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1 Introduction

In the last 20 years natural catastrophes have been happening with increasing in-

tensity and have been characterized by an amount of losses never reached before.

In order to securitize the catastrophe risk, insurance companies have tried to take

advantage of the vast potential of capital markets by introducing exchange-traded

catastrophe insurance options. Exchange-traded insurance instruments present

several advantages with respect to reinsurance. For example, they o�er low trans-

action costs, because they are standardized, and include minimal credit risk be-

cause the obligations are guaranteed by the exchange. See [23] and [24] for the

comparison of insurance securities. In particular, catastrophe options are stan-

dardized contracts based on an index of catastrophe losses, for example compiled

by Property Claim Service (PCS), an internationally recognized market authority

on property losses from catastrophes in the US.

The �rst index based catastrophe derivatives were CAT futures, which were

introduced by the Chicago Board of Trade (CBOT) in 1992. Some models for the

index underlying the CAT futures can be found for example in [1] and [6]. However,

due to the structure of these products, there was only little trading activity on CAT

futures in the market. A second version of catastrophe insurance derivatives were

PCS options based on the index compiled by PCS. For the description of PCS

catastrophe insurance options see for example [17], [22] or [23]. On its peak, the

total capacity created by this version of insurance options amounted to 89 millions

Dollars per year. Trading in PCS options slowed down in 1999, because of market

illiquidity and lack of quali�ed personal (see e.g. [23]).

However, the record losses caused by the hurricanes Katrina, Rita and Wilma in

2005 have been a catalyst in creating new derivative instruments to trade catastro-

phe risks in capital markets. On March 2007, the New York Mercantile Exchange1

(NYMEX) has begun the trading of catastrophe futures and options again. These

new contracts have been designed to bring the transparency and liquidity of the cap-

ital markets to the insurance sector, providing e�ective ways of protecting against

property catastrophe risk and providing the investors with the opportunity to trade

a new asset class which has little or no correlation to other exchange traded asset

classes. The NYMEX catastrophe options are settled against the Re-Ex loss index,

which is created from the data supplied by PCS.

1Acknowledgement: We wish to thank the New York Mercantile Exchange for the

information provided concerning PCS options.
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The structure of catastrophe options is described as follows. The option is

written on an index that evolves over two periods, the loss period and the devel-

opment period. During the contract speci�c loss period [0, T1] the index measures

catastrophic events that may occur. In addition to the loss period, option users

choose a development period [T1, T2]. During the development period damages of

catastrophes occurred in the loss period are reestimated and continue to a�ect the

index. The contract expires at the end of the chosen development period.

Since the introduction of catastrophe insurance derivatives in 1992, the pricing

of these products has been a problem. The underlying loss index is not traded and

hence the market becomes incomplete. It is then an open question how the pricing

measure should be determined. The next challenge is that even for fairly simple

models the pricing problem becomes quite complicated.

So far, there have been several approaches in the literature to model a catas-

trophe index and to price catastrophe options written on this index. In [17], [18]

and [19], the underlying catastrophe index has been represented as a compound

Poisson process with nonnegative jumps. However, no distinction between loss

and reestimation period has been made. In [5] and [16], the authors distinguish

between a loss and a reestimation period and model the index as an exponential

Lévy process over each period. While technicalities for pricing purposes are simpli-

�ed in this setting, the assumption of an exponential model for accumulated losses

during the loss period is rather unrealistic. For example, this implies that later

catastrophes are more severe than earlier ones, and that the index starts in a pos-

itive value (instead of starting in 0). Yet another model is proposed in [21] where

immediate reestimation is assumed and modelled through individual reestimation

factors for each catastrophe. However, no e�cient pricing methods are obtained in

this model.

In this paper, we consider the distinction between loss and reestimation period

as in [5] and [16], but propose a more realistic model for the loss index. We

assume that the index is described by a time-inhomogeneous compound Poisson

process during the loss period, and that during the reestimation period the index

is reestimated by a factor which is given as an exponential time inhomogeneous

Lévy process. In this framework we then consider the problem of pricing European

catastrophe options written on the index. Interpreting the option as a payo�

on a two-dimensional asset, we are able to obtain analytical pricing formulas by

employing Fourier transform techniques. To this end we extend Fourier transform

techniques for dampened payo� functions as introduced in [4] and [8] to the case of

3



a general payo� depending on two factors. We conclude by calculating explicitly

the price of the most commonly traded catastrophe options in the market.

More precisely the paper is organized as follows. In Section 2 we specify our

model for the loss index. In Section 3 we introduce a class of structure preserving

pricing measures before we derive the price process of European style catastrophe

options by using Fourier transform techniques. Finally, in Section 4 we compute

explicitly the prices of the most common option types traded in the market, where

in particular Subsection 4.1 is devoted to pricing with heavy-tailed losses.

2 Modeling of the loss index

Let (Ω,F, P) be a complete probability space. We consider a �nancial market

endowed with a risk-free asset with deterministic interest rate rt, and the possibility

of trading catastrophe insurance options, written on a loss index. Following [5]

and [16] we distinguish two time periods:

• a loss period [0, T1], where catastrophes may occur and losses are accumu-

lated,

• a development period [T1, T2], T1 < T2 < ∞, where losses happened before

T1 are reestimated.

Note that we assume that reestimation begins in T1 for all insurance claims that

have occurred during the loss period. In reality the starting point of reestimation

might di�er from claim to claim. However, the approximation using one common

starting point for reestimation is accepted among practitioners and can be found

at several places in the literature (see for example [5] and [16]). Technically, as we

will see in the next section, this assumption facilitates the derivation of explicit

pricing formulas. For option pricing in a model with immediate reestimation of

single loss occurrences we refer to [2], where we treat this more complex setting

(see also [21]).

Precisely, we model the loss index by the stochastic process L = (Lt)0≤t≤T2 as

follows:

i) For t ∈ [0, T1],

Lt =
Nt∑
j=1

Yj (1)

is a time inhomogeneous compound Poisson process, where
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� Nt is a time inhomogeneous Poisson process with deterministic intensity

λ(t) > 0,

� Yj , j = 1, 2, . . . , are positive i.i.d. random variables with distribution

function G , independent of Nt.

Note that we allow for seasonal behavior of loss occurrence modeled by a

time dependent intensity λ(t).

ii) For t ∈ [T1, T2]

Lt = LT1+u = LT1Zu, u = t− T1 ∈ [0, T2 − T1], (2)

where Zu is a process that represents the reestimation factor with

� Z0 = 1 a.s.,

� (Lt)t≤T1 and (Zu)0≤u≤T2−T1 are independent.

We suppose that all investors in the market observe the past evolution of the loss

index including the current value. Therefore, the �ow of information is given by

the �ltration (F0
t )0≤t≤T2 generated by the process L, which is of the form

• F0
0 = {∅,Ω},

• F0
t := σ(Lu, u ≤ t) = σ(

∑Nu
j=1 Yj , u ≤ t), for t ∈ [0, T1],

• F0
t := σ(Lu, u ≤ t) = σ(Ls, s ≤ T1) ∨ σ(Zu−T1 , T1 < u ≤ t), for t ∈ (T1, T2],

• F0
T2
⊆ F.

We assume that the �ltration (F0
t )0≤t≤T2 is right-continuous. Let (Ft)0≤t≤T2 be

the completion of the �ltration (F0
t )0≤t≤T2 with P-null sets of F.

It is reasonable to assume that the reestimation is not biased (see also [21]).

Therefore, we suppose that (Zt)0≤t≤T2−T1 is a positive martingale with respect to

the �ltration (Ft)0≤t≤T2 of the form

Zt = eXt (3)

for a process X = (Xt)0≤t≤T2−T1 such that X0 = 0 a.s.. More precisely, in this

paper we assume that Xt is a time inhomogeneous Lévy process.

De�nition 2.1. An adapted stochastic process (Xt)t∈[0,T ] with values in R is a

time inhomogeneous Lévy process or a process with independent increments and

absolutely continuous characteristics, if the following conditions hold:
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1. X has independent increments, i.e. Xt −Xs is independent of Fs, 0 ≤ s ≤
t ≤ T .

2. For every t ∈ [0, T ], the law of Xt is characterized by the characteristic

function

E[eiuXt ] = exp
{∫ t

0

(
iubs −

1
2
csu

2 +
∫

R
(eiux − 1− iuxI{|x|≤1})Fs(dx)

)
ds

}
for deterministic functions

b· : [0, T ] → R,

c· : [0, T ] → R+,

F· : [0, T ] → LM(R),

where LM(R) is the family of Lévy measures ν(dx) on R, i.e.∫
R
(x2 ∧ 1)ν(dx) < ∞ and ν({0}) = 0.

It is assumed that∫ T

0

(
|bs|+ cs +

∫
R
(x2 ∧ 1)Fs(dx)

)
ds < ∞.

The triplet (b, c, F ) := (bs, cs, Fs)s∈[0,T ] is called the characteristics of X.

We assume the following exponential integrability condition.

(C1) There exists ε > 0 such that for all u ∈ [−(1 + ε), 1 + ε]

E[euXt ] < ∞ ∀t ∈ [0, T ].

By Lemma 1.6 of [12] this is equivalent to require the following integrability con-

dition on Fs:

(C1') There exists ε > 0 such that for all u ∈ [−(1 + ε), 1 + ε]∫ T

0

∫
{|x|>1}

euxFs(dx)ds < ∞.

In particular, we have that E[Zt] < ∞ for all t ∈ [0, T ], if (C1) is in force. Fur-

thermore we require the following condition on the characteristics

(C2) 0 =
∫ t

0
bsds +

1
2

∫ t

0
csds +

∫ t

0

∫
R
(ex − 1− h(x))Fs(dx)ds,
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which implies (see e.g. [8], Remark 3.1, and [11], Lemma 4.4) that Zt = eXt is a

martingale.

Further, by [12] we obtain that Xt can be canonically represented as

Xt =
∫ t

0
bsds +

∫ t

0

√
csdWs +

∫ t

0

∫
R

x(µ(ds, dx)− Fs(dx)ds), (4)

where Wt is a standard Brownian motion and µ is the integer-valued random mea-

sure associated with the jumps of Xt.

Remark 2.2. By assuming time-inhomogeneous Lévy process to model Zt, we

allow for time dependent reestimation behavior. For example, one could imagine

that the reestimation frequency is higher in the beginning than later on.

3 Pricing of catastrophe insurance derivatives

3.1 Pricing measure

In the catastrophe insurance market the underlying index L is not traded. Hence

the market is incomplete and there exist in�nitely many equivalent martingale

measures. We make here the usual assumption that under the pricing measure Q
the index process is described by the same kind of process as under P. In particular,
we assume that the class of pricing measures is determined by Radon-Nykodym

derivatives of the following form:

dQ
dP

= exp


NT1∑
j=1

β(Yj)−
∫ T1

0
λsdsE

[
eβ(Y1) − 1

]
· exp

{∫ T

0
γ(s)dWs −

1
2

∫ T

0
γ2(s)ds

}
· exp

{∫ T

0
lnφ(s, x) (µ(ds, dx)− Fs(dx)ds)

−
∫ T

0

∫
R
(φ(s, x)− 1− lnφ(s, x))Fs(dx)ds

}
(5)

for some Borel function β such that E
[
eβ(Y1)

]
< ∞ and positive deterministic

integrands φ(t, x) and γ(t) such that E[dQ
dP ] = 1.

By Girsanov's Theorem for Brownian motion and random measures (see [10])

this class of pricing measures preserves the structure of our model. In particular,
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under the measure Q the process Lt, t ∈ [0, T1], is again a time inhomogeneous

compound Poisson process with intensity

λQ
t = λtE[eβ(Y1)] (6)

and distribution function of jumps

dGQ(y) =
eβ(y)

E[eβ(Y1)]
dG(y). (7)

Further, under Q the process X is again a time inhomogeneous Lévy process inde-

pendent of Lt, t ∈ [0, T1], with characteristics (bQ, cQ, F Q) given by

bQ
t = bt − γt

√
ct,

cQ
t = ct,

F Q
t (dx) = φ(t, x)Ft(dx).

In order to specify a pricing measure Q, one possible method is now to calibrate

β, φ and γ to observed market prices. For example, in [19] the pricing measure is

calibrated on the prices of insurance portfolios (i.e. from the premiums) and the

prices of catastrophe derivatives. Another approach to pick a pricing measure is

chosen in [5], [16], [19] and [21], where the choice of the pricing measure for catas-

trophe insurance options is motivated through an equilibrium argument between

the premium price and the price of an insurance derivative written on the same

catastrophe losses. In [5] and in [16], the Esscher transform is used to compute

the equivalent martingale measure, which is justi�ed by looking at a representative

investor maximizing her expected utility.

Here we do not discuss the problem of choosing β, φ and γ, but we assume to be

given an equivalent martingale measure Q of the form (5) and proceed to the risk

neutral pricing under Q of catastrophe options as described in the next section.

3.2 Pricing via Fourier transform techniques

Consider a European derivative written on the loss index with maturity T2 and

payo�

h(LT2) > 0

for a continuous payo� function h : R 7→ R+. Since we have assumed that the

interest rate r is deterministic, without loss of generality, we can express the price

process of the insurance derivative in discounted terms, i.e. we can set r ≡ 0. Let
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a risk neutral pricing measure Q be given. Then the consistent price process of the

option is given by

πQ
t = EQ [h(LT2)|Ft] = EQ [h(LT1ZT2−T1)|Ft]

= EQ [h(LT1e
XT2−T1 )|Ft

]
.

Interpreting the claim as a payo� on two factors, we can rewrite the price process

as

πQ
t = EQ [g(LT1 , XT2−T1)|Ft] , (8)

where g : R2 7→ R+ is the function such that

g(x1, x2) = h(x1e
x2) for any (x1, x2) ∈ R2. (9)

In the following we will calculate the expected payo� in (8) by Fourier transform

techniques. To this end we extend the approach of dampened payo�s on one

dimensional assets of [8] (see also [4], [20]) to general payo�s on two dimensional

assets. We impose the following conditions:

(A1) Assume that

I1 := {(α, β) ∈ R2|
∫

R2

e−αx1−βx2g(x1, x2)dx1dx2 < ∞} 6= ∅ .

(A2) Let

I2 := {(α, β) ∈ R2|
∫

R2

eαx1+βx2GQ
(LT1

,XT2−T1
)(dx1, dx2) < ∞},

where GQ
(LT1

,XT2−T1
) is the cumulative distribution function of (LT1 , XT2−T1)

under Q and assume that I1 ∩ I2 6= ∅.

Note that, since LT1 and XT2−T1 remain independent under Q, it follows that

I2 = {(α, β) ∈ R2| EQ[eαLT1 ] < ∞ and EQ[eβXT2−T1 ] < ∞}. (10)

Now, the dampened payo� function is introduced as

f(x1, x2) = e−αx1−βx2g(x1, x2) for (α, β) ∈ I1 ∩ I2. (11)

Note, that under Assumption (A1), we have that

f(·) ∈ L1(R2)
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for (α, β) ∈ I1 ∩ I2. Hence the Fourier transform

f̂(u1, u2) =
1
2π

∫
R2

ei(x1u1+x2u2)f(x1, x2)dx1dx2 (12)

is well de�ned for every u = (u1, u2) ∈ R2. Assuming also

(A3) f̂(·) ∈ L1(R2),

we get by the Inversion Theorem (cf. [15], Section 8.2) that

f(x1, x2) =
1
2π

∫
R2

e−i(x1u1+x2u2)f̂(u1, u2)du1du2. (13)

Remark 3.1. Note that the equality in (13) is everywhere and not only almost

everywhere because we have assumed a continuous payo� function h. If the prob-

ability distribution of LT2 had a Lebesgue density, an almost everywhere equality

in (13) would have been su�cient for the following computations. However, since

the loss index is driven by a compound Poisson process, the distribution of LT2 has

atoms and we need an everywhere equality to guarantee (14) below.

Now, returning to the valuation problem (8), we obtain that

πQ
t = EQ [g(LT1 , XT2−T1)|Ft] = EQ

[
eαLT1

+βXT2−T1f(LT1 , XT2−T1)|Ft

]
=

1
2π

EQ[eαLT1
+βXT2−T1

∫
R2

e−i(u1LT1
+u2XT2−T1

)f̂(u1, u2)du1du2

∣∣∣Ft

]
(14)

=
1
2π

EQ[ ∫
R2

e−i{(u1+iα)LT1
+(u2+iβ)XT2−T1

}f̂(u1, u2)du1du2

∣∣∣Ft

]
=

1
2π

∫
R2

EQ[e−i{(u1+iα)LT1
+(u2+iβ)XT2−T1

}|Ft

]
f̂(u1, u2)du1du2 (15)

=
1
2π

∫
R2

EQ[e−i(u1+iα)LT1 |Ft

]
EQ[e−i(u2+iβ)XT2−T1 |Ft

]
· f̂(u1, u2)du1du2, (16)

where in the equality (15) we could apply Fubini's theorem, because (A3) holds.

The last equation holds by the independence of LT1 and XT2−T1 and by Assumption

(A2).

Since L is a time inhomogeneous compound Poisson process until T1 and X is a

time inhomogeneous Lévy process independent of Lt, t ∈ [0, T1], we can explicitly

compute the conditional expectations by using the known form of the conditional

characteristic functions:
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1. If t < T1, we have

EQ
[
e−i(u1+iα)LT1 |Ft

]
= e−i(u1+iα)LtEQ

[
e−i(u1+iα)(LT1

−Lt)
]

= e−i(u1+iα)Lt exp{−
∫ T1

t
λQ

s ds

∫ ∞

0
(1− e−i(u1+iα)x)GQ(dx)}

= e−
R T1

t λQ
s dse−i(u1+iα)Lt exp{

∫ T1

t
λQ

s ds

∫ ∞

0
e−i(u1+iα)xGQ(dx)} ,

and

EQ
[
e−i(u2+iβ)XT2−T1 |Ft

]
= EQ

[
e−i(u2+iβ)XT2−T1

]
= exp{

∫ T2−T1

0

(
i(u2 + iβ)bQ

s −
1
2
cQ
s (u2 + iβ)2

)
ds}

· exp{
∫ T2−T1

0

∫
R
(ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx)ds} .

2. If t ∈ [T1, T2],

EQ
[
e−i(u1+iα)LT1 |Ft

]
= e−i(u1+iα)LT1 ;

and

EQ
[
e−i(u2+iβ)XT2−T1 |Ft

]
= e−i(u2+iβ)Xt−T1EQ

[
e−i(u2+iβ)(XT2−T1

−Xt−T1
)
]

= e−i(u2+iβ)Xt−T1 exp{
∫ T2−T1

t−T1

(
i(u2 + iβ)bQ

s −
1
2
cQ
s (u2 + iβ)2

)
ds

· exp{
∫ T2−T1

t−T1

∫
R
(ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx) ds}.

Hence, in order to calculate the price process (πQ
t )t∈[0,T2] the only remaining task

is to compute the Fourier transform of the dampened payo� function f . We sum-

marize our results in the following

Theorem 3.2. Under the Hypotheses (A1)-(A3), the price process πQ
t of an catas-

trophe insurance option written on the loss index with maturity T2 and payo�

h(LT2) > 0 is given by

11



1. for t ∈ [0, T1] by

πQ
t =

1
2π

e−
R T1

t λQ
s ds

∫
R2

f̂(u1, u2)e−i(u1+iα)Lt

exp{
∫ T1

t
λQ

s ds

∫ ∞

0
e−i(u1+iα)xGQ(dx)}

exp{
∫ T2−T1

0

(
i(u2 + iβ)bQ

s −
1
2
cQ
s (u2 + iβ)2

)
ds}

exp{
∫ T2−T1

0

∫
R

(
ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx)

)
ds}du1du2,

and

2. for t > T1 by

πQ
t =

1
2π

∫
R2

f̂(u1, u2)e−i(u1+iα)LT1e−i(u2+iβ)Xt−T1

exp{
∫ T2−T1

t−T1

(
i(u2 + iβ)bQ

s −
1
2
cQ
s (u2 + iβ)2

)
ds}

exp{
∫ T2−T1

t−T1

∫
R

(
ei(u2+iβ)x − 1− i(u2 + iβ)xI{|x|≤1})F

Q
s (dx)

)
ds}du1du2.

Here f is the dampened payo� as de�ned in (11) and f̂ its Fourier transform (12).

Remark 3.3. In order to estimate πQ
t numerically several methods are possible.

One commonly used technique is the fast Fourier transform (FFT). In our case we

need to apply FFT for a double integral which implies reduced speed of convergence.

There exist various techniques to improve the convergence speed (see for example

the �integration-along-cut� method suggested in [3]). However, speed becomes an

issue only when one repeatedly needs to price a large number of options. For

further discussion on this topic we refer to [7].

Remark 3.4. In this paper we have chosen to model Zt with a time inhomogeneous

Lévy process. This class of processes is very rich and �exible to model a wide range

of phenomena, and at the same time it is analytically very tractable. Note, however,

that all the calculations go through explicitly in the same way even for other choices

of processes for Zt, as long as the conditional characteristic function is known.
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4 Application: call, put and spread catastro-

phe options

In this section we consider the most common catastrophe insurance options traded

in the market: call, put, and spread options. By computing explicitly the Fourier

transform corresponding to the payo�, we are able to provide pricing formulas for

these options using Theorem 3.2.

Example 4.1 (Call option).

Consider the payo� function of a catastrophe call option in the form

hcall(x) = (x−K)+ (17)

for some strike price K > 0. Then the corresponding payo� on a two dimensional

asset as introduced in (9) is

gcall(x1, x2) = (x1e
x2 −K)+I{x1>0} = (x1e

x2 −K)I{x1>0, x2>ln K
x1
}

and the dampened payo� function is

fcall(x1, x2) = e−αx1−βx2gcall(x1, x2)

= e−αx1−βx2(x1e
x2 −K)I{x1>0, x2>ln K

x1
}, (18)

that belongs to L1(R2) for all (α, β) ∈ I1 = (0,∞) × (1,∞). For the Fourier

transform f̂call we obtain

f̂call(u1, u2) =
1
2π

∫
R2

ei(x1u1+x2u2)fcall(x1, x2)dx1dx2

=
1
2π

∫ ∞

0

∫ ∞

ln K
x1

e−(α−iu1)x1−(β−iu2)x2(x1e
x2 −K)dx2dx1

=
1
2π

[∫ ∞

0
x1e

−(α−iu1)x1

∫ ∞

ln K
x1

e−(β−1−iu2)x2dx2dx1

−K

∫ ∞

0
e−(α−iu1)x1

∫ ∞

ln K
x1

e−(β−iu2)x2dx2dx1

]

13



=
1
2π

[
1

β − 1− iu2

∫ ∞

0
x1e

−(α−iu1)x1e−(β−1−iu2) ln K/x1dx1

− K

β − iu2

∫ ∞

0
e−(α−iu1)x1e−(β−iu2) ln K/x1dx1

]
=

1
2π

[
1

(β − 1− iu2)K(β−1−iu2)

∫ ∞

0
xβ−iu2

1 e−(α−iu1)x1dx1

− 1
(β − iu2)K(β−1−iu2)

∫ ∞

0
xβ−iu2

1 e−(α−iu1)x1dx1

]
=

1
2π

1
(β − 1− iu2)(β − iu2)K(β−1−iu2)

∫ ∞

0
xβ−iu2

1 e−(α−iu1)x1dx1

=
1
2π

1
(β − 1− iu2)(β − iu2)(α− iu1)(β+1−iu2)K(β−1−iu2)

Γ(β + 1− iu2),

where Γ(·) is the Gamma function.

To prove that the payo� function of a catastrophe call option (17) satis�es the

conditions of Theorem 3.2, it remains to show that

f̂call(u1, u2) ∈ L1(R2). (19)

Note that to prove (19) it is su�cient to consider the asymptotics of |f̂call(u1, u2)|
for |u1|, |u2| → ∞. In fact, since

lim
|u2|→∞

|Γ(β + 1− iu2)|e
π
2
|u2||u2|−β− 1

2 =
√

2π (20)

(see 8.328.1 in [9]), we get

|f̂call(u1, u2)| =
1
2π

1
Kβ−1|e−iu2 ln K |

· |Γ(β + 1− iu2)||eiu2(ln |α−iu1|−i arctan
u1
α

)|
|(β − 1− iu2)(β − iu2)(α− iu1)(β+1)|

=
1
2π

1
Kβ−1

|Γ(β + 1− iu2)|eu2 arctan
u1
α

|(β − 1− iu2)(β − iu2)(α− iu1)(β+1)|

∼ 1√
2π

1
Kβ−1

e−
π
2
|u2||u2|β−

3
2 eu2 arctan

u1
α

|u1|β+1
, (21)

where

f1(u1, u2) ∼ f2(u1, u2) :⇔ lim
|u1|,|u2|→∞

|f1(u1, u2)|
|f2(u1, u2)|

= 1.

Now we distinguish the following cases:

14



1. If u1u2 < 0, then (21) simpli�es to

|f̂call(u1, u2)| ∼
1√
2π

1
Kβ−1

e−
π
2
|u2||u2|β−

3
2 e−|u2 arctan

u1
α
|

|u1|β+1

∼ 1√
2π

1
Kβ−1

e−π|u2||u2|β−
3
2

|u1|β+1
, (22)

where the right hand side of (22) is integrable at in�nity.

2. If u1u2 > 0, then (21) is equivalent to

|f̂call(u1, u2)| ∼
1√
2π

1
Kβ−1

e−
π
2
|u2||u2|β−

3
2 e|u2| arctan |u1|

α

|u1|β+1
(23)

=
1√
2π

1
Kβ−1

e−
π
2
|u2||u2|β−

3
2 e
|u2|(π

2
−arctan α

|u1|
)

|u1|β+1

=
1√
2π

1
Kβ−1

|u2|β−
3
2 e
−|u2| arctan α

|u1|

|u1|β+1

∼ 1√
2π

1
Kβ−1

|u2|β−
3
2 e
−|u2| α

|u1|

|u1|β+1
. (24)

Since ∫ ∞

0

u
β− 3

2
2 e

−u2
α

|u1|

|u1|β+1
du2 = α

1
2
−βΓ(β − 1

2
)|u1|−

3
2

is integrable at in�nity, the right hand side of (24) is integrable as |u1|, |u2| →
∞.

We can thus apply Theorem 3.2 and obtain an explicit price for the call option.

Once we know the price for call options, pricing of catastrophe insurance put

and spread options can be reduced to the pricing of call options with standard

arguments.

15



Example 4.2 (Put option).

Let

hput(x) = (K − x)+

be the payo� of a catastrophe insurance put option. Then the payo�s of call and

put options with the same strike K are related through the formula

hput(x) = hcall(x) + K − LT2 .

We can thus determine the price πQ
put(t) of the put option through computing the

price πQ
call(t) of the call option and through the following call-put parity:

πQ
put(t) = πQ

call(t) + K − EQ[LT2 |Ft]

= πQ
call(t) + K − EQ[LT1ZT2−T1 |Ft].

For the conditional expectation EQ[LT1ZT2−T1 |Ft] we get by independence of (Lt)t≤T1

and (ZT1+u)u≤T2−T1 that

1. if t ≤ T1

EQ[LT1ZT2−T1 |Ft]

= EQ[LT1 |Ft]EQ[ZT2−T1 |Ft]

= (Lt + EQ[LT1 − Lt])EQ[eXT2−T1 ]

= (Lt + EQ[Y1]
∫ T1

t
λQ

s ds)

· exp{
∫ T2−T1

0

(
bQ
s +

1
2
cQ
s +

∫
R
(ex − 1 + xI{|x|≤1})F

Q
s (dx)

)
ds};

2. if t ∈ [T1, T2]

EQ[LT1ZT2−T1 |Ft]

= EQ[LT1e
XT2−T1 |Ft] = LT1Zt−T1E

Q[exp{XT2−T1 −Xt−T1}]

= LT1Zt−T1

· exp{
∫ T2−T1

t−T1

(
bQ
s +

1
2
cQ
s +

∫
R
(ex − 1 + xI{|x|≤1})F

Q
s (dx)

)
ds}.
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Example 4.3 (Call and put spread option).

A call spread option is a capped call option which is a combination of buying a

call option with strike price K1, and selling at the same time a call option with the

same maturity but with the strike price K2 > K1. This corresponds to a payo�

function at maturity of the form

hspread(x) = (x−K1)+ − (x−K2)+

=


0, if 0 ≤ x ≤ K1;

x−K1, if K1 < x ≤ K2;

K2 −K1, if x > K2.

The price of the catastrophe call option is thus the di�erence of the prices of the call

options with strike prices K1 and K2 respectively. Analogously we can calculate

the price of a put spread catastrophe option using the results in Example 4.2.

Remark 4.4. Note that for the above computations the damping parameter α in

(18) has to be strictly bigger than zero. By (10) this implies that the distribution

GQ of the claim sizes Yi, i = 1, 2, . . . , has to ful�ll∫
R+

eαxGQ(dy) < ∞, for some α > 0 . (25)

Typical examples of the distributions satisfying (25) are the exponential, Gamma,

and truncated normal distributions. An important class of distribution functions

which also satisfy (25) is the class of convolution equivalent distribution functions

S(α) for α > 0, which is convenient for the modelling of the claim sizes. See [13]

for the de�nition and property and see [14] for the application of the convolution

equivalent distributions. The generalized inverse Gaussian distribution is one of

the most important example among the convolution equivalent distributions.

On the other hand, distributions GQ with heavy tails do not ful�ll (25) (they would

require α ≤ 0). Because, however, the class of heavy tailed distributions is very

relevant for catastrophe claim size modeling, we will in the next subsection specify

a framework, in which we can also price catastrophe options with heavy tailed

claims.

4.1 Pricing with heavy-tailed losses

In order to treat heavy-tailed losses, i.e. to be able to take a damping parameter

α = 0 in (10), we make the assumption that the distribution function GQ of

17



Yi, i = 1, 2, . . . , has support on (ε,∞) for some ε > 0. In other words, we assume

that if a catastrophe occurs then the corresponding loss amount is greater than

some arbitrarily small ε > 0. This assumption is obviously no serious restriction,

especially in the light of the fact that PCS de�nes a catastrophe as a single incident

or a series of related incidents (man-made or natural disasters) that causes insured

property losses of at least $25 million. Note that this implies

{LT1 > 0} = {LT1 > ε}, (26)

since L is a time inhomogeneous compound Poisson process until T1.

In this framework we now want to apply the Fourier technique of Section 3.2

to price a catastrophe put option. To this end we �rst perform the following

transformations. The price process of a catastrophe put option is given by

πQ
t = EQ [(K − LT1e

XT2−T1 )+|Ft

]
. (27)

Since L is a time inhomogeneous compound Poisson process until T1 under Q, we

can rewrite (27) as

πQ
t = EQ

[
(K − LT1e

XT2−T1 )+I{NT1
=0}|Ft

]
+ EQ

[
(K − LT1e

XT2−T1 )+I{NT1
>0}|Ft

]
= KQ(NT1 = 0|Ft) + EQ

[
(K − LT1e

XT2−T1 )+I{LT1
>0}|Ft

]
, (28)

where we have used that LT1I{NT1
=0} = 0.

Let L̄T1 := LT1 − ε. Then by (26)

{LT1 > 0} = {LT1 > ε} = {L̄T1 + ε > ε} = {L̄T1 > 0}.

Hence we obtain

EQ
[
(K − LT1e

XT2−T1 )+I{LT1
>0}|Ft

]
= EQ

[
(K − (L̄T1 + ε)eXT2−T1 )+I{L̄T1

>0}|Ft

]
. (29)

De�ne the pay o� function g by

g(x1, x2) = (K − (x1 + ε)ex2)+I{x1>0}.

In order to apply the Fourier method of Theorem 3.2, we continuously extend g

from R+ × R to R2 as

ḡ(x1, x2) = (K − (|x1|+ ε)ex2)+.

18



Then we have

EQ [ḡ(L̄T1 , XT2−T1)|Ft

]
= EQ

[
(K − (L̄T1 + ε)eXT2−T1 )+I{L̄T1

>0}|Ft

]
+ EQ

[
(K − (|L̄T1 |+ ε)eXT2−T1 )+I{L̄T1

≤0}|Ft

]
. (30)

Since {L̄T1 ≤ 0} = {LT1 = 0} = {L̄T1 = −ε}, the second term on the right-hand

side of (30) is

EQ
[
(K − (|L̄T1 |+ ε)eXT2−T1 )+I{L̄T1

≤0}|Ft

]
= EQ

[
(K − 2εeXT2−T1 )+I{L̄T1

=−ε}|Ft

]
= EQ [(K − 2εeXT2−T1 )+|Ft

]
Q(L̄T1 = −ε|Ft)

= EQ [(K − 2εeXT2−T1 )+|Ft

]
Q(LT1 = 0|Ft)

= EQ [(K − 2εeXT2−T1 )+|Ft

]
Q(NT1 = 0|Ft). (31)

Together, equations (28)�(31) then lead to the following expression for the price

process of a put option.

Proposition 4.5. The price process of a catastrophe put option is given by

πQ
t = KP 0

t + P 1
t P 0

t + P 2
t ,

where

P 0
t = e−

R T1
t λQ(s)dsI{Nt=0},

P 1
t = EQ [(K − 2εeXT2−T1 )+|Ft

]
,

P 2
t = EQ [(K − (|L̄T1 |+ ε)eXT2−T1 )+|Ft

]
.

Proof. Given equations (28)�(31), it only remains to validate the expression for

P 0. Since Nt is a time inhomogeneous Poisson process with deterministic intensity

λQ(t) > 0 under Q, we have

Q(NT1 = 0|Ft) = Q((NT1 −Nt) + Nt = 0|Ft)

= Q((NT1 −Nt) + n = 0|Ft)|n=Nt

= e−
R T1

t λQ(s)dsI{Nt=0}.

2

Note that P 1
t is the price process of a regular put option written on a one

dimensional asset that is given by an exponential Lévy process. This price can be
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obtained by Fourier transform techniques or any other favorite method. To use in

one dimension the Fourier transform methods of this paper, one computes that the

dampened pay o�

f2(x2) := (K − 2εex2)+eβx2 for β > 1,

has Fourier transform

f̂2(u) =
1√
2π

∫ ln K
2ε

−∞
eiux2eβx2(K − 2εex2)dx2

=
K√
2π

(
K

2ε

)β+iu 1
(β + iu)(β + 1 + iu)

∈ L1(R).

In order to calculate the last term P 2
t of the put price process πQ

t we can now use

Theorem 3.2 with damping parameter α = 0 (which then allows for heavy tailed

loss distributions by Remark 4.4). For this purpose we check that Assumptions

(A1)-(A3) hold true. First we consider the dampened function

f1(x1, x2) := eβx2 ḡ(x1, x2) = eβx2(K − (|x1|+ ε)ex2)+ for β > 1.

Since f1 ∈ L1(R2), we have (0,−β) ∈ I1 for all β > 1. Hence Assumption (A1) is

satis�ed for β > 1 and α = 0. We assume that EQ[eβXT2−T1 ] < ∞ for some β > 1.
Then by (10), we have (0, β) ∈ I2 ∩ I1. Thus (A2) is also satis�ed.

Remark 4.6. Note that we can now admit heavy-tailed loss distributions, because

we don't need to dampen in x1 anymore, since α = 0.

To prove (A3) we consider the Fourier transform of f1:

f̂1(u1, u2) =
1
2π

∫
R2

ei(x1u1+x2u2)f1(x1, x2)dx1dx2

=
1
2π

∫
R2

ei(x1u1+x2u2)eβx2(K − (|x1|+ ε)ex2)I{|x1|≤Ke−x2−ε, x2≤ln K
ε
}dx1dx2

=
1
2π

∫ ln K
ε

−∞

∫ Ke−x2−ε

−Ke−x2+ε
ei(u1x1+u2x2)eβx2(K − (|x1|+ ε)ex2)dx1dx2

=
1
2π

∫ ln K
ε

−∞
eiu2x2e(β+1)x2

1− cos u1(Ke−x2 − ε)
u2

1

dx2.
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Lemma 4.7. There exists C > 0 such that

|f̂1(u1, u2)|(1 + u2
2|u1|β−1 + u2

1 + u2
2) ≤ C for all u1, u2 ∈ R. (32)

Proof. See Appendix.

Corollary 4.8. The Fourier transform f̂1 belongs to L1(R2), i.e. (A3) is satis�ed.

Proof. By Lemma 4.7 we have∫
R2

|f̂1(u1, u2)|du1du2 ≤ C

∫
R2

1
1 + u2

2(1 + |u1|β−1) + u2
1

du2du1

= 2πC

∫ ∞

0

1√
(1 + u2

1)(1 + uβ−1
1 )

du1 < ∞,

since β > 1. 2

Hence all assumptions necessary to apply Theorem 3.2 to calculate P 2
t with a

damping parameter α = 0 are satis�ed, and we can compute prices of put options

including heavy tailed distributed catastrophe losses. Pricing of catastrophe call

and spread options can the be obtained by using call-put parity arguments as in

Examples 4.2�4.3.

Appendix

Proof of Lemma 4.7. We prove Lemma 4.7 in four steps:

1. Since f1 ∈ L1(R2), f̂1 is bounded, i.e. there exists 0 < C1 < ∞ such that

|f̂1(u1, u2)| ≤ C1 for all u1, u2 ∈ R.

2. Then we have

|f̂1(u1, u2)|u2
1 ≤

1
2π

∫ ln K
ε

−∞
2e(β+1)x2dx2 =

1
π

1
β + 1

(
K

ε

)β+1

=: C2 < ∞.
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3. By integration by parts we obtain

|f̂1(u1, u2)|u2
2 =

1
2πu2

1

∣∣∣∣∣
∫ ln K

ε

−∞

∂2

∂x2
2

(eiu2x2) · e(β+1)x2(1− cos u1(Ke−x2 − ε))dx2

∣∣∣∣∣
=

1
2πu2

1

∣∣∣∣∣
∫ ln K

ε

−∞

∂

∂x2
(eiu2x2) · e(β+1)x2

(
(β + 1)(1− cos u1(Ke−x2 − ε))

− sinu1(Ke−x2 − ε)u1Ke−x2
)
dx2

∣∣
=

1
2πu2

1

∣∣∣ ∫ ln K
ε

−∞
eiu2x2

{
(β + 1)2e(β+1)x2(1− cos u1(Ke−x2 − ε))

− 2(β + 1)eβx2u1K sinu1(Ke−x2 − ε) + eβx2u1K
(

sinu1(Ke−x2 − ε)

+u1Ke−x2 cos u1(Ke−x2 − ε)
)}

dx2

∣∣∣
≤ 1

2πu2
1

∫ ln K
ε

−∞

∣∣∣(β + 1)2e(β+1)x2(1− cos u1(Ke−x2 − ε))

− (2β + 1)eβx2u1K sinu1(Ke−x2 − ε) + u2
1K

2e(β−1)x2 cos u1(Ke−x2 − ε)
∣∣∣dx2

≤ 1
2π

∫ ln K
ε

−∞

(
(β + 1)2e(β+1)x2

u2
1(Ke−x2 − ε)2

2u2
1

+ (2β + 1)eβx2

∣∣∣∣sinu1(Ke−x2 − ε)
u1

∣∣∣∣
+ K2e(β−1)x2 | cos u1(Ke−x2 − ε)|

)
dx2

≤ 1
2π

∫ ln K
ε

−∞

(
(β + 1)2e(β+1)x2

K2e−2x2 + ε2

2
+ (2β + 1)eβx2 |Ke−x2 − ε|

+ K2e(β−1)x2

)
dx2 =: C3 < ∞.

4. Further we consider |f̂1(u1, u2)|u2
2|u1|1−β . Since for 0 < |u1| < 1 we have

|f̂1(u1, u2)|u2
2|u1|1−β ≤ |f̂1(u1, u2)|u2

2 ≤ C3,

we can assume that |u1| > 1. As above we get

|f̂1(u1, u2)|u2
2|u1|1−β ≤ |u1|1−β

2πu2
1

∫ ln K
ε

−∞

∣∣∣(β + 1)2e(β+1)x2 · (1− cos u1(Ke−x2 − ε))

− (2β + 1)eβx2u1K sinu1(Ke−x2 − ε)

+ u2
1K

2e(β−1)x2 cos u1(Ke−x2 − ε)
∣∣∣dx2 =: G(u1).

Note that G(−u1) = G(u1) and hence it is enough to show that G(u1) is

bounded for u1 > 0. Substituting s := u1(Ke−x2 − ε) we rewrite G(u1) for
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u1 > 0 as

G(u1) =
u−1−β

1

2π

∫ ∞

0

∣∣∣(β + 1)2
(

Ku1

u1ε + s

)β+1

(1− cos s)

− (2β + 1)u1K

(
Ku1

u1ε + s

)β

sin s

+ u2
1K

2

(
Ku1

u1ε + s

)β−1

cos s
∣∣∣ ds

u1ε + s

=
1
2π

∫ ∞

0

∣∣∣(β + 1)2
(

K

u1ε + s

)β+1

(1− cos s)

− (2β + 1)K
(

K

u1ε + s

)β

sin s + K2

(
K

u1ε + s

)β−1

cos s
∣∣∣ ds

u1ε + s

<
1
2π

∫ ∞

0

(
2(β + 1)2

(
K

ε + s

)β+1

+ (2β + 1)K
(

K

ε + s

)β

+K2

(
K

ε + s

)β−1
)

ds

ε + s

=
Kβ+1

2π

(
2(β + 1)

εβ+1
+

2β + 1
βεβ

+
1

(β − 1)εβ−1

)
=: C4 < ∞.

Now (32) holds with C :=
∑4

i=1 Ci. 2
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