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A unifying differentiability notion

The derivative of a function is a central object in calculus that carries
intrinsic properties of the function itself.

Indeed, the analysis of a function by means of its derivative is an
essential part of many textbooks on calculus and it goes back as far
as the classical works of Fréchet [2] and Gâteaux [3].

In this talk, we will see a differential calculus that applies to the
derivatives of Fréchet and Gâteaux and solely requires the function
and its domain to be differentiable and open in the direction of the
selected orientation, respectively.

1 / 15



In particular, in a Hilbert space X the oriented derivative can be
identified with a gradient.

Namely, let S be a star convex set in X with the origin as center,
which amounts to

[0, x ] ⊂ S for each x ∈ S.

Here, [x , y ] stands for the line segment {(1 − t)x + ty | t ∈ [0, 1]}
between two points x and y in X .

Further, let U be a non-empty S-open set in X in the sense that for
any x ∈ U there is δ > 0 such that

x + Bδ(0) ∩ S ⊂ U,

where Br (y) is the open ball with center y ∈ X and radius r > 0.
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The oriented gradient (K., ’23)

A function φ : U → R is called S-differentiable if there is a map
L : U → X satisfying

φ(x + h) − φ(x) = ⟨L(x), h⟩ + o(|h|) as h → 0 on S

for any x ∈ U, where ⟨·, ·⟩ is the inner product on X that induces
the complete norm | · |.

In this case, there exists a unique map ∇Sφ on U taking all its
values in the closure V of span(S) such that

⟨L, h⟩ = ⟨∇Sφ, h⟩ for all h ∈ V .

We shall call ∇Sφ the S-oriented gradient of φ.
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Thus, the S-oriented gradient of such an S-differentiable function
φ : U → R is the unique V -valued map on U such that

lim
h→0,
h∈S

φ(x + h) − φ(x) − ⟨∇Sφ(x), h⟩
|h|

= 0

for any x ∈ U, by a simple uniqueness argument and an application
of Riesz’s representation theorem.

The resulting oriented differential calculus extends the mean value
theorem, the chain rule and the Taylor formula, even in Banach
spaces, as shown in the presented paper [4].
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Let C1
S(U) stand for the linear space of all S-differentiable φ ∈ C(U)

for which ∇Sφ is continuous.

Several relevant applications and properties of the oriented gradient
are as follows.

(i) While φ : U → R is X -differentiable if and only if it is Fréchet
differentiable, the introduced concept is redundant for S = {0}.

Thus, C1
X (U) = C1(U) and C1

{0}(U) = C(U) and we recover the
gradient and the zero operator,

∇X = ∇ and ∇{0} = 0.
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(ii) If V = X , then ∇S determines ∇ in the following sense: Every
differentiable extension φ̃ of φ to an open set Ũ in X with U ⊂ Ũ
satisfies

∇φ̃ = ∇Sφ.

In the case that X = Rd for some d ∈ N and S is the half-space Hd

of all x ∈ Rd with xd ≥ 0, this fact is used to introduce differentiable
manifolds with boundary.

In particular, for d = 1 the function φ is R+-differentiable if and
only if its right-hand derivative φ′

+(x) exists at any x ∈ U. In this
case,

∇R+φ = φ′
+.
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(iii) Let S be balanced, which means that −S ⊂ S, and

V = X .

If U is convex and φ ∈ C1
S(U), then, without requiring that φ

is differentiable in U◦, the mean value theorem for the oriented
derivative yields that

φ(x) − φ(y) =
∫ 1

0
⟨∇Sφ((1 − t)x + ty), x − y⟩ dt

for any x , y ∈ U◦. Moreover, if X is merely a Banach space, then
the general definitions of

the S-derivative DS and the linear space C1
S(U)

in [4] apply, and to ensure that the above formula remains valid, we
replace the integrand by DSφ((1−t)x +ty)(x −y), where t ∈ [0, 1].
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(iv) The directional or Gâteaux derivative of φ at x ∈ U in the
positive direction of h ∈ S, defined as

D+
h φ(x) = lim

t↓0

φ(x + th) − φ(x)
t ,

exists if and only if φ is differentiable at x relative to the conic hull
of {h}. In this case,

D+
h φ(x) = ⟨∇coni(h)φ(x), h⟩.

Hence, if U is convex, then h = y − x with y ∈ U is possible.

Further, positive homogeneity of S and S-differentiability of φ at x
imply that

D+
h φ(x) = ⟨∇Sφ(x), h⟩ for all h ∈ S.
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(v) Let S be balanced and for n ∈ N let S1, . . . , Sn be pairwise
orthogonal balanced sets in X such that

S = S1 ⊕ · · · ⊕ Sn.

Then C1
S(U) = C1

S1
(U) ∩ · · · ∩ C1

Sn
(U) and we obtain the orthogonal

decomposition

∇Sφ = ∇S1φ + · · · + ∇Snφ for any φ ∈ C1
S(U),

as the explicit description of C1
S(U) in [4] shows.
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Applications in stochastic calculus

For T > 0, d ∈ N and a probability space (Ω, F ,P), two kinds of
extendible applications can be indicated:

(i) Let us focus on the separable Banach space C([0, T ],Rd) of all
Rd -valued continuous maps on [0, T ], equipped with the supremum
norm ∥ · ∥∞.

For a continuous process X : [0, T ] × Ω → Rd and a continuous
functional F : C([0, T ],Rd) → R, we seek to rewrite the difference

F (X t) − F (X s),

where s, t ∈ [0, T ] satisfy s ≤ t and X t is the process X stopped at
time t.

10 / 15



So, let V denote a linear subspace of C([0, T ],Rd) containing all
piecewise affine maps, F be V-differentiable and the V-oriented
derivative DVF be continuous. Then

F (X t) − F (X s) = DVF (X s)(X t − X s) + R(X s , X t − X s),

where the first-order reminder term is given by

R(x , h) :=
∫ 1

0

(
DVF (x + λh) − DVF (x)

)
(h) dλ

for all x , h ∈ C([0, T ],Rd) and satisfies R(x , h) = o(∥h∥∞) as
h → 0. In particular, for V we may take the Cameron-Martin space

H1([0, T ],Rd)

of all absolutely continuous maps with a square-integrable weak
derivative that plays a major role in [1].
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(ii) For the Lebesgue measure λ on [0, T ] let us call two measurable
processes u, v : [0, T ] × Ω → Rd equivalent if

u = v λ ⊗ P-a.e.

Further, let U+ be the convex space of all equivalence classes of
progressively measurable processes u : [0, T ] × Ω → Rd

+ satisfying

E
[ ∫ T

0
|ut |2 dt

]
< ∞, (1)

where | · | is the Euclidean norm induced by the scalar product ⟨·, ·⟩
on Rd .
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For a measurable bounded function f : [0, T ]×Rd
+ → R the oriented

derivative can be useful to minimise the functional

J(u) := E
[ ∫ T

0
f (t, ut) dt

]
over all control processes u ∈ U+.

Namely, the linear space U of all equivalence classes of progressively
measurable processes u : [0, T ] × Ω → Rd satisfying (1), endowed
with the inner product

⟨u, v⟩U := E
[ ∫ T

0
⟨ut , vt⟩ dt

]
is a Hilbert space.
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Hence, by oriented differential calculus, if u ∈ U+ minimises J and
the directional derivative D+

v−uJ(u) exists for v ∈ U+, then

D+
v−uJ(u) ≥ 0.

In particular, if J happens to be differentiable at u with respect to
the 0-star convex set

Su := {λ(v − u) | λ ∈ [0, 1], v ∈ U+},

then, as u is an Su-interior point of U+, it follows that

⟨∇Su J(u), v − u⟩U = D+
v−uJ(u) ≥ 0 for all v ∈ U+.

See [4, Lemma 2.28] for details.
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Thus, if there is L ≥ 0 such that f (s, ·) is continuously differentiable
on ]0, ∞[d , ∇x f (s, ·) extends continuously to Rd

+ and

|∇x f (s, x) − ∇x f (s, y)| ≤ L|x − y |

for all s ∈ [0, T ] and x , y ∈ Rd
+, then it follows that

⟨∇Su J(u), v − u⟩U = E
[ ∫ T

0
⟨∇x f (t, ut), vt − ut⟩ dt

]
≥ 0

for each v ∈ U+. This leads to necessary first-order conditions to
be satisfied by a minimiser u.
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Thank you for your attention!
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