theorem 4.1. Let Q be the equivalent martingale measure of the discounted price
process S̃. If EQ|c|2 < +∞, then

πc = e−rTEQ[c],

and there exists a self-financing wealth process X θ̄ with admissible hedging strat-
egy θ̄ and initial capital X θ̄

0 = e−rTEQc such that X θ̄
T = c almost surely. The θ̄

is given by (σT )−1zt for z from the martingale representation theorem

c̃ = EQc̃+

∫ T

0

ztdBt.

Proof. Let X0 ∈ R and θ be admissible such that Xθ
T ≥ c P -almost surely. Then

X̃θ
T ≥ c̃ P -almost surely. Since P and Q are equivalent, we also have X̃θ

T ≥ c̃

Q-almost surely. Since θσ ∈ H2
loc, θ̃σ ∈ H2

loc and, by (3.7),

X̃θ
t = X̃0 +

∫ t

0

θ̃sσdBs,

X̃ is a Q local martingale. Since θ is admissible, there is a Q-martingale M
such that X̃θ

t ≥ Mt for all t. Let (τ
ν)∞ν=1 be a localizing sequence for X̃θ so that

each stopped process given by X̃θ
t∧τν is a true martingale and X̃θ

T∧τν → X̃θ
T .

Since stopped processes are also bounded from below at t = T by MT which is
Q-integrable, martingale property of the stopped processes and Fatou’s lemma
give

Xθ
0 = X̃θ

0 = lim inf
ν

EQ[X̃θ
T∧τν ] ≥ EQ[X̃θ

T ] ≥ EQ[c̃] = e−rtEQ[c].

We have shown that
πc ≥ e−rtEQ[c].

To prove the other direction πc ≤ e−rtEQ[c], we define a martingale mt :=
EQ[c̃ | Ft]. By the Martingale Representation Theorem 2.21, there exists z ∈ H2

such that

c̃ = EQ[c̃] +

∫ T

0

ztdBt.

Thus we have that X̃ θ̄
T = c̃ for X̃0 = EQ[c̃] and for admissible θ̄t = (σT )−1zt.

Indeed, θ̄ ∈ H2
loc (actually, in H2),

X̃ θ̄
t = X̃0 +

∫ t

0

θ̄sσdBs,
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and X̃ θ̄ is bounded from below by a Q-martingale, since it is a Q-martingale
itself, by Theorem 2.18. Thus π(c) ≤ X θ̄

0 = X̃ θ̄
0 = EQ[c̃] and

πc = EQ[c̃].

The admissible θ̄ is the hedging strategy for c.

4.1 Delta-hedging of Vanilla options

In this section we consider Vanilla options

c = g(ST ) = g(S0
T , . . . , S

J
T )

for some g with quadratic growth. The idea is to combine the martingale charac-
terization from Theorem 4.1 with Itô’s formula to find a more explicit expression
for the optimal hedging strategy.

We denote by S = St,x the stochastic process describing the asset prices with
”initial prices x = (x1, . . . , xd) at time t”. Note that S does not have indepen-
dent increments, but it is still a ”Markov process” in the sense that its evolution
depends on the past only through its current state. Most formulas of the previ-
ous sections can be written by replacing each initial prices by xi and the initial
time 0 by t. For instance, (3.5) reads, for u ≥ t, as

(St,x)iu = xi exp

r − 1

2

d∑
j=1

|σij |2
 (u− t) +

d∑
j=1

σij(Bj
u −Bj

t ))

 , (4.1)

where B is a Brownian motion under the martingale measure Q of S̃. It follows
that, as in (4.3) St,x solves the SDE (w.r.t B)

dSu = diag[Su](rdu+ σdBu) u ∈ [t, T ], St = x. (4.2)

In particular, S is an Itô process w.r.t. B, for u ≥ t,

Si
u = Si

t +

∫ u

t

Si
s(rds+

d∑
j=1

σijdBi
s) (4.3)

so that we may apply Itô’s formula w.r.t. B.

Since the option depends only on the terminal price of the underlying assets
and S is Markov, we may define its (superhedging) price at time t by

πc(t, x) = inf{α | α+

∫ T

t

θ̃uσdBu ≥ g(St,x
T ) P -a.s. for some admissible θ}.

where we could assume ”admissibility only on the interval [t, T ]”. The pricing
formula of Theorem 4.1 becomes

πc(t, x) = e−r(T−t)EQ[g(St,x
T )|Ft]. (4.4)

In the next theorem, the optimal z̄ = ∂xπc is called the Delta-hedge.
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Theorem 4.2. Assume that g has quadratic growth, c = g(St), and that πc ∈
C1,2. Then the optimal (super-)hedging strategy is given by

θ̄t = diag[St]∂xπc(t, St) t ∈ [0, T ).

In particular, the amount z̄ of assets in the optimal portfolios satisfies

z̄it = ∂xiπc(t, St) t ∈ [0, T ).

Proof. Again, for simplicity, we assume in the proof that d = 1. By Theorem 4.1,
the optimal solution is obtained from the stochastic integral representation of
Yt := EQ[c̃|Ft] w.r.t B. By the Markov property of S, EQ[c̃|Ft] = EQ[c̃|St].
Combining with (4.4), we have

Yt := e−rtπc(t, St).

Applying Itô’s formula to Y , we get

Yt = πc(0, S0)

+

∫ t

0

(−re−rsπc(s, Ss) + e−rt∂tπ(s, Ss) + e−rs 1

2
S2
sσ

2∂xxπ(s, Ss)ds

+

∫ t

0

e−rs∂xπ(s, Ss)dSs.

Noting dSt = St(rdt+ σdBt), this can be written as

Yt = πc(0, S0)

+

∫ t

0

e−rs

(
∂tπc(s, Ss) + rSs∂xπ(s, Ss) +

1

2
S2
sσ

2∂xxπ(s, Ss)− rπc(s, Ss)

)
ds

+

∫ t

0

S̃s∂xπ(s, Ss)σdBs.

Since Y is a Q-martingale and the last summand is a Q-martingale, the integral
in the middle has to be zero for every t (a continuous martingale with a finite
variation is a constant, a fact the we have not proved in these notes), so θ̄t =
St∂xπ(t, St) is the optimal portfolio.

Remark 4.3. We saw in the proof Theorem 4.2 that πc has to solve the Black
Scholes partial differential equation (PDE)

∂tπc + rx∂xπc +
1

2
x2σ2∂xxπc − rπc = 0, πc(T, x) = g(x). (4.5)

This draws a connection between PDE-theory and financial problems and pro-
vides one method for finding prices for Vanilla options. We will return to this
later on at the end of the course.
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4.2 Exercises

Exercise 4.2.1. Write a Matlab function (as a m-file) that creates a sample
path of a prices process in the 1-dimensional Black Scholes model. Write it as
a function of initial time t with price x, terminal time T , N + 1 equi-distant
discretization points, drift µ, volatility σ and a sample of i.i.d standard normals.
Plot some sample paths.

Exercise 4.2.2. Write a Matlab function (as a m-file) that creates a sample
path of a price process in the 2-dimensional Black Scholes model. Write it as a
function of initial time t with price vector x, terminal time T , N+1 equi-distant
discretization points, drift vector µ, volatility matrix σ a sample of i.i.d standard
normals vectors. Plot some sample paths (each coordinate in the same figure).

Exercise 4.2.3. Consider a European call option with strike K in the 1-dimensional
Black Scholes model with r = 0, σ = 1 and T = 1. Approximate the Delta hedge
∆ by its piecewise constant approximation so that the resulting wealth process
satisfies

∆Xtk = ∆(tk−1, Stk−1
)∆Stk 0 = t0 < · · · < tn = 1, X0 = πc(0, S0);

see (3.2). Simulate the wealth process. Based on this, does the discretized Delta
hedge actually hedge the call option? Do this by plotting the differences between
the simulated terminal wealths and the payoffs of the European call option (sim-
ulated ”profit-losses”).

For this exercise, you need formulas that are proved in the following sections.
These are the pricing functional πc of the European call option (4.6) and the
Delta hedge

∆(t, x) := Φ(d1(t, x)),

where Φ is the standard normal cumulative distribution function and

d1(t, x) :=
ln(x/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

.

4.3 Exercises

Exercise 4.3.1 (Integration by parts formula for Itô processes). Let W be a
one dimensional Brownian motion and let Xi, i = 1, 2 be one dimensional Itô
processes,

Xi
t := Xi

0 +

∫ t

0

µi
sds+

∫ t

0

σi
sdWs i = 1, 2,

where, for i = 1, 2, µi ∈ H1
loc and σi ∈ H2

loc. Apply Itô’s formula to f(t, (x1, x2)) =
x1x2 to show the integration by parts formula

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

σ1
sσ

2
sds.
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Exercise 4.3.2. Let W be a d-dimensional Brownian motion, b ∈ R and σ ∈ Rd,
and consider the process

St = exp{bt+ σ ·Wt}.

For f ∈ C1,2([0, T ] × R), show that f(t, St) is an Itô process. Can you find a
function f such that the process given by Yt := f(t, St) is a local martingale?

Exercise 4.3.3. Prove that the discounted price process S̃t satisfies the SDE

dS̃t = diag[S̃t]σ(λdt+ dWt).

Exercise 4.3.4. Find the pricing function π(t, x) and the optimal hedging strategy
for the quadratic claim c = g(ST ) := S2

T . Verify your solution π by checking
that it solves the Black Scholes partial differential equation (4.5).

Hint: Recall that EQeaη = e
1
2a

2

for a standard normally distributed η under Q.

4.4 The Black-Scholes formula for puts and calls

In the one dimensional case, the price process can be written (see (3.5))

St = S0 exp

((
r − 1

2
σ2

)
t+ σBt

)
where B is a Brownian motion under the martingale measureQ of the discounted
price process S̃.

Theorem 4.4. The superhedging price of be the European call option c := (ST −
K)+ written at time t with the strike K and maturity T is

πc(t, St) = StΦ(d1)− Φ(d2)Ke−r(T−t), (4.6)

where Φ is the cumulative distribution function of the standard normal distri-
bution and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
ln(St/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. Let x = St and St,x
T = x exp

((
r − 1

2σ
2
)
(T − t) + σ(BT −Bt)

)
. By The-

orem 4.1,
πc(t, St) = e−r(T−t)EQ[c].

Denoting η ∼ N(0, 1), we get

EQ[(St,x
T −K)+] = EQ[(exp(ln(St,x

T )−K)+]

= EQ[exp(lnx+ (r − 1

2
σ2)(T − t) + σ

√
T − t · η)−K)+].
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Denoting z := lnx + (r − 1
2σ

2)(T − t) and ϕ(y) := 1√
2π

e−
1
2y

2

(the density of a

standard normal distribution),

EQ[(St,x
T −K)+]

∫
z+σ

√
T−ty>lnK

(ez+σ
√
T−ty −K)ϕ(y)dy

=

∫ ∞

lnK−z
σ
√

T−t

ez+σ
√
T−tyϕ(y)dy −K

∫ ∞

lnK−z
σ
√

T−t

ϕ(y)dy

=: I − II.

Using the symmetry of ϕ, the second term can be written as

II = K

∫ ∞

lnK−z
σ
√

T−t

ϕ(y)dy = KΦ

(
z − lnK

σ
√
T − t

)
.

As to the first term,

I =

∫ ∞

lnK−z
σ
√

T−t

1√
2π

ez+σ
√
T−ty− 1

2y
2

dy

= xer(T−t)

∫ ∞

lnK−z
σ
√

T−t

1√
2π

e−
1
2 (y−σ

√
T−t)2dy

= xer(T−t)

∫ ∞

lnK−z
σ
√

T−t
−σ

√
T−t

1√
2π

e−
1
2 ỹ

2

dỹ

= xer(T−t)Φ

(
σ
√
T − t− lnK − z

σ
√
T − t

)
,

where the last line follows from the symmetry of the ϕ. Combining, we get

π(cC) = xΦ

(
σ
√
T − t− lnK − z

σ
√
T − t

)
− Φ

(
z − lnK

σ
√
T − t

)
Ke−r(T−t).

Substituting z and simplifying gives the result.

4.4.1 Put-call parity

Given a common strike price K and maturity T , the payoffs cP and cC of the
European put and European call satisfy

cP = (K − ST )
+ = K − ST + (ST −K)+ = cC − (ST −K).

Here we may identify (ST −K) with the payoff

cF := ST −K

of a forward contract. The price πF of cF can simply be calculated from (4.4),

πF (t, x) = e−r(T−t)EQ[St,x
T −K|Ft] = x− e−r(T−t)K,
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where we used the fact that Q is the martingale measure of S̃. Since the pricing
functional is linear (in a ”complete model” like the Black Scholes model), we get
the put-call parity

πP (t, x) = πC(t, x)− x+ e−r(T−t)K. (4.7)

The put-call parity in conjunction with the Black Scholes formula of the call
option in Theorem 4.4 gives the Black Scholes formula for the put option.

Theorem 4.5. The superhedging price of be the European put option c := (K −
ST )

+ written at time t with the strike K and maturity T is

πP (t, St) = −StΦ(−d1) + Φ(−d2)Ke−r(T−t),

where Φ is the cumulative distribution function of the standard normal distri-
bution and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
ln(St/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. Combine Theorem 4.4, (4.7) and use the fact that Φ− 1
2 is antisymmetric.
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