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A financial market model with default

We aim to evaluate a derivative contract between an investor I and
a counterparty C in a financial market under

- default risk,
- collateralisation and
- funding costs and benefits.

To this end, we derive a valuation equation based on default-free
information only and characterise its solutions, the pre-default value
processes.

By focusing on a stochastic volatility model, we will reach a parabolic
semilinear PDE that establishes a direct relation between pre-default
value processes and mild solutions.
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In what follows, let (Ω, F ,P) be a probability space and T > 0
stand for the maturity of the contract. Further, let

F = (Ft)t∈[0,T ] and G = (Gt)t∈[0,T ]

be two filtrations of F that model the temporal developments of the
default-free information and the whole available information on an
underlying financial market, respectively.

We use two [0, T ] ∪ {∞}-valued random variables τI and τC to
model the respective default times of I and C. Then

τ := τI ∧ τC

stands for the time of a party to default first.

2 / 25



By using the smallest filtration under which τI and τC are stopping
times, we require that

Ft ⊆ Gt ⊆ Ft ∨ σ
(
1{τi ≤s} : i ∈ {I, C}, s ∈ [0, t]

)
for all t ∈ [0, T ]. Thus, the available market information may fail
to give full insight into τI or τC and it could yield no or only partial
knowledge about τ .

We assume that the distributions of τI and τC admit at most one
atom, which is at infinity, and both parties cannot default at the
same time. That is,

P(τI = t) = P(τC = t) = P(τI = τC , τ < ∞) = 0 (C)

for all t ∈ [0, T ]. However, both entities may not default at all. So,
we allow for P(τ = ∞) ∈ [0, 1].
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Example (Hitting times involving a gamma distribution)
Let λi be an F-progressively measurable process and ξi be a gamma
distributed random variable such that λi , ξi > 0 and

τi = inf
{

t ∈ [0, T ]
∣∣∣∣ ∫ t

0
λi

s ds ≥ ξi

}
for i ∈ {I, C}. Then, under verifiable assumptions, the conditions
in (C) on the distribution of τI and τC hold and

P(τ ∈ B) =
∫

B∩[0,T ]
φτ (s) ds +

(
1 −

∫ T

0
φτ (s) ds

)
δ∞(B)

for any Borel set B in [0, T ] ∪ {∞} and some explicitly determined
measurable integrable function φτ : [0, T ] → [0, ∞].
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By S and S̃ we denote the linear space of all (real-valued) processes
that are adapted to F and G, respectively.

Next, the measurable integrable function r : [0, T ] → R is the
instantaneous risk-free interest rate and

Ds,t(r) := exp
(

−
∫ t

s
r(s̃) ds̃

)
is the discount factor from time s ∈ [0, T ] to t ∈ [s, T ]. Put
differently, Ds,t(r) is the required amount to invest risk-free at time
s, in order to receive 1 unit of cash at time t.

We let Q be an equivalent local martingale measure. That is, P ∼ Q
and the discounted price process of the only traded risky asset is an
G-local martingale under Q.
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We derive an equation for the value process Ṽ ∈ S̃ of the derivative
contract between I and C under Q.

In the end, however, we seek a valuation that does not involve any
knowledge of the default of either of the two parties.

At the same time, the valuation equation for Ṽ includes quantities
that merely depend on its pre-default part in the following sense.

Let G(τ) denote an F-survival process of τ under Q, which is an
[0, 1]-valued supermartingale under Q such that

Q(τ > t|Ft) = Gt(τ) a.s. for all t ∈ [0, T ].

Further, a process X̃ is called integrable up to time τ if the process
[0, T ] × Ω → R, (t, ω) 7→ X̃t(ω)1{τ>t}(ω) is integrable.
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We refine a classical result as follows.

Pre-default versions

A process X̃ ∈ S̃ is integrable up to time τ if and only if there
is X ∈ S such that XG(τ) is integrable and Xs = X̃s a.s. on
{τ > s} for all s ∈ [0, T ]. In this case,

XsGs(τ) = EQ[X̃s1{τ>s}|Fs ] a.s.

for all s ∈ [0, T ]. If in addition Gs(τ) > 0 a.s. for all s ∈ [0, T ],
then X is unique up to a modification.

We shall call X a pre-default version of X̃ .
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Thereby, Gs(τ) > 0 a.s. for all s ∈ [0, T ] implies that the probability
that neither I nor C defaults before any time is positive:

Q(τ > s) > 0 for any s ∈ [0, T ].

In the spirit of the preceding result, we introduce valuation based
on default-free information only.

More precisely, we analyse any pre-default values process V defined
as pre-default version of Ṽ, which in turn should be integrable up to
time τ .
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The discounted cash flows, costs and benefits

Let us summarise the cash flows, costs and benefits that may impact
the value of the contract between I and C.
1. The contractual cash flows depend on a payoff functional and
a dividend-paying risky asset:

CFcon
s := Ds,T (r)Φ(S)1{τ>T} +

∫ T∧τ

s
Ds,t(r)πt dt. (1)

2. The costs and benefits of a collateral account, subject to the
collateral remuneration rate, are of the form

Ccol
s (V) :=

∫ T∧τ

s
Ds,t(r)(ct(V) − r(t))Ct(V) dt, (2)

where ct(V) := c(+)
t 1{Ct(V)>0} + c(−)

t 1{Ct(V)<0}.
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3. The costs and benefits of a funding account based on the
interest rates for borrowing and lending are

Cfun
s (Ṽ) :=

∫ T∧τ

s
Ds,t(r)(f̃t(Ṽ) − r(t))F̃t(Ṽ) dt (3)

with f̃t(Ṽ) := f̃ (+)
t 1{F̃t(Ṽ)>0} + −f̃t1{F̃t(Ṽ)<0}.

4. The cash flows arising on the default of I or C are computed
with the residual value of the claim:

CFdef
s (V) := Ds,τ (r)ετ (V) (4)

on {s < τ < T} and CFdef
s (V) := 0 on the complement of this set.
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Under mild path and integrability conditions, we require that the
value process Ṽ of the derivative contract satisfies the valuation
equation

Ṽs = EQ
[
CFcon

s − Ccol
s (V) − Cfun

s (Ṽ) + CFdef
s (V)

∣∣Gs
]

(5)

a.s. for all s ∈ [0, T ]. In particular, ṼT = Φ(S) a.s. must hold.

That is, Ṽs should agree with the conditional expectation of the sum
of the net present values of all cash flows, costs and benefits relative
to the current available market information.

11 / 25



This hypothesis is based on an adjusted cash flow approach and
the article [4] shows in a rather general setting that a replication
approach results in the same nonlinear valuation formula.

Further, this implicit conditional representation refines the valuation
equation in the work [5] of Brigo, Francischello and Pallavicini.

As a result, we obtain a valuation equation involving default-free
information only for the pre-default version V of Ṽ.
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Pre-default valuation
(Brigo, Graceffa and K., 2024)

Under weak conditions, (5) is satisfied if and only if

VsGs(τ) = EQ

[
Ds,T (r)Φ(S)GT (τ) +

∫ T

s
Ds,t(r) dAt(V)

∣∣∣∣Fs

]
a.s. for any s ∈ [0, T ], where

At(V) :=
∫ t

0
B(0)

s (V)Gs(τ) ds −
∫ t

0
εs(V)Gs(τ) dGs(τ)

with B(0)
s (V) := πt − (ct(V) − r(t))Ct(V) − (ft(V) − r(t))Ft(V).
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Martingale characterisation of pre-default valuation
(Brigo, Graceffa and K., 2024)

Under mild conditions, V is a pre-default value process if and
only if MV ∈ S defined via

MV
t := D0,t(r)VtGt(τ) +

∫ t

0
D0,s(r) dAs(V)

is an F-martingale under Q and VT = Φ(S) a.s. on {GT (τ) > 0}.
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Characterisation of pre-default value semimartingales
(Brigo, Graceffa and K., 2024)

Under weak conditions, the continuous F-semimartingale V is a
pre-default value process if and only if EQ[|V0|] < ∞ and

Vs = Φ(S) +
∫ T

s

(
B(0)

t (V) − r(t)Vt
)

dt

−
∫ T

s

εt(V) − Vt
Gt(τ) dGt(τ) −

∫ T

s

D0,t(−r)
Gt(τ) dMt

for all s ∈ [0, T ] a.s. and some continuous F-martingale M under
Q. In this case, M − M0 = MV − V0 a.s.
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A stochastic volatility model

Next, we suppose that the usual conditions hold and Ŵ and W̃ are
two F-Brownian motions with covariation

⟨Ŵ , W̃ ⟩ =
∫ ·

0
ρ(s) ds a.s.

Let us impose the following dynamics on the price process S of the
only risky asset and its squared volatility process V :

dSt = b(t)St dt +
√

VtSt dŴt

dVt =
(
k(t) − l0(t)Vt − l(t)V α

t
)

dt + λ(t)V β
t dW̃t

(6)

for t ∈ [0, T ] with initial condition (S0, V0) = (s0, v0) a.s., where
α ≥ 1 and β ≥ 1/2.
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From a pathwise uniqueness and a strong existence result in [2] and
a positivity condition we draw the following conclusion.

Power diffusion as squared volatility
(Brigo, Graceffa and K., 2024)

Let b, k, l0, l , λ be bounded, k, l ≥ 0 and λ2 ≤ 2k. Then
pathwise uniqueness for the SDE (6) holds and there is a unique
strong solution (S, V ) satisfying

S > 0, V > 0 and (S0, V0) = (s0, v0) a.s.

Further, supt∈[0,T ] |Xt | and V are integrable, where X := log(S).
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Example (Established models in the literature)
For l = 0 and l0 > 0 we recover the dynamics

dVt =
(
k(t) − l0(t)Vt

)
dt + λ(t)V β

t dW̃t , for t ∈ [0, T ]

in time-dependent versions of the following option pricing models:

(1) The Heston model for β = 1/2. There, l0 is the mean reversion
speed, k/l0 is the mean reversion level and the same positivity
condition λ ≤ 2k applies.

(2) The Garch diffusion model for β = 1. Similarly, l0 is the mean
reversion speed and k/l0 the mean reversion level.
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The logarithmised pre-default valuation PDE

Let us combine the market model with the stochastic volatility model
under the assumption that Φ(S) = ϕ(ST ) and

B(0)
t (V) − r(t)Vt − Ġt(τ)

Gt(τ)(εt(V) − Vt) = B̂(t, St , Vt , Vt)

for all t ∈ [0, T ] and each continuous V ∈ S and certain functions

ϕ :]0, ∞[→ R+ and B̂ : [0, T ]×]0, ∞[2×R → R.

Then we can explicitly construct a local martingale measure via
Girsanov’s theorem by proposing suitable market prices of risk.
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Thus, for two F-progressively measurable processes η and η̃ with
square-integrable paths, we define a continuous F-local martingale
Z via

Z = exp
(

−
∫ ·

0
ηs dWs −

∫ ·

0
η̃s dW̃s − 1

2

∫ ·

0
η2

s + η̃2
s ds

)
,

where W is an F-Brownian motion that is independent of W̃ . Under
the condition that

E
[
ZT
]

= 1,

Girsanov’s theorem entails that this process induces an equivalent
local martingale measure P̂η,η̃ if and only if

(b − r)(t) =
√

Vt
(
ηt

√
1 − ρ(t)2 + η̃tρ(t)

)
for a.e. t ∈ [0, T ] a.s.
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For this reason, we propose to take the market prices of risk

η̃t = γ
√

Vt and ηt =
(

(b − r)(t)√
Vt

− η̃tρ(t)
)

1√
1 − ρ(t)2

for all t ∈ [0, T ] and fixed γ ≥ 0.

Under certain conditions, by approximating η via simple processes,
we infer from Lemma 35 in [6] that

E[ZT ] = E
[

exp
(

− γ

∫ T

0

√
Vt dW̃t − 1

2γ2
∫ T

0
Vt dt

)]
,

and for E[ZT ] = 1 to hold, it suffices that exp((γ2/2)
∫ T

0 Vt dt) is
P-integrable, by Novikov’s condition.
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In this case, we set QV ,γ := P̂η,η̃ and for the log-price process
X = log(S) we see that (X , V ) solves the SDE

d
(

Xt
Vt

)
=
(

r(t) − 1
2Vt

k(t) − l0(t)Vt − l(t)V α
t − γλ(t)V

1
2 +β

t

)
dt

+
(√

Vt
√

1 − ρ(t)2 √
Vtρ(t)

0 λ(t)V β
t

)
d
(

W (η)
t

W (η̃)
t

)

for t ∈ [0, T ] under QV ,γ , where

W (η) := W +
∫ ·

0
ηs ds and W (η̃) := W̃ +

∫ ·

0
η̃s ds

are two independent F-Brownian motions under QV ,γ . In particular,
as γ = 0 is feasible, there is an equivalent local martingale measure.
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This induces a differential operator L on C1,2,2([0, T [×R×]0, ∞[)
with values in the linear space of all real-valued measurable functions
by

L(u)(·, x , v) :=
(

r − 1
2v
)

∂u
∂x (·, x , v)

+
(

k − l0v − lvα − γλv
1
2 +β

)
∂u
∂v (·, x , v)

+ 1
2v ∂2u

∂x2 u(·, x , v) + λv
1
2 +βρ

∂2u
∂x∂v (·, x , v)

+ 1
2λ2v2β ∂2u

∂v2 (·, x , v).

This formula is obtained by multiplying the diffusion coefficient of
the preceding SDE with its transpose, as we readily recall.
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Hence, we reached a parabolic semilinear PDE that establishes a
direct relation to mild solutions.

Mild solutions as pre-default valuation functions
(Brigo, Graceffa and K., 2024)

Under certain conditions, if u ∈ C([0, T ] × R×]0, ∞[) is a mild
solution to the PDE with terminal condition

∂u
∂t (t, x , v) + L(u)(t, x , v) = −B̂(t, ex , v , u(t, x , v)) (7)

and u(T , x , v) = ϕ(ex ) for (t, x , v) ∈ [0, T [×R×]0, ∞[, then
V ∈ S defined via

Vt := u(t, Xt , Vt)

is a pre-default value process under QV ,γ .
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Finally, [3] yields sufficient conditions for mild solutions to exist
uniquely and to admit non-negative or positive values only.

Existence and uniqueness of pre-default valuation
functions

Under verifiable conditions, there exists a unique bounded mild
solution uϕ to the parabolic PDE (7) such that

uϕ(T , x , ·) = ϕ(ex ) for all x ∈ R.

Moreover, uϕ is non-negative if

B̂(·, ex , v , 0) ≥ 0 for all x ∈ R and v > 0.

In this case, uϕ > 0 follows from ϕ > 0.
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