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Abstract

We consider the forward integral with respect to fractional Brown-
ian motion B(H)(t) and relate this to the Wick-Itô-Skorohod integral
by using the M -operator introduced by [10] and the Malliavin deriva-

tive D
(H)
t . Using this connection we obtain a general Itô formula

for the Wick-Itô-Skorohod integrals with respect to B(H)(t), valid for

H ∈ (
1

2
, 1).
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1 Introduction

Fractional Brownian motion B(H)(t) = B(H)(t, ω), t ≥ 0, ω ∈ Ω, with Hurst
parameter H ∈ (0, 1) is a real-valued Gaussian process on a probability space
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(Ω,F,P) with the property that

E
[
B(H)(t)

]
= B(H)(0) = 0 for all t ≥ 0

and

E
[
B(H)(t)B(H)(s)

]
=

1

2
[t2H + s2H − |t− s|2H ]; t, s ≥ 0

where E denotes expectation with respect to P.
Because of its properties the fractional Brownian motion has been used to
model a number of phenomena, e.g. in biology, meteorology, physics and
finance. See e.g. [24], [6], [7], [21] and the references therein. In that con-
nection, it is of interest to develop a stochastic calculus based on B(H)(t).
In particular, one wants an integration theory, a white noise theory and a
Malliavin calculus for such processes. See e.g. [6] and the references therein
for an account of this.
There are several different integral concepts of independent interest, among
which the pathwise integral and the Wick-Itô-Skorohod integral. For each of
these integrals several versions of an Itô formula have been obtained. See for
example [5], [7], [9], [15], [18], [19], [11].
The purpose of this paper is to prove a new general Itô formula for the
Wick-Itô-Skorohod integral based on the M -operator of [10] and the Malli-

avin derivative D
(H)
t , valid for H ∈ (

1

2
, 1).

2 Some preliminaries

Here we recall the approach of [10], [16],[7] to white-noise calculus for frac-
tional Brownian motion.
We begin by recalling the standard setup for the classical white noise prob-
ability space. See e.g. [13], [17], [14] or [1] for more details.

Definition 2.1 Let S(R) denote the Schwartz space of rapidly decreasing
smooth functions on R and let Ω := S′(R) be its dual, usually called the space
of tempered distributions. Let P be the probability measure on the Borel sets
B(S′(R)) defined by the property that∫

S′(R)
exp(i < ω, f >)dP(ω) = exp(−1

2
‖f‖2L2(R)); f ∈ S(R), (2.1)

where i =
√
−1 and < ω, f >= ω(f) is the action of ω ∈ Ω = S′(R) on

f ∈ S(R).
The measure P is called the white noise probability measure. Its existence
follows from the Bochner–Minlos theorem.
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In the following we let

hn(x) = (−1)ne
x2

2
dn

dxn
(e−

x2

2 ); n = 0, 1, 2, . . . (2.2)

denote the Hermite polynomials and we let

ξn(x) = π− 1
4 ((n− 1)!)−

1
2hn−1(

√
2x)e−

x2

2 ; n = 1, 2, . . . (2.3)

be the Hermite functions. Then ξn ∈ S(R). From [25], {ξn}∞n=1 consti-
tutes an orthonormal basis for L2(R). Let J be the set of all multi-indices
α = (α1, α2, . . .) of finite length l(α) = max {i;αi 6= 0}, with αi ∈ N0 =
{0, 1, 2, . . .} for all i. For α = (α1, . . . , αn) ∈ J we put α! = α1!α2! · · ·αn! and
|α| = α1 + · · ·+ αn and we define

Hα(ω) = hα1(< ω, ξ1 >)hα2(< ω, ξ2 >) · · ·hαn(< ω, ξn >). (2.4)

In particular special cases are the unit vectors

ε(k) = (0, 0, . . . , 0, 1) (2.5)

with 1 on the k’th entry, 0 otherwise; k = 1, 2, . . .. We now use the well-
known Wiener-Itô chaos expansion Theorem to define the following space (S)
of stochastic test functions and the dual space (S)∗ of stochastic distributions:

Definition 2.2 a) We define the Hida space (S) of stochastic test func-
tions to be all ψ ∈ L2(P) whose expansion

ψ(ω) =
∑
α∈J

aαHα(ω)

satisfies

‖ψ‖2k :=
∑
α∈J

a2αα!(2N)kα <∞ for all k = 1, 2, . . . (2.6)

where

(2N)γ = (2 · 1)γ1(2 · 2)γ2 · · · (2 ·m)γm if γ = (γ1, . . . , γm) ∈ J. (2.7)

b) We define the Hida space (S)∗ of stochastic distributions to be the set
of formal expansions

G(ω) =
∑
α∈J

bαHα(ω)

such that

‖G‖2q :=
∑
α∈J

b2αα!(2N)−qα <∞ for some q <∞. (2.8)
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We equip (S) with the projective topology and (S)∗ with the inductive topol-
ogy. Convergence in (S) means convergence in ‖ · ‖k for every k = 1, 2, · · · ,
while convergence in (S)∗ means convergence in ‖ · ‖q for some q <∞. Then
(S)∗ can be identified with the dual of (S) and the action of G ∈ (S)∗ on
ψ ∈ (S) is given by

〈G,ψ〉(S)∗,(S) :=
∑
α∈J

α!aαbα (2.9)

In the sequel, we will denote the action 〈·, · 〉(S)∗,(S) simply with the symbol
〈·, ·〉. We can in a natural way define (S)∗-valued integrals as follows:

Definition 2.3 (Integration in (S)∗) Suppose Z : R → (S)∗ has the prop-
erty that

〈Z(t), ψ〉 ∈ L1(R, dt) for all ψ ∈ (S).

Then the integral ∫
R
Z(t)dt

is defined to be the unique element of (S)∗ such that〈∫
R
Z(t)dt, ψ

〉
=

∫
R
〈Z(t), ψ〉dt for all ψ ∈ (S). (2.10)

Such functions Z(t) are called dt-integrable in (S)∗.

Let B(t) a standard Brownian motion on (Ω,F,P). If we consider B(t) as
a map B(·) : R → (S)∗, then B(t) is differentiable with respect to t and its

derivative W (t) :=
d

dt
B(t) exists in (S)∗ and is called white noise.

A fundamental property of the Wick product is the following relation to
(Itô-)Skorohod integration. We recall the definition of Skorohod integral.

Let u(t, ω), ω ∈ Ω, t ∈ [0, T ] be a stochastic process (always assumed to
be (t, ω)-measurable), such that

u(t, ·) is F-measurable for all t ∈ [0, T ] (2.11)

and
E[u2(t, ω)] <∞ for all t ∈ [0, T ]. (2.12)

Definition 2.4 Suppose u(t, ω) is a stochastic process satisfying (2.11), (2.12)
and with Wiener-Itô chaos expansion

u(t, ω) =
∞∑
n=0

In(fn(·, t)). (2.13)
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Then we define the Skorohod integral of u by

δ(u) : =

∫
R
u(t, ω)δB(t) :=

∞∑
n=0

In+1(f̃n) (when convergent) (2.14)

where f̃n is the symmetrization of fn(t1, . . . , tn, t) as a function of n + 1
variables t1, . . . , tn, t.

We say u is Skorohod-integrable and write u ∈ dom(δ) if the series in
(2.14) converges in L2(P). This occurs iff

E[δ(u)2] =
∞∑
n=0

(n+ 1)!‖f̃n‖2L2(Rn+1) <∞ . (2.15)

Theorem 2.5 Suppose f(t, ω) : R × Ω → R is Skorohod integrable. Then
f(t, ·) �W (t) is dt-integrable in (S)∗ and∫

R
f(t, ω)δB(t) =

∫
R
f(t, ω) �W (t)dt, (2.16)

where the integral on the left is the Skorohod integral (which coincides with
the Itô integral if f is adapted) and f(t, ω) �W (t) denotes the Wick product
in (S)∗.

2.1 Integration

We now review briefly how the classical white noise theory can be used in
order to construct a stochastic integral with respect to a fractional Brownian
motion B(H)(t) for any H ∈ (0, 1) as in the approach of [10]. The main idea
is to relate the fractional Brownian motion B(H)(t) with Hurst parameter
H ∈ (0, 1) to classical Brownian motion B(t) via the following operator M :

Definition 2.6 The operator M = M (H) is defined on functions f ∈ S(R)
by

M̂f(y) = |y|
1
2
−H f̂(y); y ∈ R (2.17)

where

ĝ(y) :=

∫
R
e−ixyg(x)dx (2.18)

denotes the Fourier transform.
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For further details on the operator M , we refer to [10] and to [6]. The
operator M extends in a natural way from S(R) to the space

L2
H(R) :={f : R → R (deterministic); |y|

1
2
−H f̂(y) ∈ L2(R)}

={f : R → R;Mf(x) ∈ L2(R)}
={f : R → R; ‖f‖L2

H(R) <∞}, where ‖f‖L2
H(R) = ‖Mf‖L2(R).

The inner product on this space is

〈f, g〉L2
H(R) = 〈Mf,Mg〉L2(R). (2.19)

If (ξn)n∈N is the orthonormal basis of L2(R) introduced in (2.3), then

en :=M−1ξn, ∀n ∈ N (2.20)

is an orthonormal basis for L2
H(R). In particular, the indicator function

χ[0,t](·) is easily seen to belong to this space, for fixed t ∈ R, and we write

Mχ[0,t](x) =M [0, t](x).

We now define, for t ∈ R

B̃(H)(t) := B̃(H)(t, ω) :=< ω,M [0, t](·) > (2.21)

Then B̃(H)(t) is Gaussian, B̃(H)(0) = E[B̃(H)(t)] = 0 for all t ∈ R and

E
[
B̃(H)(s)B̃(H)(t)

]
=

1

2
[|t|2H + |s|2H − |s− t|2H ]

as follows by [10], (A.10). Therefore the continuous version of B(H)(t) of
B̃(H)(t) is a fractional Brownian motion on (Ω,F,P). Let f ∈ L2

H(R) and
define ∫

R
f(t)dB(H)(t) :=

∫
R
Mf(t)dB(t); f ∈ L2

H(R). (2.22)

Now define the fractional white noise W (H)(t) as the derivative with respect
to t of B(H)(t)

dB(H)(t)

dt
=W (H)(t) in (S)∗. (2.23)

In particular, by [7] we obtain that the relation between fractional and clas-
sical white noise is given by

W (H)(t) =MW (t). (2.24)

In view of Theorem 2.5 the following definition is natural:
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Definition 2.7 (The fractional Wick-Itô-Skorohod (WIS) integral)
Let Y : R → (S)∗ be such that Y (t)�W (H)(t) is dt-integrable in (S)∗. Then we
say that Y is dB(H)-integrable and we define the Wick-Itô-Skorohod (WIS)
integral of Y (t) = Y (t, ω) with respect to B(H)(t) by∫

R
Y (t, ω)dB(H)(t) :=

∫
R
Y (t) �W (H)(t)dt. (2.25)

Note that this definition coincides with (2.22) if Y = f ∈ L2
H(R).

Definition 2.8 A process Y (t) =
∑

α∈J cα(t)Hα(ω) ∈ (S)∗ belongs to the
space M if cα(·) ∈ L2

H(R) and
∑

α∈JMcα(t)Hα(ω) converges in (S)∗ for all
t.

Then the following fundamental relation holds.

Proposition 2.9 (Integration)[BØSW, (5.2)], [Ø, (3.16)] Suppose Y :
R → (S)∗ is dB(H)-integrable (Definition 2.7) and Y ∈ M. Then∫

R
Y (t)dB(H)(t) =

∫
R
MY (t)δB(t). (2.26)

2.2 Differentiation

We now recall the approach in [16] to differentiation, as modified and ex-
tended by [10]:

Definition 2.10 Let F : Ω → R and choose γ ∈ Ω. Then we say F has a
directional M-derivative in the direction γ if

D(H)
γ F (ω) := lim

ε→0

1
ε
[F (ω + εMγ)− F (ω)] (2.27)

exists almost surely in (S)∗. In that case we call D
(H)
γ F the directional M-

derivative of F in the direction γ.

Definition 2.11 We say that F : Ω → R is differentiable if there exists a
function

Ψ : R → (S)∗

in M such that

D(H)
γ F (ω) =

∫
R
MΨ(t)Mγ(t)dt for all γ ∈ L2

H(R). (2.28)

Then we write

D
(H)
t F :=

∂(H)

∂ω
F (t, ω) = Ψ(t) (2.29)

and we call D
(H)
t F the Malliavin derivative or the stochastic gradient of F

at t.
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In the classical case (H = 1
2
) we use the notation Dt for the corresponding

Malliavin derivative.

Proposition 2.12 [BØSW, (5.1)] Let F ∈ (S)∗. Then

DtF =MD
(H)
t F for a.a. t ∈ R. (2.30)

Proposition 2.13 [BØSW, Theorem 5.3] Suppose Y : R → (S)∗ is
dB(H)-integrable. If DtY (·) : R → (S)∗ is dB(H)-integrable for every t, then

D
(H)
t (

∫
R
Y (s)dB(H)(s)) =

∫
R
D

(H)
t Y (s)dB(H)(s) + Y (t). (2.31)

Definition 2.14 Let D(H)
1,2 be the set of all F ∈ L2(P) such that the Malliavin

derivative D
(H)
t F exists and

E

[∫
R
[D

(H)
t F ]2dt

]
<∞ (2.32)

The following result has been obtained with a different proof in Lemma 2 of
[18].

Lemma 2.15 Suppose g ∈ L2
H(R) and let F ∈ D(H)

1,2 . Then

F �
∫
R
g(t)dB(H)(t) = F ·

∫
R
g(t)dB(H)(t)− 〈g,D(H)

· F 〉L2
H(R) (2.33)

3 The forward integral

By following the approach of [23], we now define the forward integral with
respect to the fractional Brownian motion as follows:

Definition 3.1

a) The (classical) forward integral of a real valued measurable process Y
with integrable trajectories is defined by∫ T

0

Y (t)d−B(H)(t) = lim
ε−→0

∫ T

0

Y (t)
B(H)(t+ ε)−B(H)(t)

ε
dt,

provided that the limit exists in probability under P.
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b) The (generalized) forward integral of a real valued measurable process
Y with integrable trajectories is defined by∫ T

0

Y (t)d−B(H)(t) = lim
ε−→0

∫ T

0

Y (t)
B(H)(t+ ε)−B(H)(t)

ε
dt,

provided that the limit exists in (S)∗.

Note that in the generalized definition of forward integral, the limit is re-
quired to exist in the Hida space of stochastic distributions (S)∗ introduced
in Definition 2.2. Convergence in (S)∗ is also explained in Section 2.

Corollary 3.2 Let ψ(t) = ψ(t, ω) be a measurable forward integrable process
and assume that ψ is càglàd.The forward integral of ψ with respect to the
fractional Brownian motion B(H) coincides with∫ T

0

ψ(t)d−B(H)(t) = lim
|∆|−→0

N∑
j=1

ψ(tj)∆B
(H)
tj (3.1)

whenever the left-hand limit exists in probability, where π : 0 = t0 < t1 <
· · · < tN = T is a partition of [0, T ] with mesh size |∆| = sup

j=0,··· ,N−1
|tj+1− tj|

and ∆B
(H)
tj = B

(H)
tj+1

−B
(H)
tj .

Proof. Let ψ be a càglàd forward integrable process and

ψ(∆)(t) =
∑
k

ψ(tk)χ(tk,tk+1](t) (3.2)

be a càglàd step function approximation to ψ. Then ψ(∆)(t) converges bound-
edly almost surely to ψ(t) as |∆| −→ 0. The forward integral of ψ(∆)(t) is
then given by∫ T

0

ψ(∆)(t)d−B(H)(t) = lim
ε→0

∫ T

0

ψ(∆)(s)
B(H)(s+ ε)−B(H)(s)

ε
ds

= lim
ε→0

∑
k

ψ(tk)

∫ tk+1

tk

1

ε

∫ s+ε

s

dB(H)(u)ds

= lim
ε→0

∑
k

ψ(tk)

∫ tk+1

tk

1

ε

∫ u

u−ε

dsdB(H)(u)

=
∑
k

ψ(tk)∆B
(H)
tk

, (3.3)
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where ∆B
(H)
tk

= B
(H)
tk+1

−B
(H)
tk

. Hence (3.1) follows by the dominated conver-
gence theorem and by (3.3). 2

For the sequel we will use the same notation as in Section 2.

Definition 3.3 The space L(H)
1,2 consists of all càglàd processes

ψ(t) =
∑
α∈J

cα(t)Hα(ω) ∈ (S)∗

for every t ∈ [0, T ] and such that

‖ψ‖2
L(H)
1,2

:=
∑
α∈J

∞∑
i=1

αiα!‖cα‖2L2([0,T ]) <∞ . (3.4)

Note that if ψ(t) ∈ (S)∗ for every t ∈ [0, T ], then Dsψ(t) exists in (S)∗ (see
Lemma 3.10 of [1]). We recall a preliminary lemma needed in the following.

Lemma 3.4 Let (Γ,G,m) be a measure space. Let fε : Γ → B, ε ∈ R, be
measurable functions with values in a Banach space (B, ‖ · ‖B). If fε(γ) →
f0(γ) as ε→ 0 for almost every γ ∈ Γ and there exists K <∞ such that∫

Γ

‖fε(γ)‖2Bdm(γ) < K (3.5)

for all ε ∈ R, then ∫
Γ

fε(γ)dm(γ) →
∫
Γ

f0(γ)dm(γ) (3.6)

in ‖ · ‖B.

Proof. The proof is analogous to the one of Theorem II.21.2 of [22]. 2

Lemma 3.5 Suppose that ψ ∈ L(H)
1,2 . Then

Mt+Dt+ψ(t) := lim
ε−→0

1

ε

∫ t+ε

t

MsDsψ(t)ds (3.7)

exists in L2(P) for all t. Moreover∫ T

0

Mt+Dt+ψ(t)dt = lim
ε−→0

∫ T

0

(
1

ε

∫ t+ε

t

MsDsψ(t)ds

)
dt (3.8)

in L2(P) and

E

[(∫ T

0

Ms+Ds+ψ(s)ds

)2
]
<∞. (3.9)
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Proof. Suppose that ψ(t) has the expansion

ψ(t) =
∑
α∈J

cα(t)Hα(ω).

In the sequel we drop ω in Hα(ω) for the sake of simplicity. Then we have

Dsψ(t) =
∑
α∈J

∞∑
i=1

cα(t)αiHα−ε(i)ξi(s)

and

MsDsψ(t) =
∑
α∈J

∞∑
i=1

cα(t)αiHα−ε(i)ηi(s),

where ηi(s) =Mξi(s). Hence

1

ε

∫ t+ε

t

MsDsψ(t)ds =
∑
α∈J

∞∑
i=1

(cα(t)
1

ε

∫ t+ε

t

ηi(s)ds)αiHα−ε(i) .

Since ηi(s) =Mξ(s) is a continuous function, we have that

1

ε

∫ t+ε

t

ηi(s)ds→ ηi(t)

as ε→ 0.
We apply now Lemma 3.4 with γ = (α, i), dm(γ) =

∑
α∈J

∑∞
i=1 δ(α,i), where

δx denotes the point mass at x, B = L2(P) and fε = (cα(t)
1
ε

∫ t+ε

t
ηi(s)ds)αiHα−ε(i) .

We obtain∫
Γ

‖fε(γ)‖2Bdm(γ) =
∑
α∈J

∞∑
i=1

‖fε(γ)‖2L2(P)

=
∑
α∈J

∑
i=1

(cα(t)
1

ε

∫ t+ε

t

ηi(s)ds)
2αiα!

≤
[
(t+ ε)2H − t2H

ε

]2∑
α∈J

∑
i=1

cα(t)
2αiα! ,

since

1

ε

∫ t+ε

t

ηi(s)ds = 〈Mξi,
1

ε
χ[t,t+ε]〉L2(R) =

〈M2ei,
1

ε
χ[t,t+ε]〉L2(R) = 〈ei,

1

ε
χ[t,t+ε]〉L2

H(R) ≤

‖ei‖L2
H(R)

1

ε
‖χ[t,t+ε]‖L2

H(R) =
(t+ ε)2H − t2H

ε
,
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where we have used that the fact that ‖ei‖L2
H(R) = 1 and the equality∫

R
[M [a, b](x)]2dx = (b− a)2H .

Since we have
∑

α∈J
∑

i=1 cα(t)
2αiα! < ∞ for almost every t, by Lemma

3.4 it follows that
∑

α∈J
∑∞

i=1(cα(t)
1
ε

∫ t+ε

t
ηi(s)ds)αiHα−ε(i) converges to∑

α∈J

∞∑
i=1

cα(t)ηi(t)αiHα−ε(i)

in L2(P).
We now prove (3.8). Consider∫ T

0

1

ε

∫ t+ε

t

MsDsψ(t)dsdt =
∑
α∈J

∞∑
i=1

∫ T

0

(
cα(t)

1

ε

∫ t+ε

t

ηi(s)ds

)
dt αiHα−ε(i) .

Now assuming fε =
∫ T

0

(
cα(t)

1
ε

∫ t+ε

t
ηi(s)ds

)
dt αiHα−ε(i) and as before γ =

(α, i), B = L2(P), dm(γ) =
∑

α∈J
∑∞

i=1 δα,i, where δx denotes the point mass
at x, we use again Lemma 3.4. We obtain∫

Γ

‖fε(γ)‖2Bdm(γ) =
∑
α∈J

∞∑
i=1

‖fε(γ)‖2L2(P)

=
∑
α∈J

∑
i=1

(∫ T

0

cα(t)
1

ε

∫ t+ε

t

ηi(s)ds dt

)2

αiα!

≤
∑
α∈J

∑
i=1

(∫ T

0

cα(t)

[
(t+ ε)2H − t2H

ε

]
dt

)2

αiα!

≤
∑
α∈J

∑
i=1

(

∫ T

0

cα(t)
2dt)(

∫ T

0

[
(t+ ε)2H − t2H

ε

]2
dt) αiα! .

(3.10)

Since ψ ∈ L(H)
1,2 by Lemma 3.4 we can conclude that the limit 3.8 exists in

L2(P) and also that (3.9) holds. 2

Lemma 3.6 Suppose that ψ ∈ L(H)
1,2 and let

ψ(∆)(s) =
∑
k

ψ(tk)χ(tk,tk+1](s) (3.11)
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be a càglàd step function approximation to ψ, where ∆ = maxi |∆ti| is the
maximal length of the subinterval in the partition 0 = t0 < · · · < tn = T of
[0, T ]. Then ψ(∆) ∈ L(H)

1,2 for all ∆ and∫ T

0

Ms+Ds+ψ
(∆)(s)ds −→

∫ T

0

Ms+Ds+ψ(s)ds in L2(P) (3.12)

as |∆| −→ 0.

Proof. Since ψ(∆)(s) =
∑

α∈J c
(∆)
α (s)Hα(ω) with

c(∆)
α (s) =

∑
k

cα(tk)χ(tk,tk+1](s)

and
‖c(∆)

α ‖L2([0,T ]) ≤ const.‖cα‖L2([0,T ]) ∀α, (3.13)

it follows that ψ(∆) ∈ L(H)
1,2 . We have

1

ε

∫ t+ε

t

MsDsψ
(∆)(t)ds =

∑
α∈J

∞∑
i=1

(∫ T

0

(c(∆)
α (t)

1

ε

∫ t+ε

t

ηi(s)ds)dt

)
αiHα−ε(i) .

If we assume γ = (α, i), B = L2(P), m(dγ) =
∑

α∈J
∑∞

i=1 δ(α,i), where δx de-

notes the point mass at x, and f∆ =
(∫ T

0
c
(∆)
α (t)1

ε

∫ t+ε

t
ηi(s)ds)dt

)
αiHα−ε(i) ,

with the same argument as in (3.10) by Lemma 3.4 we obtain that∫ T

0

(
1

ε

∫ t+ε

t

MsDsψ(t)ds

)
dt = lim

|∆|−→0

∫ T

0

(
1

ε

∫ t+ε

t

MsDsψ
(∆)(t)ds

)
dt

(3.14)

in L2(P) for almost every s, since c
(∆)
α converges by dominated convergence

to cα in L2(P) and ψ(∆) ∈ L(H)
1,2 . Using (3.14) and Lemma 3.5 we conclude

that (3.12) holds. 2

We now investigate the relation among forward integrals andWIS-integrals
for H > 1

2
. In [4] and [19] a similar relation is established between the sym-

metric integral and the divergence, in [9] between the forward integral and
the fractional Wick-Itô-Skorohod integral. For the case H < 1

2
, we refer to

[2].

Theorem 3.7 Let H ∈ (0, 1). Suppose ψ ∈ L(H)
1,2 and that one of the follow-

ing conditions holds:

13



i) ψ is Wick-Itô-Skorohod integrable (Definition 2.7);

ii) ψ is forward integrable in (S)∗ (Definition 3.1).

Then

∫ T

0

ψ(t)d−B(H)(t) =

∫ T

0

ψ(t)dB(H)(t) +

∫ T

0

Mt+Dt+ψ(t)dt, (3.15)

holds as an identity in (S)∗, where here
∫ T

0
ψ(t)dB(H)(t) is the WIS-integral

of Definition 2.7.

Proof. We prove (3.15) assuming that hypothesis i) is in force. The

argument works symmetrically under hypothesis ii). Let ψ ∈ L(H)
1,2 . Since ψ

is càglàd, we can approximate it as

ψ(t) = lim
|∆t|−→0

∑
j

ψ(tj)χ(tj ,tj+1](t) a.e.

where for any partition 0 = t0 < t1 < · · · < tN = T of [0, T ], with ∆tj =
tj+1 − tj, we have put |∆t| = sup

j=0,··· ,N−1
∆tj.

As before we put ψ(∆)(t) =
∑N−1

j=0 ψ(tk)χ(tk,tk+1](t) and evaluate∫ T

0

ψ(∆)(t)d−B(H)(t) = lim
ε→0

∫ T

0

ψ(∆)(t, ω)
B(H)(t+ ε)−B(H)(t)

ε
dt =

lim
ε→0

∫ T

0

(
∑
j

ψ(tj)χ(tj ,tj+1](t))
1

ε

∫ t+ε

t

dB(H)(u)dt =

lim
ε→0

∫ T

0

(
∑
j

ψ(tj)χ(tj ,tj+1](t)) �
1

ε

∫ t+ε

t

dB(H)(u)dt+

lim
ε→0

∑
j

∫ T

0

χ(tj ,tj+1](t)
1

ε

∫
R
χ[t,t+ε](u)M

2
uD

(H)
u ψ(tj)dudt .

14



The first limit is equal to

lim
ε→0

∫ T

0

(
∑
j

ψ(tj)χ(tj ,tj+1](t)) �
1

ε

∫ t+ε

t

dB(H)(u)dt =

lim
ε→0

∫ T

0

(
∑
j

ψ(tj)χ(tj ,tj+1](t)) �
1

ε

∫ t+ε

t

W (H)(u)dudt =

lim
ε→0

∫ T

0

1

ε
(

∫ u

u−ε

∑
j

ψ(tj)χ(tj ,tj+1](t)) �W (H)(u)du =

∫ T

0

ψ(∆)(u) �W (H)(u)du,

that converges in (S)∗ to
∫ T

0
ψ(u) �W (H)(u)du =

∫ T

0
ψ(u)dB(H)(u). For the

second limit we get

lim
ε→0

1

ε

∑
j

∫ T

0

χ(tj ,tj+1](t)

∫ t+ε

t

M2
uD

(H)
u ψ(tj)dudt =

lim
ε→0

∫ T

0

1

ε

∫ t+ε

t

M2
uD

(H)
u ψ(∆)(t)dudt =

lim
ε−→0

∫ T

0

1

ε

∫ t+ε

t

MuDuψ
(∆)(t)dudt.

By Lemmas 3.5 and 3.6 the last limit converges to∫ T

0

Mu+Du+ψ(u)du (3.16)

in L2(P). 2

An analogous relation to the one of Theorem 3.7 between Stratonovich
integrals and Wick-Itô-Skorohod integrals for fractional Brownian motion is
proved under different conditions in [18].
An Itô formula for forward integrals with respect to classical Brownian mo-
tion was obtained by [23] and then extended to the fractional Brownian
motion case in [12]. Here we prove the following Itô formula for forward inte-
grals with respect to fractional Brownian motion as a consequence of Lemma
3.8.

Lemma 3.8 Let G ∈ (S)∗ and suppose that ψ is forward integrable. Then

G(ω)

∫ T

0

ψ(t)d−B(H)(t) =

∫ T

0

G(ω)ψ(t)d−B(H)(t) (3.17)
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Proof. This is immediate by Definition 3.1. 2

Definition 3.9 Let ψ be a forward integrable process and let α(s) be a mea-
surable process such that

∫ t

0
|α(s)|ds <∞ a.s. for all t ≥ 0. Then the process

X(t) := x+

∫ t

0

α(s)ds+

∫ t

0

ψ(s)d−B(H)(s); t ≥ 0 (3.18)

is called a fractional forward process. As a shorthand notation for (3.18) we
write

d−X(t) := α(t)dt+ ψ(t)d−B(H)(t); X(0) = x. (3.19)

Theorem 3.10 Let

d−X(t) = α(t)dt+ ψ(t)d−B(H)(t); X(0) = x

be a fractional forward process. Suppose f ∈ C2(R2) and put Y (t) = f(t,X(t)).

Then if
1

2
< H < 1, we have

d−Y (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))d−X(t)

Proof. Let 0 = t0 < t1 < · · · < tN = t be a partition of [0, t]. By using
Taylor expansion, we get by equation (3.17)

Y (t)− Y (0) =
∑
j

Y (tj+1)− Y (tj)

=
∑
j

f(tj+1, X(tj+1))− f(tj, X(tj))

=
∑
j

∂f

∂t
(tj, X(tj))∆tj +

∑
j

∂f

∂x
(tj, X(tj))∆X(tj)

+
1

2

∑
j

∂2f

∂x2
(tj, X(tj))(∆X(tj))

2 +
∑
j

o((∆tj)
2) + o((∆X(tj))

2)

=
∑
j

∂f

∂t
(tj, X(tj))∆tj +

∑
j

∫ tj+1

tj

∂f

∂x
(tj, X(tj))d

−Xt

+
1

2

∑
j

∂2f

∂x2
(tj, X(tj))(∆X(tj))

2 +
∑
j

o((∆tj)
2) + o((∆X(tj))

2)
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where ∆X(tj) = X(tj+1)−X(tj). Since
1

2
< H < 1, the quadratic variation

of the fractional Brownian motion is zero and we are left with the first terms of
the sum above, which converges to

∫ t

0
∂f
∂s
(s,X(s))ds+

∫ t

0
∂f
∂x
(s,X(s))d−X(s).

2

Using the results of Theorem 3.7 and 3.10, we obtain a general Itô formula
for functionals of Wick-Itô-Skorohod integrals with respect to the fractional

Brownian motion when
1

2
< H < 1. An Itô formula for

1

2
< H < 1 has been

already proved in [9] and in [4], but under more restrictive hypotheses. Here

we provide a different proof under weaker assumptions. If
1

2
< H < 1 this

theorem extends Theorem 3.8 in [7]. A related result, obtained independently
and by a different method, can be found in [11]. Moreover our results hold
in a different setting.

Theorem 3.11 (Itô formula for the WIS-integral) Suppose
1

2
< H <

1. Let γ(s) be a measurable process such that
∫ t

0
|γ(s)|ds < ∞ a.s. for all

t ≥ 0, let ψ(t) =
∑

α∈J cα(t)Hα(ω) be càglàd, WIS-integrable and such that∑
α∈J

∞∑
i=1

∞∑
k=1

‖cα‖L2([0,T ])αi(αk + 1)α! <∞.

Suppose that MtDtψ(s) is also WIS-integrable for almost all t ∈ [0, T ]. Con-
sider

X(t) = x+

∫ t

0

γ(s)ds+

∫ t

0

ψ(s)dB(H)(s), t ∈ [0, T ],

or, in short-hand notation,

dX(t) = γ(t)dt+ ψ(t)dB(H)(t), X(0) = x.

Suppose Xt has a càdlàg version (Remark 3.12). Let f ∈ C2(R2) and put
Y (t) = f(t,X(t)). Then on [0, T ]

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))dX(t)+

∂2f

∂x2
(t,X(t))ψ(t)Mt+Dt+X(t)dt,

(3.20)
and equivalently

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))dX(t) +

∂2f

∂x2
(t,X(t))ψ(t)M2(ψχ[0,t])tdt

+

[
∂2f

∂x2
(t,X(t))ψ(t)

∫ t

0

M2
t D

(H)
t ψ(u)dB(H)(u)

]
dt, (3.21)

where M2(ψχ[0,t])t =M2(ψχ[0,t])(t).

17



Proof. For simplicity we put α = 0. By Theorem 3.7 we have

X(t) =

∫ t

0

ψ(s)d−B(H)(s)−
∫ t

0

M2
s+D

(H)
s+ ψ(s)ds

We note that

1

ε

∫ t+ε

t

M2
sD

(H)
s (f ′(X(t))ψ(t))ds = f ′(X(t))

1

ε

∫ t+ε

t

M2
sD

(H)
s ψ(t)ds

+ ψ(t)f
′′
(X(t))

1

ε

∫ t+ε

t

M2
sD

(H)
s X(t)ds

(3.22)

Since ψ ∈ L(H)
1,2 , the first term converges to f ′(X(t))M2

t+D
(H)
t+ ψ(t) as ε→

0. For the second term we restrict our attention to

1

ε

∫ t+ε

t

M2
sD

(H)
s X(t)ds =

1

ε

∫ t+ε

t

∫ t

0

M2
sD

(H)
s ψ(u)dB(H)(u)ds︸ ︷︷ ︸
a)

+
1

ε

∫ t+ε

t

M2
s (ψχ[0,t])ds︸ ︷︷ ︸
b)

.

a) To study the convergence of the term a), we proceed as in Lemma 3.5.
By using the chaos expansion we obtain

1

ε

∫ t+ε

t

∫ t

0

M2
sD

(H)
s ψ(u)dB(H)(u)ds =

∑
α∈J

∞∑
i=1

∞∑
k=1

(cα, ξk)t
1

ε

∫ t+ε

t

ηi(s)ds αiHα−ε(i)+ε(k) .

Put ψi,k,α,ε := (cα, ξk)t
1
ε

∫ t+ε

t
ηi(s)ds αiHα−ε(i)+ε(k) . Then

∑
α∈J

∞∑
i=1

∞∑
k=1

‖ψi,k,α,ε‖2L2(P) =

∑
α∈J

∞∑
i=1

∞∑
k=1

(cα, ξk)
2
t

(
1

ε

∫ t+ε

t

ηi(s)ds

)2

αi(αk + 1)α! ≤

[
(t+ ε)2H − t2H

ε

]2 ∑
α∈J

∞∑
i=1

∞∑
k=1

‖cα‖2L2(0,T )‖ξk‖2L2(0,T )αi(αk + 1)α! ≤

[
(t+ ε)2H − t2H

ε

]2 ∑
α∈J

∞∑
i=1

∞∑
k=1

‖cα‖2L2(0,T )αi(αk + 1)α! , (3.23)
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where we have used that ‖ξk‖2L2(0,T ) ≤ ‖ξk‖2L2(0,T ) = 1, ∀k = 1, 2, · · · . Since

1

ε

∫ t+ε

t

ηi(s)ds→ ηi(t) (3.24)

and (3.23) holds, by Lemma 3.4 we conclude that

lim
ε−→0

1

ε

∫ t+ε

t

∫ t

0

M2
sD

(H)
s ψ(u)dB(H)(u)ds =

∫ t

0

M2
t D

(H)
t ψ(u)dB(H)(u)

(3.25)
in L2(P).
b) Since ψ ∈ L(H)

1,2 , we have

1

ε

∫ t+ε

t

M2
s (ψχ[0,t])ds −→M2(ψχ[0,t])t, a.e. and in L2(P), (3.26)

where for the sake of simplicity we have put M2(ψχ[0,t])t = M2(ψχ[0,t])(t).

Let At = −
∫ t

0
M2

s+D
(H)
s+ ψ(s)ds. Then by the Itô formula for forward integrals

(Theorem 3.10) we obtain

dY (t) = f ′(X(t))d−X(t)

= f ′(X(t))dAt + f ′(X(t))d−B(H)(t)

= −f ′(X(t))Mt+Dt+ψ(t)dt+ f ′(X(t))ψ(t)dB(H)(t)

+
[
f ′(X(t))Mt+Dt+ψ(t) + ψ(t)f

′′
(X(t))Mt+Dt+X(t)

]
dt

= f ′(X(t))dX(t) + f ′′(X(t))ψ(t)Mt+Dt+X(t)dt

and by (3.25) and (3.26) we can conclude that

dY (t) = f ′(X(t))dX(t) + f ′′(X(t))ψ(t)

∫ t

0

M2
t D

(H)
t ψ(u)dB(H)(u)dt

+ f ′′(X(t))ψ(t)M2(ψχ[0,t])tdt.

Note that all the integrands appearing in (3.27) are well-defined because Xt

is càdlàg. 2

Remark 3.12 Conditions under which the integral process admits a contin-
uous modification are proved in [3] and [4].
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Corollary 3.13 Assume that ψ ∈ L2
H(R), α = 0 and otherwise let H,X, f, Y

be as in Theorem 3.11. Then

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))dX(t) +

∂2f

∂x2
(t,X(t))ψ(t)M2(χ[0,t]ψ)tdt

(3.27)

Remark 3.14 In the case when ψ(s) is deterministic, a (different) Itô for-
mula, valid for all H ∈ (0, 1) and for all x-entire functions f(t, x) of order
2, has been obtained in Theorem 11.1 of [15].

4 Examples

4.1 A special case

In [5] and [7] an Itô formula for the case when Y (t) = f(B(H)(t)) is provided,
valid for all H ∈ (0, 1). We recall here that formula

dY (t) = f ′(X(t))dX(t) +Ht2H−1f ′′(X(t))ψ(t)dt (4.1)

We now show that if H >
1

2
then (3.20) and (4.1) coincide in this case.

Proposition 4.1 For every H ∈ (0, 1) we have

Mt+Dt+B
(H)(t) = Ht2H−1, t ≥ 0.

Proof. Let t ≥ 0. We recall that D
(H)
t B(H)(u) = χ[0,u)(t). Hence we need

to prove that

Mt+Dt+B
(H)(t) = lim

s−→t+

1

ε

∫ t+ε

t

M2
sD

(H)
s B(H)(t)ds

= [M2
t χ[0,u)(t)]u=t = Ht2H−1

We consider ψ(u) =
∫
R(Mtχ[0,u)(t))

2dt. Since, by [10], we have that ψ(u) =

u2H , we only need to show that ψ′(u) = 2[M2
t χ[0,u)(t)]t=u. We rewrite ψ(u)

as follows

ψ(u) =

∫
R
(Mtχ[0,u)(t))

2dt

=

∫
R
χ[0,u)(t)M

2
t χ[0,u)(t)dt

=

∫ u

0

M2
t χ[0,u)(t)dt
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by using the properties of the operator M . We compute

ψ(u+ ε)− ψ(u)

ε

=
1

ε

(∫ u+ε

0

M2
t χ[0,u+ε](t)dt−

∫ u

0

M2
t χ[0,u)(t)dt

)
=

1

ε

(∫ u+ε

u

M2
t χ[0,u+ε](t)dt+

∫ u

0

[M2
t χ[0,u+ε](t)−M2

t χ[0,u)(t)]dt

)
by adding and subtracting

∫ u

0
M2

t χ[0,u+ε](t)dt. Since the operator M trans-
forms χ[0,u)(t) into a continuous function, we obtain

1.
∫ u+ε

u
M2

t χ[0,u+ε](t)dt = [M2
t χ[0,u+ε](t)]t=ξεε, where u < ξε < u + ε. By

writing

[M2
t χ[0,u+ε](t)]t=ξε = [M2

t (χ[0,u+ε] − χ[0,u))(t)]t=ξε + [M2
t χ[0,u)(t)]t=ξε

we obtain that, when taking the limit as ε −→ 0, the first term goes to
zero, while the second term converges to [M2

t χ[0,u)(t)]t=u since ξε −→ u
when ε −→ 0.

2. We have that

1

ε

∫ u

0

[M2
t χ[0,u+ε](t)dt−M2

t χ[0,u)(t)]dt =

1

ε

∫ u

0

M2
t [χ(u,u+ε](t)]dt =

1

ε

∫ T

0

χ[0,u)(t)(M
2
t [χ(u,u+ε](t)]dt =

1

ε

∫ u+ε

u

M2
t [χ[0,u)(t)]dt

converges to [M2
t χ[0,u)(t)]t=u as ε −→ 0.

Hence

ψ′(u) = lim
ε−→0

ψ(u+ ε)− ψ(u)

ε
= 2[M2

t χ[0,u)(t)]t=u

i.e. the equality [M2
t χ[0,u)(t)]t=u = Hu2H−1 holds for every H ∈ (0, 1).

2

21



4.2 An integration by parts formula

Let ψ(s) = ψ(s, ω) ∈ L(H)
1,2 be dB(H)-integrable and define

X(t) =

∫ t

0

ψ(s)dB(H)(s)

and
Y (t) = X2(t).

By (3.25) and (3.26) we have

Mt+Dt+X(t) =

∫ t

0

MtDtψ(s)dB
(H)(s) +M2(ψχ[0,t])t, (4.2)

where M2(ψχ[0,t])t = M2(ψχ[0,t])(t). Then by Theorem 3.11 and by Propo-
sition 2.12 we have

dY (t) = 2X(t)dX(t) + 2ψ(t)

(∫ t

0

MtDtψ(s)dB
(H)(s) +M2(ψχ[0,t])t

)
dt

(4.3)
In particular, if ψ ∈ L2

H(R), we get

dY (t) = 2X(t)dX(t) + 2ψ(t)M2(ψχ[0,t])tdt (4.4)

By using that X1X2 =
1

2
[(X1 + X2)

2 − X2
1 − X2

2 ] this gives the following

product rule:

Proposition 4.2 (Product rule) Suppose ψ1, ψ2 ∈ L2
H(R) and define

Xi(t) =

∫ t

0

ψi(s)dB
(H)(s); i = 1, 2

and
Y (t) = X1(t)X2(t).

Then

dY (t) = X1(t)dX2(t) +X2(t)dX1(t)

+
{
ψ1(t)M

2(ψ2χ[0,t])t + ψ2(t)M
2(ψ1χ[0,t])t

}
dt (4.5)

Corollary 4.3 (Integration by parts) Let Xi(t), i = 1, 2, be as in Propo-
sition 4.2. Then∫ t

0

X1(s)dX2(s) = X1(t)X2(t)−
∫ t

0

X2(s)dX1(s)

−
∫ t

0

{
ψ1(s)M

2(ψ2χ[0,s])s + ψ2(s)M
2(ψ1χ[0,s])s

}
ds. (4.6)
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[3] E. Alòs, O. Mazet, D. Nualart: Stochastic calculus with respect to Gaus-
sian processes. Ann. Probab. 29, 766–801, 2000.
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