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From ordinary to stochastic differential
equations

For a product measurable function b : R+ × R → R let us first
consider the ordinary differential equation (ODE)

ẋ(t) = b(t, x(t)) for t ≥ 0. (1)

As b may fail to be continuous, we cannot expect to derive solutions
in the classical sense but an integral version of (1) can be used.
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Namely, a mild solution to (1) is a continuous function x : R+ → R
such that

∫ t
0 |b(s, x(s))| ds < ∞ and

x(t) = x(0) +
∫ t

0
b(s, x(s)) ds for any t ≥ 0.

By the fundamental theorem of calculus, a mild solution x becomes
a classical solution if and only if the function

R+ → R, s 7→ b(s, x(s)),

which is its weak derivative ẋ , is continuous.
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To allow for randomness, we take a complete probability space
(Ω,F ,P) on which there is a standard Brownian motion

W : R+ × Ω → R, (t, ω) 7→ Wt(ω).

That means, W is a continuous process with independent increments
such that W0 = 0 and

Wt − Ws ∼ N (0, t − s)

for all s, t ≥ 0 with s < t. In particular, W is a square-integrable
martingale, and we let

σ : R+ × R → R

be another measurable function.
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Instead of analysing (1), let us focus on the stochastic differential
equation (SDE)

dXt = b(t,Xt) dt + σ(t,Xt) dWt for t ≥ 0. (2)

We recall that a solution to (2) is an adapted continuous process
X : R+ × Ω → R such that∫ ·

0
|b(s,Xs)| + σ(s,Xs)2 ds < ∞

and

Xt = X0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs for all t ≥ 0 a.s.
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Thereby, ∫ ·

0
σ(s,Xs) dWs

is the stochastic integral of σ(·,X ) with respect to W that is a local
martingale with quadratic variation∫ ·

0
σ(s,Xs)2 ds.

In particular, if σ = 0, then for any ω ∈ Ω the path

R+ → R, t 7→ Xt(ω)

is a mild solution to the ODE (1). Conversely, every mild solution
to (1) serves as path of a solution to (2).
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Stability and uniqueness

Let us consider a regularity condition on the drift b that allows for
negative partial Lipschitz coefficients:

(C.1) (Partial Hölder continuity condition)
There are α ∈]0, 1] and some measurable locally integrable
function η : R+ → R such that

sgn(x − x̃)
(
b(·, x) − b(·, x̃)

)
≤ η|x − x̃ |α

for any x , x̃ ∈ R.
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Example (sums involving decreasing functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm be measurable and
f1, . . . , fm : R → R be increasing such that

b(·, x) = κ− η1f1(x) − · · · − ηmfm(x)

for any x ∈ R. Then (C.1) holds if

η1 ≥ 0, . . . , ηm ≥ 0.

Thereby, b may fail to be continuous in x ∈ R.
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On the diffusion σ we impose a local regularity condition only:

(C.2) (Hölder continuity condition on compact sets)
For any n ∈ N there is cn ≥ 0 such that

|σ(·, x) − σ(·, x̃)| ≤ cn|x − x̃ |
1
2

for all x , x̃ ∈ [−n, n].

The exponent 1
2 comes from the Yamada-Watanabe approach, since

β ∈]0, 1] satisfies ∫ 1

0

1
x2β

dx = ∞ ⇔ β ≥ 1
2 .
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Example (sums of power functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm be measurable and
β ∈]0,∞[m be such that

σ(·, x) = κ+ η1|x |β1 + · · · + ηm|x |βm

for any x ∈ R. Then (C.2) holds if η is bounded and

β1 ≥ 1
2 , . . . , βm ≥ 1

2.
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Explicit L1-comparison estimate
(Meyer-Brandis, Proske and K., ’21)

Let (C.1) and (C.2) hold and X and X̃ be two solutions to (2).
Then Y := X − X̃ satisfies

E
[
|Yt |

]
≤ eα

∫ t
0 ηα(s) dsE

[
|Y0|

]
+ (1 −α)

∫ t

0
eα

∫ t
s ηα(s̃) ds̃η+(s) ds

for all t ≥ 0 with ηα := η+ − η−
1{1}(α). In particular, if Y0 and

η+ are integrable, then

sup
t≥0

E
[
|Yt |

]
< ∞.

In this case, limt↑∞ E [|Yt |] = 0 if α = 1 and
∫ ∞

0 η−(s) ds = ∞.
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Proof ideas.
(i) The Yamada-Watanabe approach gives us a suitable increasing
sequence (ψn)n∈N in C2(R+) such that

ψn(0) = ψ′
n(0) = ψ′′

n(0) = 0 for any n ∈ N

as well as supn∈N ψn(x) = x and limn↑∞ ψ′
n(x) = 1 for each x > 0.

(ii) We may apply Itô’s formula to ψn(|Y |) for all n ∈ N, since
ψn(| · |) ∈ C2(R). Further, we take a locally absolutely continuous
function

u : R+ → R+ with u(0) = 1

and deduce the dynamics of u · ψn(|Y |) from Itô’s product rule,
which is the novel part of our work.
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.
(iii) Next, we show that Y is integrable and the function R+ → R+,
t 7→ E [|Yt |] is locally bounded, provided E [|Y0|] < ∞. Then

u(t)E
[
|Yt |

]
= lim

n↑∞
u(t)E

[
ψn(|Yt |)

]
≤ E

[
|Y0|

]
+

∫ t

0
E
[
u̇(s)|Ys | + u(s)η(s)|Ys |α

]
ds

for any t ≥ 0, by monotone convergence.

(iv) Hence, Young’s inequality and the choice

u(t) = exp
(

− α

∫ t

0
ηα(s) ds

)
for all t ≥ 0 yield the asserted estimate.
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As corollaries we obtain stability results in the sense of Lyapunov.

Exponential first moment stability
(Meyer-Brandis, Proske and K., ’21)

Let (C.1) and (C.2) hold for α = 1. Further, let β > 0 and λ < 0
satisfy

η(s) ≤ λβsβ−1 for a.e. s ≥ 0.

Then (2) is β-exponentially stable in moment and λ is a Lyapunov
exponent. That is, there is c ≥ 0 such that

E
[
|Xt − X̃t |

]
≤ ceλtβ E

[
|X0 − X̃0|

]
for all t ≥ 0 whenever X and X̃ are two solutions to (2).
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Pathwise exponential stability
(Meyer-Brandis, Proske and K., ’21)

In addition to the preceding assumptions, let

sup
n∈N

cn < ∞.

Then (2) is pathwise β-exponentially stable with Lyapunov ex-
ponent λ/2. So, for any two solutions X and X̃ we have

lim sup
t↑∞

1
tβ

log
(
|Xt − X̃t |

)
≤ λ

2 a.s.
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Derivation of strong solutions

For weak solutions to (2) we rely on the subsequent requirements:

(C.3) b is continuous in x ∈ R and locally bounded.

(C.4) (Partial affine growth condition)
There are measurable locally bounded functions κ : R+ → R+
and υ : R+ → R satisfying

sgn(x)b(·, x) ≤ κ+ υ|x |

for every x ∈ R.
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Example (sums involving decreasing functions)
For m ∈ N let κ : R+ → R and η : R+ → Rm

+ be measurable and
locally bounded and n ∈ Nm be such that

b(·, x) = κ− η1xn1 − · · · − ηmxnm

for any x ∈ R. Then (C.1), (C.3) and (C.4) are satisfied for α = 1
if

the coordinates of n are odd.

However, b does not need to be of affine growth in x ∈ R.
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Existence of unique strong solutions
(Meyer-Brandis, Proske and K., ’21)

Let (C.1)-(C.4) hold for α = 1 and σ(·, 0) = 0. Then we have
pathwise uniqueness for (2) and for any F0-measurable integrable
random variable ξ there is a unique strong solution X ξ such that

X ξ
0 = ξ a.s.

Moreover, X ξ is integrable and its first absolute moment function
R+ → R+, t 7→ E [|X ξ

t |] is locally bounded.
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As we show in our paper [1], all these methods can be applied to
the McKean-Vlasov SDE

dXt = b
(
t,Xt ,L(Xt)

)
dt + σ(t,Xt) dWt for t ≥ 0,

where the product measurable drift b is defined on R+ ×R× P1(R)
instead of R+ × R.

In such a setting, Pp(R) is the Polish space of all Borel probability
measures µ on R with finite p-th absolute moment∫

R
|x |p µ(dx),

equipped with the p-th Wasserstein metric for p ≥ 1.
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If the diffusion σ depends on the law of the solution, we provide
methods in another work [2] to handle the McKean-Vlasov SDE

dXt = b
(
t,Xt ,L(Xt)

)
dt + σ

(
t,Xt ,L(Xt)

)
dWt for t ≥ 0,

where the product measurable drift b and diffusion σ are defined on
R+ × R × Pp(R) for p ≥ 2 instead of R+ × R.
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