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Abstract

In this paper we provide a discrete approximation for the stochastic integral with respect to the
fractional Brownian motion of Hurst index H > 1

2
defined in terms of the divergence operator. To

determine the suitable class of integrands for which the approximation holds, we also investigate the
relations among the spaces of Malliavin differentiable processes in the fractional and standard case.
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1 Introduction

Fractional Brownian motion (fBm) of Hurst index H ∈ (0, 1) has been widely used in applications to
model a number of phenomena, e.g. in biology, meteorology, physics and finance. A natural question is
how to define a stochastic integral with respect to fBm and how to provide a natural discretization of it.
The problem of defining a stochastic integral with respect to the fractional Brownian motion has been
extensively studied in literature. Several different integrals has been introduced by exploiting different
properties of the fractional Brownian motion: as Wiener integrals (exploiting the Gaussianity) in [12],
[13], [24], as pathwise integrals (using fractional calculus and forward, backward and symmetric integrals)
in [2], [3], [8], [9], [11], [20], [23], [26], [27], [28], as divergence (using fractional Malliavin calculus) in [3],
[4] [10], [24], as stochastic integral with respect to the standard Brownian motion in [6], [16], as stochastic
integral with respect to the fractional white noise in [14], [17]. For a complete survey on this subject, an
extensive literature and relations among different definitions of integrals we refer to [7] and [24].
For applications, in particular for applications to finance, it is relevant to give an interpretation to a
definition of stochastic integral. As it is the case of Itô and Skorohod integrals, this can be achieved by
giving a procedure to obtain the integral as the limit of discrete approximations that are meaningful in
the application field.
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In this paper we address the problem of finding a discrete approximation of the stochastic integral defined
as divergence. A discrete realization of the fractional Brownian motion for Hurst index H > 1

2 is provided
in different ways in [13] and [19]. This can be extended to find a discretization of stochastic integral of
deterministic functions integrable with respect to the fractional Brownian motion. In [5] they study the
convergence of Riemann-Stieltjes integrals with respect to the fractional Brownian motion for Hurst index
H > 1

2 when the integrands are almost surely Hölder-continuous of order λ > 1 − H. Other discrete
approximations of stochastic integrals with respect to the fractional Brownian motion can be found in
[3], [8], [14] and [22].
Here we focus on the case H > 1

2 and consider the stochastic integral with respect to BH defined in terms
of the divergence operator δH relative to the fBm. We prove a discrete approximation for this kind of
integral by means of the resolutions of the Fock space associated to BH and by using its expression in
terms of the divergence operator δ of the standard Brownian motion.
In order to find a suitable class of stochastic integrands for which our results hold, we also study the
relations among the spaces of Malliavin differentiable processes with respect to B and to BH with Hurst
index H > 1

2 .

2 Basic definitions and notation

We recall in this section the basic definition and the main properties concerning fractional Brownian
motion and the relative Malliavin calculus.

Definition 2.1. The fractional Brownian motion (fBm) BH of Hurst index H ∈ (0, 1) is a centered
Gaussian process {BH

t }t≥0 with covariance given by

RH(s, t) :=
1
2
(s2H + t2H − |t− s|2H). (1)

As well-known, for H = 1
2 we obtain the standard Brownian motion (Bm). By Kolmogorov’s theorem

we have that BH admits a continuous modification for every H ∈ (0, 1). In the sequel we assume to work
always with the continuous modification of BH , that we denote again with BH .
In particular we will focus on the case H > 1

2 . In this case the covariance (1) can be written as

RH(s, t) = αH

∫ t

0

∫ s

0

φ(r, u)drdu (2)

where φ is given by
φ(r, u) = |r − u|2H−2 (3)

and αH = H(2H − 1). By [24], we obtain that RH(s, t) can be expressed in terms of the deterministic
kernel

KH(t, s) = cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du (4)

where cH =
ţ

H(2H−1)
β(2−2H,H− 1

2 )

ű 1
2 , t > s, in the following way

RH(t, s) =
∫ t∧s

0

KH(t, u)KH(s, u)du.

As in the standard Brownian motion case, we wish to associate to BH a Gaussian Hilbert space in the
following way. We denote E the space of step functions defined on [0, T ] and let H be the Hilbert space
given by the completion of E with respect to the following inner product

〈χ[0,t], χ[0,s]〉H = RH(t, s).
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The function χ[0,t] 7→ BH
t can be extended to an isometry between H and the Gaussian Hilbert space

generated by the fractional Brownian motion. We denote this isometry by BH .
We recall that the following relation holds

L2([0, T ]) ⊆ H (5)

since
‖f‖H ≤ kH‖f‖L2([0,T ]) (6)

for every f ∈ L2([0, T ]), where kH =
T 2H−1

H − 1
2

. For the proof we refer to [4] and [24].

We introduce now the operator K∗
H .

Definition 2.2. Let K∗
H be the linear operator defined on E

K∗
H : E −→ L2([0, T ])

such that

(K∗
Hϕ)(s) :=

∫ T

s

ϕ(r)
∂KH

∂r
(r, s)dr. (7)

We note that
K∗

H(χ[0,t])(s) = KH(t, s)χ[0,t](s).

Proposition 2.3. For every ϕ,ψ ∈ E we have

〈K∗
Hϕ,K

∗
Hψ〉L2([0,T ]) = 〈ϕ,ψ〉H. (8)

Proof. For the proof we refer to [4] and [23].

Hence we can extend the operator K∗
H to an isometry between the Hilbert space H and L2([0, T ]) (see

[24] for further details). We define the process

Bt = BH((K∗
H)−1χ[0,t]) t ∈ [0, T ]. (9)

We obtain that Bt is a Gaussian process, whose covariance is given by

〈Bt, Bs〉L2([0,T ]) = 〈BH((K∗
H)−1χ[0,t]), B

H((K∗
H)−1χ[0,s])〉L2([0,T ])

= 〈(K∗
H)−1(χ[0,t]), (K

∗
H)−1(χ[0,s])〉H

= s ∧ t
Hence Bt (or better its continuous modification) is a standard Brownian motion. Moreover for every
ϕ ∈ H we have

BH(ϕ) =
∫ T

0

(K∗
Hϕ)(t)dBt

and in particular

BH
t = BH(χ[0,t]) =

∫ T

0

KH(t, s)dBs, (10)

where the kernel KH is defined in (4). As a consequence of (9) and (10), we immediately have that BH

and B generate the same filtration.

We denote by SH the set of regular cylindric random variables S of the form

S = f(WH(h1), . . . ,WH(hn)), (11)

where hi ∈ H, n ≥ 1, and f belongs to the set C∞b (Rn,R) of bounded continuous functions with bounded
continuous partial derivatives of every order.
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Definition 2.4. Let H ∈ [ 12 , 1) and S ∈ SH .

(1) The Malliavin derivative of S with respect to BH is defined as the H−valued random variable

DHS :=
n∑

i=1

∂f

∂xi
(WH(h1), . . . ,WH(hn))hi. (12)

(2) The space SH is endowed with the norm D1,2
H such that

‖S‖2D1,2
H

:= ‖S‖2L2(Ω) + ‖DHS‖2L2(Ω,H).

We denote by D1,2
H the closure of the space SH with respect to the norm ‖ · ‖D1,2

H
and extend by density

the derivative operator to the space D1,2
H .

We introduce now the divergence operator. Let H ∈ [ 12 , 1).

Definition 2.5. (1) The domain domδH of the divergence operator is defined as the set of the random
variables F ∈ L2(Ω,H) such that

|E(〈DHS, F 〉H)| ≤ cF ‖S‖L2(Ω) ∀S ∈ SH , (13)

for some constant cF depending on F.

(2) The divergence operator δH : domδH −→ L2(Ω) is defined by the duality relation

〈DHG,F 〉L2(Ω,H) = 〈G, δHF 〉L2(Ω) (14)

for every G ∈ D1,2
H .

Hence the divergence operator is the adjoint of the derivative operator.
From now on, to simplify the notation in the case H = 1

2 , we omit to write the index H and denote

L1,2 := D1,2
1/2(L

2([0, T ])).

We conclude this section by recalling a result that will play a key role in the sequel.

Proposition 2.6. We have that F ∈ domδH iff K∗HF ∈ domδ and

δH(F ) = δ(K∗HF ). (15)

Proof. For the proof we refer to [3] and [24].

According to the approach of [12] and [15], we define the stochastic integral with respect to BH for H > 1
2

as follows.

Definition 2.7. Let BH be a fractional Brownian motion of Hurst index H > 1
2 and F a stochastic

process belonging to domδH . We define stochastic integral of F with respect to BH the divergence
δH(F ) of F introduced in Definition 2.5.

3 Relations between the standard case and the case H > 1
2

Before proceeding to prove our main results concerning the discretization of the stochastic integral as
divergence, we need to clarify some relations between the standard and the fractional case.
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3.1 Chaos expansions

By the Chaos Expansion Theorem, for every F ∈ L2(Ω, L2([0, T ])) we have

∀t ∈ [0, T ], Ft =
n∑

q=0

Iq(fq,t) in L2(Ω) (16)

where fq,t(t1, . . . , tq) := fq(t1, . . . , tq, t) ∈ L2([0, T ]q+1) are symmetric with respect to the first q variables
(t1, . . . , tq) and Iq denotes the q-dimensional iterated Wiener integral with respect to (t1, . . . , tq)

Iq(fq,t) :=
∫ T

0

(∫ tq

0

. . .

∫ t2

0

fq,t(t1, . . . , tq)dBt1 . . . dBtq−1

)
dBtq

(for further details see [18] and [23]).
We introduce the function

K∗H : L2(Ω,H) −→ L2(Ω, L2([0, T ])) (17)

that associates to F ∈ L2(Ω,H) the random variable K∗HF ∈ L2(Ω, L2([0, T ])) defined as (K∗HF )(ω) :=
K∗

H(F (ω)).

Proposition 3.1. The following properties hold

(i) K∗H : L2(Ω,H) −→ L2(Ω, L2([0, T ])) is an isometry;

(ii) L2(Ω, L2([0, T ])) ⊆ L2(Ω,H) and

‖F‖L2(Ω,H) ≤ kH‖F‖L2(Ω,L2([0,T ])).

Proof. The proof follows by (5), (6) and (8).

Proposition 3.2. Let F belong to L2(Ω, L2([0, T ])) with chaos expansion given by (16). Then

K∗HF =
∞∑

q=0

Iq(K∗
H,·(fq,·)) in L2(Ω, L2([0, T ])). (18)

Moreover for almost every t ∈ [0, T ]

(K∗HF )t =
∞∑

q=0

Iq((K∗
H,·fq,·)t) in L2(Ω), (19)

where by (7) we have

(K∗
H,·fq,·)t =

∫ T

t

fq(t1, . . . , tq, r)
∂KH

∂r
(r, t)dr.

Proof. We start with some preliminary remarks.

(A) If we put

(SQ)t :=
Q∑

q=0

Iq(fq,t), Q ∈ N,

then by the Chaos Expansion Theorem (see [23]) we obtain the following convergences

lim
Q→∞

‖(SQ)t − Ft‖L2(Ω) = 0 ∀t ∈ [0, T ] (20)

lim
Q→∞

‖SQ − F‖L2(Ω,L2([0,T ])) = 0. (21)
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(B) Consider F ∗ = K∗HF . Then F ∗ admits chaos expansion given by

F ∗ =
∞∑

q=0

Iq(f∗q,·) in L2(Ω, L2([0, T ])),

where f∗q,· ∈ L2([0, T ]q+1) are symmetric function with respect to the variables t1, . . . , tq, for every
q ∈ N. Hence if we set

(S∗Q)t :=
Q∑

q=0

Iq(f∗q,t), Q ∈ N,

the following convergences hold

lim
Q→∞

‖(S∗Q)t − F ∗t ‖L2(Ω) = 0 (22)

lim
Q→∞

‖S∗Q − F ∗‖L2(Ω,L2([0,T ])) = 0. (23)

(C) By the stochastic version of the Fubini-Tonelli theorem ([25]), we can exchange the order of inte-
gration between the multiple integral Iq and the integral operator K∗

H

[K∗
H,·(Iq((fq,·))]t = Iq(K∗

H,·(fq,·))(t), (24)

for every t ∈ [0, T ].

By (8) and Proposition 3.1 we obtain that

‖K∗HSQ −K∗HF‖2L2(Ω,L2([0,T ])) = ‖K∗H(SQ − F )‖2L2(Ω,L2([0,T ]))

≤ kH‖SQ − F‖2L2(Ω,L2([0,T ])).

Hence by (21) we have
lim

Q→∞
‖K∗HSQ −K∗HF‖L2(Ω,L2([0,T ])) = 0. (25)

Now it remains only to prove that

lim
Q→∞

‖(K∗HSQ)t − (K∗HF )t‖L2(Ω) = 0, for a.e. t ∈ [0, T ]. (26)

By (23) and (25) we get immediately

lim
Q→∞

‖S∗Q −K∗HSQ‖2L2(Ω,L2([0,T ])) = 0. (27)

Moreover we know

‖S∗Q −K∗HSQ‖2L2(Ω,L2([0,T ])) =

∥∥∥∥∥
Q∑

q=0

Iq(f∗q,· −K∗
Hfq,·)

∥∥∥∥∥

2

L2(Ω,L2([0,T ]))

. (28)

and that the following relation holds between the norms:

‖Iq(fq,t)‖2L2(Ω,L2([0,T ])) = q!‖(fq,t)‖2L2([0,T ]q+1), (29)
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if (fq,t) is symmetric with respect to the first q variables t1, . . . , tq, for every q ∈ N. Since also f∗q,·−K∗
H,·fq,·

are symmetric with respect to (t1, . . . , tq), for every q ∈ N, we get

∥∥∥∥∥
Q∑

q=0

Iq(f∗q,· −K∗
H,·fq,·)

∥∥∥∥∥

2

L2(Ω,L2([0,T ]))

=
Q∑

q=0

q!‖f∗q,· −K∗
H,·fq,·‖2L2([0,T ]q+1)

and by (27)
∞∑

q=0

q!‖f∗q,· −K∗
H,·fq,·‖2L2([0,T ]q+1) = 0.

Finally

‖f∗q,· −K∗
H,·fq,·‖2L2([0,T ]q+1) =

∫ T

0

(∫

[0,T ]q
(f∗q,· −K∗

H,·fq,·)2(t1, . . . , tq, t)dt1 . . . dtq

)
dt = 0

for every q ∈ N. We conclude that for almost every t ∈ [0, T ]

f∗q,t − (K∗
H,·fq,·)t = 0 in L2([0, T ]q)

for every q ∈ N. Finally for almost every t ∈ [0, T ] we have that (S∗Q)t = (K∗HSQ)t, for every Q ∈ [0, T ],
and then

lim
Q→∞

‖(K∗HSQ)t − (K∗HF )t‖L2(Ω) = lim
Q→∞

‖(S∗Q)t − (K∗HF )t‖L2(Ω).

By (22) we obtain the result.

3.2 Relation between D1,2
H (H) and L1,2

We can generalize the Definition 2.5 to the case of H−valued random variables. In this case the space
SH(H) is defined as the set of random variables U with values in H of the form

U =
n∑

j=1

Fjvj , (30)

where Fj ∈ D1,2
H , vj ∈ H, ∀j ∈ {1, . . . , n}. If U ∈ SH(H), the Malliavin derivative DHU of U is defined

as the element in L2(Ω,H⊗H) given by

DHU :=
n∑

j=1

DHFj ⊗ vj , (31)

where ⊗ denotes the Hilbert-tensor product between the Hilbert spacesH.We refer to [1] for the definition
and the properties of the tensor product.
The derivative operator

DH : SH(H) −→ L2(Ω,H⊗H)

induces on SH(H) the norm

‖U‖2D1,2
H (H)

:= ‖U‖2L2(Ω,H) + ‖DHU‖2L2(Ω,H⊗H).

We extend Definition 2.5 as follows.
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Definition 3.3. The space D1,2
H (H) is defined as the closure of SH(H) with respect to the norm ‖·‖D1,2

H (H).

The derivative operator DH can be extended to D1,2
H (H).

We note that the space D1,2
H (H) is an Hilbert space with respect to the inner product

〈F,G〉D1,2
H (H) := 〈F,G〉L2(Ω,H) + 〈DH

HF,D
H
HG〉L2(Ω,H⊗H), (32)

for every F,G ∈ D1,2
H (H).

In particular we have

Proposition 3.4.
D1,2

H (H) ⊆ domδH and ‖δHF‖L2(Ω) ≤ ‖F‖D1,2
H (H).

Proof. For the proof and further details, see [18].

Consider now the operator (K∗H)⊗2 : L2(Ω,H⊗H) → L2(Ω, L2([0, T ]2), defined on F ∈ L2(Ω,H⊗H) as
follows

(K∗H)⊗2(ω) := (K∗
H)⊗2(F (ω)).

Proposition 3.5. The operator K∗H has the following properties:

(i) Let F ∈ L2(Ω,H). Then
F ∈ D1,2

H (H) ⇐⇒ K∗HF ∈ L1,2 (33)

and
(K∗H)⊗2(DHF ) = D(K∗HF ). (34)

(ii) K∗H : D1,2
H (H) −→ L1,2 is an isometry with respect to the inner product defined in (32), i.e.

〈K∗HF,K∗HG〉L1,2 = 〈F,G〉D1,2
H (H)

for every F,G ∈ D1,2
H (H).

Proof. (i) Let F ∈ D1,2
H (H) ⊂ L2(Ω,H). Then exists a sequence (Un) in SH(H), such that

{
Un −→ F in L2(Ω,H)
DHUn −→ DHF in L2(Ω,H⊗H)

(35)

for n→∞. We recall that by (30) the term Un is given by

Un =
kn∑

j=1

Fn
j h

n
j n ∈ N

where Fn
j ∈ D1,2 and hj ∈ H, ∀j ∈ {1, . . . , n}.

We define U∗n := K∗
HUn, n ∈ N. By Proposition 3.1 and (35) we have

lim
n→∞

‖Un − F‖L2(Ω,H) = 0.

That implies
U∗n −→ K∗HF in L2(Ω, L2([0, T ])) (36)

for n→∞.
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In [24] is proved that D1,2
H = D1,2 and in particular

K∗
H(DHF ) = DF, ∀F ∈ D1,2

H = D1,2. (37)

By (37) we obtain the following relation

(K∗H)⊗2(DHUn) =
kn∑

j=1

DFn
j ⊗K∗

Hh
n
j = D(U∗n).

Then

‖D(U∗n)− (K∗
H)⊗2(DHF )‖2L2(Ω,L2([0,T ]2) =

= ‖(K∗
H)⊗2(DHUn)− (K∗

H)⊗2(DHF )‖2L2(Ω,L2([0,T ]2))

= ‖DHUn −DHF‖2L2(Ω,H⊗H).

The last term goes to zero by (35) and we have

D(U∗n) −→ (K∗
H)⊗2(DHF ) in L2(Ω, L2([0, T ]2)) (38)

for n→∞.
By (36) and (38) we obtain that (34) holds. If we now assume K∗HF ∈ L1,2, we can proceed in the
same way using (K∗

H)−1 instead of K∗
H . Hence we have proved also (33).

(ii) This result follows immediately by (32), and from that the fact that K∗
H is an isometry.

We can prove now the following result, that is essential to characterize the space of integrands F , whose
stochastic integral δH(F ) admits the discretization provided in Section 4.

Proposition 3.6. The following inclusion holds

L1,2 ⊆ D1,2
H (H) (39)

and
‖F‖D1,2

H (H) ≤ kH‖F‖L1,2 ∀F ∈ L1,2. (40)

where kH = T 2H−1

H− 1
2

as in (6).

Proof. Let F ∈ L1,2. We recall that it is equivalent to the condition
∞∑

q=0

q(q!)‖fq,·)‖2L2([0,T ]q+1) <∞ (41)

(see [23]). By Proposition 3.2 and Proposition 3.5 we have that F belongs to D1,2
H (H) iff

∞∑
q=0

q(q!)‖K∗
H,·fq,·)‖2L2([0,T ]q+1) <∞.

By (6) we have

‖K∗
H,·fq,·‖2L2([0,T ]q+1) =

∫

[0,T ]q
‖fq(t1, ...., tq)‖2Hdt1...dtq

≤ kH‖fq‖2L2([0,T ]q+1)
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and then ∞∑
q=0

q(q!)‖K∗
H,·fq,·)‖2L2([0,T ]q+1) ≤ kH

∞∑
q=0

q(q!)‖fq‖2L2([0,T ]q+1). (42)

Since F ∈ L1,2, the series
∞∑

q=0
q(q!)‖fq‖2L2([0,T ]q+1) is convergent in L2(Ω, L2([0, T ])). Moreover (42) implies

that ∞∑
q=0

q(q!)‖K∗
H,·fq,·)‖2L2([0,T ]q+1)

converges in L2(Ω, L2([0, T ])).
We prove now (40). We note that

‖DF‖2L2(Ω,L2([0,T ]2)) =
∞∑

q=0

q(q!)‖fq‖2L2([0,T ]q+1)

and

‖D(K∗HF )‖2L2(Ω,L2([0,T ]2)) =
∞∑

q=0

q(q!)‖K∗
H,·fq,·‖2L2([0,T ]q+1).

Hence by (42), it follows that

‖D(K∗HF )‖2L2(Ω,L2([0,T ]2)) ≤ kH‖DF‖2L2(Ω,L2([0,T ]2))

Finally we get

‖F‖2D1,2
H (H)

= ‖F‖2L2(Ω,H) + ‖DHF‖2L2(Ω,H⊗H)

= ‖K∗HF‖2L2(Ω,L2([0,T ])) + ‖(K∗H)⊗2(DHF )‖2L2(Ω,L2([0,T ]2))

= ‖K∗HF‖2L2(Ω,L2([0,T ])) + ‖D(K∗HF )‖2L2(Ω,L2([0,T ]2))

≤ kH‖F‖2L2(Ω,L2([0,T ])) + kH‖DF‖2L2(Ω,L2([0,T ]2))

= kH‖F‖2L1,2 .

Remark 3.7. The space L1,2 is strictly included in D1,2
H (H)∩L2(Ω, L2([0, T ])). We prove this by showing

that there exists an element F ∈ D1,2
H (H) ∩ L2(Ω, L2([0, T ])) that doesn’t belong to L1,2. Let F have the

following chaos expansion

F =
∞∑

q=0

Iq(fq,·) in L2(Ω, L2([0, T ]))

where
fq,t(t1, . . . , tq) =

1√
T q

1√
q!qβ

f(qαt) α, β > 0. (43)

Suppose that f satisfies the following hypotheses:

(i) f ≥ 0;

(ii) f ∈ L2([0,∞));

(iii)
∫∞
0

∫∞
0
f(u)f(v)φ(u, v)dudv <∞, where φ is defined in (3).
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Since by (18) and (33) the following must hold

F ∈ L1,2 ⇐⇒
∞∑

q=0

q(q!)‖fq,·‖2L2([0,T ]q+1 <∞,

F ∈ D1,2
H (H) ⇐⇒

∞∑
q=0

q(q!)‖K∗
H,·fq,·‖2L2([0,T ]q+1 <∞,

it is sufficient to prove that there exist fq,· of the form (43) such that

∞∑
q=0

q(q!)‖fq,·‖2L2([0,T ]q+1) = ∞, (44)

∞∑
q=0

q(q!)‖K∗
H,·fq,·‖2L2([0,T ]q+1) <∞. (45)

By standard integral calculations we get the following inequalities

q(q!)‖fq,·‖2L2([0,T ]q+1) ≥ ‖f‖2L2([0,T ])

1
qα+β−1

(46)

and
q(q!)‖fq,·‖2L2([0,T ]q+1) ≤ cf

1
q2αH+β−1

. (47)

where cf =
∫∞
0

∫∞
0
f(u)f(v)φ(u, v)dudv.

Finally (44) and (45) hold if we choose α e β such that
{
α+ β ≤ 2,
2αH + β > 2.

(48)

Since H > 1
2 , it is then sufficient to choose α = β = 1.

4 Discrete approximation for the stochastic integral

We can now prove a discrete approximation for the stochastic integral defined as divergence introduced
in Definition 2.7.
By Proposition 2.6 it follows that the integral of F with respect to fBm coincides the Skorohod integral
of K∗HF with respect to the Bm. Hence one can provide a discretization of the integral δH(F ) by using
a discrete approximation of δ(K∗HF ). However this is not satisfactory because the discretization depends
on the Hurst index of the Brownian motion with respect to which the integral is defined. Therefore we
define first a discretization of the process and then a procedure for obtaining the approximation of the
integral.

4.1 Resolution of [0, T ]

We introduce first the setting and some basic notions needed to prove the main result of this paper. For
further details we refer to [21]. Consider the measure space ([0, T ],B, l), where B denotes the Borelian
σ-algebra and l the Lebesgue measure.
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Definition 4.1. A resolution of L2([0, T ]) is an increasing family of σ-algebras generated by a finite
number of sets

B1 ⊂ B2 ⊂ · · · ⊂ Bn ⊂ · · · ⊂ B.
such that

⋃
n∈N

L2([0, T ],Bn, l) is dense in L2([0, T ]). We denote with Γn the finite set of generators of Bn,

that we assume to be a partition of the interval [0, T ].

Given a resolution {Bn}, consider the set ΓN :=
N⋃

n=0
Γn and the set Γ =

⋃
n∈N

Γn. We obtain on RΓ a

coherent system of marginal laws θN and by Kolmogorov theorem there exists a probability measure θ on
RΓ with this family of marginal laws. Hence we can associate a probability space (RΓ, θ) to a resolution
{Bn}.
Proposition 4.2. The probability spaces associated to different resolutions are canonically isomorphic.

Proof. For the proof see [21].

4.2 Fock space

We denote with R the set of all resolutions of L2([0, T ]).

Definition 4.3. The Fock space is the set of all pairs (Ω(r),Ψr,r′) where r, r′ ∈ R, Ω(r) denotes the
probability space associated to the resolution r e Ψr,r′ is the canonical isomorphism between Ω(r) and
Ω(r′).

All properties of a Fock space do not depend on the choice of the resolution. For further details, see
[21]. Consider a subset γ ∈ B. The space L2([0, T ]) can be decomposed as follows

L2([0, T ]) = L2(γ)⊕ L2(γc).

This decomposition induces a similar one on the relative Fock spaces

Foc(L2([0, T ])) = Foc(L2(γ))× Foc(L2(γc)).

Definition 4.4. We denote by

Eγc

: L2(Foc(L2([0, T ]))) → L2(Foc(L2(γc))) (49)

the natural projection from L2(Foc(L2([0, T ]))) onto L2(Foc(L2(γc))).

We recall the construction of the Skorohod-Zakai-Nualart-Pardoux integral (in short, SZNP-integral)
given in [21] for F ∈ L2(Ω, L2([0, T ])). We define

In(F ) :=
∑

γ∈Γn

Eγc

(EBn(F ))(γ)B(γ),

where {Bn} is a resolution of L2([0, T ]) as introduced in Definition 4.1, Eγc

denotes the projection (49)
and B(γ) is the usual Wiener integral of the indicator function χγ with respect to Bm, i.e.

B(γ) :=
∫ T

0

χγ(s)dBs, γ ∈ B.

The SZNP-integral is defined as the limit

I(F ) := lim
n→∞

In(F ) in L2(Ω).

By [21] we have the following theorem
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Theorem 4.5. Let F ∈ L1,2. Then the SZNP-integral exists and

lim
n→∞

In(F ) = δ(F ) in L2(Ω). (50)

Proof. For the proof we refer to [21].

Let F ∈ L1,2. Since by Proposition 3.6, L1,2 ⊆ D1,2
H (H) and by Proposition 3.4, D1,2

H (H) ⊆ domδH , the
stochastic integral δH(F ) is well defined.

Definition 4.6. Let F ∈ L1,2. We define

• IH
n (F ) :=

∑
γ∈Γn

Eγc

(EBn(K∗HF )(γ))B(γ),

• JH
n (F ) :=

∑
γ∈Γn

EBn(Eγc

(K∗H(EBn(F )))(γ)B(γ),

where {Bn} is a resolution of L2([0, T ]) as introduced in Definition 4.1 and Eγc

denotes the projection
(49).

By Theorem 4.5 we have that

lim
n→∞

IH
n (F ) = δ(K∗HF ) in L2(Ω), (51)

and by Proposition 2.6 we get
δ(K∗HF ) = δH(F ).

The purpose is now to prove that JH
n (F ) provides the desired discretization of δH(F ).

Theorem 4.7. Let F ∈ L1,2. Then

lim
n→∞

JH
n (F ) = δH(F ) in L2(Ω).

Proof. Let F ∈ L1,2. We need to prove

lim
n→∞

(
IH
n (F )− JH

n (F )
)

= 0 in L2(Ω).

By (16) the chaos expansion of F is given by

Ft =
∞∑
0

Iq(fq,t),

where fq,t ∈ L2([0, T ]q + 1) are symmetric functions for every q ∈ N.
By Proposition 3.2 we get

(K∗HF )t =
∞∑

q=0

Iq(K∗
H,·fq,·)(t).

We have that

EBn(K∗HF )t =
∞∑

q=0

Iq(EBn(K∗
H,·fq,·)(t), (52)

EBn(K∗HF )(γ) =
∞∑

q=0

Iq(EBn(fq,·)(γ)), (53)

Eγc

EBn(K∗HF )(γ) =
∞∑
0

Iq
(
EBn(K∗

H,·fq,·)(γ)χ
⊗q
γc

)
. (54)
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Here we write K∗
H,·fq,· to indicate on which variable the operator K∗

H is operating. By [23] we obtain
that the product of two Wiener integrals can be written as

Iq
(
EBn(K∗

H,·fq,·))(γ)χ
⊗q
γc

)
B(γ) = Iq+1

(
EBn(K∗

H,·fq,·))(γ)χγ
χ⊗q

γc

)
.

Hence IH
n (F ) can be rewritten as

IH
n (F ) =

∞∑
q=0

Iq+1

( ∑

γ∈Γn

EBn(K∗
H,·fq,·))χγχ

⊗q
γc

)

and analogously

JH
n (F ) =

∞∑
q=0

Iq+1

( ∑

γ∈Γn

EBn
(
K∗

H,·(E
Bn(fq,·))

)
χγχ

⊗q
γc

)
.

It follows that the difference between IH
n (F ) and JH

n (F ) is of the form

IH
n (F )− JH

n (F ) =
∞∑

q=0

Iq+1

( ∑

γ∈Γn

[
EBn(K∗

H,·fq,·)− EBn
(
K∗

H,·(E
Bn(fq,·))

)]
χγχ

⊗q
γc

)
.

Taking the norms, we get

‖IH
n (F )−JH

n (F )‖2L2(Ω) =
∞∑

q=0

(q+1)!

∥∥∥∥∥∥
∑

γ∈Γn

[
EBn(K∗

H,·fq,·))− EBn
(
K∗

H,·(E
Bn(fq,·))

)]
χγχ

⊗q
γc

∥∥∥∥∥∥

2

L2([0,T ]q+1)

.

Let An : [0, T ]q+1 −→ R be the function

An := EBn(K∗
H,·fq,· − EBn

(
K∗

H,·(E
Bn(fq,·)

)
.

Since for every n ∈ N, the sets {γ}γ∈Γn are a partition of the interval [0, T ], we obtain
∥∥∥

∑

γ∈Γn

Anχγχ
⊗q
γc

∥∥∥
2

L2([0,T ]q+1)
=

∫

[0,T ]q+1

( ∑

γ∈Γn

Anχγχ
⊗q
γc

)2

dt1 . . . dtqdt

=
∫

[0,T ]q+1

( ∑

γ∈Γn

A2
nχγχ

⊗q
γc

)
dt1 . . . dtqdt

≤
∫

[0,T ]q+1

( ∑

γ∈Γn

A2
nχγ

)
dt1 . . . dtqdt

=
∫

[0,T ]q+1
An(t1, . . . tq, t)

( ∑

γ∈Γn

χγ (t)
)
dt1 . . . dtqdt

= ‖An‖2L2([0,T ]q+1).

Hence it follows

‖IH
n (F )− JH

n (F )‖2L2(Ω) ≤
∞∑

q=0

(q + 1)!‖An‖2L2([0,T ]q+1).

Put Aq(n) := (q + 1)!‖An‖2L2([0,T ]q+1). To prove that
∞∑

q=0
Aq(n) goes to zero in L2(Ω) for n → ∞, it is

sufficient to verify the following conditions:

Aq(n) −→ 0 as n→∞ ∀q ≥ 0, (55)
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∞∑
q=0

Aq(n) converges uniformly in n. (56)

Condition (55) is equivalent to
lim

n→∞
‖An‖2L2([0,T ]q+1) = 0. (57)

We compute the norm

‖An‖2L2([0,T ]q+1) =
∫

[0,T ]q+1
A2

n(t1, . . . , tq, t)dt1 . . . dtqdt

=
∫

[0,T ]q

( ∫ T

0

A2
n(t1, . . . , tq, t)dt

)
dt1 . . . dtq.

To prove (57), we define the sequence

Gn(t1, . . . , tq) :=

T∫

0

A2
n(t1, . . . , tq, t)dt (58)

and show that it verifies the hypothesis of Lebesgue Theorem on bounded convergence. Indeed

Gn(t1, . . . , tq) = ‖An‖2L2([0,T ]) =

=
∥∥EBn(K∗

H,·fq,·))− EBn
(
K∗

H,·(E
Bn(fq,·))

)∥∥2

L2([0,T ])

=
∥∥EBn

[
(K∗

H,·fq,·))− (K∗
H,·(E

Bn(fq,·)))
]∥∥2

L2([0,T ])

≤ ∥∥K∗
H,·fq,· −K∗

H,·(E
Bn(fq,·))

∥∥2

L2([0,T ])

=
∥∥K∗

H,·
(
fq,· − EBn(fq,·)

)∥∥2

L2([0,T ])

= ‖fq,· − EBn(fq,·))‖2H
≤ kH‖fq,· − EBn(fq,·))‖2L2([0,T ]).

where kH = T 2H−1

H− 1
2

as in (6). The last term tends to zero when n→∞ and then

lim
n→∞

Gn(t1, . . . , tq) = 0, for a.e.− (t1, . . . , tq).

We need now to show that there exists a function G ∈ L1([0, T ]q) such that

|Gn| ≤ G, for a.e.− (t1, . . . , tq).

The following relation holds

|Gn(t1, . . . , tq)| = Gn(t1, . . . , tq)
≤ cH‖fq,· − EBn(fq,·))‖2L2([0,T ])

≤ cH
(‖fq,·‖L2([0,T ]) + ‖EBn(fq,·))‖

L2([0,T ]
)2

≤ 4cH‖fq,·‖2L2([0,T ]).
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Set G(t1, . . . , tq) := 4cH‖fq‖2L2([0,T ]). We have

∫

[0,T ]q
G(t1, . . . , tq)dt1 . . . dtq = 4cH

∫

[0,T ]q
‖fq‖2L2([0,T ])dt1 . . . dtq

= 4cH
∫

[0,T ]q
(
∫ T

0

f2
q (t1, . . . , tq, t)dt)dt1 . . . dtq

= 4cH‖fq‖2L2([0,T ]q+1) <∞, (59)

since F ∈ L1,2. Hence the norm ‖G‖L1([0,T ]q) is finite and by the Lebesgue theorem applied toGn(t1, . . . , tq)
we can conclude that ‖An‖2L2([0,T ]q+1) converges to zero when n → ∞. This ends the proof of (57) and
hence of (55).
To prove (56) we use the following criterion of uniform convergence if

∞∑
q=0

sup
n
|Aq(n)| <∞,

then
∞∑

q=0
Aq(n) converges uniformly in n. We have by (58) and (59) that

|Aq(n)| = (q + 1)!‖An‖2L2([0,T ]q+1)

= (q + 1)!Gn(t1, . . . , tq)
≤ (q + 1)!4cH‖fq‖2L2([0,T ]q+1).

Hence
sup

n
|Aq(n)| ≤ 4cH(q + 1)!‖fq‖2L2([0,T ]q+1).

Since F ∈ L1,2, the series
∑
q=0

‖fq‖2L2([0,T ]q+1) is convergent and then also
∞∑

q=0
supn |Aq(n)| < ∞. This

ends the proof.
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