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Abstract

The second fundamental theorem of asset pricing (in short, sft)
concerns the mathematical characterization of the economic concept
of market completeness for liquid and frictionless markets with an ar-
bitrary number of assets. The theorem establishes the mathematical
necessary and sufficient conditions in order to guarantee that every
contingent claim on the market can be duplicated with a portfolio of
primitive assets. For finite assets economies, completeness (i.e. perfect
replication of every claim on the market by admissible self-financing
strategies) is equivalent to uniqueness of the equivalent martingale
measure. This result can be extended to market models with an infi-
nite number of assets by defining completeness in terms of approximate
replication of claims by attainable ones.

Keywords: market completeness, equivalent martingale measure, predictable
representation property.

The second fundamental theorem of asset pricing (in short, sft)
concerns the mathematical characterization of the economic concept of mar-
ket completeness for liquid and frictionless markets with an arbitrary number
of assets. The theorem establishes the mathematical necessary and sufficient
conditions in order to guarantee that every contingent claim on the mar-
ket can be duplicated with a portfolio of primitive assets. For finite assets
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economies, completeness (i.e. perfect replication of every claim on the mar-
ket by admissible self-financing strategies) is equivalent to uniqueness of the
equivalent martingale measure. This result can be extended to market mod-
els with an infinite number of assets by defining completeness in terms of
approximate replication of claims by attainable ones. Hence several defi-
nitions of completeness are possible and in the sequel we will present and
discuss them extensively.

1 Markets with a finite number of asset prices

The first form of the sft appeared in [9] under the assumption of zero interest
rate and that the agent employs only simple trading strategies in order to
address the following issue, raised in the economic literature ([1], [19], [22]):
given a financial market, which contingent claims are “spanned” by a given
set of market securities?
In the seminal paper [7] it was already observed that in the idealized Black-
Scholes market the cash flow of an option can be duplicated by managing
a portfolio containing only stock and bond. A natural question is then: for
which contingent claim does this result hold in more general markets? When
does it hold for all contingent claims on the market?
For markets with a finite number of asset prices, the answer to this problem
was provided for the first time in [10] and in [11]. Here we follow the notation
of [11] in order to state the sft.

Let T < ∞ be a fixed time horizon and consider a probability space
(Ω,F , P ) endowed with a filtration (Ft)t∈[0,T ] satisfying the usual condi-
tions and such that F0 contains only Ω and the null sets of P and with
FT = F . Let S = (S0

t , · · · , Sd
t )t∈[0,T ] be a (d + 1)-dimensional strictly posi-

tive semimartingale, whose components S0, · · · , Sd are right-continuous with
left limits. Moreover we assume that S0

0 = 1. Here the stochastic process
Sk

t represents the value at time t of the kth security on the market. The
discounted price process Z = (Z1

t , · · · , Zd
t )t∈[0,T ] is then defined by setting

Zk = Sk/S0, for k = 1, · · · , d. Let P be the set of probability measures
Q on (Ω,F) that are equivalent to P and such that Z is a (vector) mar-
tingale under Q. We assume that P is not empty, i.e. that the market is
arbitrage-free (see Eqf04/002). We fix an element P ∗ in P and denote by E∗

the expectation under P ∗. Let L(Z) denote the set of all vector-valued, pre-
dictable processes H = (H1

t , · · · , Hd
t )t∈[0,T ] that are integrable with respect

to the semimartingale Z. For further details on L(Z), we refer to Remark
1.3.
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Definition 1.1. A stochastic process φ ∈ L(Z) is said to be an admissible
self-financing strategy if

(i) the discounted value process V ∗(φ) :=
∑d

k=1 φkZk is almost surely non-
negative;

(ii) V ∗(φ) satisfies the self-financing condition

V ∗
t (φ) = V ∗

0 (H) +

∫ t

0

d∑

k=1

φk
sdZk

s , t ∈ [0, T ];

(iii) V ∗(φ) is a martingale under P ∗.

Condition (iii) is here introduced to rule out “certain foolish strategies that
throw out money” ([11]), i.e. for no-arbitrage reasons. Note also that in
the above definition only the last condition may depend on the choice of the
reference measure P ∗.

A contingent claim X with maturity T is then represented by a non-
negative (FT -measurable) random variable. Such a claim is said to be attain-
able if there exists an admissible trading strategy φ such that V ∗

T (φ) = X/S0
T .

The model is said to be complete if every claim1 is attainable.

Theorem 1.2. (The second fundamental theorem of asset pricing,
[11]) Let P 6= ∅. Then the following statements are equivalent:

1. The model is complete under P ∗.

2. Every P ∗-martingale M can be represented in the form

Mt = M0 +

∫ t

0

d∑

k=1

Hk
s dZk

s , t ∈ [0, T ], (1)

for some H ∈ L(Z) (predictable representation property).

3. P is a singleton, i.e. there exists a unique equivalent martingale mea-
sure for Z.

The proof of this theorem relies on some results of [12] and [13], Chapter XI,
relating the representation property (1) to a condition involving a certain set
of probability measures.

1We say that a contingent claim is integrable if E∗ [
X/S0

T

]
< ∞. By Definition 1.1, it

follows that an attainable contingent claim is necessarily integrable. Hence we can restate
the definition of market completeness as follows. The model is said to be complete if
every integrable claim is attainable.
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Remark 1.3. In Theorem 1.2 the definition of the space L(Z) is crucial, as
shown by a counterexample in [20]. By [15] we obtain that L(Z) must be the
largest class of integrands over which multidimensional integrals with respect
to Z can be defined, as done implicitly in [11]. Hence by Theorem 4.6 of
[13] we have that L(Z) is the space of the vector-valued, predictable processes
H = (H1

t , · · · , Hd
t )t∈[0,T ] such that

∫ t

0

d∑
i,j=1

H i
sH

j
sd[Zi, Zj]s, t ∈ [0, T ], (2)

is locally integrable.

Completeness can be easily characterized in some particular cases, as shown
by the following examples.

Example 1.4. Consider a market with a finite number of assets in discrete
times {0, · · · , T} and let Pt be the partition of Ω underlying Ft. For each
cell A of Pt, t ∈ {0, · · · , T − 1}, we define as splitting index of A the number
Kt(A) of cells of Pt+1, which are contained in A. Then completeness can be
characterized as follows.

Proposition 1.5. (Proposition 2.12 of [10]) Let P 6= ∅ and suppose that
the securities are not redundant2. Then the model is complete if and only if
Kt(A) = d + 1 for all A ∈ Pt and t = 0, · · · , T − 1.

Hence completeness is a matter of dimension. Corollary 4.2 of [23] shows
that if the market is complete, then the splitting index Kt(A) is determined
by the price process S only, i.e. for every t = 0, · · · , T and each A ∈ Pt, we
have Kt(A) = dim(span {St+1(ω) : ω ∈ A}). Hence it is sufficient to check if
the rank of the matrix with columns formed by the vectors St+1(ω), ω ∈ A,
equals the splitting index Kt(A) of A. By using this geometric property of
the sample paths of the price process, an algorithm is then provided in [23],
to check if finite securities markets in discrete times are complete.

Example 1.6. In the case when security prices follow Itô processes on a
multidimensional Brownian filtration, completeness of the market can be
characterized in terms of the volatility matrix of the underlying asset prices,
as shown in [3], [15] and [18]. Consider a market with d risky assets given by
Itô processes of the form

Si
t = Si

0exp

[∫ t

0

αi
sds− 1/2

n∑
j=1

∫ t

0

(σij
s )2ds +

n∑
j=1

∫ t

0

σij
s dWj

s

]
, t ∈ [0, T],

2The price process is said to contain a redundancy if P (α · St+1 = 0|A) = 1 for some
nontrivial vector α, some t < T and some A ∈ Pt.
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i = 1, · · · , d, on the probability space (Ω,F , P ) endowed with the (aug-
mented) natural filtration (Ft)t∈[0,T ] generated by the n-dimensional Brown-
ian motion W = (W 1

t , · · · ,W n
t )t∈[0,T ] with FT = F . Here S0 can be assumed

constantly equal to 1 for the sake of simplicity. For t ∈ [0, T ] we denote by
Σt(ω) the (random) volatility matrix, whose entries are given by

[Σt(ω)]ij = σij
t (ω), i = 1, · · · , d, j = 1, · · · , n.

If for all i = 1, · · · , d, Si
0 is a positive constant, (αi

t)t∈[0,T ] an adapted stochas-
tic process with

∫ T

0

|αi
s|ds < ∞, a.s. (3)

and (σij
t )t∈[0,T ] are adapted stochastic processes with

∫ T

0

(σij
s )2ds < ∞, a.s. (4)

for j = 1, · · · , n, then following characterization of market completeness
holds.

Theorem 1.7. (Theorem 4 of [3], Theorem 2.2 and 3.2 of [15]) Let P 6= ∅.
Then the market is complete if and only if P (rank(Σt) = d for almost all t ∈
[0, T]) = 1.

For further references, see also Theorem 4.1 of [18]. Since there are n sources
of randomness represented by the Brownian motions, it is natural to ex-
pect that n sufficiently independent asset prices are needed for completeness.
Clearly, if d < n the market cannot be complete.

Example 1.8. If price processes have a finite number of jumps, then we
obtain again a characterization of completeness in terms of the volatility
matrix, as shown by the following theorem due to [3]. We set again S0 = 1
and consider price processes driven by a multivariate point process3 µ with
compensator ν(dt, dx) = Kt(dx)dt such that

Si
t = Si

0E
(
Ri

)
t
, t ∈ [0, T ], i = 1, · · · , d,

with

Ri
t =

∫ t

0

αi
sds+

∫

[0,t]×E

σi(u, x)(µ(du, dx)−ν(du, dx)), t ∈ [0, T ], i = 1, · · · , d,

3Let E be a Blackwell space. An E- multivariate point process is an integer-valued
random measure on [0, T ]×E with µ([0, t]×E) < ∞ for every ω, t ∈ [0, T ] (see Definition
III.1.23 of [14]).
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where the σi(t, x)’s are bounded dµ⊗ dP -a.e., E is the Doléans exponential
(for the definition, we refer to Theorem I.4.61 of [14]) and E ⊂ R. Note
that here σi, µ and ν may depend on ω, but for the sake of simplicity we do
not indicate this dependence. In this context asset prices may have jumps,
that can be thought as the result of possible shocks which may trigger the
market. If the cardinality |E| of E is finite, we denote again by Σt the
volatility matrix, whose row vectors are given by (σi(t, x))x∈E, i = 1, · · · , d.

Theorem 1.9. (Theorem 5 of [3]) Let P 6= ∅, |E| < ∞ and Kt({x}) > 0
for every x ∈ E. Then the market is complete if and only if P (rank(Σt) =
|E| for almost all t ∈ [0, T]) = 1.

Also in the case of a finite number of jumps that may trigger the economy,
the characterization of market completeness is similar to the Itô price process
case, i.e. one needs |E| sufficiently independent processes for completeness
in presence of |E| sources of randomness, given by the |E| different possible
shocks.

We have seen that the key to completeness is the predictable representation
property. Hence a natural question concerns for which kind of martingales
the predictable representation property is satisfied. For the continuous case,
we have that the predictable representation property holds for diffusion pro-
cesses that are martingales and have either Lipschitz coefficients ([24]) or non-
degenerate diffusion matrix and continuous coefficients ([12]). The only one-
dimensional martingales with stationary and independent increments that
satisfy the predictable representation property are the Wiener and the Pois-
son martingales ([25]). Hence the representation property holds for finite
Lévy measures, but it fails for infinite Lévy measures. In the next Section
we discuss the sft in the case of infinite dimensional financial markets.

2 Markets with an infinite number of asset

prices

Many applications of hedging involve dynamic trading in principle in in-
finitely many securities, for example in pricing of interest rate derivatives by
using pure discount bonds, or in the use of the term and strike structure of
European put and call options to hedge exotic derivatives, when asset prices
are driven by Lévy measures. Hence it is natural to develop infinite dimen-
sional market models to address this kind of issues. The problem is now
to establish if the sft still holds, if the market is endowed with an infinite
number of assets.
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By defining a complete market via the density of a vector space, the sft is in
[8] proved to hold true for (infinitely many) continuous and bounded asset
price processes, if all the martingales with respect to the reference filtration
Ft are continuous ([8], Theorem 6.7). In the case of a general filtration, The-
orem 6.5 of [8] states that completeness is equivalent for P ∗ to be an extreme
point of P, i.e. a weaker version of the sft holds.
The hypothesis of continuity cannot be dropped and in the presence of jump
discontinuities and infinitely many assets, a counterexample to the sft is pro-
vided in [2], where an economy with infinitely many assets is constructed, in
which the market is complete, but yet there exists an infinity of equivalent
martingale measures.
Since the formulation of this counterexample, many papers have studied the
problem of extending the result of the sft to markets with infinitely many
assets. Since many definitions of completeness are possible, the solution to
the counterexample of [2] relies on the choice of the definition of completeness
that is adopted. A first answer to this problem was provided in 1997 by [6]
and [5], where Theorem 6.11 shows that in presence of infinitely many assets
and a continuum of jump sizes, the uniqueness of the equivalent martingale
measure is equivalent to the market being approximately complete, i.e. every
bounded contingent claim can be approached in L2(Q) for some Q ∈ P by a
sequence of hedgeable claims.
In 1999 a certain number of papers have appeared ([3], [4], [16], [17]) at
the same time, where new definitions of market completeness were proposed
in order to maintain the sft, even in complex economies. The equivalence
between market completeness and uniqueness of the pricing measure is main-
tained by introducing a notion of market completeness, that is independent
both of the notion of no-arbitrage and of a chosen equivalent martingale mea-
sure. In finite-dimensional markets, the definition of market completeness is
given in terms of replicating value processes in economies without arbitrage
possibilities and with respect to a given equivalent martingale measure. How-
ever the issue of completeness is about the ability of replicating certain cash
flows, and not about how these cash flows are valued or whether these values
are arbitrage-free. From this perspective, the appropriate measure to address
the issue of completeness is the statistical probability measure P , and not an
equivalent martingale measure, that may also not exist. In [17] this new ap-
proach was also motivated by the empirical asset pricing literature. Moreover
an example in [3] shows an economy, where the existence of an equivalent
martingale measure precludes the possibility of market completeness. Hence
in [3], [4], [16] and [17], the concept of exact (almost everywhere) replication
of a contingent claim via an admissible portfolio is substituted by the notion
of approximation of a contingent claim. The main outlines of this approach
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are the following.
Let M denote the space of the P -absolutely continuous signed measures on
FT . Then Q ∈ M can be interpreted as a market agent’s personal way of
assigning values to claims, i.e. the set M represents the possible contingent
claims valuation measures held by traders. An agent using the valuation
measure Q ∈ M assigns to a contingent claim H the value

∫
HdQ. The

fact that M is given by the P -absolutely continuous signed measures on FT

has two particular meanings: first that all traders agree on null events, and
secondly, that there can be strictly positive random variables with negative
personal value. For a given trader, represented by Q ∈ M, two contingent
claims H1 and H2 are approximately equal if

|
∫

(H1 −H2)dQ| < ε for small ε > 0.

Denote by C the space of all bounded contingent claims. The finite inter-
sections of the sets of the form B(H1, ε) =

{
H2 ∈ C| |

∫
(H1 −H2)dQ| < ε

}
,

H1 ∈ C and ε > 0, give a basis for a topology τQ on C. We endow C with the
coarsest topology τ finer than all of the τQ, Q ∈ M. This topology is now
agent-independent, i.e. two claims are approximately equal if all the agents
believe that their values are close. The topology τ is usually referred as the
weak* topology on C (see [21]).
An agent is then allowed to trade in a finite number of assets via self-
financing, bounded, stopping time simple strategies that yield a bounded
payoff at T . As in the previous Section, a (bounded) claim is said to be
attainable if it can be replicated by one of such strategies. In this setting
the market is said to be quasicomplete if any contingent claim H ∈ C can
be approximated by attainable claims in the weak* topology induced by M
on C. Since the weak* topology as well as the trading strategies are agent
measure independent, the same is true for this notion of completeness. Con-
sider now the space P± of the P -absolutely continuous signed martingale
measures. Then the following generalized version of the sft holds.

Theorem 2.1. (The second fundamental theorem of asset pricing,
Theorem 2 of [3], Theorem 1 of [4], Theorem 5 of [17]) Let P± 6= ∅. Then
there exists a unique P -absolutely continuous signed martingale measures if
and only if the market is quasicomplete.

The proof of this theorem relies on the theory of linear operators between
locally convex topological vector spaces.
Since the market is endowed with an infinite number of assets, in principle
trading in infinitely many assets may be possible. To take in account this
possibility, in [5], [6], [16] and [17] portfolios consisting of infinitely many
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assets are allowed by considering measure-valued strategies. The result of
Theorem 2.1 still holds in the case of market models, where measure-valued
strategies are allowed, as shown in Theorem 6.11 of [5] and Theorem 2.1 of
[16].
This approach resolves the paradox of the counterexample of [2], since the
economy considered in [2] is incomplete under this new definition of market
completeness. Moreover if P 6= ∅ and the number of assets is finite or the
asset prices are given by continuous processes, then Theorem 5 of [4] shows
that the market model is quasicomplete if and only if it is complete.
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