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Abstract

We study the local risk-minimization approach for defaultable markets in a gen-
eral setting where the asset price dynamics and the default time may influence
each other. We find the Follmer-Schweizer decomposition in this general setting
and compute it explicitly in two particular cases, when default time depends on
the risky asset’s behavior and when only a dependence of discounted asset price
on default time is occurring.
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1 Introduction

In this paper we discuss the problem of pricing and hedging defaultable claims, i.e.
options that can lose partially or totally their value if a default event occurs. We
consider a simple market model with two non-defaultable primitive assets (the money
market account B and the discounted risky asset X) and a (discounted) defaultable
claim H. Since it is impossible to hedge against the occurrence of a default by using
a portfolio consisting only of the primitive assets, the market model extended with
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the defaultable claim is incomplete and it makes sense to apply some of the methods
used for pricing and hedging derivatives in incomplete markets.

In particular we focus here on the local risk-minimization approach. Other quadratic
hedging methods such as mean-variance hedging have been extensively studied in the
context of defaultable markets by Biagini and Cretarola (2007), Bielecki and Jean-
blanc (2005), Bielecki, Jeanblanc, and Rutkowski (2004b), Bielecki, Jeanblanc, and
Rutkowski (2004c) and Bielecki, Jeanblanc, and Rutkowski (2004a).

The local risk-minimization method has been applied for the first time to the case of
defaultable markets in Biagini and Cretarola (2007), but only in the case where the
default time and the underlying Brownian motion were independent. Here we consider
the more general case where the dynamics of the risky assets may be influenced by the
occurring of a default event and also the default time itself may depend on the assets
prices behavior. In this general setting we are able to provide the Follmer-Schweizer
decomposition of a defaultable claim with random recovery rate. In particular we
focus on two cases where we compute explicitly the pseudo-locally risk-minimizing
strategy and the optimal cost. First we consider the situation where the default time
7 depends on the behavior of the risky asset price, but not vice versa.

In the second case we assume that drift and volatility of underlying discounted asset
are affected by 7 and we show how our result fits in the approach of Féllmer and
Schweizer (1991) of local risk-minimization for markets affected by incomplete infor-
mation. For local risk-minimization for defaultable markets via nonlinear filtering, we
also refer to Frey, Schmidt, and Gabih (2007).

We would like to emphasize that this is the first time where local risk minimization
has been applied to hedge defaultable claims in a very general setting, allowing for
dependence between asset price behavior and default time, stochastic default intensity
and incomplete non-defaultable market for the primary assets. Our results are then of
general interest for computing hedging strategies in incomplete markets in presence of
an additional source of randomness, that is “orthogonal” to the asset price dynamics,
but not necessarily independent of them and viceversa.

In particular local risk-minimization naturally appears as suitable hedging method
for the new financial instruments recently introduced to hedge against systematic
mortality risk in life insurance contracts. This is the case of the so-called mortality
derivatives (survival swaps, longevity bonds) and of the unit-linked life insurance con-
tracts, i.e. contracts where the insurance benefits depend on the price of some specific
traded stock. In Dahl and Mg ller (2006), Dahl, Melchior, and Mg ller (2007), Mg ller
(1998), Mg ller (2001), Riesner (2006) and Riesner (2007) risk-minimizing strategy are
computed for these financial insurance derivatives, but only when the insurance and
the financial markets are independent (that corresponds to assume the independence
of the asset price dynamics and default time in our setup). However the introduction
of this new kind of financial instruments creates a link between life insurance and fi-



nancial markets, that may be reflected in the asset prices dynamics. Hence the results
of our paper can be used to compute locally risk-minimizing strategies also for these
kind of derivatives under the more realistic assumption that insurance and financial
markets are not independent. Further applications of the results of this paper to the
hedging of hybrid derivatives are also work in progress in Biagini and Sun (2007).

2 Setting

We consider a simple model of a financial market where we can find a risky asset,
the money market account and defaultable claims, i.e. contingent agreements traded
over-the-counter between default-prone parties. Each side of contract is exposed to
the counterparty risk of the other party. Hence defaultable claims are derivatives that
could fail or lose their own value.

We fix a time horizon T" € (0,00). The random time of default is represented by
a nonnegative random variable 7 : Q — [0,7] U {400}, defined on a probability
space (£2,G,P), with P(7 = 0) = 0 and P(7 > t) > 0, for each ¢ € [0,7]. For a
given default time 7, we introduce the associated default process Hy = I <y, for
t € [0,T] and denote by H := (H;)o<t<7 the filtration generated by the process Hy,
ie. Hy =0(Hy, :u<t)for any t € [0,T].

Let W be a standard Brownian motion on the probability space (£2,G,P) and F :=
(Fi)o<i<r the natural filtration of W. Let G := (G;)o<i<r be the filtration given by
Gy = Fy V Hy, for every t € [0,T]. We put G = Gr. We postulate that the Brownian
motion W remains a (continuous) martingale (and then a Brownian motion) with
respect to the enlarged filtration G. In the sequel we refer to this assumption as the
hypothesis (H). We remark that all the filtrations are assumed to satisfy the usual
hypotheses of completeness and right-continuity.

o Let
F,=P(r <t|F), Vte|0,T]

be the conditional distribution function of the default time 7 and assume F; < 1,
for every t € [0,T]. Then the hazard process of T under P:

Ft = —ln(l — Ft), vVt € [O,T],

is well defined for every ¢t € [0, T]. Under hypothesis (H), Lemma 1.2 of Bielecki,
Jeanblanc, and Rutkowski (2006) guarantees that the process I' is increasing.
We assume that the hazard process I' admits the following representation:

t
(2.1) rtz/ Aids, Vit e[0,T],
0



where A is a non-negative, integrable process. The process A is called intensity
or hazard rate. By Proposition 5.1.3 of Bielecki and Rutkowski (2004) we obtain
that the compensated process M given by

tAT t
(2.2) M, := H; — / Adu = Hy — / Audu, YVt € [0,T]

0 0
follows a martingale with respect to the filtration G. Notice that for the sake
of brevity we have denoted )\; := Ii>¢Ae. In particular, we obtain that the
existence of the intensity implies that 7 is a totally inaccessible G-stopping time
(Dellacherie and Meyer (1982), VI.78). We note also that if I" is an increasing
process, by Lemma 5.1.6 of Bielecki and Rutkowski (2004) the stopped process
Winr is always a G-martingale, even without assuming the hypothesis (H).

e We denote the money market account by B; = exp ( fot rsds), where r is a G-

adapted nonnegative process, and represent the risky asset price by a stochastic
process Y on (2, G,P), whose dynamics is given by the following equation:

(2 3) { dY; = /J/t)/tdt + oYy dWy, Vit € [O,T]

Yo =yo, w €RT"

where oy > 0 a.s. for every ¢ € [0,7] and p, o, r are G-adapted processes such
Y;

that X; := gt belongs to L?(P), Vt € [0,T]. For example, u (respectively, o)
t

could be of the form p; = H%H{Tgt} + uf]I{T>t}, where ' and p? are F-adapted:
in this case the influence of the default time determines a sudden change in the
drift (respectively, in the volatility). Furthermore we assume that there exists
an equivalent probability measure such that the discounted price process X is
a local martingale. Let

(2.4) o, =" """ vielo,T]
Ot

be the market price of risk. We also assume that p, o and r are such that the
dP
density P =& < / 9dW> is square-integrable. In particular we have that
T

the convex set P2(X) of square-integrable equivalent martingale measures for
X is not empty and the market model is in addition arbitrage-free.

e We assume that the information at time ¢ available to the agent is given by

(25) G =F V H;, Vt € [O,T]



Remark 2.1. That the information filtration is supposed to be of the form (2.5) is a
standard assumption in the literature on the modelling of defaultable markets (Bielecki
and Jeanblanc (2005), Bielecki, Jeanblanc, and Rutkowski (2004b), Bielecki, Jean-
blanc, and Rutkowski (2004c), Bielecki, Jeanblanc, and Rutkowski (2004a), Bielecki,
Jeanblanc, and Rutkowski (2006), Bielecki and Rutkowski (2004)). Nevertheless, one
might arque that this choice appears artificial and that a more natural filtration for
the market information would be FY v H := (F} v Ht)te[07T], the filtration generated
by the observed asset price Y and by the default time process H. Note however, that
in our setting it is easily seen that G, = FY V Hy, for every t € [0,T)], as soon as ji
and o are FY V H-adapted. In particular, one can show that o is FY V H-adapted if
o has a right continuous version.

As mentioned above, in this market model we can find defaultable claims, which are
represented by a triplet (X,0X,7), where:

- the promised contingent claim X represents the payoff received by the owner of
the claim at time 7T, if there was no default prior to or at time 7'. In particular
we assume it is represented by a Gr-measurable random variable X € L?(P);

- the recovery claim 6X represents the recovery payoff at time 7T, if default occurs
prior to or at the maturity date 7. Here ¢ is supposed to be a random recovery
rate.

In particular we assume that § is represented by a Hp-measurable random variable
in L?(Q,G,P), i.e.

(2.6) d="h(rAT)

for some Borel function h : (R,B(R)) — (R,B(R)), 0 < h < 1. Here we focus on
the case when an agent recovers a part of the promised claim at time of maturity.
However our approach works in the same way for a general recovery payment.

In our setting the discounted value of a defaultable claim can be represented as follows:

X 56X
H= FTH{T>T} + Eﬂ{rgT}
X
(2.7) — 2 0+ (W AT)=1)Hr).
Br

In particular we obtain that H € L?(Gr,P). In this framework, we study the problem
of a trader wishing to price and hedge the defaultable claim H. Since the presence of
default makes the market incomplete, we choose to apply the local risk-minimization
approach, one of the methods used for pricing and hedging derivatives in incomplete



markets. We wish to solve analytically the problem of finding the pseudo locally risk-
minimizing strategy and the portfolio with minimal cost. The local risk-minimization
method has been already applied to the case of defaultable markets in Biagini and
Cretarola (2007) under the assumption that the default process H; and the underlying
Brownian motion W; are independent for every ¢t € [0,7]. Here we extend the results
of Biagini and Cretarola (2007) to the case of a reciprocal dependence of 7 and the
risky asset trend. In the next section we provide a short review of the main results
of the theory of local risk-minimization (see Follmer and Schweizer (1991), Heath,
Platen, and Schweizer (2001), Schweizer (1995)), that we reformulate in terms of our
context.

3 Local Risk-Minimization

Problem: in the financial market outlined in Section 2, we look for a hedging strategy
with minimal cost for the defaultable contingent claim H in (2.7).

We introduce the basic framework and some definitions. We recall that the asset price
dynamics is given by (2.3) and that for every t € [0, 7]

Y

X, = —t
t B,

denotes the discounted risky asset price.

e We remark that in our model X belongs to the space S7 (P) of semimartingales
decomposable as the sum of a locally square-integrable local martingale and of a
G-predictable process of finite variation null at 0. Indeed it can be decomposed
as follows:

t t
X =Xo+ / (s — 75) Xsds + / 0s X dWs, t€[0,T],
0 0

where fg 0sXsdW5 is a locally square-integrable local martingale null at 0 and

fg (ns—rs)Xsds is a G-predictable process of finite variation null at 0. Moreover,
in our case X is a continuous process.

e In our model we have that the so-called Structure Condition (SC) is satisfied,
i.e. the mean-variance tradeoff

Ki(w) ::/O 62 (w)ds



is almost surely finite for each ¢ € [0, T], where 6 is the market price of risk de-
fined in (2.4), since X is continuous and P2(X) # 0 by hypothesis (see Schweizer
(2001)).

In what follows, we assume that K is uniformly bounded in t and w, i.e. there
exists K such that

~

(3.1) K (w) < K, vVt €[0,T], a.s.

We denote by Og the space of G-predictable processes & on €) such that

( / sl rs>Xs|ds)2] < oo.

Definition 3.1. An L’-strategy is a pair o = (£,¢) such that

(3.2) E [/OT(fsaSXS)st] +E

1. £ is a G-predictable process belonging to Og.

2. C is a real-valued G-adapted process such that the discounted value process V () :=

Vie)
B

Here we assume to work with strategies that are G-adapted, i.e. the trader can invest
in the risky asset according to the information relative both to the asset prices and
the occurrence of a default.

The cost process is defined by:

= &X + ( s right-continuous and square-integrable.

t
Cr =W —/ &dXs, te][0,T].
0
In particular, the component invested in the money market account is given by:

t
G = Tole) + /0 dXs + Cilp) — 6Xi te [0,T).

We want to find a hedging strategy ¢ with “minimal” cost C' and (discounted) value
process

Vt<so>=vo(so>+/0 £dX, + Cilp), te[0.T),

such that
Vr(p) = H P— a.s.

In which sense is the cost minimal?



Definition 3.2. An L2-strategy ¢ is called mean-self-financing if its cost process C(y)
1s a P-martingale.

Following Schweizer (1995), we introduce an optimal strategy:

Definition 3.3. Let H € L*(Gr,P). An L?-strategy » with Vr(p) = H P-a.e. is
pseudo-locally risk-minimizing (in short plrm) for H if ¢ is mean-self-financing and
the martingale C(p) is strongly orthogonal to the martingale part of X.

Note that under our assumptions on o, to be strongly orthogonal to the martingale
part of X is equivalent to be strongly orthogonal to W.

In general how to characterize a pseudo-locally risk-minimizing strategy is shown in
the next result (see Féllmer and Schweizer (1991)). Let MZ(P) be the space all
square-integrable P-martingales null at 0.

Proposition 3.4. A contingent claim H € L*(P) admits a plrm strategy ¢ = (&,¢)
if and only if H can be written as

T
(3.3) H:Ho+/ elax, + LiF P—as.

0
with Hy € R, ¢# € g, L ¢ Mg(IP’) strongly orthogonal to the martingale part of
X. The plrm strategy is given by

gt:é.tH> tG[O,T]

with minimal cost
Cilp) =Ho+ L', te[0,T].

If (3.3) holds, the optimal portfolio value is

t t
Vt((ao) :Ct((ao)+/0 gsts :H0+/0 fdes"‘LfIa

and B
G = CtH = Vi(p) — ftHXm
fort €10,T].
Proof. For the proof, see Follmer and Schweizer (1991). O

Decomposition (3.3) is well known in literature as the Follmer-Schweizer decompo-
sition (in short F'S decomposition). If X is a P-martingale, (3.3) coincides with the
Galtchouk-Kunita- Watanabe' (in short GKW) decomposition. We see now how one
can obtain the FS decomposition by choosing a convenient martingale measure for
X following Féllmer and Schweizer (1991). We remark that assumption (3.1) implies
the existence of a FS decomposition.



Definition 3.5 (The Minimal Martingale Measure). A martingale measure
P equivalent to P with square-integrable density is called minimal if any square-
integrable P-martingale which is strongly orthogonal to the martingale part of X
under P remains a martingale under P.

The minimal measure is the equivalent martingale measure that modifies the mar-
tingale structure as little as possible. Hypothesis (3.1) is sufficient to guarantee the
existence of P.

Theorem 3.6. Let H € L?*(Gr,P). Define the process VH s follows
Vi = ElH|G), te0,T),

where E[ - |Gy] denotes the conditional ezpectation under P. Let
A~ ~ AN T A ~
(3.4) U = BlHIGr) = V' + [ &lax.+ TF
0

be the GKW decomposition of VH with respect to X under P. If either H admits a FS
decomposition or ¢ € ©g and L7 € ME(P), then (3.4) gives the FS decomposition
of H and ¥ gives a plrm strategy for H.

Proof. Since in our model (SC) is satisfied and the existence of Pis a consequence of
assumption (3.1), the proof follows by Theorem 3.5 of Schweizer (1995). O

We apply these results to the case of defaultable claims.

4 Local Risk-Minimization for Defaultable Claims

Under the hypotheses of Section 2, we study now the local risk-minimization approach
for a defaultable claim H defined in (2.7). The next result guarantees the existence
of a pseudo-locally risk-minimizing strategy for H.

Proposition 4.1. For any G-martingale N under P we have

t
(4.1) Nt:N0+/ eNaw, + Nam, = No+ MN + LY,
0 10,¢]

where £V and ¢V are G-predictable processes. The continuous G-martingale MY and
the purely discontinuous G-martingale LV are mutually orthogonal.

Proof. Since T' is continuous, the proof follows from Corollary 5.2.4 of Bielecki and
Rutkowski (2004). O



By hypothesis (3.1), Definition 3.5 and Proposition 4.1, we have

dP
4.2 —=¢&(- [ odW | .
(42) e (- foar)
By (4.2) we have that W, = W, + fot fsds is a G-Brownian motion under P and the
results of Proposition 4.1 can be reformulated in terms of (W, M). In fact M; =
f(f Asds is also a P-martingale since the orthogonal martingale structure is not

affected by the change of measure from PP to P. Hence by the representation property
(4.1), every G-martingale N under P is of the form

t % A
(4.3) Ny = No + / eNaw, + Nam,, telo,T]
0 10,¢]

We now find a plrm strategy for H by computing the decomposition (4.3) for E [H| Gy
under P. Theorem 3.6 and our hypothesis (3.1) guarantee that this is indeed the F'S
decomposition for H.

Under the equivalent martingale probability measure @, the discounted optimal port-
folio value V of the defaultable claim H at time ¢, is given by:

/,=E [H[Qt]
_F L;(T (1+ (h(r AT) — 1)Hy) gt]
(4.4) =F E;T gt] +E {;(h(m:r) — 1)Hyp gt} .

a) Since X € Ll(gT,I@), by (4.3) we have

~[ X b
gt:| =F |::| +/ ’Sdes +/ ﬁSdMsa
Br 0 10,4]

where £ and 7 are G-predictable process._

(4.5) E [l‘i

~ X
b) It remains to compute the term E [B(h(r ANT)—1)Hr
T

Qt]. First by Corollary

10



5.1.2 of Bielecki and Rutkowski (2004) we can obtain the following decomposition:

E [;(h(f AT) —1)Hy

gt} = H,E [é(T(h(T AT) —1)Hyp

Fi V HT]

+(1 - Ht)E [(1 - Ht)efot AsdsBﬁ(h(T ANT)—1)Hr
T

fonenonl]-

= Hy(h(r ANT) - 1)E L;(T

ft vV HT] + (1 — Ht)efg Asds,

(4.6 B [Hpcreny (7 AT) - 15

7

c)

We focus now on the conditional expectation ¢). We introduce here the o-algebra

Gr=c(AN{r>t}, A€G, 0<t<T)

G|
G|

since the G-stopping time 7 is G,_-measurable by Theorem 5.6 on page 118 of Del-
lacherie and Meyer (1978).

Lemma 4.2. Let N be defined in (4.7). Then

of the events strictly prior to 7. We set

(4.7) N:=E [(h(T AT) — 1)];

and note that <
N = (h(r AT)—1)E [
Br

~ X
E [H{t<T<T}(h(T ANT) — I)I?T

Ft:| = E\ [H{t<TST}N‘ Ft] , Vte [O, T]

Proof. Consider an arbitrary event A € F;. By using the definition of the conditional
expectation, we have

X -~ X -
A An{r>t}

BT T
~ X ~
_ / B [}I{T<T}(h(7 AT) = 1) gT] 4P
An{r>t} - Br
= / H{T<T}Nd@
An{r>t} B
= [ Iy, < NdP,
/A {t<r<T}
since the event {7 < T} isin G,_. ]

11



Since G,_ = F-_, we know that there exists an F-predictable? process Z such that
(4.8) Z; = N.

Hence we obtain

. X ~
B [lucrery (A T) = )| 2] = B [lycren ] 7
= E [Ljcrery 2| 7]

T
(49) = F |:/ Zse_fo Aud’d}\sds
t

ft:|>

where the last equality holds in view of Proposition 5.1.1 (ii) of Bielecki and Rutkowski
(2004) and the F-predictability of Z (see page 148 of Bielecki and Rutkowski (2004)).
Hence we can rewrite (4.6) as follows:

~| X
BE| 2 (hr AT) - ) Hy
Br

~

Qt} = Hi(h(r AT) - 1)E [X

Br

Fi V 'HT:|
(4.10)

T
+(1- Ht)ef(;s Asds [/ Zse~ Jo Auduy g
t

]—}] |
We put for each t € [0, T

T
(4.11) Dy = elo Mds | { / Zge~Jo Auduy g5
t

7
and we introduce the F-martingale m by setting for each ¢ € [0, T]

T
(4.12) mi=F [ / ZgeJo dudu) ds
0

7.

Following the proof of Proposition 5.2.1 of Bielecki and Rutkowski (2004), we write D
in terms of the F-martingale m and by applying the [t6 integration by parts formula,
we obtain

t t
Dy =mg + / elo Audu gy 4 / (Ds — Zg)Asds.
0 0

Furthermore, since D is a continuous process, we have

(1 - Ht)Dt =mg + / dD, — H{Tgt}DT-
10,tAT]

12



Hence

INT tAT
(1 — H;)D; = myg _|_/ elo Mudugy, -y / (Ds — Zs)Asds — Iir<yy D7
0 0

tAT s AT
g +/ eJ Audug, _/ D,dM, _/ ZsAsds.
0 10,2] 0

Consequently we can rewrite (4.10) as follows:

E [gT(h(T AT) —1)Hy

X
Br

AT s tAT
+mo + / elo Mudugp, / DydM, — / Zsds.
0 10,t] 0

Lemma 4.3. Let Z be the F-predictable process given by (4.8). Then the following
equality holds:

gt] = H,(WMrAT) - 1)E [

Fi V HT:|

(4.13) H:Z, = Hy(h(r AT) = 1)E [g
T

Fi \/'HT:| , Vtel0,T].

6. |.

QT_} = Hy(h(r AT) - 1)E [;

Proof. It is clear that

~ X
HZ.=FE [Ht(h(f AT) ~1) %5
T

Hence we need only to show that

(4.14) E [Ht(h(T AT) — 1)1;;

Fi \/HT:| .

By using the definition of conditional expectation and the fact that conditioning with
respect to Gy can be replaced by conditioning with respect to F; V Hr on the event
{T <t} (see Lemma 5.1.5 of Bielecki and Rutkowski (2004)), given an arbitrary event
Ain Fs, with 0 < s <t, for any t € [0, 7], we have

/ Hi(h(r AT) — 1);;(1@:/ (h(r AT) — 1)B£d@
An{r>s} T An{s<T<t} T

~ X ~
- / Hi(h(r At) — 1)E [ gt} dp
An{r>s} BT
~[ X ~
= / Ht(h(’?' /\T) - 1)E |: ft \ HT:| dPa
An{r>s} Br
since
Hy(h(t ANT)—1) = Hi(h(T ANt)—1), ¥Vte]|0,T].
Then the statement is proved since (4.14) is verified on the generators. O

13



Finally gathering the results, by using (4.13) we obtain:

:

tAT tAT
= H,;Z, +mo + / elo Mudugp, / DydM, — / Z\gds
0 10,2] 0

E [;T(h(T AT)—1)Hr

tAT
= myg —|—/ elo )‘“d“dms +/ (Zs — Dg)d M,
0 10,t]
t
(4.15) = my +/ (1 — Hy)elo Mdugmaiy, + / (Zs — Dy)dM,,
0 10,¢]

where in particular we have used the fact that the continuous F-martingale m admits
the following integral representation with respect to the Brownian motion W:

t
(4.16) me = my +/ emaw,, te 0,7,
0

for some F-predictable process €™, such that Vt € [0, 7], fot(ggn)st < o0,

Proposition 4.4. In the market model outlined in Section 2, the FS decomposition
for H defined in (2.7) is given by

~[ X T 1 _ s
H=F [} +mo + / (& + Trogermelo Mav) ax,
(4.17) Br 0 osXs -

+/ (Zs *Ds+ﬁs)dM57
10,7

where the processes m, Z, D, &, i, €™ and M are defined in (4.12), (4.7), (4.11),
(4.5), (4.16) and (2.2). In particular we have that a plrm strategy ¢ = (§,() is given

by

1 _ t
H m Asds
(4.18) &L&=& = X, (§t + Ir>né eJo ) 7
> 1 ¢ m[* S
(4.19) = Vi — o (ft + Lir>n & eloX+d )

for t € [0, T] and the minimal cost is

~[X
(4.20) cH=F [] + mg +/ (Zs — Dy +7j5)dM,, ¢ € [0,T].
Br J0.1
Proof. Tt follows by hypothesis (3.1) and Theorem 3.6. O

14



Remark 4.5. It is possible to choose different hypotheses that guarantee that decom-
position (4.17) gives the F'S decomposition. Assumption (3.1) is the simplest condition
that can be assumed. For a complete survey and a discussion of the other sufficient
conditions, we refer to Schweizer (1995).

Proposition 4.4 extends the main result of Biagini and Cretarola (2007), where de-
composition (4.17) was already proved in the case when the trajectories of X are
F-adapted and F; and H; are independent for every ¢ € [0, T].

In general if B is Fp-measurable, we have 77 = 0 in decomposition (4.5) and
T

(4.21) Zy = (Wt AT)—1) (E [éﬂ + /0 " gsdm)

in equation (4.9). In fact by (4.5) and Theorem 67 page 125 in Dellacherie and Meyer
(1978), we get

e AT
(4.22) ) [X] + / ' £, dW.
0

Note that here we are using implicitly hypothesis (H) under P.

Remark 4.6. The introduction of the process Z in (4.8) may appear artificial. How-
ever it is necessary to find decomposition (4.9). We have already seen that Z can be

X
explicitly calculated if B 15 Fr-measurable. This is already a quite general case since

we do not require the trajectories of X to be F-adapted or the independence of T from
Fi, for each t € [0,T].

Another example is the following. We suppose that under @, the discounted asset price
X is of the form
X, = 1’0€f0t U(T/\S)dsté f(f O’(T/\S)2d8’ 20 > 0,

X X
where o is a bounded Borel function, and B = X2 In this case B is (strictly)
T T

15



Gr-measurable. We obtain

~ [ X
E[
Br

G|

=z efo o(TAs) dsE [ 2f0 o(TAs dWS 2f0 o(TAs)2ds

:| = E [m%ez f()T U(T/\S)dVAVs*fOT o(TAs)%ds

G|

_ x%eU(T) (T—7AT) 2 fOTAT U(s)dWs—fOTAT 0’(8)2d87

and
Zt _ l‘%(h(t A T) o 1) a(t)2(T— t/\T) 2 fMTU (s)dW,— ]t/\T a(s)2d5

We remark that Z is not uniquely defined. However in the case that there exist several
possible F-predictable processes Z satisfying equation (4.8), they all provide the same
conditional expectation (4.9). We refer also to Bielecki and Rutkowski (2004), page
148, for a further discussion of this issue.

We compute decomposition (4.17) in two particular cases.

5 Example 1: 7 dependent on X

We consider first the case where the default process may depend on the evolution
of the asset price, but the dynamics of the money market account and of the stock
are not influenced by the presence of the default in the market. We represent this
fact by assuming that the interest rate, the drift and volatility in (2.3) are F-adapted
processes.

Since the promised contingent claim X is written on the underlying non-defaultable
assets Y and B, in this setting X is Fp-measurable and we have

gl - [z
Br Br

as a consequence of our hypothesis (H) under P. Hence we get 7 =01in (4.5).
We show now how to hedge a Corporate bond with a Treasury bond by using the local
risk-minimizing approach, i.e. we compute a plrm strategy for a defaultable claim H
whose promised contingent claim X is equal to 1, i.e. X = p(T,T) = 1, where the

process p(t,T) represents the price of a Treasury bond that expires at time 7. For
the sake of simplicity we put

]:t:| ) Vte [OaT]a

B, =1, Vvtel0,T].
Hence the discounted value of H can be represented as follows:
(5.1) H=1+ (h(rAT)—1)Hry.

In addition we assume the following hypotheses:
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e )\ is an affine process, in particular it satisfies the following equation under P:

dX\ = (b+ BA)dt 4+ av/ X dW,
(5.2) 0

Ao

where b, € RT and f3 is arbitrary. It is the Cox-Ingersoll-Ross model and we
know it has a unique strong solution A > 0 for every Ag > 0. You can see Duffie
(2004) for further details.

e The Borel function h : R — R is defined as follows:

(5.3) h(z) = aoliz<ryy + 1lzsmy,

where ag, a1 € RT with 0 < ag < aq and Ty is a fixed date before the maturity
T.

Under the equivalent martingale probability measure @, the discounted optimal port-
folio value V; of the defaultable claim H given in (5.1) at time ¢, is given by:

Vi=E[H|G]
=1+ E[(h(r AT) - 1)Hr|Gi]
t
(5.4) =14+mgy+ / ]I{T>s}ef0 )\ududms +/ (h(s) _1_ Ds)dMs,
0o 10,2]
where h is given in (5.3) and m, D and M are the processes introduced in (4.12),
(4.11) and (2.2) respectively. Here we have Z; = h(t) — 1 by (4.21). Note that in
this case (5.4) can be recovered directly by Corollary 5.2.2 of Bielecki and Rutkowski
(2004).

We now need only to compute the decomposition of the F-martingale m, i.e. the
conditional expectation E [fOT(h(s) — e o ’\"d“)\sds’ .7-}}. We obtain

my

T
=F |:/ e fO Audu ((Ozg - al)H{SSTo} + (a1 - 1)H{5§T}) /\st
0
A~ T S
ft:| + (a1 — 1)E |:/ e lo )\udu)\sds
0

Fi +(1 = an) B [e-Jo 2ds

7

~ To s
:(ao—al)E |:/ e_fo )\udU)\SdS
0

;

o ) B e

.7-}] +ag — 1.

a) b)
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b) Since A is an affine process whose dynamics is given in (5.2) , we have

E [e* Jo Aeds }—t] — o JoXsds [67 I Asds ]_-t]

t
— [txeds  _—ALT)—B(t,T)A
e~ Jo Asds | o—ART)—B( Mt

where the functions A(t,T), B(t,T) satisfy the following equations:

2
(5.5) OB(t,T) = %32(t,T) —BB(t,T) -1, B(T,T)=0
(5.6) 0tA(t,T) = —bB(t,T), A(T,T)=0,
that admit explicit solutions (see for instance Filipovi¢ (2006)). Since E [e‘ Iy Asds .7-}}

must be of the form

B [e- S Asds

t
ft] =E [e— o Asdﬂ + / psdWs,
0
for a suitable ¢, by applying It6 formula and by (5.5) and (5.6), we obtain

d(e JoAsds . o= A®T)=BWTIAY — o= Jo Mds—AT)=BEDM (o, B(¢, T)/AedWy).

g

t
— e_A(O7T) — / oe fOS )‘“du_A(s’T)_B(S’T)ASB(S, T) \/)TSdWs
0

Similarly we can compute a) and we get

g

t
= ¢~ 40T0) _ / ollgs<ryye Jo dudu=Als Do) =B 102 B(s, Ty) (/A od W
0

|: fo Asds

(5.8)

Finally gathering the results, we obtain

me =g — 1+ (o — ag)e AT 4 (1 — ) AOT)
t -1
(5.9) - /0 ave™ Jo A ((oq — ) [y AT =BETA (s Th)

+ (1 = ay)e AN =BETIA B T) >\/ SAW,.
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Consequently D is given by

t
D, = efot Asdsy, ef(f Asds/ (h(s) —1)e~ Jo Auduy g
0

5.10 * \ods — [0 Asds
( ) = elo Asd my + (ap —a1)(1 —e J? Asd )H{tSTo}

+ [(g — an)e — [0 Nds (g — 1)ef0t Asds 4oy — 1]

Finally by plugging (5.9) and (5.10) into (5.4), we can write explicitly the FS decom-
position for H:

H = ag + (o1 — ag)e”2OT0) 4 (1 — o)~ 40T

T a B 3
—/ H{rzs}<(041 — ag)ljs<ryye AlTo)=B(=To)As B(s, T)+
0 0sXs
(5.11) (1 — oy)e AEN=BEDA B T) )x/ (X +/ (h(s) — 1 — Dg)dMs,
0,7]

where A, B, h, D and M are given in (5.6), (5.5), (5.3), (5.10) and (2.2) respectively.

6 Example 2: X dependent on 7

We study now the case when the default time may influence the dynamics of the
asset price but not vice versa. We suppose then that the default time 7 = 7(n) and
the underlying Brownian motion W = W(&) are independent and defined on the
product space Q = Q x E, endowed with the product filtration G = F ® H, given by
Gi = F; @ Hy, for every t € [0, T] and the product probability P = PV ® v, where PV
is the Wiener measure and v is the law of Hy = I;;<;. Note that now with respect to
the previous setting we have w = (@, n). In particular following Biagini and Pratelli
(1999), we assume that the dynamics of Y are of the form

dY; =Y} [pe(n)dt + o¢(n)dW4],

and that the hypotheses outlined in Section 2 still hold. Note that here we are focusing
on the case where drift and volatility depend only on 7, seen as an exterior source of
randomness.

Consider now the larger filtration G given by G; = F; ® Hr, for every ¢ € [0,T],
obtained by adding to G; the full information about 7 since the initial instant ¢t = 0:
it follows that G; € G;, 0 <t < T. Since 7 and W are independent, we note that W
is a Brownian motion also with respect to G.
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Proposition 6.1. Under the hypotheses outlined above the process eH gwen in (4.18)
coincides with the G-predictable projection of the G-predictable process H such that
fOT(gf)2d3 < o0 a.s. and

T
H:E[H go]+/ £,
0

Proof. Since Gr = Fr V Hr, we may prove the Proposition in the case when the
X X
Gr-measurable random variable B is of the form B = (1 — Hy)F, for some fixed
s < T and some Fp-measurable integrable random variable F. We compute first
X
decomposition (4.5) for B We note that
T
X

2 (1= H)F = (1— H,)elo dvp — [ F
B
T

where the process Ly = (1 — Ht)ef(f Mudufor ¢+ < s, is a G-martingale (see Lemma
5.1.7 of Bielecki and Rutkowski (2004) for further details) and F = ¢~ Jo *d“F js an
Fr-measurable, integrable random variable.

First by the martingale representation property of the Brownian filtration, we have

T
F=EB[F] +/ £V,
0
where £ is an F-predictable. Then

X o T A o T A
— =1L, <E [F] + / guqu> =L,E[F] + / Lo&dWy,
Br 0 0

X ~ ~
ie. B is attainable with respect to the larger filtration G. If we put Gy := F [F| .7-}] ,
T
for t € [0,T], we have

X

= = L,F = L,E|F|Fr] = L,Gr.
Br

By Proposition 5.1.3 of Bielecki and Rutkowski (2004) we have L; = £(—M);, for
t < s, where My = H; — JAT Aydu. Hence [L,G]; = 0, for every t € [0, s] and the It
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integration by parts formula yields:

X T
— = LGy + / L,dGy + GidL; + [L, G]S
Br 0 10,s]
~ — T A o~ —
=F [F] + / L& dW, + / H{szt}E [F| ft] dLy
0 10,7
~ — T A ~ —
(6.1) ~B[F]+ [ Leaii- /] Tz B [P £] Lian,
0 0,7

)

since Gy = E [F’ Ft| is continuous. On the other hand by (4.3), we get

X R ~ T T

— = L,F = F [LF] +/ §&dWy +/ ned My,
Br 0 0

and the uniqueness of the decomposition implies that

& = Li-& = (Ls&)t,
i.e. £ coincides with the G-predictable projection of the process L&;.
[ X _
Analogously we compute the decomposition of E |:B(h(7' ANT) — 1)HT‘Qt], that is
T

given by

T
Go| + / Lo&u(h(r AT) — 1) Hyp dW,,.
0

Uy

With a similar argument as before we can conclude that the integrand

W = (1 Hyeh Mdsgpr

T
projection of W. O

~[X
appearing in decomposition (4.15) of £ [B(h(T ANT)—1)Hr

Qt] is the G-predictable

In particular we note that we obtain again the results of Theorem 4.6 and Theorem
4.16 of Follmer and Schweizer (1991). Hence (6.1) is the FS decomposition in the
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case of incomplete information. Namely if the trader would have access to the larger
filtration G which contains at any time the information on past and future behavior
of the default time, the market would be complete because the volatility and drift are
deterministic with respect to G.

Example 6.2. We apply these results to find a plrm strategy for a defaultable claim H
whose promised contingent claim X is given by the standard payoff of a call option, i.e.
X = (Yr — K)*t, where K € Ry represents the exercise price. Hence the discounted
value of H can be represented as follows:

(Yr — K)*

(6.2) H="—

(1+ (h(rANT)—1)H7)

and with respect to G, the discounted replicating portfolio 1% for H, at time t € [0,T],
18 given by:

7

= E[H|G]

—F (YT;K)Jr(l + (h(t AT)—1)Hr) Gt:|
T

= (1+ (h(r AT) - 1)Hp)E [(YT_W

g}}
= (1+ (M AT) —1)Hy) <XtEX [M4|Ge] — gTE[JIA@])

(6.3)
= (14 (h(r AT) — 1) Hp)EX[L4|G]X; — (1 + (h(r AT) — 1)Hy)

T

K ~ -
—FE[l

Br [ A‘gtL
where A denotes the event {Yr > K} and by Biagini and Pratelli (1999) we have that
the minimal martingale measure under the numéraire X satisfies

dPX|  Xp

ap lg,  Xo
since X 1s a square-integrable G-martingale under P. By standard delta-hedging ar-
guments the process £ff = (1+ (h(t AT) — 1)Hr)EX[14]G;] represents the component
invested in the discounted risky asset X of the replicating portfolio with respect to the
filtration G.

By Proposition 6.1 we only need to compute the G-predictable projection 8 of the
process EH.
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By Theorem VI.43 of Dellacherie and Meyer (1982), we need to check that for every
G-predictable G-stopping time T

&l rcoe) = B [((r AT) = )P EX 141G (s <oy G+ |

1.e.
2 E[XrlLa|Gs)
{F<oo} _(( ) ) TE[XT|Q%] {#<oo} ]

~ [ 1 ~ -

=E | (W7 AT) = 1) Hr < E[X714|G:]1{ <o) Qf_}
T X -

=L|E [(h(T AT) - 1)HT%HA g%} [{7 <o g%—}
T X

=F (h(T VAN T) — I)HT%]IA]I{$<OO} g.;-:|

= EX [(h(T AN T) — 1)HTHA]I{%<OQ}

G:-|.

If we suppose that the process EX[(h(T ANT) — 1)Hrla|Gi-] has a left-continuous
version, then it coincides with the G-predictable projection under the probability PX .
Hence a plrm strateqy for H, whose promised contingent claim X is given by the
standard payoff of a call option, is given by

(6.4) ef = EX []IA (1+ (h(r AT)—1) Hy)

Qt_} , telo0,T).

Appendix

We recall briefly the definition of F-predictable projection of a measurable process
endowed with some suitable integrability properties.

Theorem 6.3 (Predictable Projection). Let X be a measurable process either positive
or bounded. There exists a F-predictable process Y such that

E [XT]I{.,.<OO}|.FT_] = YTH{T<OO} a.s.
for every F-predictable stopping time 7.
The process Y is called the predictable projection of X.

Proof. See Dellacherie and Meyer (1982) or Revuz and Yor (2005) for the proof. [
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Notes

'We recall for reader’s convenience the definition of Galtchouk-Kunita-Watanabe (GKW) decom-
position: if X is a P-martingale, any H € L?(Gr,P) admits a GKW decomposition with respect to
X, i.e. it can be uniquely written as

T
H:E[H]+/ ¢Hax, + LY, P-a.s.,
0

for some G-predictable process ¢¥ that satisfies E [fOT(gf)Qanfds} < 00, and some L7 € ME(P)
which is strongly orthogonal to X.

*Since G,— = Fr_ :=o(ANn{r >t}, A€ F;, 0 <t <T), we have that N is also F,_-measurable.
Hence by Dellacherie and Meyer (1978), (68.1) page 126, there exists a F-predictable process Z such
that Z, = N.
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