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1 Practicalities and background

Upon passing the exam, attending and solving the exercises give a bonus to the
final grade.

We assume that the following concepts are familiar:

1. Probability space, random variables, expectation, convergence concepts.

2. Conditional expectations, martingales.

3. The fundamentals of discrete time financial mathematics.

For a remote graphical access to Matlab, you can login to the computers

� math12.math.lmu.de

� mathw0g.math.lmu.de

You will need

1. a program supporting X11-forwarding (e.g. Cygwin),

2. SSH program with rdp connections (e.g. Bitvise),

3. a VPN connection to LRZ (Anyconnect client, downloadable from LMU
service portal).

Alternatively, you can use the online version of Matlab.

2 Introduction

2.1 Popular financial products

Throughout the course, Si
t denotes the market price of an asset i at time t.

Example 2.1 (Put and call options). A European call option on the asset i is
a contract where the seller has the obligation to deliver the asset i at the given
maturity time T for a given strike price K. At time T , the buyer has the
possibility to exercise the option, that is, to buy the asset from the seller at price
K. The gain for the buyer is

cC := (Si
T −K)+ := max{Si

T −K, 0},

since he can get the asset from the option seller at price K and sell it immediately
on the market with the market price Si

T . We call cC the payoff of the call option.
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A European put option on the asset i is a contract where the seller has the
obligation to buy the asset i at the given maturity time T for a given strike
price K. At time T , the buyer has the possibility the exercise the option, that
is, to sell the asset to the seller at price K. The payoff for the buyer becomes

cP := (K − Si
T )

+ := max{K − Si
T , 0}.

Put and call options are prototype examples of Vanilla options that depend only
on the terminal price of the underlying asset. When this is not the case, the
option is called path-dependent.

Example 2.2 (Asian options). An Asian call option with maturity T and strike
K has the payoff

cAC := (S̄i
T −K)+,

where S̄i
T is the ”average price” of the asset over the time interval [0, T ]. The

exact form of the average price is part of the contract, e.g., it could be arithmetic
mean of the prices at given time points t1, . . . , tN = T so that S̄i

T = 1
N

∑N
k=1 S

i
tk
.

For a set A, we denote 1A(s) = 1 if s ∈ A and 1A(s) = 0 otherwise.

Example 2.3 (Down-and-out and other Barrier options). Given a strike K, ma-
turity T and a barrier B > 0, the down-and-out call option has the payoff

cDOC := (Si
T −K)+1R+

( min
t∈[0,T ]

Si
t −B).

The payoff of an up-and-in call option with the same strike and maturity is

cUIC := (Si
T −K)+1R+

( max
t∈[0,T ]

Si
t −B).

Barrier put options have similar payoffs. For example, down-and-in put options
have payoffs of the form

cDIP : (K − Si
T )

+
1R+

(B − min
t∈[0,T ]

Si
t).

Options that depend on multiple underlying assets are called rainbow options.

Example 2.4 (Basket options). Given a set of assets indexed by i = 1, . . . , I and
positive coefficients ai, i = 1, . . . I, the payoff of the corresponding basket call
option is

cBC :=

(
I∑

i=1

aiS
i
T −K

)+

.

Similarly, the basket put option has the payoff

cBP :=

(
K −

I∑
i=1

aiS
i
T

)+

.
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Example 2.5 (Spread options). Given two assets S1 and S2, the payoff of the
corresponding spread call option is

cSC :=
(
S1
T − S2

T −K
)+

.

Similarly, the spread put option has the payoff

cSP :=
(
K − S1

T + S2
T

)+
.

Example 2.6 (Calls and puts on max and min). Given to assets S1 and S2, the
payoff of the corresponding call-on-max option is

cMaxC :=
(
max{S1

T , S
2
T } −K

)+
.

Similarly, the put-on-min option has the payoff

cMinP :=
(
K −min{S1

T , S
2
T }
)+

.

Many options depend on quantities that are not tradable on markets.

Example 2.7 (Options on non-tradables). Let ξT be the temperature (somewhere
of interest) at time T , and consider options with the payoffs

(ξT −K)+ and (K − ξT )
+

with a given strike K.

Example 2.8 (American options*). The holder of an American option may
choose to exercise the option at any time before the terminal time T . For exam-
ple, for an American call on Si with strike K, the payoff, if the holder chooses
to exercises the option at time t, is

(St −K)+.

In contrast to all the above options, the holder of an American faces an opti-
mization problem when to exercise the option.

2.2 Exercises

In all the exercises, examples in Matlab online help pages help you to write the
actual code.

Exercise 2.2.1. Write Matlab functions (as .m-files) of the payoff functions in
Examples 2.1–2.6. Write them as functions of the underlying asset prices and
strikes.

Exercise 2.2.2. Using the plot-function, plot the European call option, for a fixed
strike K, as a function of the underlying asset price ST . Plot the European call
option as a function of the underlying asset price ST for two different strikes in
the same figure.

Exercise 2.2.3. Using the mesh-function (or surf-function), draw a 3D-graph of
the spread call option as a function of the underlying asset prices S1

T and S2
T .
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2.3 Basic properties of Brownian motion

Let (Ω,F , (Ft)
T
t=0, P ) be a filtered probability space. We consider continuous

time stochastic processes only on the ”time interval” [0, T ]. A family S :=
(St)t∈[0,T ] of Rd–valued random variables St is called an Rd–valued continuous
time stochastic process. The process is called adapted if St is Ft-measurable for
each t ∈ [0, T ].

Given ω ∈ Ω, the function t 7→ St(ω) is called as a path, or a trajectory or
a realization, of the process S. Instead of considering a stochastic process as
an indexed family of Rd-valued random variables, one may thus think of a
stochastic process as a family of random paths, trajectories, etc. In some cases
(less in this course), it is helpful to think of a stochastic process S as a function
(ω, t) 7→ St(ω) from the product space Ω × [0, T ] to Rd. If the paths of a
continuous time process are P -almost surely continuous, then the process is
called a continuous stochastic process.

For a random variable η ∈ (Ω,F , P ), we denote η ∼ N(µ, σ2) when η is a
normally distributed random variable with mean µ and standard deviation σ.

Remark 2.9. We often use the property that for η ∼ N(0, σ2) and positive integer
m, there is a constant L such that Eη2m = Lσ2m,

Definition 2.10. An adapted continuous stochastic process W is a Brownian
motion, if it has independent increments in the sense that, for all 0 ≤ t0 < t1 <
· · · < tn the random variables {Wti −Wti−1 | i = 1, . . . n} are independent, and
Wt −Ws ∼ N(0, t− s) for all 0 ≤ s < t ≤ T ,

From now on we assume, unless stated otherwise, that given a Brownian motion
W , it starts at zero, that is, W0 = 0.

Exercise 2.3.1. Show that a Brownian motion W is a martingale, that is, for all
s < t ≤ T , s > 0, we have E|Wt| < ∞ and

E[Wt | Fs] = Ws.

Here we assume that the increments of W are independent of the filtration in
the sense that, for all s < t, the random variable Wt − Ws is indenpendent of
Fs. This is the case, .e.g., when the filtration is generated by W .

In the definition of Brownian motion, it possible to omit the assumption that
the paths are continuous. This follows from the famous Kolmogorov’s conti-
nuity criterion. Recall that a continuous function f : [0, T ] → R is α-Hölder
continuous if there is L ∈ R such that

|ft − fs| ≤ L|t− s|α ∀ 0 ≤ s ≤ t ≤ T.

Theorem 2.11 (Kolmogorov’s continuity criterion). Let S be a stochastic pro-
cesses with

E |St − Ss|a ≤ L |t− s|1+b ∀ s < t (2.1)
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for some constants a ≥ 1, b, L > 0. Then there exists a continuous stochastic
process S̃ that is a modification of S in the sense that P (S̃t = St) = 1 for all t.
Moreover, S̃ is α-Hölder continuous almost surely for any α ≤ b/a.

Exercise 2.3.2. Using Remark 2.9, show that, for any ϵ > 0, Brownian motion
has (1/2− ϵ)-Hölder continuous paths almost surely.

From the computational perspective, Brownian motion has the important prop-
erty that it can be approximated by piece-wise constant ”discrete-time random
walks” that have independent increments. Such random random walks are easy
to simulate which is the basis of Monte Carlo methods that is the main topic of
the course.

Recall that a sequence of random variables (ην) converges in distribution to the
random variable η if

P (ην ≤ x) → P (η ≤ x)

for all x ∈ R such that x 7→ P (η ≤ x) is continuous (i.e., for all x such that the
cumulative distribution function of η is continuous at x). A sequence of vectors
of random variables (ην1 , . . . η

ν
k) converges in distribution to (η1, . . . , ηk) if

P ((ην1 , . . . , η
ν
k) ≤ x) → P ((η1, . . . , ηk) ≤ x)

for all x ∈ Rk such that x 7→ P ((η1, . . . , ηk) ≤ x) is continuous.

Theorem 2.12 (The central limit theorem). Let

η(n) =
1√
n

n∑
k=1

ξk,

for an i.i.d. (ξk)
∞
k=1 sequence of random variables with Eξk = 0 and E(ξk)

2 = 1.
We have

η(n)
d−−→ η (2.2)

for a random variable η ∼ N(0, 1).

For continuous time stochastic processes S(n), n = 1, 2, . . . and S, S(n) converges
in finite dimensional distributions to S, denoted by

S(n) fd−→ S,

if, for all integers k and all 0 ≤ t0 < · · · < tk ≤ T ,

(S
(n)
t0 , . . . , S

(n)
tk

)
d−−→ (St0 , . . . , Stk).

Theorem 2.13. Let

Y
(n)
t :=

1√
n

⌊nt⌋∑
k=1

ξk
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for an i.i.d. (ξk)
∞
k=1 sequence of random variables with Eξk = 0 and E(ξk)

2 = 1.
Then

Y
(n)
t

fd−−−→ W

for a Brownian motion W .

Proof. Using the central limit theorem and ⌊nt⌋
n → t when n → ∞, we get

Y
(n)
t =

√
⌊nt⌋√
n

1√
⌊nt⌋

⌊nt⌋∑
k=1

ξk
d−−→ η ∼ N(0, t),

as n → ∞. Let now t < u. The random variables Y
(n)
u − Y

(n)
t are independent

from the variables Y
(n)
t , since

Y (n)
u − Y

(n)
t =

1√
n

⌊nu⌋∑
k=⌊nt⌋+1

ξ
(n)
k

and the random variables ξ
(n)
k are independent. Repeating the previous argu-

ments we get

Y (n)
u − Y

(n)
t

d−→ ηu−t ∼ N(0, u− t).

We observe that the variables ∆Y
(n)
ti := Y

(n)
ti − Y

(n)
ti−1

are mutually independent

for all 0 ≤ t0 < t1 < · · · < tN ≤ T . Thus the process Y (n) has independent
increments, and so

P
(
Y

(n)
ti − Y

(n)
ti−1

≤ xi, i = 1, . . . , N
)
=

N∏
i=1

P
(
Y

(n)
ti − Y

(n)
ti−1

≤ xi

)
−→

N∏
i=1

Φ0,ti−ti−1
(xi) = P (Wti −Wti−1

≤ xi, i = 1, . . . , N).

The proof is finished by the next exercise.

Exercise 2.3.3. Recall the continuous mapping theorem: If (ην0 , . . . , η
ν
k)

d−−→
(η0, . . . , ηk), then f(ην0 , . . . , η

ν
k)

d−−→ f(η0, . . . , ηk) for any continuous function
f : Rk → Rn.

Use the continuous mapping theorem to finish the proof of Theorem 2.13.

2.4 Exercises

In all the exercises, examples in Matlab online help pages help you to write the
actual code. We say that the process defined by

Bt := µt+ σWt
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is a Brownian motion with drift µ and volatility σ. Here W is a (standard)
Brownian motion.

Exercise 2.4.1. Write a Matlab function (as an .m-file) that creates a sample
path of a Brownian motion with terminal time T , n+1 equi-distant discretization
points, drift µ and volatility σ. Write it as a function of these parameters and a
sample of independent standard normally distributed random variable so that the
function maps the sample to a (discretized) sample path of a Brownian motion.

Exercise 2.4.2. Plot sample paths of the Brownian motion with different drifts
and volatilities in the same figure.

Download the .mat files from the course page. They contain ”classes” consisting
of sample paths of a Brownian motion with a given terminal time T .

Exercise 2.4.3. For paths in ”bmpaths.mat”, estimate the volatility of each path.
Plot the paths in the same figure and label the paths with their volatilities.

2.5 Quadratic variation

Let
D :=

⋃
n

Dn,

where Dn is the n-th dyadic partition of [0, T ],

Dn := {i/2n ∈ [0, T ] | i = 0, 1, 2 . . . , }.

EnumeratingDn = {{tn0 , tn1 , . . . } | tni ≤ tni+1}, we define, for each n, the ”discrete
quadratic variation” of a stochastic process S by

QV n
t (S) :=

∑
i≥1

|Stni ∧t − Stni−1∧t|2,

where s ∧ t := min{s, t}.

Theorem 2.14. Let W be a Brownian motion. Then

P (lim
n

QV n
t (W ) = t ∀t) = 1.

Proof. Fix t ∈ D. The almost sure convergence QV n
t (W ) → t is equivalent to

the almost sure convergence
∑

tin≤t Zi → 0 for

Zi := (Wtni+1∧t −Wtni ∧t)
2 − 2−n.

Note first that tni+1−tni = 2−n so thatWtni+1∧t−Wtni ∧t are mutually independent

and N(0, 2−n)-distributed. We have E[ZiZj ] = 0 for i ̸= j and EZ2
i = L2−2n
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for some constant L. Using the monotone convergence theorem, we get

E
∑
n≥1

(
∑
tni ≤t

Zi)
2 = lim

N→∞

∑
n≤N

E(
∑
tni ≤t

Zi)
2

= lim
N→∞

∑
n≤N

(
∑
tni ≤t

L2−2n) = L
∑
n≥1

t2−n < +∞.

Therefore
∑

n≥1(
∑

tni ≤t Zi)
2 is almost surely finite, and thus (

∑
tni ≤t Zi)

2 con-

verge to zero (if an infinite sum of real numbers convergences, then the sum-
mands have to converge to zero). But then also

∑
tni ≤t Zi converges to zero, so

we have shown that QV n
t (W ) → t almost surely.

Since D is countable, we can find a P -null-set N such that QV n
s (W ) → s for

every s ∈ D and ω /∈ N . Since, for each n, t 7→ QV n
t (W ) is increasing, we get,

for sν ∈ D increasing to t, tν ∈ D decreasing to t, and for every ω /∈ N , that

t = lim
ν

sν = lim
ν

lim
n

QV n
sν (W ) ≤ limQV n

t (W ) ≤ lim
ν

lim
n

QV n
tν (W ) = lim

ν
tν = t

Lemma 2.15. Assume that z is an adapted continuous stochastic process with
supt Ez2t < ∞. Then, for every t,

lim
∑

t
(n)
i ≤t

(z
t
(n)
i

(W
t
(n)
i+1

−W
t
(n)
i+1

)2) =

∫ t

0

zsds,

where the convergence is in L2.

Proof. We denote ηi := z
t
(n)
i

, L = supt Ez2t < ∞, ∆t
(n)
i+1 := t

(n)
i+1 − t

(n)
i and

∆W
(n)
i+1 := W

(n)

t
(n)
i+1

−W
(n)

t
(n)
i

so that

∑
t
(n)
i ≤t

(
z
t
(n)
i

(W
t
(n)
i+1

−W
t
(n)
i

)2 − z
t
(n)
i

(t
(n)
i+1 − t

(n)
i )
)
=
∑

t
(n)
i ≤t

ηi((∆W
(n)
i+1)

2−∆t
(n)
i+1).

Recalling that the increments of Brownian motion are independent of the past

and z is adapted, we get from E[(∆W
(n)
i+1)

2−∆t
(n)
i+1)] = 0 and independence that

E
[
ηi(∆W

(n)
i+1)

2 −∆t
(n)
i+1)ηj(∆W

(n)
j+1)

2 −∆t
(n)
j+1)

]
=E

[
(∆W

(n)
i+1)

2 −∆t
(n)
i+1)

] [
Eηiηj(∆W

(n)
j+1)

2 −∆t
(n)
j+1)

]
=0
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for i > j. Combining with Remark 2.9, we get for some constants L (differing
from line to line),

E|
∑

t
(n)
i ≤t

ηi((∆W
(n)
i+1)

2 −∆t
(n)
i+1)|

2 =
∑

t
(n)
i ≤t

E|ηi((∆W
(n)
i+1)

2 −∆t
(n)
i+1)|

2

≤ L
∑

t
(n)
i ≤t

E((∆W
(n)
i+1)

2 −∆t
(n)
i+1)

2

≤ L
∑

t
(n)
i ≤t

(
∆t

(n)
i+1

)2
= Lt2n(2−2n)

→ 0.

Since
∑

t
(n)
i ≤t

z
t
(n)
i

∆tni+1 converges to
∫ t

0
zsds in L2, the claim follows from the

triangle inequality.

Remark 2.16. Choosing z = 1 in Lemma 2.15, we get QV n(W )t → t in L2.

2.6 Stochastic integrals

Theorem 2.14 implies that the paths of the Brownian motion are not of bounded
variation, and thus not differentiable. Indeed,

QV n
t (W ) ≤ max

i≥1
|W

t
(n)
i+1

−Wt(n)i
|
∑
i≥1

|Wt(n)i+1
−Wt(n)i

|,

where, almost surely, QV n
t (W ) converge to t and maxi≥1 |Wt(n)i+1

− Wt(n)i
|

converges to zero (by continuity of BM), so
∑

i≥1 |Wt(n)i+1
− Wt(n)i

| has to
converge to +∞. This means that it is not possible integrate functions with
respect to the paths of Brownian motion in the usual sense of the Lebesque-
Stieltjes integration theory.

However, it is possible to define integrals with respect to the Brownian motion
in the sense of stochastic integrals. An adapted stochastic process z is simple if

zt =

∞∑
i=0

ηi1(ti,ti+1](t)

for some 0 ≤ t1 ≤ t2 ≤ . . . and Fti-measurable ηi with supi ess sup |ηi| < ∞.
For a simple z, we set∫ t

0

ztdWt :=

T∑
i=0

(
ηi(Wt∧ti+1 −Wt∧ti)

)
.
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We extend the definition from simple processes to larger spaces of integrands

H2 := {z | z measurable adapted stochastic process, E

∫ T

0

|zt|2dt < ∞},

which we equip with the norm ∥z∥H2 := (E
∫ T

0
|zt|2dt)1/2. For z ∈ H2, we define

the stochastic integral as the unique limit∫ t

0

zsdWs := lim
n

∫ t

0

z(n)s dWs

in L2, where (z(n)) is any sequence of simple processes converging to z in H2.

Example 2.17. Let z = 2W . For {tn0 , tni , . . . } = Dn, it is possible to show that

the processes z
(n)
t =

∑
i≥0 2Wtni

1(tni ,tni+1]
(t) converge to W in H2. We have∫ t

0

z(n)s dWs :=
∑
i≥0

(
2Wtni

(Wt∧tni+1
−Wt∧tni

)
)

=
∑
i≥1

(W 2
t∧tni+1

−W 2
t∧tni

)−
∑
i≥1

(Wt∧tni+1
−Wt∧tni

)2

= W 2
t −QV

(n)
t (W )

→ W 2
t − t,

where the convergence is in L2, by Remark 2.16. Thus∫ t

0

WsdWs =
1

2
W 2

t − 1

2
t.

Theorem 2.18. Let z ∈ H2 and S be the stochastic process defined by

St =

∫ t

0

zsdWs.

1. The process S is a continuous martingale that belongs to H2,

2. We have the Itô isometry ES2
T = ∥z∥2H2 ,

3. If z is deterministic (and
∫ T

0
|zs|2ds < ∞), then S has independent incre-

ments and (St − Ss) ∼ N(0,
∫ t

s
|zu|2du) .

Next we extend the definition of the stochastic integral to integrands in the
space H2

loc, where

Hp
loc := {z | z measurable adapted stochastic process,

∫ T

0

|zt|pdt < ∞ P -a.s.}.
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For z ∈ H2
loc, we define the stochastic integral as the unique limit∫ t

0

zsdWs := lim
n

∫ t

0

z(n)s dWs

where z
(n)
t = zt1t∧τ(n) and τ (n) = inft{

∫ t

0
|zt|2dt ≥ n} (here τ (n) is a ”localizing

sequence of z). The stochastic process defined via
∫ t

0
ztdWt is a continuous

process, but not necessarily a martingale (it is only a ”local martingale”).

2.7 Exercises

Exercise 2.7.1. Show that a Brownian motion W is a martingale with respect to
its natural filtration Ft = σ(Ws | s ≤ t), that is, for all s < t ≤ T , s ≥ 0, we
have

E[Wt | Fs] = Ws.

Exercise 2.7.2. Using Remark 2.9, show that, for any ϵ > 0, Brownian motion
has (1/2− ϵ)-Hölder continuous paths almost surely.

Exercise 2.7.3. Recall the continuous mapping theorem: If (ην0 , . . . , η
ν
k)

d−−→
(η0, . . . , ηk), then f(ην0 , . . . , η

ν
k)

d−−→ f(η0, . . . , ηk) for any continuous function
f : Rk → Rn.

Use the continuous mapping theorem to finish the proof of Theorem 2.13.

Exercise 2.7.4. In the setting of Example 2.17, show that z(n) → z in H2.

Exercise 2.7.5. Let S be a stochastic process defined by

St = exp{
∫ t

0

zsdWs −
1

2

∫ t

0

|zs|2ds},

where z is deterministic with
∫ T

0
|zs|2ds < ∞.

� Compute E exp(η) for η ∼ N(0, σ2), where σ ∈ R > 0.

� Show that S is a martingale without relying on the first part of Theo-
rem 2.18.

2.8 Itô processes and Itô’s formula

An important difference to the classical integration theory is that the stochas-
tic integral does not satisfy the usual chain rule. Recall that for continuously
differentiable functions g on R and f on [0, T ], we have d

dtg(f) = g′(f)f ′ and so

g(ft) = g(f0) +

∫ t

0

g′(fs)dfs.

13



Example 2.17 shows that this is not the case for the stochastic integral, since
we got

1

2
(Wt)

2 =

∫ t

0

WsdWs +
1

2
t,

where we have an ”Itô correction term” involving the quadratic variation of
W . This observation generalizes to the famous Ito’s formula that we formulate
directly to Itô processes.

Definition 2.19. A stochastic process X is called an Itô process, if there is µ ∈
H1

loc and σ ∈ H2
loc such that

Xt = X0 +

∫ t

0

µsds+

∫
σsdWs.

The definition of the stochastic integral extends to Itô processes. Let

Xt = X0 +

∫ t

0

µsds+

∫
σsdWs

be an Itô process with µ ∈ H1
loc and σ ∈ H2

loc. For any z such that zµ ∈ H1
loc

and zσ ∈ H2
loc, we define∫ t

0

zsdXs :=

∫ t

0

zsµsds+

∫ t

0

zsσsdWs.

We denote by C1,2 the continuous functions (t, x) 7→ f(t, x) on [0, T ] × R that
are continuously differentiable once w.r.t t and twice w.r.t. x.

Theorem 2.20 (Itô’s formula). Assume that f ∈ C1,2([0, T ]× R) and that

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs

for some µ ∈ H1
loc and σ ∈ H2

loc. Then, almost surely,

f(t,Xt) = f(0, X0) +

∫ t

0

∂xf(s,Xs)dXs +

∫ t

0

(∂tf(s,Xs) +
1

2
σ2
s∂xxf(s,Xs))ds.

Proof. We do not give the whole proof, but we only demonstrate how the ”cor-
rection term” 1

2σ
2
s∂xxf(s,Xs))ds appears to the formula in the special case when

X = W , f is constant w.r.t. t-component, f(0) = 0, and ∂xf and ∂xxf
are bounded. For general X, the argument follows similarly while bounded-
ness of the derivatives can be handled using localizing sequences of X. Us-

ing Taylor’s expansion (below η
(n)
i is the appropriate random variable with

14



W
t
(n)
i+1

≤ η
(n)
i ≤ W

t
(n)
i+1

), we get

(f(W
t
(n)
i+1

− f(W
t
(n)
i

)) = ∂xf(Wt
(n)
i

)(W
t
(n)
i+1

− (W
t
(n)
i

)

+
1

2
∂xxf(Wt

(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)2

+
1

2
(∂xxf(η

(n)
i )− ∂xxf(Wt

(n)
i

))(W
t
(n)
i+1

−W
t
(n)
i

)2.

Summing over i we arrive at

f(Wt) =
∑
n

∂xf(Wt
(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)

+
∑
n

1

2
∂xxf(Wt

(n)
i

)(W
t
(n)
i+1

−W
t
(n)
i

)2

+
∑
n

1

2
(∂xxf(η

(n)
i )− ∂xxf(Wt

(n)
i

))(W
t
(n)
i+1

−W
t
(n)
i

)2.

As n tends to infinity, the first sum converges to
∫ t

0
∂xf(Ws)dWs, the second

sum converges to
∫ t

0
∂xxf(Ws)ds, by Lemma 2.15, and the last term tends to

zero (for this we omit the details).

We will also need the following (local) martingale representation result.

Theorem 2.21 (The martingale representation theorem). Assume that η ∈ L1(FT )
and that the filtration is generated by a Brownian W . Then there exists z ∈ H2

loc

such that, almost surely,

η = E[η] +

∫ T

0

ztdWt.

If η ∈ L2(FT ), then z ∈ H2 and z in the above representation is unique.

2.9 Multi-dimensional results

We denote the Rd×d-identity matrix by 1d.

Definition 2.22. An Rd-valued stochastic process W is a d-dimensional standard
Brownian motion if the components W i are independent standard Brownian
motions and Wt −Ws ∼ N(0, (t− s)1d).

Theorem 2.23. Let W be a d-dimensional standard Brownian motion. Then∑
tni ≤t

(Wtni+1
−Wtnt

)(Wtni+1
−Wtnt

)T
n→∞−−−−−→ t1d

where the convergence is in L2.
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Definition 2.24. A stochastic process X is called a d-dimensional Itô process, if
there is µ ∈ H1

loc(Rd) and σ ∈ H2
loc(Rd × Rn) such that

Xi
t = Xi

0 +

∫ t

0

µi
sds+

∫
σi
sdWs,

where σi
s is the i-th row of the matrix σs and W is an n-dimensional standard

Brownian motion.

Theorem 2.25 (Multi-dimensional Itô’s formula). Assume that f ∈ C1,2([0, T ]×
Rd) and that

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σtdWs

for some a n-dimensional standard Brownian motion and µ ∈ H1
loc(Rd) and

σ ∈ H2
loc(Rd×n). Then, almost surely,

f(t,Xt) = f(0, X0)+

∫ t

0

∂xf(s,Xs)dXs+

∫ t

0

(∂tf(s,Xs)+
1

2
Tr[∂xxf(s,Xs)σsσ

T
s ])ds.

Here ∫ t

0

∂xf(s,Xs)dXs :=

d∑
i=1

∫ t

0

∂xif(s,Xs)dX
i
s.

Exercise 2.9.1 (Integration by parts formula for Itô processes). Let W be one
dimensional Brownian motion and let Xi, i = 1, 2 be one dimensional Itô pro-
cesses, i.e.,

Xi
t = Xi

0 +

∫ t

0

µi
sds+

∫ t

0

σi
sdWs i = 1, 2,

where, for i = 1, 2, µi ∈ H1
loc and σi ∈ H2

loc. Apply Itô’s formula to f(t, (x1, x2)) =
x1x2 to show the integration by parts formula

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

σ1
sσ

2
sds.

Exercise 2.9.2. Let W be a d-dimensional Brownian motion, b ∈ R and σ ∈ Rd,
and consider the process

St = exp{bt+ σ ·Wt}.

For f ∈ C1,2([0, T ] × R), show that f(t, St) is an Itô process. Can you find a
function f such that the process given by Yt := f(t, St) is a local martingale?

2.10 Exercises

We say that the process defined by

Bt := µt+ σWt
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is a Brownian motion with drift µ ∈ Rd and volatility σ ∈ Rd×d, where W is
a (standard) d-dimensional Brownian motion W . The matrix Cov = σσT is
called the covariation matrix.

Instead of specifying σ, it is more common to specify Cov which can be estimated
from data. It is an exercise to check that volatility matrices with a common
covariance matrix define Brownian motions with common finite dimensional
distributions.

Example 2.26. Assume that η = (η1, . . . , ηd) is a vector of independent standard
normally distributed random variables and let Σ ∈ Rd×d be given. Let σ ∈ Rd×d

be such that σσT = Σ. Then

Cov(ση) = E[(ση)(ση)T ] = σE[ηηT ]σT = σσT = Σ.

Thus the covariance depends on σ only through σσT . We can always use the
Cholesky decomposition Σ = LLT , where L is a triangular matrix.

For Bt this implies the following. When only the covariance is specified, one
can always use L from the Cholesky decomposition as σ. Given any other σ̂ that
gives the same covariance, the processes B and

B̂t := µt+ σ̂Wt

have the same finite dimensional disributions.

Exercise 2.10.1. Write a Matlab function (as an .m-file) that creates a sample
path of a d-dimensional Brownian motion with terminal time T , n + 1 equi-
distant discretization points, drift vector µ and covariation matrix Cov. Write it
as a function of these parameters and an i.i.d. sample of d-dimensional standard
normals. Hint: Use Cholesky decomposition of Cov.

Exercise 2.10.2. Plot a sample path of a 2-dimensional Brownian motion with
terminal time T , n + 1 equi-distant discretization points with a drift vector µ
and covariation matrix Cov. Plot it as a 3D graph, a 2D parametric curve (time
being the parameter), and as each component as a different curve in the same
figure. Which plot is the most informative?

Exercise 2.10.3. Plot sample paths of a 3-dimensional Brownian motion with
terminal time T , n + 1 equi-distant discretization points with a drift vector µ
and with different covariation matrices Cov. Plot it so that each component is
a different curve in the same figure. Vary Cov so that the role of covariance
matrix becomes clear in the figures.

Exercise 2.10.4. For the path in ”bmpath3D.mat” of a 3D Brownian motion, esti-
mate the covariation matrix. Plot the components of the path in the same figure
and label the paths with the rows of the covariance matrix (with the precision of
two digits).
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3 The Black-Scholes model

Let W = (W i
t , . . . ,W

d
t )t∈[0,T ] be a d-dimensional standard Brownian motion.

The financial market consists of d+1 assets. The asset S0 is a ”non-risky” asset
defined by

S0
t = ert,

where r models the instantaneous interest rate. The risky assets are modelled
by

Si
t = Si

0 exp

µi − 1

2

d∑
j=1

|σij |2
 t+

d∑
j=1

σijW j
t

 ,

where Si
0 are the initial prices, and µi and σij are constants, describing ”drifts”

and correlations between the assets, respectively. We assume that the matrix
formed by σij is invertible.

Example 3.1. Consider a model with only one risky asset with S1
0 = 1. Omitting

indices from S1, W i and from the parameters µ1 and σ11, the model of the risky
asset becomes

St = exp

((
µ− 1

2
|σ|2

)
t+ σWt

)
.

Defining

f(t, x) = exp

((
µ− 1

2
|σ|2

)
t+ σx

)
,

we have St = f(t,Wt), so Itô’s formula gives

St = f(t,Wt)

= f(0, 0) +

∫ t

0

∂xf(s,Ws)dWs +

∫ t

0

(∂tf(s,Ws) +
1

2
∂xxf(s,Ws))ds

= 1 +

∫ t

0

σSsdWs +

∫ t

0

(

(
µ− 1

2
|σ|2

)
Ss +

1

2
σ2Ss)ds

= 1 +

∫ t

0

σSsdWs +

∫ t

0

µSsds.

Therefore, S solves the ”stochastic differential equation” (”SDE”)

dSt = St(µdt+ σdWt) S0 = 1.

Applying Itô’s formula to the d-dimensional model, just as in Example 3.1, we
see that the risky assets solve the SDE

dSi
t = Si

t(µ
idt+

d∑
j=1

σijdW j
t ), Si

0 = 1, ∀ i = 1, . . . , d.
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Using the notations µ = (µ1, . . . , µd)), σ ∈ Rd×d with entries σij , and diag[St]
for the diagonal Rd×d-matrix with entries Si

t , this can be written as

dSt = diag[St](µdt+ σdWt), S0 = 1. (3.1)

A portfolio process θ = (θt)t∈[0,T ] is an adapted Rd-valued stochastic process.
The number θit describes the amount in Euros invested in the i-th risky asset at

time t, so the ratio zit :=
θi
t

Si
t
is the amount of i-th asset held in the portfolio at

time t.

Let Xθ = (Xθ
t )t∈[0,T ] denote the R-valued stochastic process describing the

wealth accumulated by the portfolio process θ. Then the amount invested in
the non-risky asset at time t is θ0t := Xθ

t −
∑d

i=1 θ
i
t = Xθ

t − 1 · θt.
When each zit is a piecewise constant (i.e., simple) process zit =

∑∞
k=0 z

i
tk
1(tk,tk+1](t),

0 ≤ t0 ≤ t1 ≤ . . . , zitk ∈ Ftk , the ”self-financing condition” means that

Xθ
tK+1

=
∑
k≤K

(
d∑

i=1

zitk(S
i
tk+1

− Si
tk
) + z0tk(S

0
tk+1

− S0
tk
)

)
,

i.e., the wealth Xθ is generated solely by the portfolio process θ.

For a general θ, the self-financing condition is defined by

dXθ
t =

d∑
i=1

θit
Si
t

dSi
t +

Xt − 1 · θt
S0
t

dS0
t (3.2)

as soon as the stochastic integral is well-defined. Recalling the formula (3.1)
and that S0

t = ert, the self-financing condition can be written as

dXθ
t = θt(µdt+ σdWt) + r(Xθ

t − 1 · θt)dt.

We assume throughout that wealth processes Xθ are self-financing.

3.1 Discounted processes and the change of measure

Students familiar with ”Finanzmathematik I” may recall that ”discounted price
processes” play an important role in the pricing theory. To this end, we define
the risk premium

λ := σ−1(µ− r1)

and the discounted price process

S̃t :=
St

S0
t

.

Exercise 3.1.1. Prove that S̃t satisfies the SDE

dS̃t = diag[S̃t]σ(λdt+ dWt).
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Let X̃θ be the discounted wealth process

X̃θ
t := Xθ

t /S
0
t = e−rtXθ

t .

Likewise, we denote by θ̃ the process

θ̃it := θit/S
0
t .

Example 3.2. Consider the case d = 1. Applying Itô’s formula to f(t, x) =
e−rtx, and recalling

dXθ
t =

θt
St

dSt +
Xt − θt

S0
t

dS0
t ,

dSt = St(µdt+ σdWt),

and the risk premium λ = µ−r
σ and S0

t = ert, we get that

dX̃θ
t = −r

Xθ
t

S0
t

dt+
1

S0
t

(dXθ
t )

= −r
Xθ

t

S0
t

dt+
1

S0
t

(
θt
St

(St(µdt+ σdWt) + r
Xθ

t − θt
S0
t

S0
t dt

)
= θ̃t((µ− r)dt+ σdWt)

= θ̃tσ(λdt+ dWt).

Recalling that dS̃t = S̃tσ(λdt+ dWt), this can be written as

dX̃θ
t =

θ̃t

S̃t

dS̃t.

The above example generalizes to the multidimensional setting and we get

dX̃t = θ̃t diag[S̃t]
−1dS̃t

= θ̃σ(λdt+ dWt).

This means that the discounted wealth process is a stochastic integral of θ̃ with
respect to the Itô process dXt = σ(λdt+ dWt).

Next our aim is to show that the discounted price process is a martingale under
some another probability measure Q. For Q ≪ P , the stochastic process q
defined by

qt := E

[
dQ

dP

∣∣∣∣ Ft

]
is called the density process of Q (with respect to P ).

Lemma 3.3. Let Q ≪ P and q be the density process of Q. For any η ∈ L1(Q)
and t ∈ [0, T ], we have

EQ[η | Ft] =
1

qt
E [qT η | Ft] Q-a.s.
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Theorem 3.4. Let W be a d-dimensional Brownian motion and h be a determin-
istic Rd-valued measurable function on [0, T ] satisfying

∫ T

0
|ht|2dt < ∞. Let Q

be an equivalent probability measure to P with the Radon-Nikodym density

dQ/dP = exp{
∫ T

0

htdWt −
1

2

∫ T

0

|ht|2dt}.

Then the stochastic process B given by

Bt := Wt −
∫ t

0

hsds

is a Brownian motion under Q.

Proof. Evidently, B is a continuous stochastic process. Thus we need to show
that B has independent increments and (Bt −Bs) ∼ N(0, t− s) under Q for all
0 ≤ s < t ≤ T . By Exercise 2.7.5,

exp

{∫ t

0

hsdWs −
1

2

∫ t

0

|hs|2ds
}

defines a martingale, so qt := E[dQ/dP | Ft] satisfies

qt = exp

{∫ t

0

hsdWs −
1

2

∫ t

0

|hs|2ds
}
.

Given λ ∈ R, we have, using Lemma 3.3,

EQ[eλ(Bt−Bs) | Fs] = e−λ
∫ t
s
huduEQ[eλ(Wt−Ws) | Fs]

=
e−λ

∫ t
s
hudu

qs
E[qT e

λ(Wt−Ws) | Fs]

= e−λ
∫ t
s
hudu− 1

2

∫ t
s
|hs|2dsE[e

∫ t
s
(hs+λ)dWs | Fs].

By Theorem 2.18, Yt :=
∫ t

0
(hs+λ)dWs has independent increments and Yt−Ys ∼

N(0,
∫ t

s
|hu + λ|2du). Thus,

E[e
∫ t
s
(hs+λ)dWs | Fs] = E[e

∫ t
s
(hs+λ)dWs ]

= e
1
2

∫ t
s
|hu+λ|2du,

where the last line follows from Exercise 2.7.5. Combining the equalities,

EQ[eλ(Bt−Bs) | Fs] = e−λ
∫ t
s
hudu− 1

2

∫ t
s
|hs|2dse

1
2

∫ t
s
|hu+λ|2du

= e
1
2λ

2(t−s).

Thus (Bt−Bs) is independent of Fs and the Laplace transform of Bt−Bs under

Q at λ equals e
1
2λ

2(t−s). This means that Bt −Bs ∼ N(0, t− s) under Q.
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Theorem 3.4 implies that
Bt := Wt + λt (3.3)

is a Brownian motion under the measure Q with

dQ/dP = e−λWT− 1
2λ

2T . (3.4)

We can write the the price process as

Si
t = Si

0 exp

r − 1

2

d∑
j=1

|σij |2
 t+

d∑
j=1

σijBj
t

 (3.5)

so that, just like in Example 3.1, S solves the SDE (w.r.t B)

dŜt = diag[Ŝt](rdt+ σdBt), Ŝ0 = S0. (3.6)

The discounted price process S̃ satisfies

dS̃t = diag[S̃t]σdBt

while the discounted wealth process can be written as

X̃θ
t = X̃0 +

∫ t

0

θ̃tσdBu. (3.7)

Remark 3.5. It is possible to show that Q is the only probability measure equiv-
alent to P such that the discounted price process is a martingale under Q. In
financial terms, this is equivalent to saying that the Black scholes market model
is complete.

Definition 3.6. The portfolio process is called admissible if θσ ∈ H2
loc and there

exists a Q-martingale M such that such that Xθ
t ≥ Mt for all t.

Here we require the ”credit limit” given in terms of the martingale M so that
we do not allow ”doubling strategies”. We omit the detailed discussion of this
pathology of continuous time market models.

4 The superhedging pricing formula and hedging

We define the superhedging price of a claim c as

πc = inf{X0 | Xθ
T ≥ c P -a.s. for some admissible θ}.

The price is the least amount of initial capital needed to construct a self-
financing wealth process whose terminal wealth exceeds the payoff of the claim
almost surely.
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Note that πc is defined as a convex optimization problem over the set of ad-
missible portfolio strategies and initial capitals X0. It is an infinite dimensional
linear optimization problem and, in principle, hard to solve. The following re-
sult can be seen as an application of ”Lagrange multiplier method” from convex
optimization, but we do not go into further details here.

Theorem 4.1. Let Q be the equivalent martingale measure of the discounted price
process S̃. If EQ|c|2 < +∞, then

πc = e−rTEQ[c],

and there exists a self-financing wealth process X θ̄ with admissible hedging strat-
egy θ̄ and initial capital X θ̄

0 = e−rTEQc such that X θ̄
T = c almost surely. The θ̄

is given by (σT )−1zt for z from the martingale representation theorem

c̃ = EQc̃+

∫ T

0

ztdBt.

Proof. Let X0 ∈ R and θ be admissible such that Xθ
T ≥ c P -almost surely. Then

X̃θ
T ≥ c̃ P -almost surely. Since P and Q are equivalent, we also have X̃θ

T ≥ c̃

Q-almost surely. Since θσ ∈ H2
loc, θ̃σ ∈ H2

loc and, by (3.7),

X̃θ
t = X̃0 +

∫ t

0

θ̃sσdBs,

X̃ is a Q local martingale. Since θ is admissible, there is a Q-martingale M
such that X̃θ

t ≥ Mt for all t. Let (τ
ν)∞ν=1 be a localizing sequence for X̃θ so that

each stopped process given by X̃θ
t∧τν is a true martingale and X̃θ

T∧τν → X̃θ
T .

Since stopped processes are also bounded from below at t = T by MT which is
Q-integrable, martingale property of the stopped processes and Fatou’s lemma
give

Xθ
0 = X̃θ

0 = lim inf
ν

EQ[X̃θ
T∧τν ] ≥ EQ[X̃θ

T ] ≥ EQ[c̃] = e−rtEQ[c].

We have shown that
πc ≥ e−rtEQ[c].

To prove the other direction πc ≤ e−rtEQ[c], we define a martingale mt :=
EQ[c̃ | Ft]. By the Martingale Representation Theorem 2.21, there exists z ∈ H2

such that

c̃ = EQ[c̃] +

∫ T

0

ztdBt.

Thus we have that X̃ θ̄
T = c̃ for X̃0 = EQ[c̃] and for admissible θ̄t = (σT )−1zt.

Indeed, θ̄ ∈ H2
loc (actually, in H2),

X̃ θ̄
t = X̃0 +

∫ t

0

θ̄sσdBs,
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and X̃ θ̄ is bounded from below by a Q-martingale, since it is a Q-martingale
itself, by Theorem 2.18. Thus π(c) ≤ X θ̄

0 = X̃ θ̄
0 = EQ[c̃] and

πc = EQ[c̃].

The admissible θ̄ is the hedging strategy for c.

4.1 Delta-hedging of Vanilla options

In this section we consider Vanilla options

c = g(ST ) = g(S0
T , . . . , S

J
T )

for some g with quadratic growth. The idea is to combine the martingale charac-
terization from Theorem 4.1 with Itô’s formula to find a more explicit expression
for the optimal hedging strategy.

We denote by S = St,x the stochastic process describing the asset prices with
”initial prices x = (x1, . . . , xd) at time t”. Note that S does not have indepen-
dent increments, but it is still a ”Markov process” in the sense that its evolution
depends on the past only through its current state. Most formulas of the previ-
ous sections can be written by replacing each initial prices by xi and the initial
time 0 by t. For instance, (3.5) reads, for u ≥ t, as

(St,x)iu = xi exp

r − 1

2

d∑
j=1

|σij |2
 (u− t) +

d∑
j=1

σij(Bj
u −Bj

t ))

 , (4.1)

where B is a Brownian motion under the martingale measure Q of S̃. It follows
that, as in (4.3) St,x solves the SDE (w.r.t B)

dSu = diag[Su](rdu+ σdBu) u ∈ [t, T ], St = x. (4.2)

In particular, S is an Itô process w.r.t. B, for u ≥ t,

Si
u = Si

t +

∫ u

t

Si
s(rds+

d∑
j=1

σijdBi
s) (4.3)

so that we may apply Itô’s formula w.r.t. B.

Since the option depends only on the terminal price of the underlying assets
and S is Markov, we may define its (superhedging) price at time t by

πc(t, x) = inf{α | α+

∫ T

t

θ̃uσdBu ≥ g(St,x
T ) P -a.s. for some admissible θ}.

where we could assume ”admissibility only on the interval [t, T ]”. The pricing
formula of Theorem 4.1 becomes

πc(t, x) = e−r(T−t)EQ[g(St,x
T )|Ft]. (4.4)

In the next theorem, the optimal z̄ = ∂xπc is called the Delta-hedge.
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Theorem 4.2. Assume that g has quadratic growth, c = g(St), and that πc ∈
C1,2. Then the optimal (super-)hedging strategy is given by

θ̄t = diag[St]∂xπc(t, St) t ∈ [0, T ).

In particular, the amount z̄ of assets in the optimal portfolios satisfies

z̄it = ∂xiπc(t, St) t ∈ [0, T ).

Proof. Again, for simplicity, we assume in the proof that d = 1. By Theorem 4.1,
the optimal solution is obtained from the stochastic integral representation of
Yt := EQ[c̃|Ft] w.r.t B. By the Markov property of S, EQ[c̃|Ft] = EQ[c̃|St].
Combining with (4.4), we have

Yt := e−rtπc(t, St).

Applying Itô’s formula to Y , we get

Yt = πc(0, S0)

+

∫ t

0

(−re−rsπc(s, Ss) + e−rt∂tπ(s, Ss) + e−rs 1

2
S2
sσ

2∂xxπ(s, Ss)ds

+

∫ t

0

e−rs∂xπ(s, Ss)dSs.

Noting dSt = St(rdt+ σdBt), this can be written as

Yt = πc(0, S0)

+

∫ t

0

e−rs

(
∂tπc(s, Ss) + rSs∂xπ(s, Ss) +

1

2
S2
sσ

2∂xxπ(s, Ss)− rπc(s, Ss)

)
ds

+

∫ t

0

S̃s∂xπ(s, Ss)σdBs.

Since Y is a Q-martingale and the last summand is a Q-martingale, the integral
in the middle has to be zero for every t (a continuous martingale with a finite
variation is a constant, a fact the we have not proved in these notes), so θ̄t =
St∂xπ(t, St) is the optimal portfolio.

Remark 4.3. We saw in the proof Theorem 4.2 that πc has to solve the Black
Scholes partial differential equation (PDE)

∂tπc + rx∂xπc +
1

2
x2σ2∂xxπc − rπc = 0, πc(T, x) = g(x). (4.5)

This draws a connection between PDE-theory and financial problems and pro-
vides one method for finding prices for Vanilla options. We will return to this
later on at the end of the course.
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4.2 Exercises

Exercise 4.2.1. Write a Matlab function (as a m-file) that creates a sample
path of a prices process in the 1-dimensional Black Scholes model. Write it as
a function of initial time t with price x, terminal time T , N + 1 equi-distant
discretization points, drift µ, volatility σ and a sample of i.i.d standard normals.
Plot some sample paths.

Exercise 4.2.2. Write a Matlab function (as a m-file) that creates a sample
path of a price process in the 2-dimensional Black Scholes model. Write it as a
function of initial time t with price vector x, terminal time T , N+1 equi-distant
discretization points, drift vector µ, volatility matrix σ a sample of i.i.d standard
normals vectors. Plot some sample paths (each coordinate in the same figure).

Exercise 4.2.3. Consider a European call option with strike K in the 1-dimensional
Black Scholes model with r = 0, σ = 1 and T = 1. Approximate the Delta hedge
∆ by its piecewise constant approximation so that the resulting wealth process
satisfies

∆Xtk = ∆(tk−1, Stk−1
)∆Stk 0 = t0 < · · · < tn = 1, X0 = πc(0, S0);

see (3.2). Simulate the wealth process. Based on this, does the discretized Delta
hedge actually hedge the call option? Do this by plotting the differences between
the simulated terminal wealths and the payoffs of the European call option (sim-
ulated ”profit-losses”).

For this exercise, you need formulas that are proved in the following sections.
These are the pricing functional πc of the European call option (4.6) and the
Delta hedge

∆(t, x) := Φ(d1(t, x)),

where Φ is the standard normal cumulative distribution function and

d1(t, x) :=
ln(x/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

.

4.3 Exercises

Exercise 4.3.1 (Integration by parts formula for Itô processes). Let W be a
one dimensional Brownian motion and let Xi, i = 1, 2 be one dimensional Itô
processes,

Xi
t := Xi

0 +

∫ t

0

µi
sds+

∫ t

0

σi
sdWs i = 1, 2,

where, for i = 1, 2, µi ∈ H1
loc and σi ∈ H2

loc. Apply Itô’s formula to f(t, (x1, x2)) =
x1x2 to show the integration by parts formula

X1
t X

2
t = X1

0X
2
0 +

∫ t

0

X2
sdX

1
s +

∫ t

0

X1
sdX

2
s +

∫ t

0

σ1
sσ

2
sds.
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Exercise 4.3.2. Let W be a d-dimensional Brownian motion, b ∈ R and σ ∈ Rd,
and consider the process

St = exp{bt+ σ ·Wt}.

For f ∈ C1,2([0, T ] × R), show that f(t, St) is an Itô process. Can you find a
function f such that the process given by Yt := f(t, St) is a local martingale?

Exercise 4.3.3. Prove that the discounted price process S̃t satisfies the SDE

dS̃t = diag[S̃t]σ(λdt+ dWt).

Exercise 4.3.4. Find the pricing function π(t, x) and the optimal hedging strategy
for the quadratic claim c = g(ST ) := S2

T . Verify your solution π by checking
that it solves the Black Scholes partial differential equation (4.5).

Hint: Recall that EQeaη = e
1
2a

2

for a standard normally distributed η under Q.

4.4 The Black-Scholes formula for puts and calls

In the one dimensional case, the price process can be written (see (3.5))

St = S0 exp

((
r − 1

2
σ2

)
t+ σBt

)
where B is a Brownian motion under the martingale measureQ of the discounted
price process S̃.

Theorem 4.4. The superhedging price of be the European call option c := (ST −
K)+ written at time t with the strike K and maturity T is

πc(t, St) = StΦ(d1)− Φ(d2)Ke−r(T−t), (4.6)

where Φ is the cumulative distribution function of the standard normal distri-
bution and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
ln(St/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. Let x = St and St,x
T = x exp

((
r − 1

2σ
2
)
(T − t) + σ(BT −Bt)

)
. By The-

orem 4.1,
πc(t, St) = e−r(T−t)EQ[c].

Denoting η ∼ N(0, 1), we get

EQ[(St,x
T −K)+] = EQ[(exp(ln(St,x

T )−K)+]

= EQ[exp(lnx+ (r − 1

2
σ2)(T − t) + σ

√
T − t · η)−K)+].
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Denoting z := lnx + (r − 1
2σ

2)(T − t) and ϕ(y) := 1√
2π

e−
1
2y

2

(the density of a

standard normal distribution),

EQ[(St,x
T −K)+]

∫
z+σ

√
T−ty>lnK

(ez+σ
√
T−ty −K)ϕ(y)dy

=

∫ ∞

lnK−z
σ
√

T−t

ez+σ
√
T−tyϕ(y)dy −K

∫ ∞

lnK−z
σ
√

T−t

ϕ(y)dy

=: I − II.

Using the symmetry of ϕ, the second term can be written as

II = K

∫ ∞

lnK−z
σ
√

T−t

ϕ(y)dy = KΦ

(
z − lnK

σ
√
T − t

)
.

As to the first term,

I =

∫ ∞

lnK−z
σ
√

T−t

1√
2π

ez+σ
√
T−ty− 1

2y
2

dy

= xer(T−t)

∫ ∞

lnK−z
σ
√

T−t

1√
2π

e−
1
2 (y−σ

√
T−t)2dy

= xer(T−t)

∫ ∞

lnK−z
σ
√

T−t
−σ

√
T−t

1√
2π

e−
1
2 ỹ

2

dỹ

= xer(T−t)Φ

(
σ
√
T − t− lnK − z

σ
√
T − t

)
,

where the last line follows from the symmetry of the ϕ. Combining, we get

π(cC) = xΦ

(
σ
√
T − t− lnK − z

σ
√
T − t

)
− Φ

(
z − lnK

σ
√
T − t

)
Ke−r(T−t).

Substituting z and simplifying gives the result.

4.4.1 Put-call parity

Given a common strike price K and maturity T , the payoffs cP and cC of the
European put and European call satisfy

cP = (K − ST )
+ = K − ST + (ST −K)+ = cC − (ST −K).

Here we may identify (ST −K) with the payoff

cF := ST −K

of a forward contract. The price πF of cF can simply be calculated from (4.4),

πF (t, x) = e−r(T−t)EQ[St,x
T −K|Ft] = x− e−r(T−t)K,
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where we used the fact that Q is the martingale measure of S̃. Since the pricing
functional is linear (in a ”complete model” like the Black Scholes model), we get
the put-call parity

πP (t, x) = πC(t, x)− x+ e−r(T−t)K. (4.7)

The put-call parity in conjunction with the Black Scholes formula of the call
option in Theorem 4.4 gives the Black Scholes formula for the put option.

Theorem 4.5. The superhedging price of be the European put option c := (K −
ST )

+ written at time t with the strike K and maturity T is

πP (t, St) = −StΦ(−d1) + Φ(−d2)Ke−r(T−t),

where Φ is the cumulative distribution function of the standard normal distri-
bution and

d1 =
ln(St/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 =
ln(St/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. Combine Theorem 4.4, (4.7) and use the fact that Φ− 1
2 is antisymmetric.

4.5 Sensitivity analysis and Greeks

The Greeks refer to sensitivity of the derivative prices with respect to the model
parameters and underlying prices. Throughout this section, π is the price of
some given claim written at time t with current underlying prices St = x.

The most important Greek is the Delta,

∆ := ∂x,

since it gives the sensitivity with respect to the underlying prices. By Theo-
rem 4.2, Delta provides a formula for the optimal hedging portfolios of Vanilla
options.

Example 4.6. Recall that, for a European call option c = (ST −K)+,

πc(t, x) = xΦ(d1)− Φ(d2)Ke−r(T−t),

where Φ is the cdf of the standard normal distribution,

d1 =
ln(x/K) + r(T − t) + 1

2v
2

v

d2 =
ln(x/K) + r(T − t)− 1

2v
2

v
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and v = σ
√
T − t. The Delta becomes

∆ := Φ(d1).

In particular, by Theorem 4.2, the optimal hedging portfolio consists of holding

z̄t = Φ

(
ln(St/K) + r(T − t) + 1

2v
2

v

)
assets at every t ∈ [0, T ).

Proof. Denoting ϕ(y) = 1√
2π

e−
1
2y

2

,

∆ = ∂xπc(t, x) = Φ(d1) + ϕ(d1)
K

v
− ϕ(d2)Ke−r(T−t) K

vx
.

Since d2 = d1 − v and d1v − 1
2v

2 = ln(x/K) + r(T − t), we have

ϕ(d2) =
1√
2π

e−
1
2 (d1−v)2 = ϕ(d1)e

d1v− 1
2 v

2

= ϕ(d1)e
r(T−t) x

K
,

so ∆ = Φ(d1).

In practice, a closed form solution of πc(t, x) is not available for general Vanilla
option c, so one has to resort to numerical methods when constructing optimal
hedging strategies. This will be a topic of the next section.

The Greek gamma of an option is the second derivative with respect to the
underlying,

Γ := ∂xxπ.

For Delta-hedges, it tells how quickly the hedging portfolio has to be adjusted to
the price movements of the underlying. The ”Greek”Vega, is another important
quantity defined as

V := ∂σπ.

This gives the sensitivity with respect to the volatility. Since the volatility is a
parameter of the model, a high absolute value in Vega indicates higher model
risk. Practitioners often seek to build a portfolio with low Vega in order to
decrease the risk of a miss-specified model.

The Greek Theta is the rate of change with respect to time,

Θ = ∂tπ,

also called the time value of the option. Sometimes, it defined as the derivative
w.r.t. to the terminal time T . Finally, Rho is the sensitivity to the instantaneous
interest rate.

ρ := ∂rπ.

In practice, Black Scholes model is usually extended so that it takes into account
the whole term structure of interest rates (”time dependent” r(t)). On the other
hand, interest rates vary slowly if at all before the maturity of the option, so
the role of Rho is less relevant in practice.
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Exercise 4.5.1. Show that, for the European call option,

Γ =
ϕ(d1)

σx
√
T − t

.

Exercise 4.5.2. Show that, for the European call option,

V = x
√
T − tϕ(d1).

Exercise 4.5.3. Show that, for the European call option,

Θ = − σxϕ(d1)

2
√
T − t

− rKe−r(T−t)Φ(d2).

Exercise 4.5.4. Show that, for the European call option,

ρ = K(T − t)e−r(T−t)Φ(d2).

5 Monte Carlo methods in pricing

We are interested in computing prices of derivatives c, which by Theorem 4.1,
boils down to computing

e−r(T−t)EQ[c]

as soon as EQ|c|2 < ∞. The basis of Monte Carlo methods is the law of large
numbers.

Let (ξ(m))∞m=1 be a sequence independent and identically distributed random
variables with ξ(n) ∼ η for E|ξ| < ∞.

Theorem 5.1 (Strong law of large numbers). We have, almost surely,

1

M

M∑
m=1

ξ(m) → Eη.

The random variable

µ(M) =
1

M

M∑
m=1

ξ(m),

called the sample mean, is used as an estimate of the expectation Eξ. This
random variable, a particular ”estimator of Eξ”, satisfies

Eµ(M) = Eξ

std
(
µ(M)

)
=

1√
M

std(ξ).

The first equation tells us that the sample mean is ”unbiased” and the second
tells us that the ”rate of convergence is of order

√
M”. That is, if we want to
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reduce the standard deviation of the estimator to one tenth, we need to use
hundred times larger ”sample size M”.

Notice also that the central limit theorem, Theorem 2.12, tells us that, when
std(η) is finite, √

M(µ(M) − Eη)
d−−→ ξ ∼ N(0, std(ξ)2).

Thus the estimator is asymptotically normal. Loosely speaking, the estimator
is ”approximately normally distributed for large M around Eξ”,

1

M
(

M∑
m=1

(ξ(m) − Eξ)) =
1√
M

1√
M

(

M∑
m=1

(ξ(m) − Eξ)) ∼∼ N

(
0,

(
std(ξ)√

M

)2
)
.

To derive confidence intervals for the estimator µ(M), we introduce the ”sample
variance”

(σ(M))2 :=
1

M − 1

M∑
m=1

(
ξ(m) − µ(M)

)2
to estimate Var(ξ). We have

(σ(M))2 =
M

M − 1

M∑
m=1

(
(ξ(m))2

M
− 2

ξ(m)

M
µ(M) +

(µ(M))2

M

)

=
M

M − 1

(
M∑

m=1

(ξ(m))2

M
− (µ(M))2

)

so, by the law of large numbers,

(σ(M))2 →
(
E(ξ)2 − (Eη)2

)
= Var(ξ).

We leave it as an exercise to verify that (σ(M))2 is also an unbiased estimator
of Var(ξ) (this is an elementary but a bit lengthier computation).

In the exercises, we use ”heuristic confidence intervals” by approximating

µ(M) ∼∼ N(Eξ,
(σ(M))2

M
)

so that, ”with large M , we have with 95% probability” that Eη is in the interval

[µ(M) − 1.96σ(M)

√
M

,µ(M) +
1.96σ(M)

√
M

]. (5.1)

Here we put aside the fact that (σ(M))2 is just an estimator of Var(ξ). It would
be more justified to do asymptotic analysis for the estimator (σ(M))2 and derive
confidence intervals for it, which would increase the confidence intervals of µ(M).

32



5.1 MC of Vanilla options

Consider a Vanilla option c = f(ST ) such that EQ|f(ST )|2 < ∞. Taking
independent copies (St,x

T )(m), m = 1, 2, . . . of St,x
T , the law of large numbers

tells us that, almost surely,

1

M

M∑
m=1

f(S
(m)
T ) → EQ[f(St,x

T )].

Since

St,x
T ∼ x exp

((
r − 1

2
σ2

)
(T − t) + σ

√
T − tη

)
,

where η has a normal standard distribution under Q, we know how to generate
independent copies of St,x

T under Q, and we get the following Monte Carlo
method.

Algorithm 5.2. An MC algorithm (with confidence intervals) for prices of Vanilla
options c = f(ST ) with initial time t and price x.

1. Generate a mutually independent sample

{η(1), . . . , η(M)}

from a standard normal distribution.

2. Compute, for m = 1, . . . ,M

ξ(m) = e−r(T−t)f
(
xe(r−

1
2σ

2)(T−t)+σ
√
T−t·η(m)

)
.

3. Compute the MC estimate

µ(M) =
1

M

M∑
m=1

ξ(m).

4. Compute the confidence intervals according to (5.1).

Note that in the above algorithm, there is no need to simulate the whole path
of the price process, which saves a lot of computational costs.

5.2 MC and Delta-hedging of Vanilla options

We continue with a Vanilla option c = f(ST ) such that EQ|f(ST )|2 < ∞ and
that f has quadratic growth. Recall from Theorem 4.2 that the optimal hedging
strategy z̄ is given by

∂xπc(t, x).
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Assuming that, below, we may change the order of integration and differentia-
tion, we have

∂xπc(t, x) = e−r(T−t)∂xE
Q[f(St,x

T )]

= e−r(T−t)EQ[∂f(St,x
T )∂xS

t,x
T ]

= e−r(T−t)EQ[∂f(St,x
T )St,1

T ],

where the last line follows from the St,x
T = x exp

((
r − 1

2σ
2
)
(T − t) + σ(BT −Bt)

)
.

Moreover, it is sufficient that f is merely ”weakly differentiable”, so ∂f is un-
derstood in this sense.

Algorithm 5.3. An MC algorithm for Delta-hedge of a Vanilla option c = f(ST )
with initial time t and price x.

1. Generate a mutually independent sample

{η(1), . . . , η(M)}

from a standard normal distribution.

2. Compute

e−r(T−t) 1

M

M∑
m=1

[
f ′
(
xe(r−

1
2σ

2)(T−t)+σ
√
T−t·η(m)

)
e(r−

1
2σ

2)(T−t)+σ
√
T−t·η(m)

]
.

Of course, in step 2 above, it is possible to cancel out the terms e−r(T−t),
depending on how the computation is actually implemented.

Example 5.4. For the European call option, the ”weak derivative” of the payoff
f(x) = (x−K)+ becomes

f ′(x) =

{
0 if x ≤ K

1 if x > K.

Another method to estimate Delta is to approximate

∂xπ(t, x) = lim
h→0

π(t, x+ h)− π(t, x)

h

by difference quotients with small h:

∂xπ(t, x) ≈
π(t, x+ h)− π(t, x)

h
.

For this, we may apply Algorithm 5.2 to π(t, x+h) with the given x and ”small”
h (with the same sample for h). This is easier to implement, especially when
∂f is not available, but is more susceptible to simulation errors. Both these
methods can be modified to get MC-algorithms for estimating other Greeks as
well.
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5.3 Exercises

Exercise 5.3.1. Write Matlab functions (as m-files) for the pricing functional π
of the European call option and its Greeks. Write them as functions of all the
parameters, t, x, T , r, σ, and K. Plot each Greek (choose three) as a function
of the corresponding parameter, ∆ as a function of x, V as a function of σ, etc.

Exercise 5.3.2. Apply MC algorithm to estimate prices for the European call
option. Plot the estimated prices as a function of the number M of simulations.
Plot also the confidence intervals according to (5.1). After finding M large
enough, estimate the prices as a function of x, for fixed t = 0, T , r, σ and K.
Plot the estimates as a function of x in the same figure with correct prices from
Theorem 4.4.

Exercise 5.3.3. Apply MC algorithm to estimate Greeks ∆,Γ and V for the Euro-
pean call option. Plot the estimates in the same figure with the theoretical values.
Plot them as functions of the corresponding and one additional parameter, e.g.,
∆ as a function of x and σ, V as a function of σ and r, etc.

5.4 MC for Barriers and Asians

Consider now a path-dependent claim c such that EQ|c|2 < ∞. The first step is
to discretize time into N intervals with a time grid {t0, . . . , tN}, t0 = 0, tN = T ,
so that we may write the claim as c = f(St0 , . . . , StN ). In fact, this is how
we wrote the path-dependent payoff functions in Exercises 2.2. After that, MC
algorithm is built on the whole sample paths of the price process. Since

Stn = Stn−1
exp

((
r − 1

2
σ2

)
(tn − tn−1) + σ

√
tn − tn−1η

(n))

)
, (5.2)

where (η(n))Nn=1 are i.i.d., and standard normally distributed under Q, we get
the following Monte Carlo method.

Algorithm 5.5. An MC algorithm for the price of a path-dependent option

c = f(St0 , . . . , StN ).

1. For m = 1, . . . ,M ,

(a) Generate a mutually independent sample

{η(1), . . . , η(N)}

from a standard normal distribution.

(b) For n = 1, . . . , N , compute

sn = sn−1e
(r− 1

2σ
2)(tn−tn−1)+σ

√
tn−tn−1η

(n)),

where s0 = S0.
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(c) Compute fm = f(s0, . . . , sN )

2. Compute

e−rT 1

M

M∑
m=1

fm.

In the actual implementation, it possible to parallelize step 1. On the other
hand in Matlab, it is possible to simulate M different paths simultaneously and
do the computations in steps (b) and (c) in the vector form.

The general MC algorithm described above can be tuned to the option at hand.
For example, for Barrier options, we can do the following:

Algorithm 5.6. An MC algorithm for the price of the down-and-out Barrier
option

c = (ST −K)+1R+
(min

n
Stn −B).

1. For m = 1, . . . ,M ,

(a) For n = 1, . . . , N

i. Generate η(n) from a a standard normal distribution

ii. Compute

sn = sn−1e
(r− 1

2σ
2)(tn−tn−1)+σ

√
tn−tn−1η

(n)).

iii. If sn < B, define fm = 0 and go to 1.

(b) Set fm = (sN −K)+.

2. Compute

e−rT 1

M

M∑
m=1

fm.

6 The Black Scholes PDE and finite difference method

We saw in the proof Theorem 4.2 that, for the Vanilla option c = f(ST ) with
appropriate growth conditions, the corresponding pricing function π : [0, T ] ×
R+ 7→ R solves the Black Scholes partial differential equation (BS-PDE)

∂tπ + rx∂xπ +
1

2
x2σ2∂xxπ − rπ = 0, π(T, x) = f(x). (6.1)

Defining the parameters

a =
r

σ2
− 1

2
, b =

1

4

(
2r

σ2
+ 1

)2
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and a function
u(τ, y) = eay+bτπ(T − 2τ/σ2, ey) (6.2)

on [0, 1
2σ

2T ]×R, we have (below, we omit the arguments (τ, y) for u and (T −
2τ/σ2, ey) from π and its derivatives)

∂τu = bu− 2

σ2
eay+bτ∂tπ

∂yu = au+ e(a+1)y+bτ∂xπ

∂yyu = a2u+ ae(a+1)y+bτ∂xπ + (a+ 1)e(a+1)y+bτ∂xπ + e(a+2)y+bτ∂xxπ.

Combining this with the fact that π solves (6.1), we get by a direct (but tedious)
verification that u solves the heat equation

∂τu = ∂yyu, u(0, y) = eayg(ey).

The formula (6.2) can be inverted so that

π(t, x) = e−a ln x−b 1
2σ

2(T−t)u(
1

2
σ2(T − t), lnx). (6.3)

Therefore, numerical solutions of u yield numerical solutions to π.

6.1 The finite difference method

We choose an evenly spaced time discretization 0 = τ0 ≤ . . . τN for a fixed integer
N . We truncate the y-state space R to [ymin, ymax], and choose an evenly spaced
space discretization ymin = y0 ≤ . . . , yJ = ymax for a fixed integer J .

Denoting uj
n = u(τn, yj), we approximate, for every n and 0 < j < J (the

boundaries are dealt with later on)

∂τu(τn, yj) =
uj
n+1 − uj

n

∆τn

∂yu(τn, yj) =
uj+1
n − uj−1

n

2∆yj

∂yyu(τn, yj) =
uj+1
n − 2uj

n + uj−1
n

(∆yj)2
.

Here ∂τu is approximated by the ”forward difference” and ∂yyu by the ”second-
order central difference”. Using these finite differences, our approximation for
the heat equation ∂τu = ∂yyu becomes

uj
n+1 − uj

n

∆τn
=

uj+1
n − 2uj

n + uj−1
n

(∆yj)2

which we write in the recursive form

uj
n+1 =

∆τn
(∆yj)2

uj+1
n +

(
1− 2∆τn

(∆yj)2

)
uj
n +

∆τn
(∆yj)2

uj−1
n . (6.4)
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This is an explicit method since we used forward differences in time. The method
is numerically stable if ∆τn ≤ (∆yn)

2/2; a fact which we state without a proof.
Other choices of derivative approximations lead to other finite difference meth-
ods (implicit method, Crank-Nicolson method, etc.).

The initial condition becomes (for j = 0 and j = J , these are given later on)

uj
0 = ea(j∆yn+ymin)f(ej∆yn+ymin) j = 1, . . . , J − 1.

The boundary conditions along the truncation boundary are less obvious and
not given by the data. Here we choose these boundary conditions by asymptotic
arguments.

Consider first the points yj0 = ymin. Since

u(τ, y) = eay+bτπ(T − 2τ/σ2, ey) = eaye(b−r2/σ2)τEQ[f(ST−2τ/σ2,ey )],

we get, if f(0) is finite, that

lim
y→−∞

u(τ, y)

eay
=

eaye(b−r2/σ2)τEQ[f(ST−2τ/σ2,0)]

eay
= e(b−r2/σ2)τf(0).

Thus it is natural to set

u0
n = e(b−2r/σ2)n∆τn+ayminf(0) n = 0, . . . , N.

Remark 6.1. If f(0) is not finite at the origin, it is possible to refine the argument
using L’Hôpital’s rule as below; we omit the details.

Consider now the boundary points yjN = ymax. Assuming that we may differen-
tiate under the integral sign, change the order of integration and the limit, and
that f has a linear growth, we get from L’Hôpital’s rule that

lim
y→−∞

u(τ, y)

eayf(ey)
= lim

y→∞

e(b−r2/σ2)τEQ[f(eyST−2τ/σ2,1)]

f(ey)

= e(b−r2/σ2)τEQ[S
T−2τ/σ2,1
T ]

= e(b−r2/σ2)τer(2τ/σ
2)

= ebτ .

Thus it makes sense to approximate u(τ, y) ∼ ebτeayf(ey) for large y. Thus we
may set

uJ
n = eaymax+bn∆τnf(eymax) n = 0, . . . , N.

Remark 6.2. If f has quadratic growth, the above argument has to be modified.
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In this case, applying L’Hôpital’s rule twice,

lim
y→−∞

u(τ, y)

eayf(ey)
= lim

y→∞

e(b−r2/σ2)τEQ[f(eyST−2τ/σ2,1)]

f(ey)

= e(b−r2/σ2)τEQ[(S
T−2τ/σ2,1
T )2]

= e(b−r2/σ2)τe(2r+σ2)(2τ/σ2)

= e(b+r2/σ2+2)τ .

Here the second last line follows from

EQ[(St,x
T )2] = x2e(2r+σ2)(T−t),

which was computed as a part of Exercise 4.3.4. We end up with the boundary
conditions

uJ
n = eaymax+(b+r2/σ2+2)n∆τnf(eymax) n = 0, . . . , N.

Now we are ready to formulate an algorithm based on these observations.

Algorithm 6.3. A finite difference method for approximating u corresponding to
the price function of a Vanilla option c = f(ST ) with linearly growing f that is
finite at the origin.

1. Choose N , J and ymax so that ∆τ := 1
2σ

2T/N an ∆y := (ymax−ymin)/J
satisfy ∆τn ≤ (∆yn)

2/2.

2. For n = 0, . . . , N , set

u0
n = e(b−r2/σ2)n∆τn+ayminf(0)

uJ
n = eaymax+bn∆τnf(eymax).

3. For j = 1, . . . , J − 1, set

uj
0 = ea(j∆yn+ymin)f(ej∆yn+ymin) j = 1, . . . , J − 1.

4. For n = 1, . . . , N , j = 1, . . . , J − 1, compute

uj
n+1 =

∆τn
(∆yn)2

uj+1
n +

(
1− 2∆τn

(∆yn)2

)
uj
n +

∆τn
(∆yn)2

uj−1
n .

In Matlab, the steps are most convenient to implement using vectors, in partic-
ular, in the recursion step 4, by introducing a tridiagonal matrix.
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6.2 Exercises

Exercise 6.2.1. Find suitable discretization parameters N , J and the cutoff val-
ues ymax and ymin so that the finite difference method approximates the theoret-
ical price of a European call option with 0.1 % percent accuracy for some fixed
(and nonzero) parameters.

Exercise 6.2.2. Apply the finite difference method to approximate the prices of
an European put option and the quadratic option c = (ST )

2.

Exercise 6.2.3. Estimate the Greek Θ on the whole interval [0, T ] of a European
call option using the finite difference method.

Exercise 6.2.4. Estimate the Greek Γ at time t = 0 and at some σ of a European
call option using the finite difference method.

7 Variance reduction methods in Monte Carlo

Let Z be a random variable and assume that EQ[G(Z)2] < ∞ for a function
G with quadratic growth. The ”naive Monte Carlo simulation” under Q gives
estimates of

α := EQ[G(Z)]

that are proportional to the variance of G(Z) under Q. The general idea of
variance reduction methods is to seek another random variable Y and possibly
another probability measure Qh such that

EQh [Y ] = EQ[G(Z)]

and such that the variance of Y of under Qh is smaller. Then performing Monte
Carlo for Y under Qh results in smaller confidence intervals.

7.1 Importance sampling

The idea in importance sampling is to look for a measure Qh under which the
variance of the Monte Carlo estimator is smaller. Minimizing variance amounts
to minimizing the second moment.

Consider Z whose law has the density g w.r.t. the Lebesgue measure under Q
and another density function h such that h > 0 on {g > 0}. We have

EQ[G(Z)] =

∫
G(x)g(x)dx =

∫
G(x)

g(x)

h(x)
h(x)dx = Eh

[
G(Z)

g(Z)

h(Z)

]
,

where Eh denotes the expectation w.r.t. Qh under which Z has the density h
[Note that dQ/dQh = g(Z)/h(Z) if {h > 0} = {g > 0}]. In particular, the
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sample mean (Monte Carlo estimator)

1

M

M∑
m=1

G(Z(m))
g(Z(m))

h(Z(m))

is an unbiased estimator of α (here Z(m) are distributed according to the den-

sity). The second moment of G(Z) g(Z)
h(Z) under Qh is

Eh

[
G(Z)

g(Z)

h(Z)

]2
=

∫ [
G(x)

g(x)

h(x)

]2
h(x)dx

= EQ[G(Z)2
g(Z)

h(Z)
].

If G > 0 on {g > 0}, the minimal second moment (and thus minimal variance)

is obtained with the choice h(x) = G(x)g(x)
α , in which case the variance is zero.

However, α is what we are trying to estimate, so this choice is not available to
us.

Importance sampling by the change of drift

Assume now that g is the multivariate density distribution on Rn with mean
vector 0 covariance matrix 1n. In our pricing applications, all sampling is based
on this structure. For instance, for a path-dependent option we have

G(Z1, . . . Zn) = f(S1, . . . , Sn),

where Si = Si−1e
(r− 1

2σ
2)δt+σ

√
∆tZi . Recall that the density (w.r.t. the Lebesgue

measure) h(·;µ,Σ) of a n-dimensional normal distribution with mean µ and
covariance matrix Σ is

h(x;µ, σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Let h be the multivariate density distribution on Rn with drift vector µ and
covariance matrix 1n. Under Qh, we have Z ∼ N(µ,1n). Thus, under Qh, Z
equals in distribution to Z̃ +µ, where Z̃ ∼ N(0,1n). Since Z ∼ N(0,1n) under
Q, this means that

Eh

[
G(Z)

g(Z)

h(Z)

]
= EQ

[
G(Z + µ)

g(Z + µ)

h(Z + µ)

]
,

so, in this setting, performing Monte Carlo with importance sampling amounts
to performing the Monte Carlo under the original measure Q for the random
variable

G(Z + µ)
g(Z + µ)

h(Z + µ)
,
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where Z ∼ N(0,1n). A direct computation gives

g(Z)

h(Z)
= e−ZTµ+ 1

2µ
Tµ.

The second moment can be written as

Eh

[
G(Z)

g(Z)

h(Z)

]2
= EQ[G(Z)2e−ZTµ+ 1

2µ
Tµ],

where the right hand side is a convex function of µ. Applying Monte Carlo (in
the context of optimization, also known as sample average approximation), we
approximate the right side by

1

M̃

M̃∑
m=1

(
G(Z(m))2e−(Z(m))Tµ+ 1

2µ
Tµ
)
,

where Z(1), . . . Z(M̃) is a mutually independent sample of Z. Minimizing this
over µ is a finite dimensional convex optimization problem.

Remark 7.1. It is also possible to vary the covariance matrix Σ and not just the
drift µ and still obtain a convex optimization problem. This involves a change
of variables in terms of the natural parameters

θ :=

(
θ1
θ2

)
:=

(
Σ−1µ
− 1

2Σ
−1

)
.

The density can be written as an exponential family

h(x;µ, σ) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= (2π)n/2 exp(θT1 x+ xT θ2x− 1

4
θT1 θ

−1
2 θ1 −

1

2
log det(−2θ2))

:= h(x; θ).

The terms inside the exponent form a concave function of θ (see,e.g., the lecture
notes of ”Optimierung WiSe2021”), so

EQ[G(Z)2
g(Z)

h(Z; θ)
]

is a convex function of θ.The sample average approximation of this leads to a
convex ”semidefinite programming” problem (θ1 is a vector and θ2 is a semidef-
inite matrix).
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Laplace method

The second moment can also be written as

Eh

[
G(Z)

g(Z)

h(Z)

]2
= EQ[G(Z)2e−ZTµ+ 1

2µ
Tµ]

= EQ[e2F (Z)−ZTµ+ 1
2µ

Tµ]

=
1

(2π)n/2

∫
e2F (z)−zTµ+ 1

2µ
Tµ− 1

2 z
T zdz

where F (z) := lnG(z).

To find a drift which reduces the variance, we now approximate

Eh

[
G(Z)

g(Z)

h(Z)

]2
∼ Lemaxz{2F (z)−zTµ+ 1

2µ
Tµ− 1

2 z
T z}

[this is heuristics based on ”Laplace’s method” which gives asymptotics for in-

tegrals of the form
∫
e

1
ϵF (z)dz when ϵ ↘ 0]. Thus we end up with

min
µ

max
z

{2F (z)− zTµ+
1

2
µTµ− 1

2
zT z}.

Assuming that we can find the optimal µ (and z) as the saddle point (below,
the first line is the partial derivative w.r.t. z and second w.r.t. x)

2∇F (z)− µ− z = 0

−z + µ = 0,

we end up with the optimality condition that µ solves

∇F (z) = z. (7.1)

It is possible to show that this optimality condition is rigorous ”asymptotic
optimality condition” for finding the optimal change of drift for eF (Z/

√
ϵ)/ϵ when

ϵ ↘ 0. We omit the details.

Importance sampling of Asian options with the Laplace method

We consider the Asian call option

cAC = (S̄T −K)+

where T = 1, S̄T = 1
N

∑N
n=1 Stn , and tn = n/N . Here, with a slight abuse of

notation Sn = Sn∆t,

G(z) = f(
1

N

N∑
n=1

Sn(z)),
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where f(y) = (y −K)+ and

Sn(z) = Sn−1(z)e
(r− 1

2σ
2)∆t+σ

√
∆tzn .

The optimality condition (7.1) becomes (when S̄T (z) > K)

zn = ∂zn(lnG)(z) =
1

NG(z)
σ
√
∆t

N∑
j=n

Sj(z) n = 1, . . . N.

This means that

z1 =
σ
√
∆t[G(z) +K]

G(z)
, zn+1 = zn − σ

√
∆tSn

NG(z)
n = 1, . . . , N − 1. (7.2)

We leave it as an exercise to check that if we can find a scalar y such that
G(1y) = y, we get zn recursively from the above equations with G(z) = y.
Solving G(1y) = y amounts to finding the root of the one-dimensional equation

1

N

N∑
n=1

Sn(1y)−K − y = 0.

Note here that the optimal drift vector µ = z is decreasing.

7.2 Exercises

Exercise 7.2.1. Apply the importance sampling method to the European call op-
tion. Find numerically the optimal drift and compare the confidence intervals
of the importance sampling method to the ”naive Monte Carlo”.

Exercise 7.2.2. How does the optimal drift depend on the model parameters?
Compare the optimal drifts of European put and call options that are ”deep out
of the money”, that is, for the put option, the initial asset price x is much larger
than the strike K, and for the call option, vice versa.

Exercise 7.2.3. Apply the Monte Carlo method to estimate the price of the Asian
call option. Plot the price as a function of the initial asset price x.

7.3 Antithetic variates

The method of antithetic variates is based on the structure that the sampled
(multi-dimensional) random variables Z satisfy that Z and (−Z) are equal in
distribution.

Again, for our applications, it suffices to assume that Z is a multi-dimensional
standard normal which has this property. We define

Y := (G(Z) +G(−Z))/2
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so that EY = EG(Z) and we may perform Monte Carlo for Y instead to
approximate EG(Z). Implementation of this is extremely simple and we omit
the detailed description of the algorithm.

To analyze the performance, note that

Var(Y ) =
1

4
(Var(G(Z)) + Var(G(−Z)) + 2Cov(G(Z), G(−Z))

=
1

2
Var(G(Z)) +

1

2
Cov(G(Z), G(−Z)),

so for negative covariances the variance is reduced compared to the naive Monte
Carlo. Of course, computationally, Y (m) is about twice as expensive to simulate.
Note that Y and Ỹ := (G(Z)−G(−Z))/2 are uncorrelated and that Y + Ỹ =
G(Z), so

Var(G(Z)) = Var(Y ) + Var(Ỹ ).

As a rule of thumb, the more effective the method the ”more linear”G.

7.4 Control variates

The idea behind control variates is to consider

Y (b) := G(Z)− b(X − EX)

where the expectation of the additional random variable X is known and b ∈ R
is a parameter. We have EY (b) = EG(Z), so we may do Monte Carlo for Y as
soon as we can generate independent samples of (Z,X). In practice, X = H(Z)
for some function H, so generating the samples is not a problem.

To analyze the performance, we compute

Var(Y (b)) = Var(G(Z))− 2bCov(G(Z), X) + b2 Var(X),

so the variance is minimized with the choice

b∗ =
Cov(G(Z), X)

Var(X)

which gives (the right side is in terms of ”correlation”ρG(Z),X := Cov(G(Z),X)
std(G(Z)) std(X) )

Var(Y (b∗)) = Var(G(Z))(1− Cov(G(Z))2

Var(G(Z))Var(X)
) = VarG(Z)(1− ρ2G(Z),X).

The more the variance is reduced the more correlated the control variate X is
with G(Z).

In practice, b is not known but it can be estimated from the sample covari-
ances and variances. Before the actual Monte Carlo, we first generate a sample
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(Z(m), X(m))M̃m=1 (with size M̃) and use

b̂ =

∑M̃
m=1[(G(Z(m))− µ̂(M))(X(m) − E[X])]∑M̃

m=1(X
(m) − E[X])2

as an approximation of the optimal parameter b.

Remark 7.2. The method generalizes to sums of control variates

Y = G(Z)−
K∑
i=1

bi(Xi − E[Xi]).

Control variates in pricing

In our pricing application, two natural classes of control variates consists of
options whose prices are explicitly known and of wealth processes of admissible
portfolios.

Of options, the simplest choice is the forward (discounted price process) X = S̃T

for which EQS̃T = S0, by the definition of Q. The Black Scholes pricing
formulas, Theorems 4.4 and 4.5, allow us to use European calls and puts as
well. Yet another choice is to use the quadratic option X = S2

T whose price
was computed in Exercise 4.3.4. Explicit pricing formulas exist for a handful
of other options as well (e.g., for barrier options), but these are not covered in
these lecture notes.

Let z be an adapted process such that zt−1∆S̃tn is integrable for every n. Then

XT = X0 +

n∑
i=1

zti−1∆S̃tn

is a Q-martingale with EXT = X0. Thus appropriate stochastic integrals (espe-
cially wealth processes) serve as control variates. When pricing exotic options,
the whole path of S has to be simulated in the first place, so, in this case, the
computational cost does not increase dramatically.

7.5 Exercises

Exercise 7.5.1. Apply the importance sampling method to estimate the price of
the Asian call option. Write the Matlab-code so that the importance sampler is
easy to implement with varying drift vectors of the sampler. Use a ”decreasing”
drift vector to estimate the price of the Asian call option. Compare the confi-
dence intervals of the importance sampling method to the ”naive Monte Carlo”.
How would you change the sampler to price Asian put options? For the last
question, no theoretical considerations are needed, just try to find a drift vector
that performs better than ”naive Monte Carlo”.
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Exercise 7.5.2. Apply the method of antithetic variates to estimate the price of
the European put option. Compare the efficiency when the option is ”deep in the
money” and ”deep out of the money”.

Exercise 7.5.3. Apply the method of control variates to estimate the price of the
European call option. Use the underlying stock as a control variate. Compare the
efficiency when the option is ”deep in the money” and ”deep out of the money”.

Exercise 7.5.4. Apply the method of control variates to estimate the price of the
Asian call option. As a control variate, use the European call option with the
same strike. Compare the efficiency when the option is ”deep in the money” and
”deep out of the money”.

8 Optimal stopping

We denote by R1 the space of continuous adapted processes R for which

{Rτ | τ ∈ T }

is uniformly integrable. Such processes are called continuous processes of class
(D). Let R ∈ R1

+ and consider the optimal stopping problem

maximize ERτ over τ ∈ T .

We will first establish general existence and duality results. Later on, R takes
the form Rt = ϕ(St) (e.g., American put option).

We first write the problem as

maximize E

∫
Rdx over x ∈ Ce,

where Ce := {x ∈ FV |xt ∈ {0, 1}}. The equation τ(ω) = inf{t ∈ R | xt(ω) ≥ 1}
gives a one-to-one correspondence between the elements of T and Ce. Consider
also the convex relaxation

maximize E

∫
Rdx over x ∈ C,

where C := {x ∈ FV ∞
0 |x increasing, xT ≤ 1} and FV ∞

0 is the set of adapted
right continuous processes starting from zero with essentially bounded variation.
Clearly, Ce ⊂ C so the optimum value of optimal stopping is dominated by the
optimum value of the relaxation. The elements of C are called randomized
stopping times.

Recall that x ∈ C is an extreme point of C if it cannot be expressed as a convex
combination of two points of C different from x.

Lemma 8.1. The set C is convex, σ(FV,R1)-compact and Ce is the set of its
extreme points.
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Proof. The set C is a closed convex subset of the unit ball that FV has as the
dual of the Banach space R1 when R1 is equipped with the norm

∥R∥R1 := sup
τ∈T

E|Rτ |.

The compactness thus follows from the Banach-Alaoglu theorem. It is easily
shown that the elements of Ce are extreme points of C. On the other hand, if
x ∈ C\Ce there exists an s̄ ∈ (0, 1) such that the processes

x1
t :=

1

s̄
[xt ∧ s̄] and x2

t :=
1

1− s̄
[(xt − s̄) ∨ 0]

are different elements of C. Since x = s̄x1+(1− s̄)x2, it is not an extreme point
of C.

The following gives a dual expression for the optimum value as well as optimality
conditions for the relaxed problem in terms of martingales that dominate the
reward process R. We will denote the set of martingales of class (D) by R1

m.

We will use the following result from convex analysis.

Theorem 8.2. Let L : FV ×L1 → R∪ {±∞} be a concave-convex function such
that L(·, x) is usc and L(x, ·) is lsc for every (x, y) ∈ FV × L1, and, for some
x ∈ FV , {y ∈ L1 | L(x, y) > −∞} is uniformly integrable. Then there exists a
saddle value

sup
x∈FV

inf
y∈L1

L(x, y) = min
y∈L1

sup
x∈FV

L(x, y).

Moreover, x̄ minimizes the left side and ȳ maximizes the right side if and only
if (x̄, ȳ) is a saddle point:

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) ∀x ∈ FV, y ∈ L1.

Theorem 8.3. Optimal stopping time exists for every nonnegative R ∈ R1, the
optimum value equals

inf{EM0 |M ∈ R1
m, R ≤ M},

where the infimum is attained. A stopping time τ is optimal if there exists
M ∈ R1

m with M ≥ R and Mτ = Rτ .

Proof. By Krein-Milman theorem, a continuous linear functional attains its
supremum over a compact convex set at an extreme point of the set. The
first claim thus follows from Lemma 8.1.

We use the fact that for any R ∈ R1, there is a nonadapted continuous process
Z with r := supt |Zt| ∈ L1 and Rt = E[Zt | Ft]. We note that the optimal value
of the convex relaxation coincides with

maximize
x∈FV ∞

0

E

[∫
Rdx− r(xT+ − 1)+

]
subject to dx ≥ 0 (8.1)
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Indeed, for x ∈ C the two objectives coincide while if x ∈ N∞
0 with dx ≥ 0, then

x̃ := x ∧ 1 belongs to C and

E

∫
Rdx̃ = E[

∫
Rdx−

∫
Rd(x− x̃)]

= E[

∫
Rdx−

∫
Zd(x− x̃)]

≥ E[

∫
Rdx− r(xT+ − 1)+].

We define a concave-convex function on FV × L1 by

L(x, y) :=


−∞ if dx ̸≥ 0,

E[+
∫
Rdx− yxT + y] if dx ≥ 0 and 0 ≤ y ≤ r,

+∞ otherwise,

for which all the assumptions of Theorem 8.2 are satisfied (an exercise).

It is easy to verify that supy L(x, y) coincides with the objective in (8.1). On
the other hand, we can write

L(x, y) =


−∞ if dx ̸≥ 0,

E[
∫
(R−M)dx+MT ] if dx ̸≥ 0 and 0 ≤ MT ≤ r,

+∞ otherwise,

where Mt = E[y | Ft]. Thus

sup
x∈FV ∞

0

L(x, y) =

{
EM0 if 0 ≤ MT ≤ r and M −R ≥ 0,

+∞ otherwise,

As to the optimality conditions, the saddle-point condition in Theorem 8.2,
L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y) for all x and y, implies, first of all, that dx̄ ≥ 0 and
M̄ − R ≥ 0. Then the first inequality means that

∫
(R − M)dx̄ = 0 and the

second that 
ȳ = 0 if x̄T < 1,

ȳ ∈ [0, r] if x̄T = 1,

ȳ = r if x̄T > 1

almost surely. Thus x ∈ C is primal optimal if and only it satisfies the conditions
given in the statement. For a stopping time τ , it is clear from nonnegativity of
R that the corresponding xτ can be chosen so that xτ = 1. Thus the optimality
conditions reduce to the ones given in the statement.

Remark 8.4. If the rewards process is not continuous, optimal stopping time
does not exist in general. A simple example is provided by the reward process

Rt := t1[0,T ′)
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for some T ′ ∈ (0, T ). It is clear that the optimal value for the optimal stopping
problem is T ′ (for r ≡ 0) but there is no stopping time τ for which ERτ = T ′.
In such cases, one has to relax the problem to allow for called ”quasi stopping
times”.

8.1 American options

We continue in the setting of the Black Scholes model. The holder of an Amer-
ican option with a continuous reward process R and maturity T > 0 has the
right to exercise the option at any time t ≤ T with payoff Rt. We set

qt := ess inf{yt ∈ L0
+(Ft) | ∃ θ ∈ NA : Xθ,yt = yt, X

θ,yt
u ≥ Ru a.s. ∀u ∈ [t, T ]},

pt := ess sup{yt ∈ L0
+(Ft) | ∃ θ ∈ NA,τ ∈ Tt : Xθ,−yt = −yt,X

θ,−yt
τ ≥ −Rτ a.s.}.

The first is the the superhedging price for the seller while the latter is the sub-
hedging price for the buyer. Note that these prices are not symmetric, since the
holder (buyer) chooses the exercise time τ ∈ T while the seller hedges against
every possible action of the buyer.

We denote R̃t =
Rt

S0
t
, the discounted reward process. Note that pt and qt can be

expressed in terms of discounted wealth and reward processes as well.

Theorem 8.5. We have

pt ≤ S0
t sup
τ∈Tt

EQ[R̃τ | Ft] ≤ qt a.s..

Proof. Let yt, θ and τ be such that the condition in the definition of pt is
satisfied. Then

X̃θ
τ = − yt

S0
t

+

∫ τ

t

θ̃sσdBs ≥ −R̃τ a.s..

By the supermartingale property of X̃θ under Q (see the proof of Theorem 4.1),

− yt
S0
t

≥ EQ[X̃θ
τ | Ft] ≥ EQ[−R̃τ | Ft] a.s.

so we see that yt ≤ S0
t supτ∈Tt

EQ[R̃τ | Ft], which gives the first inequality in
the statement.

Let yt and θ be such that the condition in the definition of qt, which implies
that Xθ,yt

τ ≥ Rτ for τ ∈ Tt. Then, as above, yt ≥ S0
tE

Q[R̃τ | Ft]. Since τ ∈ Tt
was arbitrary, the second inequality in the statement holds.

When p0 = q0, we call
sup
τ∈T

EQR̃τ

the risk-neutral price of the American option with reward R.
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Theorem 8.6. Every American option with reward R such that R̃ ∈ R1
+(Q) has

a unique risk-neutral price.

Proof. We apply Theorem 8.3 (with P = Q). This gives a Q-martingale M and
τ ∈ T such that Mt ≥ R̃t for all t, Mτ = R̃τ and

sup
τ∈T

EQ[R̃τ ] = EQ[R̃τ ] = EQ[Mτ ].

Applying the martingale representation theorem (Theorem 2.21) to M , there

exists, as in the proof Theorem 4.1, θ ∈ NA such that X̃θ,y0

t = Mt, where
y0 = EQ[MT ]. Then we see that −θ ∈ NA and X̃−θ,−y0 = −Mτ = Rτ so that
p0 = q0.

8.2 Pricing American options with Monte Carlo

In this section, we apply the duality result, Theorem 8.3, to derive a Monte
Carlo method to price American options. Another route would be to derive an
”obstacle PDE” that the prices (as a function of time and state) have to satisfy
and then apply finite difference methods similarly to as we did with the Black
Scholes PDE in the case of Vanilla options.

Note that for any martingale M ∈ R1
m

sup
τ∈T

ERτ = sup
τ∈T

E(Rτ +MT −Mτ ) ≤ E sup
t∈[0,T ]

(Rt +MT −Mt).

where the last expression is dominated by EM0 if R ≤ M . Thus,

sup
τ∈T

ERτ ≤ inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt)

≤ inf
M∈R1

m

{E sup
t∈[0,T ]

(Rt +MT −Mt) |R ≤ M}

≤ inf
M∈R1

m

{EM0 |R ≤ M},

where, by Theorem 8.3, the last expression equals the first one. The optimum
value of the stopping problem thus equals

inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt). (8.2)

This leads to numerical methods to derive upper bound to the optimal value of
the optimal stopping problem. Note also that if Y is the Snell envelope of R
(the smallest supermartingale that dominates R), then the martingale part M
in the Doob–Meyer decomposition Y = M −A is dual optimal.

51



8.3 Exercises

Exercise 8.3.1. Consider the discounted American put option

R̃t = e−rt(K − St)
+

in the Black Scholes model with T = 0.5, r = 0.06, K = 100, σ = 0.4. Use (8.2)
to estimate the price of the option for initial prices x = 80, 85, 90, 95, 100. Here,
replace the set of martingales by multiples of Mt := er(T−t)πP (t, St), where πP

is the pricing functional of the corresponding European put with the same strike
K (M is indeed a martingale by (4.4); see also the proof Theorem 4.1).

Note that the method gives upper bounds for the prices, whose approximations
are (to check your solution) for x = 80, 85, 90, 95, 100, respectively, 21.6059,
18.0374, 14.9187, 12.2685, 9.9703.
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