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Abstract

We study the local risk-minimization approach for defaultable markets in a gen-

eral setting where the asset price dynamics and the default time may in�uence

each other. We �nd the Föllmer-Schweizer decomposition in this general setting

and compute it explicitly in two particular cases, when default time depends on

the risky asset's behavior and when only a dependence of discounted asset price

on default time is occurring.
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1 Introduction

In this paper we discuss the problem of pricing and hedging defaultable claims, i.e.

options that can lose partially or totally their value if a default event occurs. We

consider a simple market model with two non-defaultable primitive assets (the money

market account B and the discounted risky asset X) and a (discounted) defaultable

claim H. Since it is impossible to hedge against the occurrence of a default by using

a portfolio consisting only of the primitive assets, the market model extended with
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the defaultable claim is incomplete and it makes sense to apply some of the methods

used for pricing and hedging derivatives in incomplete markets.

In particular we focus here on the local risk-minimization approach. Other quadratic

hedging methods such as mean-variance hedging have been extensively studied in the

context of defaultable markets by Biagini and Cretarola (2007), Bielecki and Jean-

blanc (2005), Bielecki, Jeanblanc, and Rutkowski (2004b), Bielecki, Jeanblanc, and

Rutkowski (2004c) and Bielecki, Jeanblanc, and Rutkowski (2004a).

The local risk-minimization method has been applied for the �rst time to the case of

defaultable markets in Biagini and Cretarola (2007), but only in the case where the

default time and the underlying Brownian motion were independent. Here we consider

the more general case where the dynamics of the risky assets may be in�uenced by the

occurring of a default event and also the default time itself may depend on the assets

prices behavior. In this general setting we are able to provide the Föllmer-Schweizer

decomposition of a defaultable claim with random recovery rate. In particular we

focus on two cases where we compute explicitly the pseudo-locally risk-minimizing

strategy and the optimal cost. First we consider the situation where the default time

τ depends on the behavior of the risky asset price, but not vice versa.

In the second case we assume that drift and volatility of underlying discounted asset

are a�ected by τ and we show how our result �ts in the approach of Föllmer and

Schweizer (1991) of local risk-minimization for markets a�ected by incomplete infor-

mation. For local risk-minimization for defaultable markets via nonlinear �ltering, we

also refer to Frey, Schmidt, and Gabih (2007).

We would like to emphasize that this is the �rst time where local risk minimization

has been applied to hedge defaultable claims in a very general setting, allowing for

dependence between asset price behavior and default time, stochastic default intensity

and incomplete non-defaultable market for the primary assets. Our results are then of

general interest for computing hedging strategies in incomplete markets in presence of

an additional source of randomness, that is �orthogonal� to the asset price dynamics,

but not necessarily independent of them and viceversa.

In particular local risk-minimization naturally appears as suitable hedging method

for the new �nancial instruments recently introduced to hedge against systematic

mortality risk in life insurance contracts. This is the case of the so-called mortality

derivatives (survival swaps, longevity bonds) and of the unit-linked life insurance con-

tracts, i.e. contracts where the insurance bene�ts depend on the price of some speci�c

traded stock. In Dahl and Mø ller (2006), Dahl, Melchior, and Mø ller (2007), Mø ller

(1998), Mø ller (2001), Riesner (2006) and Riesner (2007) risk-minimizing strategy are

computed for these �nancial insurance derivatives, but only when the insurance and

the �nancial markets are independent (that corresponds to assume the independence

of the asset price dynamics and default time in our setup). However the introduction

of this new kind of �nancial instruments creates a link between life insurance and �-
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nancial markets, that may be re�ected in the asset prices dynamics. Hence the results

of our paper can be used to compute locally risk-minimizing strategies also for these

kind of derivatives under the more realistic assumption that insurance and �nancial

markets are not independent. Further applications of the results of this paper to the

hedging of hybrid derivatives are also work in progress in Biagini and Sun (2007).

2 Setting

We consider a simple model of a �nancial market where we can �nd a risky asset,

the money market account and defaultable claims, i.e. contingent agreements traded

over-the-counter between default-prone parties. Each side of contract is exposed to

the counterparty risk of the other party. Hence defaultable claims are derivatives that

could fail or lose their own value.

We �x a time horizon T ∈ (0,∞). The random time of default is represented by

a nonnegative random variable τ : Ω → [0, T ] ∪ {+∞}, de�ned on a probability

space (Ω,G, P), with P(τ = 0) = 0 and P(τ > t) > 0, for each t ∈ [0, T ]. For a

given default time τ , we introduce the associated default process Ht = I{τ≤t}, for
t ∈ [0, T ] and denote by H := (Ht)0≤t≤T the �ltration generated by the process Ht,

i.e. Ht = σ(Hu : u ≤ t) for any t ∈ [0, T ].
Let W be a standard Brownian motion on the probability space (Ω,G, P) and F :=
(Ft)0≤t≤T the natural �ltration of W . Let G := (Gt)0≤t≤T be the �ltration given by

Gt = Ft ∨ Ht, for every t ∈ [0, T ]. We put G = GT . We postulate that the Brownian

motion W remains a (continuous) martingale (and then a Brownian motion) with

respect to the enlarged �ltration G. In the sequel we refer to this assumption as the

hypothesis (H). We remark that all the �ltrations are assumed to satisfy the usual

hypotheses of completeness and right-continuity.

• Let

Ft = P(τ ≤ t|Ft), ∀t ∈ [0, T ]

be the conditional distribution function of the default time τ and assume Ft < 1,
for every t ∈ [0, T ]. Then the hazard process of τ under P:

Γt = − ln(1− Ft), ∀t ∈ [0, T ],

is well de�ned for every t ∈ [0, T ]. Under hypothesis (H), Lemma 1.2 of Bielecki,

Jeanblanc, and Rutkowski (2006) guarantees that the process Γ is increasing.

We assume that the hazard process Γ admits the following representation:

(2.1) Γt =
∫ t

0
λsds, ∀t ∈ [0, T ],
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where λ is a non-negative, integrable process. The process λ is called intensity

or hazard rate. By Proposition 5.1.3 of Bielecki and Rutkowski (2004) we obtain

that the compensated process M given by

(2.2) Mt := Ht −
∫ t∧τ

0
λudu = Ht −

∫ t

0
λ̃udu, ∀t ∈ [0, T ]

follows a martingale with respect to the �ltration G. Notice that for the sake

of brevity we have denoted λ̃t := I{τ≥t}λt. In particular, we obtain that the

existence of the intensity implies that τ is a totally inaccessible G-stopping time

(Dellacherie and Meyer (1982), VI.78). We note also that if Γ is an increasing

process, by Lemma 5.1.6 of Bielecki and Rutkowski (2004) the stopped process

Wt∧τ is always a G-martingale, even without assuming the hypothesis (H).

• We denote the money market account by Bt = exp
(∫ t

0 rsds
)
, where r is a G-

adapted nonnegative process, and represent the risky asset price by a stochastic

process Y on (Ω,G, P), whose dynamics is given by the following equation:

(2.3)

{
dYt = µtYtdt + σtYtdWt, ∀t ∈ [0, T ]
Y0 = y0, y0 ∈ R+

where σt > 0 a.s. for every t ∈ [0, T ] and µ, σ, r are G-adapted processes such

that Xt :=
Yt

Bt
belongs to L2(P), ∀t ∈ [0, T ]. For example, µ (respectively, σ)

could be of the form µt = µ1
t I{τ≤t} + µ2

t I{τ>t}, where µ1 and µ2 are F-adapted:
in this case the in�uence of the default time determines a sudden change in the

drift (respectively, in the volatility). Furthermore we assume that there exists

an equivalent probability measure such that the discounted price process X is

a local martingale. Let

(2.4) θt =
µt − rt

σt
, ∀t ∈ [0, T ]

be the market price of risk. We also assume that µ, σ and r are such that the

density
dP̂
dP

:= E
(
−

∫
θdW

)
T

is square-integrable. In particular we have that

the convex set P2
e (X) of square-integrable equivalent martingale measures for

X is not empty and the market model is in addition arbitrage-free.

• We assume that the information at time t available to the agent is given by

(2.5) Gt = Ft ∨Ht, ∀t ∈ [0, T ].
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Remark 2.1. That the information �ltration is supposed to be of the form (2.5) is a

standard assumption in the literature on the modelling of defaultable markets (Bielecki

and Jeanblanc (2005), Bielecki, Jeanblanc, and Rutkowski (2004b), Bielecki, Jean-

blanc, and Rutkowski (2004c), Bielecki, Jeanblanc, and Rutkowski (2004a), Bielecki,

Jeanblanc, and Rutkowski (2006), Bielecki and Rutkowski (2004)). Nevertheless, one

might argue that this choice appears arti�cial and that a more natural �ltration for

the market information would be FY ∨H := (FY
t ∨ Ht)t∈[0,T ], the �ltration generated

by the observed asset price Y and by the default time process H. Note however, that

in our setting it is easily seen that Gt = FY
t ∨ Ht, for every t ∈ [0, T ], as soon as µ

and σ are FY ∨H-adapted. In particular, one can show that σ is FY ∨H-adapted if

σ has a right continuous version.

As mentioned above, in this market model we can �nd defaultable claims, which are

represented by a triplet (X̄, δX̄, τ), where:

- the promised contingent claim X̄ represents the payo� received by the owner of

the claim at time T , if there was no default prior to or at time T . In particular

we assume it is represented by a GT -measurable random variable X̄ ∈ L2(P);

- the recovery claim δX̄ represents the recovery payo� at time T , if default occurs
prior to or at the maturity date T . Here δ is supposed to be a random recovery

rate.

In particular we assume that δ is represented by a HT -measurable random variable

in L2(Ω,G, P), i.e.

(2.6) δ = h(τ ∧ T )

for some Borel function h : (R,B(R)) → (R,B(R)), 0 ≤ h ≤ 1. Here we focus on

the case when an agent recovers a part of the promised claim at time of maturity.

However our approach works in the same way for a general recovery payment.

In our setting the discounted value of a defaultable claim can be represented as follows:

H =
X̄

BT
I{τ>T} +

δX̄

BT
I{τ≤T}

=
X̄

BT
(1 + (h(τ ∧ T )− 1)HT ) .(2.7)

In particular we obtain that H ∈ L2(GT , P). In this framework, we study the problem

of a trader wishing to price and hedge the defaultable claim H. Since the presence of

default makes the market incomplete, we choose to apply the local risk-minimization

approach, one of the methods used for pricing and hedging derivatives in incomplete

5



markets. We wish to solve analytically the problem of �nding the pseudo locally risk-

minimizing strategy and the portfolio with minimal cost. The local risk-minimization

method has been already applied to the case of defaultable markets in Biagini and

Cretarola (2007) under the assumption that the default process Ht and the underlying

Brownian motion Wt are independent for every t ∈ [0, T ]. Here we extend the results

of Biagini and Cretarola (2007) to the case of a reciprocal dependence of τ and the

risky asset trend. In the next section we provide a short review of the main results

of the theory of local risk-minimization (see Föllmer and Schweizer (1991), Heath,

Platen, and Schweizer (2001), Schweizer (1995)), that we reformulate in terms of our

context.

3 Local Risk-Minimization

Problem: in the �nancial market outlined in Section 2, we look for a hedging strategy

with minimal cost for the defaultable contingent claim H in (2.7).

We introduce the basic framework and some de�nitions. We recall that the asset price

dynamics is given by (2.3) and that for every t ∈ [0, T ]

Xt =
Yt

Bt

denotes the discounted risky asset price.

• We remark that in our model X belongs to the space S2
loc(P) of semimartingales

decomposable as the sum of a locally square-integrable local martingale and of a

G-predictable process of �nite variation null at 0. Indeed it can be decomposed

as follows:

Xt = X0 +
∫ t

0
(µs − rs)Xsds +

∫ t

0
σsXsdWs, t ∈ [0, T ],

where
∫ t
0 σsXsdWs is a locally square-integrable local martingale null at 0 and∫ t

0 (µs−rs)Xsds is a G-predictable process of �nite variation null at 0. Moreover,

in our case X is a continuous process.

• In our model we have that the so-called Structure Condition (SC) is satis�ed,

i.e. the mean-variance tradeo�

K̂t(ω) :=
∫ t

0
θ2
s(ω)ds
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is almost surely �nite for each t ∈ [0, T ], where θ is the market price of risk de-

�ned in (2.4), since X is continuous and P2
e (X) 6= ∅ by hypothesis (see Schweizer

(2001)).

In what follows, we assume that K̂ is uniformly bounded in t and ω, i.e. there
exists K such that

(3.1) K̂t(ω) ≤ K, ∀t ∈ [0, T ], a.s.

We denote by ΘS the space of G-predictable processes ξ on Ω such that

(3.2) E

[∫ T

0
(ξsσsXs)2ds

]
+ E

[(∫ T

0
|ξs(µs − rs)Xs|ds

)2
]

< ∞.

De�nition 3.1. An L2-strategy is a pair ϕ = (ξ, ζ) such that

1. ξ is a G-predictable process belonging to ΘS.

2. ζ is a real-valued G-adapted process such that the discounted value process V̄ (ϕ) :=
V (ϕ)

B
= ξX + ζ is right-continuous and square-integrable.

Here we assume to work with strategies that are G-adapted, i.e. the trader can invest

in the risky asset according to the information relative both to the asset prices and

the occurrence of a default.

The cost process is de�ned by:

Ct = V̄t −
∫ t

0
ξsdXs, t ∈ [0, T ].

In particular, the component invested in the money market account is given by:

ζt = V̄0(ϕ) +
∫ t

0
ξsdXs + Ct(ϕ)− ξtXt, t ∈ [0, T ].

We want to �nd a hedging strategy ϕ with �minimal� cost C and (discounted) value

process

V̄t(ϕ) = V̄0(ϕ) +
∫ t

0
ξsdXs + Ct(ϕ), t ∈ [0, T ],

such that

V̄T (ϕ) = H P− a.s.

In which sense is the cost minimal?
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De�nition 3.2. An L2-strategy ϕ is called mean-self-�nancing if its cost process C(ϕ)
is a P-martingale.

Following Schweizer (1995), we introduce an optimal strategy:

De�nition 3.3. Let H ∈ L2(GT , P). An L2-strategy ϕ with V̄T (ϕ) = H P-a.e. is

pseudo-locally risk-minimizing (in short plrm) for H if ϕ is mean-self-�nancing and

the martingale C(ϕ) is strongly orthogonal to the martingale part of X.

Note that under our assumptions on σ, to be strongly orthogonal to the martingale

part of X is equivalent to be strongly orthogonal to W .

In general how to characterize a pseudo-locally risk-minimizing strategy is shown in

the next result (see Föllmer and Schweizer (1991)). Let M2
0(P) be the space all

square-integrable P-martingales null at 0.

Proposition 3.4. A contingent claim H ∈ L2(P) admits a plrm strategy ϕ = (ξ, ζ)
if and only if H can be written as

(3.3) H = H0 +
∫ T

0
ξH
s dXs + LH

T P− a.s.

with H0 ∈ R, ξH ∈ ΘS, LH ∈ M2
0(P) strongly orthogonal to the martingale part of

X. The plrm strategy is given by

ξt = ξH
t , t ∈ [0, T ]

with minimal cost

Ct(ϕ) = H0 + LH
t , t ∈ [0, T ].

If (3.3) holds, the optimal portfolio value is

V̄t(ϕ) = Ct(ϕ) +
∫ t

0
ξsdXs = H0 +

∫ t

0
ξH
s dXs + LH

t ,

and

ζt = ζH
t = V̄t(ϕ)− ξH

t Xt,

for t ∈ [0, T ].

Proof. For the proof, see Föllmer and Schweizer (1991).

Decomposition (3.3) is well known in literature as the Föllmer-Schweizer decompo-

sition (in short FS decomposition). If X is a P-martingale, (3.3) coincides with the

Galtchouk-Kunita-Watanabe1(in short GKW) decomposition. We see now how one

can obtain the FS decomposition by choosing a convenient martingale measure for

X following Föllmer and Schweizer (1991). We remark that assumption (3.1) implies

the existence of a FS decomposition.
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De�nition 3.5 (The Minimal Martingale Measure). A martingale measure

P̂ equivalent to P with square-integrable density is called minimal if any square-

integrable P-martingale which is strongly orthogonal to the martingale part of X
under P remains a martingale under P̂.

The minimal measure is the equivalent martingale measure that modi�es the mar-

tingale structure as little as possible. Hypothesis (3.1) is su�cient to guarantee the

existence of P̂.

Theorem 3.6. Let H ∈ L2(GT , P). De�ne the process V̂ H as follows

V̂ H
t := Ê[H|Gt], t ∈ [0, T ],

where Ê[ · |Gt] denotes the conditional expectation under P̂. Let

(3.4) V̂ H
T = Ê[H|GT ] = V̂ H

0 +
∫ T

0
ξ̂H
s dXs + L̂H

T

be the GKW decomposition of V̂ H with respect to X under P̂. If either H admits a FS

decomposition or ξ̂H ∈ ΘS and L̂H ∈ M2
0(P), then (3.4) gives the FS decomposition

of H and ξ̂H gives a plrm strategy for H.

Proof. Since in our model (SC) is satis�ed and the existence of P̂ is a consequence of

assumption (3.1), the proof follows by Theorem 3.5 of Schweizer (1995).

We apply these results to the case of defaultable claims.

4 Local Risk-Minimization for Defaultable Claims

Under the hypotheses of Section 2, we study now the local risk-minimization approach

for a defaultable claim H de�ned in (2.7). The next result guarantees the existence

of a pseudo-locally risk-minimizing strategy for H.

Proposition 4.1. For any G-martingale N under P we have

(4.1) Nt = N0 +
∫ t

0
ξN
u dWu +

∫
]0,t]

ζN
u dMu = N0 + MN

t + LN
t ,

where ξN and ζN are G-predictable processes. The continuous G-martingale MN and

the purely discontinuous G-martingale LN are mutually orthogonal.

Proof. Since Γ is continuous, the proof follows from Corollary 5.2.4 of Bielecki and

Rutkowski (2004).
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By hypothesis (3.1), De�nition 3.5 and Proposition 4.1, we have

(4.2)
dP̂
dP

= E
(
−

∫
θdW

)
T

.

By (4.2) we have that Ŵt = Wt +
∫ t
0 θsds is a G-Brownian motion under P̂ and the

results of Proposition 4.1 can be reformulated in terms of (Ŵ , M). In fact Mt =
Ht −

∫ t
0 λ̃sds is also a P̂-martingale since the orthogonal martingale structure is not

a�ected by the change of measure from P to P̂. Hence by the representation property

(4.1), every G-martingale N̂ under P̂ is of the form

(4.3) N̂t = N̂0 +
∫ t

0
ξN̂
u dŴu +

∫
]0,t]

ζN̂
u dMu, t ∈ [0, T ].

We now �nd a plrm strategy for H by computing the decomposition (4.3) for Ê [H| Gt]
under P̂. Theorem 3.6 and our hypothesis (3.1) guarantee that this is indeed the FS

decomposition for H.

Under the equivalent martingale probability measure P̂, the discounted optimal port-

folio value V̂ of the defaultable claim H at time t, is given by:

V̂t = Ê [H| Gt]

= Ê

[
X̄

BT
(1 + (h(τ ∧ T )− 1)HT )

∣∣∣∣Gt

]
= Ê

[
X̄

BT

∣∣∣∣Gt

]
︸ ︷︷ ︸

a)

+ Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
︸ ︷︷ ︸

b)

.(4.4)

a) Since X̄ ∈ L1(GT , P̂), by (4.3) we have

(4.5) Ê

[
X̄

BT

∣∣∣∣Gt

]
= Ê

[
X̄

BT

]
+

∫ t

0
ξ̄sdŴs +

∫
]0,t]

η̄sdMs,

where ξ̄ and η̄ are G-predictable process.

b) It remains to compute the term Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
. First by Corollary
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5.1.2 of Bielecki and Rutkowski (2004) we can obtain the following decomposition:

Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= HtÊ

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Ft ∨HT

]
+(1−Ht)Ê

[
(1−Ht)e

∫ t
0 λsds X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Ft

]
=

= Ht(h(τ ∧ T )− 1)Ê
[

X̄

BT

∣∣∣∣Ft ∨HT

]
+ (1−Ht)e

∫ t
0 λsds·

· Ê
[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Ft

]
︸ ︷︷ ︸

c)

(4.6)

We focus now on the conditional expectation c). We introduce here the σ-algebra

Gτ− = σ (A ∩ {τ > t}, A ∈ Gt, 0 ≤ t ≤ T )

of the events strictly prior to τ . We set

(4.7) N := Ê

[
(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Gτ−

]
and note that

N = (h(τ ∧ T )− 1)Ê
[

X̄

BT

∣∣∣Gτ−

]
since the G-stopping time τ is Gτ−-measurable by Theorem 5.6 on page 118 of Del-

lacherie and Meyer (1978).

Lemma 4.2. Let N be de�ned in (4.7). Then

Ê

[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Ft

]
= Ê

[
I{t<τ≤T}N

∣∣Ft

]
, ∀t ∈ [0, T ].

Proof. Consider an arbitrary event A ∈ Ft. By using the de�nition of the conditional

expectation, we have∫
A

I{t<τ≤T}(h(τ ∧ T )− 1)
X̄

BT
dP̂ =

∫
A∩{τ>t}

I{τ≤T}(h(τ ∧ T )− 1)
X̄

BT
dP̂

=
∫

A∩{τ>t}
Ê

[
I{τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Gτ−

]
dP̂

=
∫

A∩{τ>t}
I{τ≤T}NdP̂

=
∫

A
I{t<τ≤T}NdP̂,

since the event {τ ≤ T} is in Gτ−.
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Since Gτ− = Fτ−, we know that there exists an F-predictable2 process Z such that

(4.8) Zτ = N.

Hence we obtain

Ê

[
I{t<τ≤T}(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Ft

]
= Ê

[
I{t<τ≤T}N

∣∣Ft

]
= Ê

[
I{t<τ≤T}Zτ

∣∣Ft

]
= Ê

[∫ T

t
Zse

−
∫ s
0 λuduλsds

∣∣∣∣Ft

]
,(4.9)

where the last equality holds in view of Proposition 5.1.1 (ii) of Bielecki and Rutkowski

(2004) and the F-predictability of Z (see page 148 of Bielecki and Rutkowski (2004)).

Hence we can rewrite (4.6) as follows:

Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
+ (1−Ht)e

∫ t
0 λsdsÊ

[∫ T

t
Zse

−
∫ s
0 λuduλsds

∣∣∣∣Ft

]
.

(4.10)

We put for each t ∈ [0, T ]

(4.11) Dt := e
∫ t
0 λsdsÊ

[∫ T

t
Zse

−
∫ s
0 λuduλsds

∣∣∣∣Ft

]
and we introduce the F-martingale m by setting for each t ∈ [0, T ]

(4.12) mt = Ê

[∫ T

0
Zse

−
∫ s
0 λuduλsds

∣∣∣∣Ft

]
.

Following the proof of Proposition 5.2.1 of Bielecki and Rutkowski (2004), we write D
in terms of the F-martingale m and by applying the Itô integration by parts formula,

we obtain

Dt = m0 +
∫ t

0
e
∫ s
0 λududms +

∫ t

0
(Ds − Zs)λsds.

Furthermore, since D is a continuous process, we have

(1−Ht)Dt = m0 +
∫

]0,t∧τ ]
dDs − I{τ≤t}Dτ .

12



Hence

(1−Ht)Dt = m0 +
∫ t∧τ

0
e
∫ s
0 λududms +

∫ t∧τ

0
(Ds − Zs)λsds− I{τ≤t}Dτ

= m0 +
∫ t∧τ

0
e
∫ s
0 λududms −

∫
]0,t]

DsdMs −
∫ t∧τ

0
Zsλsds.

Consequently we can rewrite (4.10) as follows:

Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
+m0 +

∫ t∧τ

0
e
∫ s
0 λududms −

∫
]0,t]

DsdMs −
∫ t∧τ

0
Zsλsds.

Lemma 4.3. Let Z be the F-predictable process given by (4.8). Then the following

equality holds:

(4.13) HtZτ = Ht(h(τ ∧ T )− 1)Ê
[

X̄

BT

∣∣∣∣Ft ∨HT

]
, ∀t ∈ [0, T ].

Proof. It is clear that

HtZτ = Ê

[
Ht(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Gτ−

]
.

Hence we need only to show that

(4.14) Ê

[
Ht(h(τ ∧ T )− 1)

X̄

BT

∣∣∣∣Gτ−

]
= Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
.

By using the de�nition of conditional expectation and the fact that conditioning with

respect to Gt can be replaced by conditioning with respect to Ft ∨ HT on the event

{τ ≤ t} (see Lemma 5.1.5 of Bielecki and Rutkowski (2004)), given an arbitrary event

A in Fs, with 0 < s ≤ t, for any t ∈ [0, T ], we have∫
A∩{τ>s}

Ht(h(τ ∧ T )− 1)
X̄

BT
dP̂ =

∫
A∩{s<τ≤t}

(h(τ ∧ T )− 1)
X̄

BT
dP̂

=
∫

A∩{τ>s}
Ht(h(τ ∧ t)− 1)Ê

[
X̄

BT

∣∣∣∣Gt

]
dP̂

=
∫

A∩{τ>s}
Ht(h(τ ∧ T )− 1)Ê

[
X̄

BT

∣∣∣∣Ft ∨HT

]
dP̂,

since

Ht(h(τ ∧ T )− 1) = Ht(h(τ ∧ t)− 1), ∀t ∈ [0, T ].

Then the statement is proved since (4.14) is veri�ed on the generators.
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Finally gathering the results, by using (4.13) we obtain:

Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
= HtZτ + m0 +

∫ t∧τ

0
e
∫ s
0 λududms −

∫
]0,t]

DsdMs −
∫ t∧τ

0
Zsλsds

= m0 +
∫ t∧τ

0
e
∫ s
0 λududms +

∫
]0,t]

(Zs −Ds)dMs

= m0 +
∫ t

0
(1−Hs)e

∫ s
0 λuduξm

s dŴs +
∫

]0,t]
(Zs −Ds)dMs,(4.15)

where in particular we have used the fact that the continuous F-martingale m admits

the following integral representation with respect to the Brownian motion Ŵ :

(4.16) mt = m0 +
∫ t

0
ξm
s dŴs, t ∈ [0, T ],

for some F-predictable process ξm, such that ∀t ∈ [0, T ],
∫ t
0 (ξm

s )2ds < ∞.

Proposition 4.4. In the market model outlined in Section 2, the FS decomposition

for H de�ned in (2.7) is given by

H = Ê

[
X̄

BT

]
+ m0 +

∫ T

0

1
σsXs

(
ξ̄s + I{τ≥s}ξ

m
s e

∫ s
0 λudu

)
dXs

+
∫

]0,T ]
(Zs −Ds + η̄s)dMs,

(4.17)

where the processes m, Z, D, ξ̄, η̄, ξm and M are de�ned in (4.12), (4.7), (4.11),

(4.5), (4.16) and (2.2). In particular we have that a plrm strategy ϕ = (ξ, ζ) is given
by

ξt = ξH
t =

1
σtXt

(
ξ̄t + I{τ≥t}ξ

m
t e

∫ t
0 λsds

)
,(4.18)

ηt = V̂t −
1
σt

(
ξ̄t + I{τ≥t}ξ

m
t e

∫ t
0 λsds

)
(4.19)

for t ∈ [0, T ] and the minimal cost is

(4.20) CH
t = Ê

[
X̄

BT

]
+ m0 +

∫
]0,t]

(Zs −Ds + η̄s)dMs, t ∈ [0, T ].

Proof. It follows by hypothesis (3.1) and Theorem 3.6.
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Remark 4.5. It is possible to choose di�erent hypotheses that guarantee that decom-

position (4.17) gives the FS decomposition. Assumption (3.1) is the simplest condition

that can be assumed. For a complete survey and a discussion of the other su�cient

conditions, we refer to Schweizer (1995).

Proposition 4.4 extends the main result of Biagini and Cretarola (2007), where de-

composition (4.17) was already proved in the case when the trajectories of X are

F-adapted and Ft and Ht are independent for every t ∈ [0, T ].

In general if
X̄

BT
is FT -measurable, we have η̄ = 0 in decomposition (4.5) and

(4.21) Zt = (h(t ∧ T )− 1)
(

Ê

[
X̄

BT

]
+

∫ t∧T

0
ξ̄sdŴs

)
in equation (4.9). In fact by (4.5) and Theorem 67 page 125 in Dellacherie and Meyer

(1978), we get

Ê

[
X̄

BT

∣∣∣∣Gτ−

]
= Ê

[
Ê

[
X̄

BT

∣∣∣∣Gτ

]∣∣∣∣Gτ−

]
= Ê

[
Ê

[
X̄

BT

]
+

∫ τ

0
ξ̄sdŴs

∣∣∣∣Gτ−

]
= Ê

[
X̄

BT

]
+

∫ τ∧T

0
ξ̄sdŴs.(4.22)

Note that here we are using implicitly hypothesis (H) under P̂.

Remark 4.6. The introduction of the process Z in (4.8) may appear arti�cial. How-

ever it is necessary to �nd decomposition (4.9). We have already seen that Z can be

explicitly calculated if
X̄

BT
is FT -measurable. This is already a quite general case since

we do not require the trajectories of X to be F-adapted or the independence of τ from

Ft, for each t ∈ [0, T ].

Another example is the following. We suppose that under P̂, the discounted asset price
X is of the form

Xt = x0e
∫ t
0 σ(τ∧s)dŴs− 1

2

∫ t
0 σ(τ∧s)2ds, x0 > 0,

where σ is a bounded Borel function, and
X̄

BT
= X2

T . In this case
X̄

BT
is (strictly)
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GT -measurable. We obtain

Ê

[
X̄

BT

∣∣∣∣Gτ−

]
= Ê

[
x2

0e
2

∫ T
0 σ(τ∧s)dŴs−

∫ T
0 σ(τ∧s)2ds

∣∣∣Gτ−

]
= x2

0e
∫ T
0 σ(τ∧s)2dsÊ

[
e2

∫ T
0 σ(τ∧s)dŴs−2

∫ T
0 σ(τ∧s)2ds

∣∣∣Gτ−

]
= x2

0e
σ(τ)2(T−τ∧T )e2

∫ τ∧T
0 σ(s)dŴs−

∫ τ∧T
0 σ(s)2ds,

and

Z̄t = x2
0(h(t ∧ T )− 1)eσ(t)2(T−t∧T )e2

∫ t∧T
0 σ(s)dŴs−

∫ t∧T
0 σ(s)2ds.

We remark that Z is not uniquely de�ned. However in the case that there exist several

possible F-predictable processes Z satisfying equation (4.8), they all provide the same

conditional expectation (4.9). We refer also to Bielecki and Rutkowski (2004), page

148, for a further discussion of this issue.

We compute decomposition (4.17) in two particular cases.

5 Example 1: τ dependent on X

We consider �rst the case where the default process may depend on the evolution

of the asset price, but the dynamics of the money market account and of the stock

are not in�uenced by the presence of the default in the market. We represent this

fact by assuming that the interest rate, the drift and volatility in (2.3) are F-adapted
processes.

Since the promised contingent claim X̄ is written on the underlying non-defaultable

assets Y and B, in this setting X̄ is FT -measurable and we have

Ê

[
X̄

BT

∣∣∣∣Gt

]
= Ê

[
X̄

BT

∣∣∣∣Ft

]
, ∀t ∈ [0, T ],

as a consequence of our hypothesis (H) under P̂. Hence we get η̄ = 0 in (4.5).

We show now how to hedge a Corporate bond with a Treasury bond by using the local

risk-minimizing approach, i.e. we compute a plrm strategy for a defaultable claim H
whose promised contingent claim X̄ is equal to 1, i.e. X̄ = p(T, T ) = 1, where the

process p(t, T ) represents the price of a Treasury bond that expires at time T . For

the sake of simplicity we put

Bt ≡ 1, ∀t ∈ [0, T ].

Hence the discounted value of H can be represented as follows:

(5.1) H = 1 + (h(τ ∧ T )− 1)HT .

In addition we assume the following hypotheses:
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• λ is an a�ne process, in particular it satis�es the following equation under P̂:

(5.2)

{
dλt = (b + βλt)dt + α

√
λtdŴt

λ0 = 0,

where b, α ∈ R+ and β is arbitrary. It is the Cox-Ingersoll-Ross model and we

know it has a unique strong solution λ ≥ 0 for every λ0 ≥ 0. You can see Du�e

(2004) for further details.

• The Borel function h : R → R is de�ned as follows:

(5.3) h(x) = α0I{x≤T0} + α1I{x>T0},

where α0, α1 ∈ R+ with 0 ≤ α0 < α1 and T0 is a �xed date before the maturity

T .

Under the equivalent martingale probability measure P̂, the discounted optimal port-

folio value V̂t of the defaultable claim H given in (5.1) at time t, is given by:

V̂t = Ê [H| Gt]

= 1 + Ê [(h(τ ∧ T )− 1)HT | Gt]

= 1 + m0 +
∫ t

0
I{τ≥s}e

∫ s
0 λududms +

∫
]0,t]

(h(s)− 1−Ds)dMs,(5.4)

where h is given in (5.3) and m, D and M are the processes introduced in (4.12),

(4.11) and (2.2) respectively. Here we have Zt = h(t) − 1 by (4.21). Note that in

this case (5.4) can be recovered directly by Corollary 5.2.2 of Bielecki and Rutkowski

(2004).

We now need only to compute the decomposition of the F-martingale m, i.e. the

conditional expectation Ê
[∫ T

0 (h(s)− 1)e−
∫ s
0 λuduλsds

∣∣∣Ft

]
. We obtain

mt

= Ê

[∫ T

0
e−

∫ s
0 λudu

(
(α0 − α1)I{s≤T0} + (α1 − 1)I{s≤T}

)
λsds

∣∣∣∣Ft

]
= (α0 − α1)Ê

[∫ T0

0
e−

∫ s
0 λuduλsds

∣∣∣∣Ft

]
+ (α1 − 1)Ê

[∫ T

0
e−

∫ s
0 λuduλsds

∣∣∣∣Ft

]
= (α1 − α0) Ê

[
e−

∫ T0
0 λsds

∣∣∣Ft

]
︸ ︷︷ ︸

a)

+(1− α1) Ê
[
e−

∫ T
0 λsds

∣∣∣Ft

]
︸ ︷︷ ︸

b)

+α0 − 1.
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b) Since λ is an a�ne process whose dynamics is given in (5.2) , we have

Ê
[
e−

∫ T
0 λsds

∣∣∣Ft

]
= e−

∫ t
0 λsdsÊ

[
e−

∫ T
t λsds

∣∣∣Ft

]
= e−

∫ t
0 λsds · e−A(t,T )−B(t,T )λt ,

where the functions A(t, T ), B(t, T ) satisfy the following equations:

∂tB(t, T ) =
α2

2
B2(t, T )− βB(t, T )− 1, B(T, T ) = 0(5.5)

∂tA(t, T ) = −bB(t, T ), A(T, T ) = 0,(5.6)

that admit explicit solutions (see for instance Filipovi¢ (2006)). Since Ê
[
e−

∫ T
0 λsds

∣∣∣Ft

]
must be of the form

Ê
[
e−

∫ T
0 λsds

∣∣∣Ft

]
= Ê

[
e−

∫ T
0 λsds

]
+

∫ t

0
ϕsdŴs,

for a suitable ϕ, by applying Itô formula and by (5.5) and (5.6), we obtain

d(e−
∫ t
0 λsds · e−A(t,T )−B(t,T )λt) = −e−

∫ t
0 λsds−A(t,T )−B(t,T )λt(αB(t, T )

√
λtdŴt).

Hence

Ê

[
e−

∫ T
0 λsds

∣∣∣∣Ft

]
= e−A(0,T ) −

∫ t

0
αe−

∫ s
0 λudu−A(s,T )−B(s,T )λsB(s, T )

√
λsdŴs.

(5.7)

Similarly we can compute a) and we get

Ê

[
e−

∫ T0
0 λsds

∣∣∣∣Ft

]
= e−A(0,T0) −

∫ t

0
αI{s≤T0}e

−
∫ s
0 λudu−A(s,T0)−B(s,T0)λsB(s, T0)

√
λsdŴs.

(5.8)

Finally gathering the results, we obtain

mt = α0 − 1 + (α1 − α0)e−A(0,T0) + (1− α1)e−A(0,T )

−
∫ t

0
αe−

∫ s
0 λudu

(
(α1 − α0)I{s≤T0}e

−A(s,T0)−B(s,T0)λsB(s, T0)

+ (1− α1)e−A(s,T )−B(s,T )λsB(s, T )
)√

λsdŴs.

(5.9)
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Consequently D is given by

Dt = e
∫ t
0 λsdsmt − e

∫ t
0 λsds

∫ t

0
(h(s)− 1)e−

∫ s
0 λuduλsds

= e
∫ t
0 λsdsmt + (α0 − α1)(1− e−

∫ T0
t λsds)I{t≤T0}

+ [(α0 − α1)e−
∫ T0

t λsds − (α0 − 1)e
∫ t
0 λsds + α1 − 1]

(5.10)

Finally by plugging (5.9) and (5.10) into (5.4), we can write explicitly the FS decom-

position for H:

H = α0 + (α1 − α0)e−A(0,T0) + (1− α1)e−A(0,T )+

−
∫ T

0
I{τ≥s}

α

σsXs

(
(α1 − α0)I{s≤T0}e

−A(s,T0)−B(s,T0)λsB(s, T0)+

(1− α1)e−A(s,T )−B(s,T )λsB(s, T )
)√

λsdXs +
∫

]0,T ]
(h(s)− 1−Ds)dMs,(5.11)

where A, B, h, D and M are given in (5.6), (5.5), (5.3), (5.10) and (2.2) respectively.

6 Example 2: X dependent on τ

We study now the case when the default time may in�uence the dynamics of the

asset price but not vice versa. We suppose then that the default time τ = τ(η) and
the underlying Brownian motion W = W (ω̃) are independent and de�ned on the

product space Ω = Ω̃× E, endowed with the product �ltration G = F⊗H, given by

Gt = Ft⊗Ht, for every t ∈ [0, T ] and the product probability P = PW ⊗ ν, where PW

is the Wiener measure and ν is the law of Ht = I{τ≤t}. Note that now with respect to

the previous setting we have ω = (ω̃, η). In particular following Biagini and Pratelli

(1999), we assume that the dynamics of Y are of the form

dYt = Yt [µt(η)dt + σt(η)dWt] ,

and that the hypotheses outlined in Section 2 still hold. Note that here we are focusing

on the case where drift and volatility depend only on η, seen as an exterior source of

randomness.

Consider now the larger �ltration G̃ given by G̃t = Ft ⊗ HT , for every t ∈ [0, T ],
obtained by adding to Gt the full information about η since the initial instant t = 0:
it follows that Gt ⊂ G̃t, 0 ≤ t < T . Since τ and W are independent, we note that W
is a Brownian motion also with respect to G̃.
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Proposition 6.1. Under the hypotheses outlined above the process ξH given in (4.18)

coincides with the G-predictable projection of the G̃-predictable process ξ̃H such that∫ T
0 (ξ̃H

s )2ds < ∞ a.s. and

H = Ê

[
H

∣∣∣∣G̃0

]
+

∫ T

0
ξ̃H
s dŴs.

Proof. Since GT = FT ∨ HT , we may prove the Proposition in the case when the

GT -measurable random variable
X̄

BT
is of the form

X̄

BT
= (1 −Hs)F , for some �xed

s ≤ T and some FT -measurable integrable random variable F . We compute �rst

decomposition (4.5) for
X̄

BT
. We note that

X̄

BT
= (1−Hs)F = (1−Hs)e

∫ T
0 λuduF̄ = LsF̄ ,

where the process Lt = (1 − Ht)e
∫ t
0 λudu, for t ≤ s, is a G-martingale (see Lemma

5.1.7 of Bielecki and Rutkowski (2004) for further details) and F̄ = e−
∫ s
0 λuduF is an

FT -measurable, integrable random variable.

First by the martingale representation property of the Brownian �ltration, we have

F̄ = Ê
[
F̄

]
+

∫ T

0
ξudŴu,

where ξ is an F-predictable. Then

X̄

BT
= Ls

(
Ê

[
F̄

]
+

∫ T

0
ξudŴu

)
= LsÊ

[
F̄

]
+

∫ T

0
LsξtdŴt,

i.e.
X̄

BT
is attainable with respect to the larger �ltration G̃. If we put Gt := Ê

[
F̄

∣∣Ft

]
,

for t ∈ [0, T ], we have

X̄

BT
= LsF̄ = LsÊ [F |FT ] = LsGT .

By Proposition 5.1.3 of Bielecki and Rutkowski (2004) we have Lt = E(−M)t, for

t ≤ s, where Mt = Ht −
∫ t∧τ
0 λudu. Hence [L,G]t = 0, for every t ∈ [0, s] and the Itô
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integration by parts formula yields:

X̄

BT
= L0G0 +

∫ T

0
LtdGt +

∫
]0,s]

GtdLt + [L,G]s

= Ê
[
F̄

]
+

∫ T

0
LtξtdŴt +

∫
]0,T ]

I{s≥t}Ê
[
F̄

∣∣Ft

]
dLt

= Ê
[
F̄

]
+

∫ T

0
LtξtdŴt −

∫
]0,T ]

I{s≥t}Ê
[
F̄

∣∣Ft

]
Lt−dMt,(6.1)

since Gt = Ê
[
F̄

∣∣Ft

]
is continuous. On the other hand by (4.3), we get

X̄

BT
= LsF̄ = Ê

[
LsF̄

]
+

∫ T

0
ξ̄tdŴt +

∫ T

0
η̄tdMt,

and the uniqueness of the decomposition implies that

ξ̄t = Lt−ξt = (Lsξ·)
p
t ,

i.e. ξ̄ coincides with the G-predictable projection of the process Lsξt.

Analogously we compute the decomposition of Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣G̃t

]
, that is

given by

Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣G̃t

]
= (h(τ ∧ T )− 1)HT

(
Ê

[
X̄

BT

∣∣∣∣G̃0

]
+

∫ T

0
LsξudŴu

)
= (h(τ ∧ T )− 1)HT Ê

[
X̄

BT

∣∣∣∣G̃0

]
+

∫ T

0
Lsξu(h(τ ∧ T )− 1)HT︸ ︷︷ ︸

Ψ̃u

dŴu.

With a similar argument as before we can conclude that the integrand

Ψt = (1−Ht)e
∫ t
0 λsdsξm

t

appearing in decomposition (4.15) of Ê

[
X̄

BT
(h(τ ∧ T )− 1)HT

∣∣∣∣Gt

]
is the G-predictable

projection of Ψ̃.

In particular we note that we obtain again the results of Theorem 4.6 and Theorem

4.16 of Föllmer and Schweizer (1991). Hence (6.1) is the FS decomposition in the
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case of incomplete information. Namely if the trader would have access to the larger

�ltration G̃ which contains at any time the information on past and future behavior

of the default time, the market would be complete because the volatility and drift are

deterministic with respect to G̃.

Example 6.2. We apply these results to �nd a plrm strategy for a defaultable claim H
whose promised contingent claim X̄ is given by the standard payo� of a call option, i.e.

X̄ = (YT −K)+, where K ∈ R+ represents the exercise price. Hence the discounted

value of H can be represented as follows:

(6.2) H =
(YT −K)+

BT
(1 + (h(τ ∧ T )− 1)HT )

and with respect to G̃, the discounted replicating portfolio Ṽ for H, at time t ∈ [0, T ],
is given by:

Ṽt

= Ê[H|G̃t]

= Ê

[
(YT −K)+

BT
(1 + (h(τ ∧ T )− 1)HT )

∣∣∣∣G̃t

]
= (1 + (h(τ ∧ T )− 1)HT )Ê

[
(YT −K)+

BT

∣∣∣∣G̃t

]
= (1 + (h(τ ∧ T )− 1)HT )

(
XtÊ

X [IA|G̃t]−
K

BT
Ê[IA|G̃t]

)

= (1 + (h(τ ∧ T )− 1)HT )ÊX [IA|G̃t]Xt − (1 + (h(τ ∧ T )− 1)HT )
K

BT
Ê[IA|G̃t],

(6.3)

where A denotes the event {YT ≥ K} and by Biagini and Pratelli (1999) we have that
the minimal martingale measure under the numéraire X satis�es

dP̂X

dP̂

∣∣∣∣
G̃t

=
XT

X0

since X is a square-integrable G̃-martingale under P̂. By standard delta-hedging ar-

guments the process ξ̃H
t = (1 + (h(τ ∧T )− 1)HT )ÊX [IA|G̃t] represents the component

invested in the discounted risky asset X of the replicating portfolio with respect to the

�ltration G̃.

By Proposition 6.1 we only need to compute the G-predictable projection ξH of the

process ξ̃H .
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By Theorem VI.43 of Dellacherie and Meyer (1982), we need to check that for every

G-predictable G-stopping time τ̂

ξτ̂ I{τ̂<∞} = Ê
[
(h(τ ∧ T )− 1)HT ÊX [IA|G̃τ̂ ]I{τ̂<∞}

∣∣Gτ̂−

]
,

i.e.

ξτ̂ I{τ̂<∞} = Ê

[
(h(τ ∧ T )− 1)HT

Ê[XT IA|G̃τ̂ ]

Ê[XT |G̃τ̂ ]
I{τ̂<∞}

∣∣∣∣Gτ̂−

]

= Ê

[
(h(τ ∧ T )− 1)HT

1
Xτ̂

Ê[XT IA|G̃τ̂ ]I{τ̂<∞}

∣∣∣∣Gτ̂−

]
= Ê

[
Ê

[
(h(τ ∧ T )− 1)HT

XT

Xτ̂
IA

∣∣∣∣G̃τ̂

]
I{τ̂<∞}

∣∣∣∣Gτ̂−

]
= Ê

[
(h(τ ∧ T )− 1)HT

XT

Xτ̂
IAI{τ̂<∞}

∣∣∣∣Gτ̂−

]
= ÊX

[
(h(τ ∧ T )− 1)HT IAI{τ̂<∞}

∣∣∣∣Gτ̂−

]
.

If we suppose that the process ÊX [(h(τ ∧ T ) − 1)HT IA|Gt−] has a left-continuous

version, then it coincides with the G-predictable projection under the probability P̂X .

Hence a plrm strategy for H, whose promised contingent claim X̄ is given by the

standard payo� of a call option, is given by

(6.4) ξH
t = ÊX

[
IA (1 + (h(τ ∧ T )− 1) HT )

∣∣∣∣Gt−

]
, t ∈ [0, T ].

Appendix

We recall brie�y the de�nition of F-predictable projection of a measurable process

endowed with some suitable integrability properties.

Theorem 6.3 (Predictable Projection). Let X be a measurable process either positive

or bounded. There exists a F-predictable process Y such that

E
[
Xτ I{τ<∞}|Fτ−

]
= Yτ I{τ<∞} a.s.

for every F-predictable stopping time τ .

The process Y is called the predictable projection of X.

Proof. See Dellacherie and Meyer (1982) or Revuz and Yor (2005) for the proof.
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Notes

1We recall for reader's convenience the de�nition of Galtchouk-Kunita-Watanabe (GKW) decom-
position: if X is a P-martingale, any H ∈ L2(GT , P) admits a GKW decomposition with respect to
X, i.e. it can be uniquely written as

H = E [H] +

∫ T

0

ξH
s dXs + LH

T , P− a.s.,

for some G-predictable process ξH that satis�es E
[∫ T

0
(ξH

s )2σ2
sX2

s ds
]

< ∞, and some LH ∈ M2
0(P)

which is strongly orthogonal to X.
2Since Gτ− = Fτ− := σ(A∩{τ > t}, A ∈ Ft, 0 ≤ t ≤ T ), we have that N is also Fτ−-measurable.

Hence by Dellacherie and Meyer (1978), (68.1) page 126, there exists a F-predictable process Z such
that Zτ = N .
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