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From ordinary to stochastic differential
equations

For a product measurable function b : Ry x R — R let us first
consider the ordinary differential equation (ODE)

x(t) = b(t,x(t)) fort>0. (1)

As b may fail to be continuous, we cannot expect to derive solutions
in the classical sense but an integral version of (1) can be used.
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Namely, a mild solution to (1) is a continuous function x : Ry — R
such that [; |b(s,x(s))| ds < oo and

x(t) = x(0) + /Ot b(s,x(s))ds forany t > 0.

By the fundamental theorem of calculus, a mild solution x becomes
a classical solution if and only if the function

Ry - R, s~ b(s,x(s)),

which is its weak derivative X, is continuous.
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To allow for randomness, we take a complete probability space
(22, F, P) on which there is a standard Brownian motion

W: Ry xQ—=R, (t,w)— Wi(w).

That means, W is a continuous process with independent increments
such that Wy = 0 and

W, — Wy ~ N(0,t — s)

for all s,t > 0 with s < t. In particular, W is a square-integrable
martingale, and we let

o:Ry xR—>R

be another measurable function.
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Instead of analysing (1), let us focus on the stochastic differential
equation (SDE)

dXt = b(t,Xt) dt + O'(t,Xt) th for t 2 0. (2)

We recall that a solution to (2) is an adapted continuous process
X Ry x Q — R such that

/ |b(s, Xs)| + (s, Xs)? ds < oo
0

and

t t
X = Xo —|—/ b(s, Xs) ds —|—/ o(s,Xs)dWs forall t >0 as.
0 0
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Thereby,
/ o(s, Xs) dWs
0

is the stochastic integral of o(+, X) with respect to W that is a local
martingale with quadratic variation

/‘ o(s, Xs)? ds.

0

In particular, if 0 = 0, then for any w € Q the path
Ry - R, t— Xi(w)

is a mild solution to the ODE (1). Conversely, every mild solution
to (1) serves as path of a solution to (2).
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Stability and uniqueness

Let us consider a regularity condition on the drift b that allows for
negative partial Lipschitz coefficients:

(C.1) (Partial Holder continuity condition)

There are o €]0, 1] and some measurable locally integrable
function  : Ry — R such that

sgn(x — i)(b(-,x) — b(-,)"()) < nmlx — x|

for any x,x € R.
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Example (sums involving decreasing functions)

For me Nlet x : Ry — R and n: Ry — R™ be measurable and
fi,...,fm : R — R be increasing such that

b(-,x) = K —mfi(x) = = Nmin(x)
for any x € R. Then (C.1) holds if
m=>0,...,7m >0.

Thereby, b may fail to be continuous in x € R.
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On the diffusion o we impose a local regularity condition only:

(C.2) (Holder continuity condition on compact sets)

For any n € N there is ¢, > 0 such that
- ol
(-, x) — o, %) < calx — X2

for all x,% € [—n, n].

The exponent % comes from the Yamada-Watanabe approach, since
B €]0, 1] satisfies

N =
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Example (sums of power functions)
For me Nlet x : Ry — R and n: Ry — R™ be measurable and

3 €]0, 00[™ be such that
— B1 Bm
o(-x) =K +mlx|™ + -+ nmlx|

for any x € R. Then (C.2) holds if 1 is bounded and

N =

1
51257'--75m2
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Explicit L'-comparison estimate

(Meyer-Brandis, Proske and K., '21)

Let (C.1) and (C.2) hold and X and X be two solutions to (2).
Then Y := X — X satisfies

t t t ~ ~
E[IYl) < ek vo]| + (1—a) [ i@ (s)

for all t > 0 with 7., := 7" — 7~ 113(c). In particular, if Yp and
n™ are integrable, then

sup E[|Y¢]] < oo.
>0

In this case, limg o E[|Y;|]] =0 if a =1 and [;° 7 (s)ds = co.
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Proof ideas.

(i) The Yamada-Watanabe approach gives us a suitable increasing
sequence (¢;)nen in C?(R.) such that

¥n(0) = 91 (0) =4(0) =0 forany ne N

as well as sup ey ¥n(x) = x and lim, ¢,(x) = 1 for each x > 0.

(i) We may apply I1td's formula to 9,(|Y|) for all n € N, since
¥n(] - ]) € C?(R). Further, we take a locally absolutely continuous

function
u:Ry - Ry with w(0)=1

and deduce the dynamics of u - 1,(|Y|) from Itd's product rule,
which is the novel part of our work.
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(iii) Next, we show that Y is integrable and the function Ry — R,
t — E[|Y¢]] is locally bounded, provided E[|Yp|] < co. Then

u(E[Y4]] = lim u()E[n(|Ve])]

< E[ol] + [ E[u(s)1Yal + lshn(s) il s

for any t > 0, by monotone convergence.

(iv) Hence, Young's inequality and the choice

u(t) = exp ( - a/otna(s) ds)

for all t > 0 yield the asserted estimate. ]
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As corollaries we obtain stability results in the sense of Lyapunov.

Exponential first moment stability

(Meyer-Brandis, Proske and K., '21)

Let (C.1) and (C.2) hold for « = 1. Further, let 3 > 0and A <0

satisfy
n(s) < ABs?~1 forae s>0.

Then (2) is S-exponentially stable in moment and \ is a Lyapunov
exponent. That is, there is ¢ > 0 such that

E[1X: — %] < e’ E[|X0 — Xo]]

for all t > 0 whenever X and X are two solutions to (2).
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Pathwise exponential stability

(Meyer-Brandis, Proske and K., '21)

In addition to the preceding assumptions, let

sup ¢y < 00.
neN

Then (2) is pathwise [-exponentially stable with Lyapunov ex-
ponent \/2. So, for any two solutions X and X we have

1 < A
limsup — log (| X — X¢|) < = as.
tToo th g(| ‘ tl) 2
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Derivation of strong solutions

For weak solutions to (2) we rely on the subsequent requirements:
(C.3) b is continuous in x € R and locally bounded.
(C.4) (Partial affine growth condition)

There are measurable locally bounded functions s : R, — R
and v : Ry — R satisfying

sen(x)b(-,x) < £ + vl

for every x € R.
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Example (sums involving decreasing functions)

Forme Nlet k : Ry — R and n: Ry — R be measurable and
locally bounded and n € N be such that

b(-,x) =Kk —mx™ — - — px™m

for any x € R. Then (C.1), (C.3) and (C.4) are satisfied for « = 1
if
the coordinates of n are odd.

However, b does not need to be of affine growth in x € R.

16/19



Existence of unique strong solutions

(Meyer-Brandis, Proske and K., '21)

Let (C.1)-(C.4) hold for « = 1 and o(-,0) = 0. Then we have
pathwise uniqueness for (2) and for any Fp-measurable integrable
random variable ¢ there is a unique strong solution X¢ such that

Xg =¢ as.

Moreover, X¢ is integrable and its first absolute moment function
Ry — Ry, t — E[|X¢[] is locally bounded.
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As we show in our paper [1], all these methods can be applied to
the McKean-Vlasov SDE

dXt == b(t,Xt, C(Xt)) dt + O'(t,Xt) th for t > O,

where the product measurable drift b is defined on Ry xR x P1(R)
instead of Ry x R.

In such a setting, Pp(R) is the Polish space of all Borel probability
measures 1 on R with finite p-th absolute moment

| el ).

equipped with the p-th Wasserstein metric for p > 1.
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If the diffusion o depends on the law of the solution, we provide
methods in another work [2] to handle the McKean-Vlasov SDE

dXt = b(t,Xt,E(Xt)) dt + O'(t,Xt, ,C(Xt)) th for t > 0,

where the product measurable drift b and diffusion ¢ are defined on
R4 x R x Pp(R) for p > 2 instead of R x R.
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