A stochastic maximum principle for processes driven by fractional Brownian motion

Francesca Biagini¹⁾ Yaozhong Hu²⁾ Bernt Øksendal^{3),4)} Agnès Sulem⁵⁾
March 23, 2012

- Department of Mathematics, University of Bologna,
 Piazza di Porta S. Donato, 5
 I-40127 Bologna, Italy
 Email: biagini@dm.unibo.it
- Department of Mathematics, University of Kansas 405 Snow Hall, Lawrence, Kansas 66045-2142, USA Email: hu@math.ukans.edu
- Department of Mathematics, University of Oslo Box 1053 Blindern, N-0316 Oslo, Norway, Email: oksendal@math.uio.no
- ⁴⁾ Norwegian School of Economics and Business Administration, Helleveien 30, N-5045 Bergen, Norway
- 5) INRIA, Domaine de Voluceau, Rocquencourt B.P. 105, F-78153 Le Chesnay Cedex, France Email: agnes.sulem@inria.fr

Abstract

We prove a stochastic maximum principle for controlled processes $X(t) = X^{(u)}(t)$ of the form

$$dX(t) = b(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dB^{(H)}(t)$$

where $B^{(H)}(t)$ is *m*-dimensional fractional Brownian motion with Hurst parameter $H = (H_1, \dots, H_m) \in (\frac{1}{2}, 1)^m$. As an application we solve a problem about minimal variance hedging in an incomplete market driven by fractional Brownian motion.

1 Introduction

Let $H = (H_1, \dots, H_m)$ with $\frac{1}{2} < H_j < 1, j = 1, 2, \dots, m$, and let $B^{(H)}(t) = (B_1^{(H)}(t), \dots, B_m^{(H)}(t)), t \in \mathbb{R}$ be m-dimensional fractional Brownian motion, i.e. $B^{(H)}(t) = B^{(H)}(t, \omega), (t, \omega) \in \mathbb{R} \times \Omega$ is a Gaussian process in \mathbb{R}^m such that

(1.1)
$$\mathbb{E}\left[B^{(H)}(t)\right] = B^{(H)}(0) = 0$$

AMS 2000 subject classifications. Primary 93E20, 60H05, 60H10; Secondary 91B28. Key words and phrases: Stochastic maximum principle, stochastic control, fractional Brownian motion.

and

$$(1.2) \quad \mathbb{E}\left[B_j^{(H)}(s)B_k^{(H)}(t)\right] = \frac{1}{2}\left\{|s|^{2H_j} + |t|^{2H_j} - |t-s|^{2H_j}\right\}\delta_{jk}; 1 \le j, k \le n, \quad s, t \in \mathbb{R},$$

where

$$\delta_{jk} = \begin{cases} 0 & \text{when } j \neq k \\ 1 & \text{when } j = k \end{cases}$$

Here $\mathbb{E} = \mathbb{E}_{\mu}$ denotes the expectation with respect to the probability law $\mu = \mu_H$ for $B^{(H)}(\cdot)$. This means that the components $B_1^{(H)}(\cdot)$, \cdots , $B_m^{(H)}(\cdot)$ of $B^{(H)}(\cdot)$ are m independent 1-dimensional fractional Brownian motions with Hurst parameters H_1, H_2, \cdots, H_m , respectively. We refer to [MvN], [NVV] and [S] for more information about fractional Brownian motion. Because of its interesting properties (e.g. long range dependence and self-similarity of the components) $B^{(H)}(t)$ has been suggested as a replacement of standard Brownian motion B(t) (corresponding to $H_j = \frac{1}{2}$ for all $j = 1, \cdots, m$) in several stochastic models, including finance.

Unfortunately, $B^{(H)}(\cdot)$ is neither a semimartingale nor a Markov process, so the powerful tools from the theories of such processes are not applicable when studying $B^{(H)}(\cdot)$. Nevertheless, an efficient stochastic calculus of $B^{(H)}(\cdot)$ can be developed. This calculus uses an Itô type of integration with respect to $B^{(H)}(\cdot)$ and white noise theory. See [DHP] and [HØ2] for details. For applications to finance see [HØ2], [HØS1] [HØS2]. In [Hu1], [Hu2], [HØZ] and [ØZ] the theory is extended to multi-parameter fractional Brownian fields $B^{(H)}(x)$; $x \in \mathbb{R}^d$ and applied to stochastic partial differential equations driven by such fractional white noise.

The purpose of this paper is to establish a stochastic maximum principle for stochastic control of processes driven by $B^{(H)}(\cdot)$. We illustrate the result by applying it to a problem about minimal variance hedging in finance.

2 Preliminaries

For the convenience of the reader we recall here some of the basic results of fractional Brownian motion calculus. Let $B^{(H)}(t)$ be 1-dimensional in the following.

Define, for given $H \in (\frac{1}{2}, 1)$,

(2.1)
$$\phi(s,t) = \phi_H(s,t) = H(2H-1)|s-t|^{2H-2}; \qquad s,t \in \mathbb{R}$$

As in $[H\emptyset 2]$ we will assume that Ω is the space $\mathcal{S}'(\mathbb{R})$ of tempered distributions on \mathbb{R} , which is the dual of the Schwartz space $\mathcal{S}(\mathbb{R})$ of rapidly decreasing functions on \mathbb{R} . If $\omega \in \mathcal{S}'(\mathbb{R})$ and $f \in \mathcal{S}(\mathbb{R})$ we let $\langle \omega, f \rangle = \omega(g)$ denote the action of ω applied to f. It can be extended to all $f : \mathbb{R} \to \mathbb{R}$ such that

$$||f||_{\phi}^2 := \int_{\mathbb{R}} \int_{\mathbb{R}} f(s)f(t)\phi(s,t)ds dt < \infty.$$

The space of all such (deterministic) functions f is denoted by $L^2_{\phi}(\mathbb{R})$.

If $F: \Omega \to \mathbb{R}$ is a given function we let

(2.2)
$$D_t^{\phi} F = \int_{\mathbb{R}} D_r F \cdot \phi(r, t) dr$$

denote the Malliavin ϕ -derivative of F at t (if it exists) (see [DHP, Definition 3.4]. Define $\mathcal{L}_{\phi}^{1,2}$ to be the set of (measurable) processes $g(t,\omega): \mathbb{R} \times \Omega \to \mathbb{R}$ such that $D_s^{\phi}g(s)$ exists for a.a. $s \in \mathbb{R}$ and

We let $\int_{\mathbb{R}} \sigma(t,\omega) dB^{(H)}(t)$ denote the fractional Itô-integral of the process $\sigma(t,\omega)$ with respect to $B^{(H)}(t)$, as defined in [DHP]. In particular, this means that if σ belongs to the family \mathbb{S} of step functions of the form

$$\sigma(t,\omega) = \sum_{i=1}^{N} \sigma_i(\omega) \chi_{[t_i,t_{i+1})}(t), \quad (t,\omega) \in \mathbb{R} \times \Omega,$$

where $0 \le t_1 < t_2 < \dots < t_{N+1}$, then

(2.4)
$$\int_{\mathbb{R}} \sigma(t,\omega) dB^{(H)}(t) = \sum_{i=1}^{N} \sigma_i(\omega) \diamond \left(B^{(H)}(t_{i+1}) - B^{(H)}(t_i)\right) ,$$

where \diamond denotes the Wick product. For $\sigma(t) = \sigma(t, \omega) \in \mathbb{S} \cap \mathcal{L}_{\phi}^{1,2}$ we have the isometry

$$(2.5) \quad \mathbb{E}\Big[\int_{\mathbb{R}} \sigma(t,\omega)dB^{(H)}(t)\Big]^2 = \mathbb{E}\Big[\int_{\mathbb{R}^2} \sigma(s)\sigma(t)\phi(s,t)ds\,dt + \Big(\int_{\mathbb{R}} D_s^{\phi}\sigma(s)ds\Big)^2\Big] = \left\|\sigma\right\|_{\mathcal{L}_{\phi}^{1,2}}^2,$$

where $\mathbb{E} = \mathbb{E}_{\mu_H}$. Using this we can extend the integral $\int_{\mathbb{R}} \sigma(t,\omega) dB^{(H)}(t)$ to $\mathcal{L}_{\phi}^{1,2}$. Note that if σ , $\theta \in \mathcal{L}_{\phi}^{1,2}$, we have, by polarization,

(2.6)
$$\mathbb{E}\left[\int_{\mathbb{R}} \sigma(t,\omega)dB^{(H)}(t) \int_{\mathbb{R}} \theta(t,\omega)dB^{(H)}(t)\right] \\ = \mathbb{E}\left[\int_{\mathbb{R}^{2}} \sigma(s)\theta(t)\phi(s,t)dsdt + \int_{\mathbb{R}} D_{s}^{\phi}\sigma(s)ds \int_{\mathbb{R}} D_{t}^{\phi}\theta(t)dt\right].$$

Also note that we need not assume that the integrand $\sigma \in \mathcal{L}_{\phi}^{1,2}$ is adapted to the filtration $\mathcal{F}_{t}^{(H)}$ generated by $B^{(H)}(s,\cdot)$; $s \leq t$.

An important property of this fractional Itô-integral is that

(2.7)
$$\mathbb{E}\left[\int_{\mathbb{R}} \sigma(t,\omega) dB^{(H)}(t)\right] = 0 \quad \text{for all } \sigma \in \mathcal{L}_{\phi}^{1,2}.$$

(see [DHP, Theorem 3.9]).

We give three versions of the fractional Itô formula, in increasing order of complexity.

Theorem 2.1 ([DHP], Theorem 4.1) Let $f \in C^2(\mathbb{R})$ with bounded second order derivatives. Then for $t \geq 0$

$$(2.8) f(B^{(H)}(t)) = f(B^{(H)}(0)) + \int_0^t f'(B^{(H)}(s))dB^{(H)}(s) + H \int_0^t s^{2H-1}f''(B^{(H)}(s))ds.$$

Theorem 2.2 ([DHP], Theorem 4.3) Let $X(t) = \int_0^t \sigma(s, \omega) dB^{(H)}(s)$, where $\sigma \in \mathcal{L}_{\phi}^{1,2}$ and assume $f \in C^2(\mathbb{R}_+ \times \mathbb{R})$ with bounded second order derivatives. Then for $t \geq 0$

$$f(t,X(t)) = f(0,0) + \int_0^t \frac{\partial f}{\partial s}(s,X(s))ds + \int_0^t \frac{\partial f}{\partial x}(s,X(s))\sigma(s)dB^{(H)}(s) + \int_0^t \frac{\partial^2 f}{\partial x^2}(s,X(s))\sigma(s)D_s^{\phi}X(s)ds.$$
(2.9)

Finally we give an m-dimensional version:

Let $B^{(H)}(t) = \left(B_1^{(H)}(t), \cdots, B_m^{(H)}(t)\right)$ be an m-dimensional fractional Brownian motion with Hurst parameter $H = (H_1, \cdots, H_m) \in (1/2, 1)^m$, as in Section 1. Since we are here dealing with m independent fractional Brownian motions we may regard Ω as the product of m independent copies of Ω and write $\omega = (\omega_1, \ldots, \omega_m)$ for $\omega \in \Omega$. Then in the following the notation $D_{k,s}^{\phi}Y$ means the Malliavin ϕ -derivative with respect to ω_k and could also be written

(2.10)
$$D_{k,s}^{\phi}Y = \int_{\mathbb{R}} \phi_{H_k}(s,t) D_{k,t} Y dt = \int_{\mathbb{R}} \phi_{H_k}(s,t) \frac{\partial Y}{\partial \omega_k}(t,\omega) dt.$$

Similar to the 1-dimensional case discussed in Section 1, we can define the multi-dimensional fractional (Wick-Itô) integral

(2.11)
$$\int_{\mathbb{R}} f(t,\omega)dB^{(H)}(t) = \sum_{j=1}^{m} \int_{\mathbb{R}} f_{j}(t,\omega)dB_{j}^{(H)}(t) \in L^{2}(\mu)$$

for all processes $f(t,\omega) = (f_1(t,\omega), \dots, f_m(t,\omega)) \in \mathbb{R}^m$ such that, for all $j = 1, 2, \dots, m$,

(2.12)
$$||f_j||_{\mathcal{L}^{1,2}_{\phi_j}}^2 := \mathbb{E}\Big[\int_{\mathbb{R}} \int_{\mathbb{R}} f_j(s) f_j(t) \phi_j(s,t) ds \, dt + \Big(\int_{\mathbb{R}} D_{j,t}^{\phi_j} f_j(t) dt\Big)^2\Big] < \infty$$

where $\phi_j = \phi_{H_j}$; $1 \le j \le m$.

Denote the set of all such m-dimensional processes f by $\mathcal{L}_{\phi}^{1,2}(m)$, where $\phi = (\phi_1, \dots, \phi_m)$. It can be proved (see [BØ]) that for $f, g \in \mathcal{L}_{\phi}^{1,2}(m)$ we have the following fractional multi-dimensional Itô isometry

$$\mathbb{E}\Big[\Big(\int_{\mathbb{R}} f dB^{(H)}\Big) \cdot \Big(\int_{\mathbb{R}} g dB^{(H)}\Big)\Big] = \mathbb{E}\Big[\sum_{i=1}^{m} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{i}(s)g_{i}(t)\phi_{i}(s,t)ds dt + \sum_{i,j=1}^{m} \Big(\int_{\mathbb{R}} D_{j,t}^{\phi} f_{i}(t)dt\Big) \cdot \Big(\int_{\mathbb{R}} D_{i,t}^{\phi} g_{j}(t)dt\Big)\Big].$$

We put

$$(f,g)_{\mathbb{L}_{\phi}^{1,2}(m)} = \mathbb{E}\left[\sum_{i=1}^{m} \int_{\mathbb{R}} \int_{\mathbb{R}} f_{i}(s)g_{i}(t)\phi_{i}(s,t)ds dt + \sum_{i,j=1}^{m} \left(\int_{\mathbb{R}} D_{j,t}^{\phi} f_{i}(t)dt\right) \cdot \left(\int_{\mathbb{R}} D_{i,t}^{\phi} g_{j}(t)dt\right)\right]$$

and define

$$\mathbb{L}_{\phi}^{1,2}(m) = \left\{ f \in \mathcal{L}_{\phi}^{1,2}(m); \left\| f \right\|_{\mathbb{L}_{\phi}^{1,2}(m)}^{2} := (f,f)_{\mathbb{L}_{\phi}^{1,2}(m)} < \infty \right\}.$$

Now suppose $\sigma_i \in \mathcal{L}_{\phi}^{1,2}(m)$ for $1 \leq i \leq n$. Then we can define $X(t) = (X_1(t), \dots, X_n(t))$ where

(2.15)
$$X_i(t,\omega) = \sum_{j=1}^m \int_0^t \sigma_{ij}(s,\omega) dB_j^{(H)}(s); 1 \le i \le n.$$

We have the following multi-dimensional fractional Itô formula:

Theorem 2.3 Let $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^n)$ with bounded second order derivatives. Then, for $t \geq 0$,

$$f(t,X(t)) = f(0,0) + \int_0^t \frac{\partial f}{\partial s}(s,X(s))ds + \int_0^t \sum_{i=1}^n \frac{\partial f}{\partial x_i}(s,X(s))dX_i(s)$$

$$(2.16) \qquad + \int_0^t \left\{ \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(s,X(s)) \sum_{k=1}^m \sigma_{ik}(s) D_{k,s}^{\phi}(X_j(s)) \right\} ds$$

$$= f(0,0) + \int_0^t \frac{\partial f}{\partial s}(s,X(s))ds + \sum_{j=1}^m \int_0^t \left[\sum_{i=1}^n \frac{\partial f}{\partial x_i}(s,X(s)) \sigma_{ij}(s,\omega) \right] dB_j^{(H)}(s)$$

$$(2.17) \qquad + \int_0^t Tr \left[\Lambda^T(s) f_{xx}(s,X(s)) \right] ds.$$

Here $\Lambda = [\Lambda_{ij}] \in \mathbb{R}^{n \times m}$ with

(2.18)
$$\Lambda_{ij}(s) = \sum_{k=1}^{m} \sigma_{ik} D_{k,s}^{\phi} (X_j(s)) ; \quad 1 \le i \le n, \quad 1 \le j \le m,$$

(2.19)
$$f_{xx} = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{1 \le i, j \le n} ,$$

and $(\cdot)^T$ denotes matrix transposed and $\text{Tr}[\cdot]$ denotes matrix trace.

The following useful result is a multidimensional version of Theorem 4.2 in [DHP]:

Theorem 2.4 Let

(2.20)
$$X(t) = \sum_{j=1}^{m} \int_{0}^{t} \sigma_{j}(r,\omega) dB_{j}^{(H)}(r); \qquad \sigma = (\sigma_{1}, \dots, \sigma_{m}) \in \mathcal{L}_{\phi}^{1,2}(m).$$

Then

$$(2.21) D_{k,s}^{\phi}X(t) = \sum_{j=1}^{m} \int_{0}^{t} D_{k,s}^{\phi} \sigma_{j}(r) dB_{j}^{(H)}(r) + \int_{0}^{t} \sigma_{k}(r) \phi_{H_{k}}(s,r) dr, \quad 1 \leq k \leq m.$$

In particular, if $\sigma_j(r)$ is deterministic for all $j \in \{1, 2, \dots, m\}$ then

(2.22)
$$D_{k,s}^{\phi}X(t) = \int_{0}^{t} \sigma_{k}(r)\phi_{H_{k}}(s,r)dr.$$

Now we have the following integration by parts formula.

Corollary 2.5 Let X(t) and Y(t) be two processes of the form

$$dX(t) = \mu(t, \omega)dt + \sigma(t, \omega)dB^{(H)}(t), \quad X(0) = x \in \mathbb{R}^n$$

and

$$dY(t) = \nu(t, \omega)dt + \theta(t, \omega)dB^{(H)}(t), \quad Y(0) = y \in \mathbb{R}^n,$$

where $\mu : \mathbb{R} \times \Omega \to \mathbb{R}^n$, $\nu : \mathbb{R} \times \Omega \to \mathbb{R}^n$, $\sigma : \mathbb{R} \times \Omega \to \mathbb{R}^{n \times m}$ and $\theta : \mathbb{R} \times \Omega \to \mathbb{R}^{n \times m}$ are given processes with rows σ_i , $\theta_i \in \mathcal{L}_{\phi}^{1,2}(m)$ for $1 \leq i \leq n$ and $B^H(\cdot)$ is an m-dimensional fractional Brownian motion.

a) Then, for T > 0,

$$\mathbb{E}[X(T)\cdot Y(T)] = x \cdot y + \mathbb{E}\left[\int_{0}^{T} X(s)dY(s)\right] + \mathbb{E}\left[\int_{0}^{T} Y(s)dX(s)\right] + \mathbb{E}\left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m} \sigma_{ik}(s)\theta_{ik}(t)\phi_{H_{k}}(s,t)ds\,dt\right] + \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j,k=1}^{m} \left(\int_{\mathbb{R}} D_{j,t}^{\phi} \sigma_{ik}(t)dt\right) \left(\int_{\mathbb{R}} D_{k,t}^{\phi} \theta_{ij}(t)dt\right)\right]$$

$$(2.23)$$

provided that the first two integrals exist.

b) In particular, if $\sigma(\cdot)$ or $\theta(\cdot)$ is deterministic then

$$\mathbb{E}\left[X(T) \cdot Y(T)\right] = x \cdot y + \mathbb{E}\left[\int_0^T X(s)dY(s)\right] + \mathbb{E}\left[\int_0^T Y(s)dX(s)\right] + \mathbb{E}\left[\int_0^T \int_0^T \sum_{i=1}^n \sum_{k=1}^m \sigma_{ik}(s)\theta_{ik}(t)\phi_{H_k}(s,t)dsdt\right].$$
(2.24)

Proof This follows from Theorem 2.3 applied to the function f(t, x, y) = xy, combined with (2.13).

3 Stochastic differential equations

For given functions $b: \mathbb{R} \times \mathbb{R} \times \Omega \to \mathbb{R}$ and $\sigma: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ consider the stochastic differential equation

(3.1)
$$dX(t) = b(t, X(t))dt + \sigma(t, X(t))dB^{(H)}(t), \quad t \in [0, T],$$

where the initial value $X(0) \in L^2(\mu_{\phi})$ or the terminal value $X(T) \in L^2(\mu_{\phi})$ is given. The Itô isometry for the stochastic integral becomes

$$\mathbb{E}\left(\int_{0}^{T} \sigma(t, X(t)) dB^{(H)}(t)\right)^{2} = \mathbb{E}\left(\int_{0}^{T} \int_{0}^{T} \sigma(t, X(t)) \sigma(s, X(s)) \phi(s, t) ds dt\right) \\
+ \mathbb{E}\left\{\left(\int_{0}^{T} \sigma'_{x}(s, X(s)) D_{s}^{\phi} X(s) ds\right)^{2}\right\}.$$

Because of the appearance of the term $D_s^{\phi}X(s)$ on the right-hand-side of the above identity, we may not directly apply the Picard iteration to solve (3.1).

In this section, we will solve the following quasi-linear stochastic differential equations using the theory developed in $[H\emptyset 1]$, $[H\emptyset 2]$:

(3.3)
$$dX(t) = b(t, X(t))dt + (\sigma_t X(t) + a_t) dB^{(H)}(t),$$

where σ_t and a_t are given deterministic functions, $b(t,x) = b(t,x,\omega)$ is (almost surely) continuous with respect to t and x and globally Lipschitz continuous on x, the initial condition X(0) or the terminal condition X(T) is given. For simplicity we will discuss the case when $a_t = 0$ for all $t \in [0,T]$. Namely, we shall consider

(3.4)
$$dX(t) = b(t, X(t))dt + \sigma_t X(t)dB^{(H)}(t).$$

We need the following result, which is a fractional version of Gjessing's lemma (see e.g. Theorem 2.10.7 in [HØUZ]).

Lemma 3.1 Let $G \in L^2(\mu_H)$ and

$$F = \exp^{\diamond} \left(\int_{\mathbb{R}} f(t) dB^{(H)}(t) \right) = \exp \left(\int_{\mathbb{R}} f(t) dB^{(H)}(t) - \frac{1}{2} ||f||_{\phi}^{2} \right),$$

where f is deterministic and such that

$$||f||_{\phi}^2 := \int_{\mathbb{R}^2} f(s)f(t)\phi(s,t)dsdt < \infty.$$

Then

$$(3.5) F \diamond G = F \tau_{\hat{f}} G,$$

where \diamond is the Wick product defined in [HØ2], \hat{f} is given by

(3.6)
$$\int_{\mathbb{P}^2} f(s)g(t)\phi(s,t)dsdt = \int_{\mathbb{P}} \hat{f}(s)g(s)ds \quad \forall g \in C_0^{\infty}(\mathbb{R})$$

and

$$\tau_{\hat{f}}G(\omega) = G(\omega - \int_0^{\cdot} \hat{f}(s)ds)$$
.

Proof By [DHP, Theorem 3.1] it suffices to show the result in the case when

$$G(\omega) = \exp^{\diamond} \left(\int_{\mathbb{R}} g(t) dB^{(H)}(t) \right) = \exp^{\diamond} \langle \omega, g \rangle,$$

where g is deterministic and $||g||_{\phi} < \infty$. In this case we have

$$\begin{split} F \diamond G &= \exp^{\diamond} \left(\int_{\mathbb{R}} \left[f(t) + g(t) \right] dB^{(H)}(t) \right) \\ &= \exp \left(\int_{\mathbb{R}} \left[f(t) + g(t) \right] dB^{(H)}(t) - \frac{1}{2} \|f\|_{\phi}^2 - \frac{1}{2} \|g\|_{\phi}^2 - (f, g)_{\phi} \right) \,, \end{split}$$

where

$$(f,g)_{\phi} = \int_{\mathbb{R}^2} f(s)g(t)\phi(s,t)dsdt.$$

But

$$\begin{split} \tau_{\hat{f}}G &= \exp^{\diamond}\left(\int_{\mathbb{R}}g(t)dB^{(H)}(t) - \int_{\mathbb{R}}\hat{f}(t)g(t)dt\right) \\ &= \exp^{\diamond}\left(\int_{\mathbb{R}}g(t)dB^{(H)}(t) - (f,g)_{\phi}\right). \end{split}$$

Hence

$$F\tau_{\hat{f}}G = \exp\left(\int_{\mathbb{R}} f(t)dB^{(H)}(t) - \frac{1}{2}\|f\|_{\phi}^2 + \int_{\mathbb{R}} g(t)dB^{(H)}(t) - \frac{1}{2}\|g\|_{\phi}^2 - (f,g)_{\phi}\right) = F \diamond G.$$

We now return to Equation (3.3). First let us solve the equation when b = 0 and with initial value X(0) given. Namely, let us consider

(3.7)
$$dX(t) = -\sigma_t X(t) dB^{(H)}(t), \quad X(0) \text{ given }.$$

With the notion of Wick product, this equation can be written (see [HØ2, Def 3.11])

$$\dot{X}(t) = -\sigma_t X(t) \diamond W^{(H)}(t),$$

where $W^{(H)} = \dot{B}^{(H)}$ is the fractional white noise. Using the Wick calculus, we obtain

$$X(t) = X(0) \diamond J_{\sigma}(t)$$

$$:= X(0) \diamond \exp^{\diamond} \left(-\int_{0}^{t} \sigma_{s} W^{(H)}(s) ds \right)$$

$$= X(0) \diamond \exp \left(-\int_{0}^{t} \sigma_{s} dB^{(H)}(s) - \frac{1}{2} \|\sigma\|_{\phi, t}^{2} \right),$$
(3.9)

where

(3.10)
$$\|\sigma\|_{\phi,t}^2 := \int_0^t \int_0^t \sigma_u \sigma_v \phi(u, v) du dv .$$

To solve Equation (3.4) we let

$$(3.11) Y_t := X(t) \diamond J_{\sigma}(t) .$$

This means

$$(3.12) X(t) = Y_t \diamond \hat{J}_{\sigma}(t) ,$$

where

(3.13)
$$\hat{J}_{\sigma}(t) = J_{-\sigma}(t) = \exp\left(\int_{0}^{t} \sigma_{s} dB^{(H)}(s) - \frac{1}{2} \|\sigma\|_{\phi,t}^{2}\right).$$

8

Thus we have

$$\begin{split} \frac{dY_t}{dt} &= \frac{dX(t)}{dt} \diamond J_{\sigma}(t) + X(t) \diamond \frac{dJ_{\sigma}(t)}{dt} \\ &= \frac{dX(t)}{dt} \diamond J_{\sigma}(t) - \sigma_t J_{\sigma}(t) \diamond X(t) \diamond W^{(H)}(t) \\ &= J_{\sigma}(t) \diamond b(t, X(t), \omega) \\ &= J_{\sigma}(t) b(t, \tau_{-\hat{\sigma}} X(t), \omega + \int_0^{\cdot} \hat{\sigma}(s) ds) \,, \end{split}$$

where

(3.14)
$$\int_{\mathbb{R}^2} \sigma_s g(t) \phi(s, t) ds dt = \int_{\mathbb{R}} \hat{\sigma}_s g(s) ds \quad \forall g \in C_0^{\infty}(\mathbb{R}) .$$

We are going to relate $\tau_{\hat{\sigma}}X(t)$ to Y_t .

$$\tau_{-\hat{\sigma}} X_t(t, \omega) = \tau_{-\hat{\sigma}} [J_{-\sigma}(t)\sigma \diamond Y_t(t, \omega)]$$

$$= \tau_{-\hat{\sigma}} [J_{-\sigma}(t)\tau_{\hat{\sigma}} Y_t]$$

$$= \tau_{-\hat{\sigma}} J_{-\sigma}(t) Y_t.$$

Since $\tau_{-\hat{\sigma}}J_{-\sigma}(t)=[J_{-\hat{\sigma}}(t)]^{-1}$, we obtain an equation equivalent to (3.4) for Y_t :

(3.15)
$$\frac{dY_t}{dt} = J_{-\sigma}(t)b(t, [J_{-\sigma}(t)]^{-1}Y_t, \omega + \int_0^{\infty} \hat{\sigma}(s)ds).$$

This is a deterministic equation. The initial value X(0) is equivalent to initial value $Y_0 = X(0) \diamond J_{-\sigma}(0) = X(0)$. Thus we can solve the quasilinear equation with given initial value.

The terminal value X(T) can also be transformed into the terminal value on $Y(T) = X(T) \diamond J_{-\sigma}(T)$. Thus the equation with given terminal value can be solved in a similar way. Note, however, that in this case the solution need not be $\mathcal{F}^{(H)}$ -adapted (see the next section).

Example 3.2 In the equation (3.4) let us consider the case $b(t, x) = b_t x$ for some deterministic locally bounded function b_t of t. This means that we are considering the linear stochastic differential equation:

(3.16)
$$dX(t) = b_t X(t) dt + \sigma_t X(t) dB^{(H)}(t) .$$

In this case it is easy to see that the equation (3.15) satisfied by Y is

$$\dot{Y}_t = b(t)Y_t$$
.

When the initial value is Y(0) = x (constant), $x \in \mathbb{R}$, then

$$Y_t = xe^{\int_0^t b(s)ds}.$$

Thus the solution of (3.16) with X(0) = x can be expressed as

(3.17)
$$X(t) = Y(t) \diamond J_{-\sigma}(t) = x \exp \left\{ \int_0^t b(s)ds + \int_0^t \sigma_s dB^{(H)}(s) - \frac{1}{2} \|\sigma\|_{\phi,t}^2 \right\}.$$

If we assume the terminal value X(T) given, then

$$Y(t) = Y(T)e^{\int_t^T b(s)ds}$$
$$= X(T) \diamond J_{\sigma}(T)e^{\int_t^T b(s)ds}.$$

Hence

$$X(t) = Y(t) \diamond J_{-\sigma}(t) = X(T) \diamond \exp\left\{\int_{t}^{T} b(s)ds - \int_{t}^{T} \sigma_{s}dB^{(H)}(s) - \frac{1}{2} \int_{t}^{T} \int_{t}^{T} \sigma(u)\sigma(v)\phi(u,v)dudv\right\}.$$
(3.18)

4 Fractional backward stochastic differential equations

Let $b: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be a given function and let $F: \Omega \to \mathbb{R}$ be a given $\mathcal{F}_T^{(H)}$ -measurable random variable, where T > 0 is a constant. Consider the problem of finding $\mathcal{F}^{(H)}$ -adapted processes p(t), q(t) such that

(4.1)
$$dp(t) = b(t, p(t), q(t))dt + q(t)dB^{(H)}(t); \quad t \in [0, T],$$

$$(4.2) P(T) = F a.s.$$

This is a fractional backward stochastic differential equation (FBSDE) in the two unknown processes p(t) and q(t). We will not discuss general theory for such equations here, but settle with a solution in a linear variant of (4.1)-(4.2), namely

(4.3)
$$dp(t) = [\alpha(t) + b_t p(t) + c_t q(t)] dt + q(t) dB^{(H)}(t); \quad t \in [0, T],$$

$$(4.4) P(T) = F a.s.,$$

where b_t and c_t are given continuous deterministic functions and $\alpha(t) = \alpha(t, \omega)$ is a given $\mathcal{F}^{(H)}$ -adapted process s.t. $\int_0^T |\alpha(t, \omega)| dt < \infty$ a.s.

To solve (4.3)-(4.4) we proceed as follows: By the fractional Girsanov theorem (see e.g. $[H\emptyset 2, Theorem 3.18]$) we can rewrite (4.3) as

(4.5)
$$dp(t) = [\alpha(t) + b_t p(t)] dt + q(t) d\hat{B}^{(H)}(t); \quad t \in [0, T],$$

where

(4.6)
$$\hat{B}^{(H)}(t) = B^{(H)}(t) + \int_0^t c_s ds$$

is a fractional Brownian motion (with Hurst parameter H) under the new probability measure $\hat{\mu}$ on $\mathcal{F}_T^{(H)}$ defined by

(4.7)
$$\frac{d\hat{\mu}(\omega)}{d\mu(\omega)} = \exp^{\diamond}\left\{-\langle \omega, \hat{c} \rangle\right\} = \exp\left\{-\int_{0}^{T} \hat{c}(s)dB^{(H)}(s) - \frac{1}{2}\|\hat{c}\|_{\phi}^{2}\right\},$$

where $\hat{c} = \hat{c}_t$ is the continuous function with supp $(\hat{c}) \subset [0, T]$ satisfying

(4.8)
$$\int_0^T \hat{c}_s \phi(s, t) ds = c_t; \quad 0 \le t \le T,$$

and

$$\|\hat{c}\|_{\phi}^{2} = \int_{0}^{T} \int_{0}^{T} \hat{c}(s)\hat{c}(t)\phi(s,t)ds dt$$
.

If we multiply (4.5) with the integrating factor

$$\beta_t := \exp(-\int_0^t b_s ds) ,$$

we get

(4.9)
$$d(\beta_s p(s)) = \beta_s \alpha(s) ds + \beta_s q(s) d\hat{B}^{(H)}(s) ,$$

or, by integrating (4.9) from s = t to s = T,

(4.10)
$$\beta_T F = \beta_t p(t) + \int_t^T \beta_s \alpha(s) ds + \int_t^T \beta_s q(s) d\hat{B}^{(H)}(s).$$

Assume from now on that

By the fractional Itô isometry (see [DHP, Theorem 3.7] or [HØS2, (1.10)]) applied to \hat{B} , $\hat{\mu}$ we then have

(4.12)
$$\mathbb{E}_{\hat{\mu}} \left[\left(\int_0^T \alpha(s) d\hat{B}^{(H)}(s) \right)^2 \right] = \|\alpha\|_{\hat{\mathcal{L}}_{\phi}^{1,2}[0,T]}^2.$$

From now on let us also assume that

$$(4.13) \mathbb{E}_{\hat{\mu}}\left[F^2\right] < \infty.$$

We now apply the quasi-conditional expectation operator (see [HØ2, Definition 4.9a)])

$$\widetilde{\mathbb{E}}_{\hat{\mu}}\left[\cdot|\mathcal{F}_t^{(H)}
ight]$$

to both sides of (4.10) and get

(4.14)
$$\beta_T \tilde{\mathbb{E}}_{\hat{\mu}} \left[F | \mathcal{F}_t^{(H)} \right] = \beta_t p(t) + \int_t^T \beta_s \tilde{\mathbb{E}}_{\hat{\mu}} \left[\alpha(s) | \mathcal{F}_t^{(H)} \right] ds.$$

Here we have used that p(t) is $\mathcal{F}_t^{(H)}$ -measurable, that the filtration $\hat{\mathcal{F}}_t^{(H)}$ generated by $\hat{B}^{(H)}(s)$; $s \leq t$ is the same as $\mathcal{F}_t^{(H)}$, and that

(4.15)
$$\tilde{\mathbb{E}}_{\hat{\mu}} \left[\int_{t}^{T} f(s, \omega) d\hat{B}^{(H)}(s) |\hat{\mathcal{F}}_{t}^{(H)} \right] = 0, \quad \text{for all} \quad t \leq T$$

for all $f \in \hat{\mathcal{L}}_{\phi}^{1,2}[0,T]$. See [HØ2, Def 4.9] and [HØS2, Lemma 1.1]. From (4.14) we get the solution

$$p(t) = \exp\left(-\int_{t}^{T} b_{s} ds\right) \tilde{\mathbb{E}}_{\hat{\mu}} \left[F|\mathcal{F}_{t}^{(H)}\right]$$

$$+ \int_{t}^{T} \exp\left(-\int_{t}^{s} b_{r} dr\right) \tilde{\mathbb{E}}_{\hat{\mu}} \left[\alpha(s)|\mathcal{F}_{t}^{(H)}\right] ds; \quad t \leq T.$$

In particular, choosing t = 0 we get

$$(4.17) p(0) = \exp\left(-\int_0^T b_s ds\right) \tilde{\mathbb{E}}_{\hat{\mu}}[F] + \int_0^T \exp\left(-\int_0^s b_r dr\right) \tilde{\mathbb{E}}_{\hat{\mu}}[\alpha(s)] ds.$$

Note that p(0) is $\mathcal{F}_0^{(H)}$ -measurable and hence a constant. Choosing t=0 in (4.10) we get

(4.18)
$$G = \int_0^T \beta_s q(s) d\hat{B}^{(H)}(s) ,$$

where

(4.19)
$$G = G(\omega) = \beta_T F(\omega) - \int_0^T \beta_s \alpha(s, \omega) ds - p(0),$$

with p(0) given by (4.17).

By the fractional Clark-Ocone theorem [HØ1, Theorem 4.15 b)] applied to $(\hat{B}^{(H)}, \hat{\mu})$ we have

(4.20)
$$G = \mathbb{E}_{\hat{\mu}}[G] + \int_{0}^{T} \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_{s} G | \hat{\mathcal{F}}_{s}^{(H)} \right] d\hat{B}^{(H)}(s) ,$$

where \hat{D} denotes the Malliavin derivative at s with respect to $\hat{B}^{(H)}(\cdot)$. Comparing (4.18) and (4.20) we see that we can choose

(4.21)
$$q(t) = \exp\left(\int_0^t b_r dr\right) \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_t G | \mathcal{F}_t^{(H)}\right].$$

We have proved the first part of the following result:

Theorem 4.1 Assume that (4.11) and (4.13) hold. Then a solution (p(t), q(t)) of (4.3)–(4.4) is given by (4.16) and (4.21). The solution is unique among all $\mathcal{F}^{(H)}$ -adapted processes $p(\cdot), q(\cdot) \in \hat{\mathcal{L}}_{\phi}^{1,2}[0,T]$.

Proof It remains to prove uniqueness. The uniqueness of $p(\cdot)$ follows from the way we deduced formula (4.16) from (4.3)-(4.4). The uniqueness of q is deduced from (4.18) and (4.20) by the following argument: Substituting (4.20) from (4.18) and using that $\mathbb{E}_{\hat{\mu}}(G) = 0$ we get

$$0 = \int_0^T \left(\beta_s q(s) - \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_s G | \hat{\mathcal{F}}_s^{(H)} \right] \right) d\hat{B}^{(H)}(s) .$$

Hence by the fractional Itô isometry (4.12)

$$0 = \mathbb{E}_{\hat{\mu}} \left[\left\{ \int_{0}^{T} \left(\beta_{s} q(s) - \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_{s} G | \hat{\mathcal{F}}_{s}^{(H)} \right] \right) d\hat{B}^{(H)}(s) \right\}^{2} \right]$$
$$= \|\beta_{s} q(s) - \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_{s} G | \hat{\mathcal{F}}_{s}^{(H)} \right] \|_{\hat{\mathcal{L}}_{\hat{\sigma}}^{1,2}[0,T]}^{2},$$

from which it follows that

$$\beta_s q(s) - \tilde{\mathbb{E}}_{\hat{\mu}} \left[\hat{D}_s G | \hat{\mathcal{F}}_s^{(H)} \right] = 0 \quad \text{for} \quad a.a.(s, \omega) \in [0, T] \times \Omega.$$

5 A stochastic maximum principle

We now apply the theory in the previous section to prove a maximum principle for systems driven by fractional Brownian motion. See e.g. [H], [P] and [YZ] and the references therein for more information about the maximum principle in the classical Brownian motion case.

Suppose $X(t) = X^{(u)}(t)$ is a controlled system of the form

(5.1)
$$dX(t) = b(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dB^{(H)}(t); \quad X(0) = x \in \mathbb{R}^n,$$

where $b:[0.T]\times\mathbb{R}^n\times U\to\mathbb{R}^n$ and $\sigma:[0,T]\times\mathbb{R}^n\times U\to\mathbb{R}^{n\times m}$ are given C^1 functions. The control process $u(\cdot):[0,T]\times\Omega\to U\subset\mathbb{R}^k$ is assumed to be $\mathcal{F}^{(H)}$ -adapted. U is a given closed convex set in \mathbb{R}^k .

Let $f:[0,T]\times\mathbb{R}^n\times U\to\mathbb{R},\ g:\mathbb{R}^n\to\mathbb{R}$ and $G:\mathbb{R}^n\to\mathbb{R}^N$ be given C^1 functions and consider a performance functional J(u) of the form

(5.2)
$$J(u) = \mathbb{E}\left[\int_0^T f(t, X(t), u(t))dt + g(X(T))\right]$$

and a terminal condition given by

$$\mathbb{E}\left[G(X(T))\right] = 0.$$

Let \mathcal{A} denote the set of all $\mathcal{F}_t^{(H)}$ -adapted processes $u:[0,T]\times\Omega\to U$ such that $X^{(u)}(t)$ exists and does not explode in [0,T] and

(5.4)
$$E\left[\int_0^T |f(t,X(t),u(t))|dt + g^-(X(T)) + G^-(X(T))\right] < \infty$$

where $y^- = \max(0, y)$ for $y \in \mathbb{R}$, and such that (5.3) holds. If $u \in \mathcal{A}$ and $X^{(u)}(t)$ is the corresponding state process we call $(u, X^{(u)})$ an admissible pair. Consider the problem to find J^* and $u^* \in \mathcal{A}$ such that

(5.5)
$$J^* = \sup \{J(u) ; u \in \mathcal{A}\} = J(u^*).$$

If such $u^* \in \mathcal{A}$ exists, then u^* is called an *optimal control* and (u^*, X^*) , where $X^* = X^{u^*}$, is called an *optimal pair*.

Let $\mathcal{R}^{n\times m}$ be the set of continuous function from [0,T] into $\mathbb{R}^{n\times m}$. Define the *Hamiltonian* $H:[0,T]\times\mathbb{R}^n\times U\times\mathbb{R}^n\times\mathcal{R}^{n\times m}\to\mathbb{R}$ by

(5.6)
$$H(t, x, u, p, q(\cdot)) = f(t, x, u) + b(t, x, u)^T p + \sum_{i=1}^n \sum_{k=1}^m \sigma_{ik}(t, x, u) \int_0^T q_{ik}(s) \phi_{H_k}(s, t) ds$$
.

Consider the following fractional stochastic backward differential equation in the pair of unknown $\mathcal{F}_t^{(H)}$ -adapted processes $p(t) \in \mathbb{R}^n$, $q(t) \in \mathbb{R}^{n \times m}$, called the adjoint processes:

(5.7)
$$\begin{cases} dp(t) = -H_x(t, X(t), u(t), p(t), q(\cdot))dt + q(t)dB^{(H)}(t); & t \in [0, T] \\ p(T) = g_x(X(T)) + \lambda^T G_x(X(T)). \end{cases}$$

where $H_x = \nabla_x H = \left(\frac{\partial H}{\partial x_1}, \dots, \frac{\partial H}{\partial x_n}\right)^T$ is the gradient of H with respect to x and similarly with g_x and G_x . $X(t) = X^{(u)}(t)$ is the process obtained by using the control $u \in \mathcal{A}$ and $\lambda \in \mathbb{R}^n_+$ is a constant. The equation (5.6) is called the adjoint equation and p(t) is sometimes interpreted as the *shadow price* (of a resource).

Theorem 5.1 (The fractional stochastic maximum principle) Suppose $\hat{u} \in \mathcal{A}$ and put $\hat{X} = X^{(\hat{u})}$. Suppose there exists a solution $\hat{p}(t)$, $\hat{q}(t)$ of the corresponding adjoint equation (5.7) for some $\lambda \in \mathbb{R}^n_+$ and such that the following, (5.8)–(5.11), hold:

(5.8)
$$X^{(u)}(t)\hat{q}(t) \in \mathcal{L}_{\phi}^{1,2} \quad and \quad \hat{p}^{T}(t)\sigma(t,X^{(u)}(t),u(t)) \in \mathcal{L}_{\phi}^{1,2} \quad for \ all \ u \in \mathcal{A}$$

(5.9)
$$H(t, \cdot, \cdot, \hat{p}(t), \hat{q}(t)), g(\cdot) \text{ and } G(\cdot) \text{ are concave, for all } t \in [0, T],$$

(5.10)
$$H(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot)) = \max_{v \in U} H(t, \hat{X}(t), v, \hat{p}(t), \hat{q}(\cdot)),$$

$$\Delta_4 := \mathbb{E}\Big[\sum_{i=1}^n \sum_{j,k=1}^m \Big(\int_0^T D_{j,t}^{\phi_j} \{\sigma_{ik}(t, X(t), u(t))\}\Big]$$

$$(5.11) -\sigma_{ik}(t, \hat{X}(t), \hat{u}(t)) dt \Big) \Big(\int_0^T D_{k,t}^{\phi_k} \hat{q}_{ij}(t) dt \Big) \Big] \leq 0 \text{for all } u \in \mathcal{A}.$$

Then if $\lambda \in \mathbb{R}^n_+$ is such that (\hat{u}, \hat{X}) is admissible (in particular, (5.3) holds), the pair (\hat{u}, \hat{X}) is an optimal pair for problem (5.5).

Proof We first give a proof in the case when G(x) = 0, *i.e.* when there is no terminal condition.

With (\hat{u}, \hat{X}) as above consider

$$\Delta := \mathbb{E} \left[\int_{0}^{T} f(t, \hat{X}(t), \hat{u}(t)) dt - \int_{0}^{T} f(t, X(t), u(t)) dt \right]
= \mathbb{E} \left[\int_{0}^{T} H(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot)) dt - \int_{0}^{T} H(t, X(t), u(t), \hat{p}(t), \hat{q}(\cdot)) dt \right]
- \mathbb{E} \left[\int_{0}^{T} \left\{ b(t, \hat{X}(t), \hat{u}(t)) \right\}^{T} \hat{p}(t) dt - \int_{0}^{T} b(t, X(t), u(t))^{T} \hat{p}(t) dt \right]
- \mathbb{E} \left[\int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{n} \sum_{k=1}^{m} \left\{ \sigma_{ik}(s, \hat{X}(s), \hat{u}(s)) - \sigma_{ik}(s, X(s), u(s)) \right\} \hat{q}_{ik}(t) \phi_{H_{k}}(s, t) ds dt \right]
(5.12) =: \Delta_{1} + \Delta_{2} + \Delta_{3}.$$

Since $(x, u) \to H(x, u) = H(t, x, u, p, q(\cdot))$ is concave we have

$$H(x, u) - H(\hat{x}, \hat{u}) \le H_x(\hat{x}, \hat{u}) \cdot (x - \hat{x}) + H_u(\hat{x}, \hat{u}) \cdot (u - \hat{u})$$

for all (x, u), (\hat{x}, \hat{u}) . Since $v \to H(\hat{X}(t), v)$ is maximal at $v = \hat{u}(t)$ we have

$$H_u(\hat{x}, \hat{u}) \cdot (u(t) - \hat{u}(t)) \le 0 \quad \forall t.$$

Therefore

$$\Delta_{1} \geq \mathbb{E}\left[\int_{0}^{T} -H_{x}(t, \hat{X}(t), \hat{u}(t), \hat{p}(t), \hat{q}(\cdot)) \cdot (X(t) - \hat{X}(t))dt\right]$$

$$= \mathbb{E}\left[\int_{0}^{T} (X(t) - \hat{X}(t))^{T} d\hat{p}(t) - \int_{0}^{T} (X(t) - \hat{X}(t))^{T} \hat{q}(t) dB^{(H)}(t)\right]$$

Since $\mathbb{E}\left[\int_0^T (X(t)-\hat{X}(t))^T \hat{q}(t) dB^{(H)}(t)\right] = 0$ by (2.7), this gives

(5.13)
$$\Delta_1 \ge \mathbb{E}\left[\int_0^T (X(t) - \hat{X}(t))^T d\hat{p}(t)\right].$$

By (5.1) we have

$$\Delta_{2} = -\mathbb{E}\left[\int_{0}^{T} \left\{b(t, \hat{X}(t), \hat{u}(t)) - b(t, X(t), u(t))\right\} \cdot \hat{p}(t)dt\right]$$

$$= -\mathbb{E}\left[\int_{0}^{T} \hat{p}(t) \left(d\hat{X}(t) - dX(t)\right)\right]$$

$$-\mathbb{E}\left[\int_{0}^{T} \hat{p}(t)^{T} \left\{\sigma(t, \hat{X}(t), \hat{u}(t)) - \sigma(t, X(t), u(t))\right\} dB^{(H)}(t)\right]$$

$$= \mathbb{E}\left[\int_{0}^{T} \hat{p}(t) \left(dX(t) - d\hat{X}(t)\right)\right].$$
(5.14)

Finally, since q is concave we have

(5.15)
$$g(X(T)) - g(\hat{X}(T)) \le g_x(\hat{X}(T)) \cdot (X(T) - \hat{X}(T))$$

Combining (5.12)–(5.15) with Corollary 2.5 we get, using (5.2), (5.7) and (5.11),

$$\begin{split} &J(\hat{u}) - J(u) = \Delta + \mathbb{E}\left[g(\hat{X}(T)) - g(X(T))\right] \\ &\geq \Delta + \mathbb{E}\left[g_x(\hat{X}(T)) \cdot (\hat{X}(T) - X(T))\right] \\ &\geq \Delta - \mathbb{E}\left[\hat{p}(T) \cdot \left(X(T) - \hat{X}(T)\right)\right] \\ &= \Delta - \left\{\mathbb{E}\left[\int_0^T \left(X(t) - \hat{X}(t)\right) \cdot d\hat{p}(t)\right] + \mathbb{E}\left[\int_0^T \hat{p}(t) \cdot \left(dX(t) - d\hat{X}(t)\right)\right] \right. \\ &+ \mathbb{E}\left[\int_0^T \int_0^T \sum_{i=1}^n \sum_{k=1}^m \left\{\sigma_{ik}(s, X(s), u(s)) - \sigma_{ik}(s, \hat{X}(s), \hat{u}(s))\right\} \hat{q}_{ik}(t)\phi_{H_k}(s, t) ds \, dt \right. \\ &+ \mathbb{E}\left[\sum_{i=1}^n \sum_{j,k=1}^m \left(\int_0^T D_{j,t}^{\phi_j} \{\sigma_{ik}(t, X(t), u(t)) - \sigma_{ik}(t, \hat{X}(t), \hat{u}(t))\} dt\right) \left(\int_0^T D_{k,t}^{\phi_k} \hat{q}_{ij}(t)\right)\right]\right\} \\ &\geq \Delta - (\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4) \geq 0 \, . \end{split}$$

This shows that $J(\hat{u})$ is maximal among all admissible pairs $(u(\cdot), X(\cdot))$.

This completes the proof in the case with no terminal conditions (G = 0). Finally consider the general case with $G \neq 0$. Suppose that for some $\lambda_0 \in \mathbb{R}^n_+$ there exists \hat{u}_{λ_0} satisfying (5.8)–(5.11). Then by the above argument we know that if we put

$$J_{\lambda_0}(u) = \mathbb{E}\left[\int_0^T f(t, X(t), u(t))dt + g(X(T)) + \lambda_0^T G(X(T))\right]$$

then $J_{\lambda_0}(\hat{u}_0) \geq J_{\lambda_0}(u)$ for all controls u (without terminal condition). If λ_0 is such that \hat{u}_{λ_0} satisfies the terminal condition (i.e. $\hat{u}_{\lambda_0} \in \mathcal{A}$) and u is another control in \mathcal{A} then

$$J(\hat{u}_{\lambda_0}) = J_{\lambda_0}(\hat{u}_{\lambda_0}) \ge J_{\lambda_0}(u) = J(u)$$

and hence $\hat{u}_{\lambda_0} \in \mathcal{A}$ maximizes J(u) over all $u \in \mathcal{A}$.

Corollary 5.2 Let $\hat{u} \in \mathcal{A}$, $\hat{X} = X^{(\hat{u})}$ and $(\hat{p}(t), \hat{q}(t))$ be as in Theorem 5.1. Assume that (5.8), (5.9) and (5.10) hold, and that condition (5.11) is replaced by the condition

(5.16)
$$\hat{q}(\cdot)$$
 or $\sigma(\cdot, \hat{X}(\cdot), \hat{u}(\cdot))$ is deterministic.

Then if $\lambda \in \mathbb{R}^n_+$ is such that (\hat{u}, \hat{X}) is admissible, the pair (\hat{u}, \hat{X}) is an optimal pair for problem (5.5).

6 A minimal variance hedging problem

To illustrate our main result, we use it to solve the following problem from mathematical finance:

Consider a financial market driven by two independent fractional Brownian motions $B_1(t) = B_1^{(H_1)}(t)$ and $B_2(t) = B^{(H_2)}(t)$, with $\frac{1}{2} < H_i < 1$, i = 1, 2, as follows:

- (6.1) (Bond price) $dS_0(t) = 0$; $S_0(0) = 1$
- (6.2) (Price of stock 1) $dS_1(t) = dB_1(t)$; $S_1(0) = s_1$
- (6.3) (Price of stock 2) $dS_2(t) = dB_1(t) + dB_2(t)$; $S_2(0) = s_2$.

If $\theta(t) = (\theta_0(t), \theta_1(t), \theta_2(t)) \in \mathbb{R}^3$ is a portfolio (giving the number of units of the bond, stock 1 and stock 2, respectively, held at time t) then the corresponding value process is

(6.4)
$$V^{\theta}(t) = \theta(t) \cdot S(t) = \sum_{i=0}^{2} \theta_i(t) S_i(t) .$$

The portfolio is called *self-financing* if

(6.5)
$$dV^{\theta}(t) = \theta(t) \cdot dS(t) = \theta_1(t)dB_1(t) + \theta_2(t)(dB_1(t) + dB_2(t)).$$

This market is called *complete* if any bounded $\mathcal{F}_T^{(H)}$ -measurable random variable F can be hedged (or replicated), in the sense that there exists a (self-financing) portfolio $\theta(t)$ and an initial value $z \in \mathbb{R}$ such that

(6.6)
$$F(\omega) = z + \int_0^T \theta(t) dS(t) \quad \text{for a.a. } \omega.$$

(See [HØ2] and [W] for a general discussion about this.)

Let us now assume that we are not allowed to trade in stock 1, i.e. we must have $\theta_1(t) \equiv 0$. How close to, say, $F(\omega) = B_1(T, \omega)$ can we get if we must hedge under this constraint?

If we put $\theta_2(t) = u(t)$ and interpret "close" as having a small $L^2(\mu)$ distance to F, then the problem can be stated as follows:

Find $z \in \mathbb{R}$ and admissible $u(t, \omega)$ such that

$$J(z,u) := \mathbb{E}\left[\left\{B_1(T) - \left(z + \int_0^T u(t)(dB_1(t) + dB_2(t))\right)\right\}^2\right]$$

$$= z^2 + \mathbb{E}\left[\left\{\int_0^T (u(t) - 1)dB_1(t) + \int_0^T u(t)dB_2(t)\right\}^2\right]$$
(6.7)

is minimal. We see immediately that it is optimal to choose z=0, so it remains to minimize over $u(t)=u(t,\omega)$ the functional

(6.8)
$$J(u) := \mathbb{E}\left[\left\{\int_0^T (u(t) - 1)dB_1(t) + \int_0^T u(t)dB_2(t)\right\}^2\right].$$

If we apply the fractional Itô isometry (2.13) we get, after some simplifications,

$$J(u) = \mathbb{E}\left[\int_0^T \int_0^T \left\{ (u(s) - 1)(u(t) - 1)\phi_1(s, t) + u(s)u(t)\phi_2(s, t) \right\} ds dt + \left(\int_0^T \left\{ D_{1,t}^{\phi} u(t) - D_{2,t}^{\phi} u(t) \right\} dt \right)^2 \right].$$
(6.9)

However, it is difficult to see from this what the minimizing u(t) is.

To approach this problem by using the fractional maximum principle, we define the state process X(t) by

(6.10)
$$dX(t) = (u(t) - 1)dB_1(t) + u(t)dB_2(t) .$$

Then the problem is equivalent to maximizing

(6.11)
$$J_1(u) := \mathbb{E} \left[-\frac{1}{2} X^2(T) \right].$$

The Hamiltonian for this problem is

$$H(t, x, u, p, q(\cdot)) = (u - 1) \int_0^T q_1(s)\phi_1(s, t)ds + u \int_0^T q_2(s)\phi_2(s, t)ds$$

$$= (u - 1) \int_0^T q_1(s)\phi_1(s, t)ds + u \int_0^T q_2(s)\phi_2(s, t)ds$$

$$= u \left[\int_0^T q_1(s)\phi_1(s, t)ds + \int_0^T q_2(s)\phi_2(s, t)ds \right] - \int_0^T q_1(s)\phi_1(s, t)ds .$$
(6.12)

The adjoint equation is

(6.13)
$$dp(t) = q_1(t)dB_1(t) + q_2(t)dB_2(t); \qquad t < T$$

(6.14)
$$p(T) = -X(T) .$$

Comparing with (6.10) we see that this equation has the solution

(6.15)
$$q_1(t) = 1 - u(t), \quad q_2 = -u_2(t), \quad p(t) = -X(t); \quad t \le T.$$

Let $\hat{u}(t)$ be an optimal control candidate. Then by (6.12)

$$H(t,\hat{X}(t),v,\hat{p}(t),\hat{q}(\cdot)) = v \left[\int_0^T \hat{q}_1(s)\phi_1(s,t)ds + \int_0^T \hat{q}_2(s)\phi_2(s,t)ds \right] - \int_0^T \hat{q}_1(s)\phi_1(s,t)ds$$

$$(6.16) = v \left[\int_0^T (1-\hat{u}(t))\phi_1(s,t)ds - \int_0^T \hat{u}(s)\phi_2(s,t)ds \right] - \int_0^T \hat{q}_1(s)\phi_1(s,t)ds .$$

The maximum principle requires that the maximum of this expression is attained at $v = \hat{u}(t)$. However, this is an affine function of v, so it is natural to guess that the coefficient of v must be 0, i.e.

$$\int_0^T (1 - \hat{u}(s))\phi_1(s, t)ds - \int_0^T \hat{u}(s)\phi_2(s, t)ds = 0,$$

which gives

(6.17)
$$\int_0^T \hat{u}(s)(\phi_1(s,t) + \phi_2(s,t))ds = \int_0^T \phi_1(s,t)ds.$$

This is a symmetric Fredholm integral equation of the first kind and it is known that it has a unique solution $\hat{u}(t) \in L^2[0,T]$. See e.g. [T, Section 3.15].

This choice of $\hat{u}(t)$ satisfies all the requirements of Theorem 5.1 (in fact, even those of Corollary 5.2) and we can conclude that this $\hat{u}(t)$ is optimal. Thus we have proved:

Theorem 6.1 (Solution of the minimal variance hedging problem)

The minimal value of

$$J(z, u) = \mathbb{E}\left[\left\{B_1(T) - \left(z + \int_0^T u(t)(dB_1(t) + dB_2(t))\right)\right\}^2\right]$$

is attained when z = 0 and $u = \hat{u}(t)$ satisfies (6.17). The corresponding minimal value is

$$\inf_{z,u} J(z,u) = \int_0^T \int_0^T \left\{ (\hat{u}(s) - 1)(\hat{u}(t) - 1)\phi_1(s,t) + \hat{u}(s)\hat{u}(t)\phi_2(s,t) \right\} ds dt.$$

Remark Note that if $\phi_1 = \phi_2$ then $\hat{u}(t) \equiv \frac{1}{2}$, which is the same as the optimal value in the classical Brownian motion case $(H_1 = H_2 = \frac{1}{2})$.

Acknowledgments. This work is partially supported by the French-Norwegian cooperation project Stochastic Control and Applications, Aur 99-050. Y. Hu is partially supported by the National Science Foundation under Grant No. EPS-9874732 and matching support from the State of Kansas.

We are grateful to Fred Espen Benth and Nils Christian Framstad for helpful comments.

References

- [BØ] F. Biagini and B. Øksendal: Minimal variance hedging for fractional Brownian motion. (Manuscript 2001).
- [DHP] T. E. Duncan, Y. Hu and B. Pasik-Duncan: Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 (2000), 582–612.
- [H] U. Haussman: A Stochastic Maximum Principle for Optimal Control of Diffusions. Longman Scientific and Technical 1986.
- [Hu1] Y. Hu: Heat equation with fractional white noise potentials, Applied Mathematics and Optimization, 43 (2001), 221-243.
- [Hu2] Y. Hu: A class of SPDE driven by fractional white noise. Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), 317–325, CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000.
- [HØ1] Y. Hu and B. Øksendal: Wick approximation of quasi-linear stochastic differential equations. In H. Körezlioglu and al. (editors): Stochastic Analysis and Related Topics, V (Silivri, 1994), 203–231, Progr. Probab., 38, Birkhäuser Boston, Boston, MA, 1996.
- [HØ2] Y. Hu and B. Øksendal: Fractional white noise calculus and applications to finance. Preprint, Department of Mathematics, University of Oslo, 10, 1999.
- [HØS1] Y. Hu, B. Øksendal and A. Sulem: Optimal portfolio in a fractional Black & Scholes market. In S. Albeverio et al. (eds.): Mathematical Physics and Stochastic Analysis. World Scientific 2000, pp. 267–279.
- [HØS2] Y. Hu, B. Øksendal and A. Sulem: Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Preprint, Department of Mathematics, University of Oslo, 23, 2000.
- [HØUZ] H. Holden, B. Øksendal, J. Ubøe and T. Zhang: Stochastic Partial Differential Equations. Birkhäuser 1996.
- [HØZ] Y. Hu, B. Øksendal and T. Zhang: Stochastic partial differential equations driven by multiparameter fractional white noise. Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), 327–337, CMS Conf. Proc., 29, Amer. Math. Soc., Providence, RI, 2000.
- [MvN] B.B. Mandelbrot and J.W. Van Ness: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422-437.
- [NVV] I. Norros, E. Valkeila and J. Virtamo: An elementary approach to a Girsanov formula and other analytic results on fractional Brownian motions. Bernoulli, 5 (1999), 571-587.
- [ØZ] B. Øksendal and T. Zhang: Multiparameter fractional Brownian motions and quasilinear stochastic partial differential equations. Stochastics and Stochastics Reports 71 (2001), 141–163.

- [P] S. Peng: A general stochastic maximum principle for optimal control problems. SIAM J. Control & Optim. 28 (1990), 966–979.
- [S] A. Shiryaev: Essentials of Stochastic Finance. World Scientific 1999.
- [T] F.G. Tricomi: Integral Equations. Dover 1985.
- [W] N. Wallner: Fractional Brownian Motion and Applications to Finance. Thesis, Philipps-Universität Marburg, March 2001.
- [YZ] J. Yong and X.Y. Zhou: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag 1999.