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Abstract

We prove a stochastic maximum principle for controlled processes X (t) = X ) (t)

of the form
dX (t) = b(t, X (t), u(t))dt + o(t, X (t), u(t))dB (1)

where BH)(t) is m-dimensional fractional Brownian motion with Hurst parameter
H = (Hy, - ,Hy) € (3,1)™. As an application we solve a problem about minimal
variance hedging in an incomplete market driven by fractional Brownian motion.

1 Introduction

Let H = (Hy,--- ,Hy) with £ < H; <1, j =1,2,...,m, and let BH(t) = (B (@), ...,
B,(,@H)(t)), t € R be m-dimensional fractional Brownian motion, i.e. BH)(t) = B (t w),

(t,w) € R x Q is a Gaussian process in R™ such that

(1.1) E[BH(t)] = B (0) =0
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and

(12) B |BI()B(1)] = L {IsP% + 12— [t — s} i1 <k <n, s tER,

where
0 when j #k
djk = .
1 when j =%k

Here E = E,, denotes the expectation with respect to the probability law y = g for B ().

This means that the components B%H)(-), e BﬁnH)(-) of BH)(.) are m independent 1-
dimensional fractional Brownian motions with Hurst parameters H,, H,,--- , H,,, respec-

tively. We refer to [MvN], [NVV] and [S] for more information about fractional Brownian
motion. Because of its interesting properties (e.g. long range dependence and self-similarity
of the components) B (t) has been suggested as a replacement of standard Brownian mo-
tion B(t) (corresponding to H; = 3 for all j = 1,---,m) in several stochastic models,
including finance.

Unfortunately, BY)(.) is neither a semimartingale nor a Markov process, so the powerful
tools from the theories of such processes are not applicable when studying B* )() Never-
theless, an efficient stochastic calculus of B%#)(.) can be developed. This calculus uses an Ito
type of integration with respect to B (.) and white noise theory. See [DHP] and [H(?2] for
details. For applications to finance see [HO2], [HOS1| [H?S2|. In [Hul], [Hu2], [HOZ] and
[AZ] the theory is extended to multi-parameter fractional Brownian fields B (z); 2 € rR?
and applied to stochastic partial differential equations driven by such fractional white noise.

The purpose of this paper is to establish a stochastic maximum principle for stochastic
control of processes driven by BU)(.). We illustrate the result by applying it to a problem
about minimal variance hedging in finance.

2 Preliminaries

For the convenience of the reader we recall here some of the basic results of fractional
Brownian motion calculus. Let B#)(¢) be 1-dimensional in the following.
Define, for given H € (% 1),

(2.1) o(s,t) = ou(s,t) = H2H — 1)|s —t|*2; s teR.

As in [HO2] we will assume that  is the space S'(R) of tempered distributions on R, which
is the dual of the Schwartz space S(R) of rapidly decreasing functions on R. If w € S'(R)
and f € S(R) we let (w, f) = w(g) denote the action of w applied to f. It can be extended
to all f:R — R such that

Hf}lj I=//f(s)f(t)¢(s,t)dsdt<oo.

The space of all such (deterministic) functions f is denoted by L3(R).
If F:Q — Ris a given function we let

(2.2) DF = /DTF-QS(T, t)dr
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denote the Malliavin ¢-derivative of F' at t (if it exists) (see [DHP, Definition 3.4]. Define
L’;’Q to be the set of (measurable) processes g(t,w) : R X £ — R such that D?g(s) exists for
a.a. s € R and

(2.3) HgHﬁ 12 :_IE // o(s,t dsdt—l— /D¢ ds) } 00

We let fR (t,w)dBY(t) denote the fractional Ité-integral of the process o (t,w) with respect
to BH)(t), as defined in [DHP]. In particular, this means that if o belongs to the family S
of step functions of the form

Zaz W)Xty () s (tw) ER X,

where 0 <t] <ty < - < tN+1, then

N
(2.4) / (Lw)dBO (1) = 3 0i(w) o (BU(ti1) — BO(L)) |

R i=1
where ¢ denotes the Wick product. For o(t) = o(t,w) € SN 52’2 we have the isometry

(2.5) E[/Ra(t,w)dB(H)(t)r :IE[/Rza(s)a(tW(s,t)dsdt—i— (/Rng@)dsﬂ - Ha||f:;,2,

where E = . Using this we can extend the integral [, o(t,w)dB™)(t) to 5;’2. Note that
ifo,0¢e El 2, we have, by polarization,

E [/Ra(t,w)dB(H)(t)/RO(t, w)dB(H)(t)}
(2.6) _E [ /R ()00, t)dsdt + /R Dlo(s)ds /R Df&(t)dt] |

Also note that we need not assume that the integrand o € E;’z is adapted to the filtration
F generated by BH) (s, ): s < t.
An important property of this fractional Ito-integral is that

1,2
(2.7) E UR a(t,w)dB(H)(t)} =0 forall o€}’

(see [DHP, Theorem 3.9]).
We give three versions of the fractional Ito formula, in increasing order of complexity.

Theorem 2.1 ([DHP], Theorem 4.1) Let f € C?*(R) with bounded second order deriva-
tives. Then fort >0

28 FB) = B0 + [ (B (5)dBH(s) + H / 21 (B ().



Theorem 2.2 ([DHP], Theorem 4.3) Let X(t) = ) o(s,w)dB™(s), where ¢ € Ly
and assume f € C?(Ry x R) with bounded second order derivatives. Then for t > 0

F.X(0) = 10.0)+ [ s x(s)as

(2.9) +/0 g—i(s,X(s))a(s)dB(H)(s)—l— i %(S,X(s))a(s)DfX(s)ds.

Finally we give an m-dimensional version:

Let BH) (1) = <B£H)(t) Lo ,BT(nH)(t) be an m-dimensional fractional Brownian motion
with Hurst parameter H = (Hy,---, H,) € (1/2,1)™, as in Section 1. Since we are here
dealing with m independent fractional Brownian motions we may regard {2 as the product
of m independent copies of Q) and write w = (wy, . ..,wy) for w € Q. Then in the following
the notation D,ﬁsY means the Malliavin ¢-derivative with respect to w; and could also be
written

(2.10) Dey = / b11 (5, 8) DyosY dt — / o (5,02 (1, w)dt.
: - R ow

k

Similar to the 1-dimensional case discussed in Section 1, we can define the multi-dimensional
fractional (Wick-Ito) integral

(2.11) /ftde Z/f]tde () € ()

for all processes f(t,w) = (f1(t,w), ..., fm(t,w)) € R™ such that, for all j =1,2,... m,

2
(2.12) HfjHﬁ;,g :=E //f] $) f;(t)o;( stdsdt+ /D]t j < 00
where ¢; = ¢p,; 1 < 7 <m.
Denote the set of all such m-dimensional processes f by E;’Z(m), where ¢ = (¢1, ..., Pm).

It can be proved (see [BQJ) that for f,g € E(lf(m) we have the following fractional
multi-dimensional Ito isometry

EK/Rde(H)) - (/RgdB(H)>] :E[zm:/R/Rfi(s)gi(t)qﬁi(s,t)dsdt

(2.13) + Zm: (/ DY, f:(t) /thgj

ij=1

We put

(f.9), Z/R/Rf $)gi(t)du(s,t)ds dt
(2.14) +Z / D2 it dt / DYt dt

2,7=1



and define
Lg*(m) = {f € L520m): | /|2 = (D < 00} -

Now suppose o; € E;’z(m) for 1 < i < n. Then we can define X (t) = (Xy(t),---, X,(t))
where

m t
(2.15) X;(t,w) = Z/ 0ij(s,w)dBS (s);1<i<n.

j=1"0

We have the following multi-dimensional fractional It6 formula:

Theorem 2.3 Let f € CY?(R, x R™) with bounded second order derivatives. Then, for
t >0,

FIEX(®) = £(0,0) / L (s, X (s))ds +/ Z@xz Xi(s)
(2.16) +/0t{z,n:16528x] Zazk (5)D (X, ))}ds
£(0,0)+ / 5(5: X (s ds+Z/ [ X (5))oij(s,w)

(2.17) —i—/o Tr [A"(8) fuu(s, X (s))] ds.

Here A = [A;j] € R™™™ with

(H)
dB;"(s)

(2.18) Nij(s) = ouD}, (X;(s); 1<i<n, 1<j<m,
0*f

219 A
8xi8xj 1<i,j<n

and (-)T denotes matriz transposed and Tr[-] denotes matrix trace.
The following useful result is a multidimensional version of Theorem 4.2 in [DHP|:

Theorem 2.4 Let
(2.20) X(t) = i /0 t oj(r,w)dB"(r); o =(01,...,00) € LS (m).
j=1
Then
(2.21) D,fs Z/ DY 0 (7 B(H)( )+ /t ok (r)pm, (s,r)dr, 1<k<m.
0
In particular, if o;(r) is deterministic for all j € {1,2,--- ,m} then

(2.22) D,‘f’sX(t):/O ok, (1r) P, (s,r)dr.



Now we have the following integration by parts formula.
Corollary 2.5 Let X(t) and Y (t) be two processes of the form
dX (t) = p(t,w)dt + o(t,w)dBH (), X(0) =z € R"

and
AY (t) = v(t,w)dt + 6(t,)dBU(H), Y(0) =y e ",

where f :RXQ >R V:RXQ—=>R", 0:RXQ =R and 0 : R x Q — R™™ are given
processes with rows o;, 0; € E;’Q(m) for 1 <i <n and BY(-) is an m-dimensional fractional
Brownian motion.

a) Then, for T > 0,

EX(T)Y(T) =z-y+E / TX(s)dY(s)] +E[ /0 TY(s)dX(s)}
/ /T Y ialk Oir(t)bm, (s, t)dsdt}
(2.23) +IE[Z Z ( /R Dﬁtaik(t)dt>( /R D? 6, ()dtﬂ

provided that the first two integrals exist.
b) In particular, if o(-) or 0(-) is deterministic then

E[X(T)-Y(T)] = z-y+E {/TX(s)dY(s)} +E {/OTY(s)dX(s)}

m

/ / S 2D o(s)0u(t)om (s, t)dsdt] ,

=1 k=1

(2.24)

Proof This follows from Theorem 2.3 applied to the function f (¢, x,y) = xy, combined with
(2.13). 0
3 Stochastic differential equations

For given functions b: R x R X 2 — R and ¢ : R X R — R consider the stochastic differential
equation

(3.1) dX (t) = b(t, X (t))dt + o(t, X (t))dBH)(t), te[0,T],

where the initial value X (0) € L*(u,) or the terminal value X (T') € L?*(u,) is given. The
[to isometry for the stochastic integral becomes

£ (/OTa(t,X(t))dB(H)(t)> (/ / (1, X(1)o(s, X (s ))gf)(s,t)dsdt)
(3.2) —HE{(/O ol (s, X (s ))DfX(s)ds)z} .

6
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Because of the appearance of the term D? X (s) on the right-hand-side of the above identity,
we may not directly apply the Picard iteration to solve (3.1).

In this section, we will solve the following quasi-linear stochastic differential equations
using the theory developed in [HO1], [HO2]:
(3.3) dX (t) = b(t, X (t))dt + (0, X (t) + a,) dBH)(t)
where o; and a; are given deterministic functions, b(t,x) = b(t, z,w) is (almost surely) con-
tinuous with respect to t and x and globally Lipschitz continuous on z, the initial condition

X(0) or the terminal condition X (7") is given. For simplicity we will discuss the case when
a; = 0 for all t € [0, T]. Namely, we shall consider

(3.4) dX (t) = b(t, X (t))dt + o, X (t)dB')(¢) .

We need the following result, which is a fractional version of Gjessing’s lemma (see e.g.
Theorem 2.10.7 in [HOUZ]).

Lemma 3.1 Let G € L*(uy) and

P e ([ s0a50)) =exp ( [ 10050 - 1512) |
where f is deterministic and such that
113 = [ 761000t s < oc.
Then
(3.5) FoG=FrG,
where o is the Wick product defined in [HO2], f is given by
(3. | 1e)atots.ndsit = [ fe)ats)ds o € O (g

and

rGlw) = Glw— /0 F(s)ds) |

Proof By [DHP, Theorem 3.1] it suffices to show the result in the case when
Gl(w) = exp® ( / g(t)dB(H)(t)) = exp’{w, g),
R
where ¢ is deterministic and ||g||, < co. In this case we have
FoG = oo ( [110)+a(0]an™ )
R
= o ([ 170+ 901 4B0) = 311 = Hll? - (), )

7



where

(f,9)s= [ f(s)gt)o(s,t)dsdt.

But :
G = e ( [aas) - [ i)
= oo ([ o0aB0 - (1.9), )
Hence

Fr)G = exp ( / FABE @) - LI + / g(1)dBE (1) — Hgl2 — (/. g>¢) —FoG.
]

We now return to Equation (3.3). First let us solve the equation when b = 0 and with
initial value X (0) given. Namely, let us consider

(3.7) dX(t) = —o, X (t)dB®™(t), X (0) given.
With the notion of Wick product, this equation can be written (see [HO2, Def 3.11])
(3.8) X(t) = =0, X (t) o W (1) |
where WH) = B(H) ig the fractional white noise. Using the Wick calculus, we obtain
X(t) = X(0)oJ,(t)
= X(0)oexp® (— /t O'SW(H)(S)dS)
0

¢
(3.9) = X(0)oexp (—/0 asdB(H)(s) — % |0||§)7t> ,
where
t t
(3.10) o2, == / / oy b1, ) dudy
0o Jo

To solve Equation (3.4) we let
(3.11) Y = X(t) o Jy(t) .

This means

(3.12) X(t) =Y, 0 J,(t),
where
(3.13) Jo(t) = J_g(t) = exp (/0 o dB™(s) — 1 ]0||§5’t) :

8



Thus we have

dy,  dX(t) dJ,(t)
— = g ° Jo(t) + X(t) o o
dX(t)

= 0 da(t) =0 (1) 0 X (1) o WHD(1)
= J,(t)ob(t, X(t),w)

= L (Ob(t, s X (1), w + /0 6(s)ds) |

where
(3.14) / osg(t)o(s, t)dsdt = /&Sg(s)ds Vg € C3°(R) .
R? R
We are going to relate 75X () to Y;.
T_:Xi(t,w) = 75[J_o(t)ooYi(t,w)]
= T,&[J,U(t)Tg,Y;]
= T_gt]_g(t)Y; .

Since 7_sJ_,(t) = [J_5(t)] !, we obtain an equation equivalent to (3.4) for Y;:

Do b [T (O Y w + / 5(s)ds).

1 —
(3.15) — 0

This is a deterministic equation. The initial value X (0) is equivalent to initial value Y, =
X (0) o J_»(0) = X (0). Thus we can solve the quasilinear equation with given initial value.

The terminal value X (7') can also be transformed into the terminal value on Y(7T') =
X(T) o J_o(T). Thus the equation with given terminal value can be solved in a similar

way. Note, however, that in this case the solution need not be .F(H)—adapted (see the next
section).

Example 3.2 In the equation (3.4) let us consider the case b(t,z) = b,z for some deter-
ministic locally bounded function b; of ¢. This means that we are considering the linear
stochastic differential equation:

(3.16) dX (t) = b X (t)dt + 0, X (t)dBY)(t) .

In this case it is easy to see that the equation (3.15) satisfied by Y is

When the initial value is Y'(0) = = (constant), x € R, then
Y, = JEefgb(s)ds_
Thus the solution of (3.16) with X (0) = x can be expressed as
X(t) = Y(t)o J_o(t)
(3.17) = xexp {/t b(s)ds + /t o,dBH(s) — %Haﬂit} :
0 0

9



If we assume the terminal value X (7) given, then

Y(t) = Y(T)el b0

= X(T) o J,(T)ek be)is
Hence
X(t) =Y(t) o J_»(t) = X(T) oexp { /t b(s)ds
(3.18) . /t o, dBH) (5) — 1 /t /t o(u)a(v)qﬁ(u,v)dudv} .

4 Fractional backward stochastic differential equations

Let b: R X R X R — R be a given function and let F':  — R be a given F}H)—measurable
random variable, where T > 0 is a constant. Consider the problem of finding F*)-adapted
processes p(t), q(t) such that

(4.1) dp(t) = b(t, p(t), q(t))dt + q(t)dB(t); te[0,T],

(4.2) P(T)=F as.

This is a fractional backward stochastic differential equation (FBSDE) in the two unknown
processes p(t) and ¢(t). We will not discuss general theory for such equations here, but settle
with a solution in a linear variant of (4.1)-(4.2), namely

(4.3) dp(t) = [a(t) + bp(t) + ciq(t)] dt + q()dB () te[0,T],

(4.4) P(T)=F as.,

where b; and ¢; are given continuous deterministic functions and «a(t) = «a(t,w) is a given
FUH)_adapted process s.t. fOT la(t, w)|dt < oo a.s.

To solve (4.3)-(4.4) we proceed as follows: By the fractional Girsanov theorem (see e.g.
[HO2, Theorem 3.18]) we can rewrite (4.3) as

(4.5) dp(t) = [a(t) + bp(t)] dt + q(t)dB(t); te[0,T],
where
(4.6) B () = BUD(¢) + / t cods

is a fractional Brownian motion (with Hurst parameter H) under the new probability measure
i on Fi defined b
ft on F;." defined by

(4.7)

= o (-} =oxp{ — [ o)) - 11elg),

10



where ¢ = ¢ is the continuous function with supp (¢) C [0, 7] satisfying

T
(4.8) / Cso(s,t)ds =c; 0<t<T,
0

||¢ H¢—/ / s)e(t)p(s,t)dsdt .

If we multiply (4.5) with the integrating factor

and

t
B == eXp(_/ bst) )
0
we get

(4.9) d(Bsp(s)) = Beos)ds + Bug(s)dB(s) |
or, by integrating (4.9) from s =t to s =T,

Assume from now on that

T 2
(4.11) ||oz||%1,2[0 7 = Ep [/ a(s)a(t)p(s,t)dsdt + </ Dfoz(s)ds) ] < 00.
¢ [0,7]x[0,T] 0

By the fractional It6 isometry (see [DHP, Theorem 3.7] or [HOS2, (1.10)]) applied to B, /i
we then have

(112) Eﬂ[(ATa@mB“%@)jzzum%gmH-

From now on let us also assume that
(4.13) E; [F?] < o0

We now apply the quasi-conditional expectation operator (see [HO2, Definition 4.9a)])

Ej [ |]'}(H)]

to both sides of (4.10) and get
(114 k[P = ) + [ s [alo) F] s

Here we have used that p(t) is E(H)—measurable, that the filtration ft(H) generated by
BWH)(s); s < tis the same as F and that

T
(4.15) E, [/ f(s,w)dB(H)(s)U}t(H)} =0, forall t<T
t

11



for all f € EA;Q[O,T]. See [HO2, Def 4.9] and [HOS2, Lemma 1.1].
From (4.14) we get the solution

p(t) = exp (_ /tT bsds> £, [F|ft<H)}
(4.16) +/tTeXp (_ /tstdr) i [a(s)!ft(H)] ds: t<T.

In particular, choosing ¢t = 0 we get

(4.17) p(0) = exp (— /0 Tbsds> £, [F] + /O " exp (— /0 s der) £, [a(s)] ds.

Note that p(0) is féH)-measurable and hence a constant. Choosing ¢t = 0 in (4.10) we get

(4.18) G= /O Bug(s)dB™(s)
where
(4.19) G = Gw) = BrF(w / B.a(s, w)ds — p(0),

with p(0) given by (4.17). A
By the fractional Clark-Ocone theorem [H@1, Theorem 4.15 b)] applied to (B, i) we
have

T
(4.20) G = E;[G] +/ E; [DSG|ﬁ§H)} dBH (s)
0

where D denotes the Malliavin derivative at s with respect to BU)(.). Comparing (4.18)
and (4.20) we see that we can choose

t
(4.21) q(t) = exp (/ b,,d'r) E; [f)tG]}"t(H)] :
0
We have proved the first part of the following result:

Theorem 4.1 Assume that (4.11) and (4.13) hold. Then a solution ( ( ).q(t)) of (4.3)-
(4.4) is gzven by (4.16) and (4.21). The solution is unique among all FH —adapted processes

p(-), a(-) € L£5[0,T].

Proof It remains to prove uniqueness. The uniqueness of p(-) follows from the way we
deduced formula (4.16) from (4.3)-(4.4). The uniqueness of ¢ is deduced from (4.18) and
(4.20) by the following argument: Substituting (4.20) from (4.18) and using that E;(G) = 0
we get

0= /0 : (ﬂsq(s) — B, [ﬁsG|ﬁ§H>D dB(s).

12



Hence by the fractional It6 isometry (4.12)

- [{/OT (65q(3) g, [ﬁSGu:‘S(H)D dB(H)(S)}2]

= 118ua(s) = By [ DGIFED ] Py
from which it follows that

Bsq(s) — Ej [ﬁSG|.7:'S(H)] =0 for a.a.(s,w)el0,T]xQ.

5 A stochastic maximum principle

We now apply the theory in the previous section to prove a maximum principle for systems

driven by fractional Brownian motion. See e.g. [H], [P] and [YZ] and the references therein

for more information about the maximum principle in the classical Brownian motion case.
Suppose X (t) = X (¢) is a controlled system of the form

(5.1) dX (t) = b(t, X (t),u(t))dt + o(t, X (t),u(t))dB(t); X(0) =z eRr",

where b: [0.T] x R" x U — R™ and o : [0,7] x R" x U — R™™ are given C' functions. The
control process u(-) : [0,T] x @ — U C R* is assumed to be FH)-adapted. U is a given
closed convex set in R*.

Let f:[0,T] XxR*x U — R, g:R" — R and G : R" — RY be given C' functions and
consider a performance functional J(u) of the form

(5.2) J(u) =E {/o flt, X(t),u(t))dt + g(X(T))
and a terminal condition given by
(5.3) E[G(X(T))]=0.

Let A denote the set of all F,")-adapted processes u : [0, T] x Q — U such that X (¢)
exists and does not explode in [0, 7] and

(5.4) E[/O (6 X (), () dt + g~ (X(T)) + G (X(T))] < oo

where y~ = max(0,y) for y € R, and such that (5.3) holds. If u € A and X™(¢) is the
corresponding state process we call (u, X)) an admissible pair. Consider the problem to
find J* and u* € A such that

(5.5) J*=sup{J(u);ue A} = J(u").

If such u* € A exists, then u* is called an optimal control and (u*, X*), where X* = X*' | is
called an optimal pair.

13



Let R™ ™ be the set of continuous function from [0, 7] into R"*"™. Define the Hamiltonian
H:[0,T] xR" x U X R" x R"™™ — R by

(5.6) H(t,x,u,p,q(-)) = f(t,x,u) + b(t,x,u) p—i—ZZolk (t,x,u / Qi (8)bm, (s, t)ds .

i=1 k=1

Consider the following fractional stochastic backward differential equation in the pair of un-
known .Ft(H)—adapted processes p(t) € R", q(t) € R"*™, called the adjoint processes:

5 {dp(t):—Hx(taX(t%U(t)ap(t)ﬂ('))dt+q(t)dB(H)(t); tef0.)
| P(T) = 0. (X(1) + NG, (X (D).

T
where H, = V, H = ( oA ,g%) is the gradient of H with respect to = and similarly

with g, and G,. X(t) = X®(t) is the process obtained by using the control u € A and
A € R} is a constant. The equation (5.6) is called the adjoint equation and p(t) is sometimes
interpreted as the shadow price (of a resource).

Thegrem 5.1 (The fractional stochastic maximum principle) Suppose u € A and
put X = X@ Suppose there exists a solution p(t),§(t) of the corresponding adjoint equation
(5.7) for some X\ € RY, and such that the following, (5.8)-(5.11), hold:

(5.8) XW()(t) € E;’Q and pL(t)o(t, XW(t),u(t)) € E;’z forall ue A
(5.9) H(t,-,-,p(t),q(t)), g(-) and G() are concave, for all t € [0,T],
(5.10)  H(t.X(1),a(t),p(1),q()) = max H(t, X(t), v, p(),4())

ae=s[2 3 ([ pidoutx0.u0)

=1 j,k=1

3

T
(5.11) —aik(t,f((t),a(t))}dt>( / DYt )dt)] <0  forall ueA.

0
Then if X € R, is such that (1, X) is admissible (in particular, (5.3) holds), the pair (u, X)
is an optimal pair for problem (5.5).

Proof We first give a proof in the case when G(x) = 0, i.e. when there is no terminal
condition.

With (i,
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Since (x,u) — H(x,u) = H(t,z,u,p,q(-)) is concave we have
H(z,u) — H(Z,0) < Hy(2,0) - (x — 2) + Hy(2,0) - (u— )
for all (z,u), (,1). Since v — H(X(t),v) is maximal at v = @(t) we have
Hy(2,4) - (u(t) —a(t) <0 Vt.
Therefore

Ay

\Y

Iﬂé-4uummmmmm«w«X@—X@wﬂ
=Iﬂl<X@—X@V@m—A<X@—mewwﬂmw]

Since E [ JTX (1) = X(#)T4(t)dBUD (t)} — 0 by (2.7), this gives

(5.13) A >E [ /O X - X(z))Tdﬁ@)} |

By (5.1) we have

(5.14) —E { /0 ' B(t) (dX(t) - dX(t))} .
Finally, since g is concave we have
(5.15) 9(X(T)) ~ g(X(T)) < gu(X(T)) - (X(T) — X(T)
Combining (5.12)-(5.15) with Corollary 2.5 we get, using (5.2), (5.7) and (5.11),
J(@) = J(w) = A+ E [g(X(T)) - g(X(T))]
> A+E |,(X(T)) - (X(T) - X(T)]
> A - [p(r) (X(1) - X(1))]

+E // ZZ (5. X (), u(s)) (s, X (). 1(s)) } G (1), (s, 1)
+Ezzub%mm>mwMMMm@%me”

>A - (A + Ay + A3+ Ay) >0
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This shows that J(@) is maximal among all admissible pairs (u(-), X(+)).

This completes the proof in the case with no terminal conditions (G = 0). Finally
consider the general case with G # 0. Suppose that for some Ay € R} there exists 1y,
satisfying (5.8)—(5.11). Then by the above argument we know that if we put

Sao(u) = E VO F(t, X (1), u(®))dt + g(X(T)) + Ag G(X(T))

then Jy,(tg) > Jy,(u) for all controls v (without terminal condition). If A is such that @y,
satisfies the terminal condition (i.e. uy, € A) and wu is another control in 4 then
‘](a)\o) = J/\o (a/\o) > J)\O (u) = J(u)

and hence 4, € A maximizes J(u) over all u € A. O

Corollary 5.2 Let i € A, X = X@ qnd (p(t),q4(t)) be as in Theorem 5.1. Assume that
(5.8), (5.9) and (5.10) hold, and that condition (5.11) is replaced by the condition

(5.16) q(-) or o(-, X(-),a(")) is deterministic .

Then if X € R is such that (4, X) is admissible, the pair (ﬁ,f() is an optimal pair for
problem (5.5).

6 A minimal variance hedging problem

To illustrate our main result, we use it to solve the following problem from mathematical
finance:

Consider a financial market driven by two independent fractional Brownian motions
By(t) = B{Hl)(t) and Bs(t) = B2 (t), with 1 < H; <1, = 1,2, as follows:

(6.1) (Bond price) dSo(t) =0; Sp(0)=1
(6.2) (Price of stock 1)  dSi(t) =dB(t); S1(0) = s;
(6.3) (Price of stock 2)  dSy(t) = dBy(t) + dBa(t) ;  S52(0) = s9.

If O(t) = (0o(t),01(t),02(t)) € R? is a portfolio (giving the number of units of the bond, stock
1 and stock 2, respectively, held at time ¢) then the corresponding value process is

(6.4) VOt = 0(1) - S() = 6, Si(t)

The portfolio is called self-financing if

(6.5) dVP(t) = 0(t) - dS(t) = 01(t)dBy(t) + O2()(dBy(t) + dBy(t)) .

This market is called complete if any bounded }"é,H)—measurable random variable [’ can be

hedged (or replicated), in the sense that there exists a (self-financing) portfolio #(¢) and an
initial value z € R such that

(6.6) Flw) =2+ /OTQ(t)dS(t) for a.a. w.

16



(See [HO2] and [W] for a general discussion about this.)

Let us now assume that we are not allowed to trade in stock 1, i.e. we must have 6;(t) = 0.
How close to, say, F(w) = B1(T,w) can we get if we must hedge under this constraint?

If we put 0y(t) = u(t) and interpret “close” as having a small L?*(u) distance to F, then
the problem can be stated as follows:

Find z € R and admissible u(¢,w) such that

J(zu): =E[{Bi(T) - (= + /OT u(t)(dBi(t) + dBa(1))) }2]
67 —val{ [ o - v+ [ woano})]

is minimal. We see immediately that it is optimal to choose z = 0, so it remains to minimize
over u(t) = u(t,w) the functional

(6.8) J(u) ::EH /O T(u(t)—l)dBl(t)Jr /0 Tu(t)ng(t)}Q].

If we apply the fractional Itd isometry (2.13) we get, after some simplifications,
T T
g =] [ [ {(als) = 10— Dous.0) + alhule)oas, ) s
o Jo
T 2
(6.9) + ( /0 (D} ult) —Dgtu(t)}dt) ]

However, it is difficult to see from this what the minimizing () is.
To approach this problem by using the fractional maximum principle, we define the state
process X (t) by

(6.10) dX (t) = (u(t) — 1)dBy(t) + u(t)dBs(t) .
Then the problem is equivalent to maximizing
(6.11) Ji(u) :==E[ — $X*(T)] .

The Hamiltonian for this problem is
T T
Atz 0.p.00) = (= 1) [ a(s)or(sit)ds +u [ als)onts, s
0 0

—(u—1) / 01()91 (s, t)ds + u / 05(5) (5, )ds

(6.12) - u[/OT 01(3)61 (5, £)ds + /OT a(5)0(s. 1)ds] /OT 01(5)61 (5, £)ds .
The adjoint equation is

(6.13) dp(t) = q1(t)dB1(t) + q2(t)dBa(t) ; t<T

(6.14) p(T) = —X(T) .
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Comparing with (6.10) we see that this equation has the solution
(6.15) a(t)=1—u(t), g =—u(t), p(t)=-X(); t<T.
Let u(t) be an optimal control candidate. Then by (6.12)

A

HO50.0.00.00) = o [ 0)on(6.0 + [ ax6)outs.085] - [ 0610105,

(6.16) = U[/o (1—au(t))p1(s,t)ds — /OTﬁ(s)gbg(s,t)ds] — /Ochl(s)qbl(s,t)ds.

The maximum principle requires that the maximum of this expression is attained at v = 4().
However, this is an affine function of v, so it is natural to guess that the coefficient of v must
be 0, i.e.

/0 (1= i(s)) (s, t)ds — / (s)da(s,t)ds = 0.,

which gives

(6.17) / (s)(1(5, 1) + (s, 1))ds = / b (s, )ds

This is a symmetric Fredholm integral equation of the first kind and it is known that it has
a unique solution 4(t) € L?*[0,T]. See e.g. [T, Section 3.15].

This choice of 4(t) satisfies all the requirements of Theorem 5.1 (in fact, even those of
Corollary 5.2) and we can conclude that this @(t) is optimal. Thus we have proved:

Theorem 6.1 (Solution of the minimal variance hedging problem)
The minimal value of

J(z,u) = E[{Bl(T) — <z + /OTu(t)(dB1(t) + ng(ﬂ)) }2]

is attained when z =0 and u = u(t) satisfies (6.17). The corresponding minimal value is
1an (z,u) / / {(a(s) — 1)(a(t) — L) (s, t) + a(s)a(t)ga(s,t) dsdt .

Remark Note that if ¢; = ¢y then u(t) = %, which is the same as the optimal value in the
classical Brownian motion case (H; = H, = 1).
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