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Abstract
We consider the forward integral with respect to fractional Brown-
ian motion BU1)(t) and relate this to the Wick-It6-Skorohod integral

by using the M-operator introduced by [10] and the Malliavin deriva-
(H)

tive D, 7. Using this connection we obtain a general It6 formula
for the Wick-It6-Skorohod integrals with respect to BU(t), valid for
1
He(-,1).
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1 Introduction

Fractional Brownian motion B (t) = BU(t,w), t > 0,w € €, with Hurst
parameter H € (0, 1) is a real-valued Gaussian process on a probability space
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(Q,F,P) with the property that
E[BPWH)] =B"(0)=0 forall t>0

and
1
E BB (s)] = [t + 5™ = [t = s]"]; t,5>0

where E' denotes expectation with respect to P.

Because of its properties the fractional Brownian motion has been used to
model a number of phenomena, e.g. in biology, meteorology, physics and
finance. See e.g. [24], [6], [7], [21] and the references therein. In that con-
nection, it is of interest to develop a stochastic calculus based on B (t).
In particular, one wants an integration theory, a white noise theory and a
Malliavin calculus for such processes. See e.g. [6] and the references therein
for an account of this.

There are several different integral concepts of independent interest, among
which the pathwise integral and the Wick-Ito-Skorohod integral. For each of
these integrals several versions of an It6 formula have been obtained. See for
example [5], [7], [9], [15], [18], [19], [11].

The purpose of this paper is to prove a new general It6 formula for the
Wick-Ito-Skorohod integral based on the M-operator of [10] and the Malli-

1
avin derivative D,SH), valid for H € (5, 1).

2 Some preliminaries

Here we recall the approach of [10], [16],[7] to white-noise calculus for frac-
tional Brownian motion.

We begin by recalling the standard setup for the classical white noise prob-
ability space. See e.g. [13], [17], [14] or [1] for more details.

Definition 2.1 Let 8(R) denote the Schwartz space of rapidly decreasing
smooth functions on R and let Q := 8'(R) be its dual, usually called the space
of tempered distributions. Let P be the probability measure on the Borel sets

B(8'(R)) defined by the property that
. 1
L i < 2B = e gl S €W, 1)
5/
where 1 = /—1 and < w, f >= w(f) is the action of w € Q = §'(R) on
f € 8(R).

The measure P is called the white noise probability measure. Its existence
follows from the Bochner—Minlos theorem.
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In the following we let

hn(z) = (—1)"67dxn (e727); n=0,1,2,... (2.2)

denote the Hermite polynomials and we let

e =1 ((n— D) 3 he  (V32)e % m=1,2,...  (23)

be the Hermite functions. Then &, € S(R). From [25], {&,}22, consti-
tutes an orthonormal basis for LQ(R). Let J be the set of all multi-indices
a = (aq,qq,...) of finite length (o) = max {i;a; # 0}, with a; € Ny =
{0,1,2,...} for all i. For o = (avq,..., ) € d we put a! = aqlas! - - a,! and
la| = a3 + -+ + a, and we define

Ho(w) = hoy (< w, & >)ho, (< w, &5 >) -+ by, (< w, & >). (2.4)

In particular special cases are the unit vectors
e® =(0,0,...,0,1) (2.5)
with 1 on the £’th entry, 0 otherwise; £ = 1,2,.... We now use the well-

known Wiener-It6 chaos expansion Theorem to define the following space (8)
of stochastic test functions and the dual space (8)* of stochastic distributions:

Definition 2.2 a)  We define the Hida space (8) of stochastic test func-
tions to be all ¢ € L*(P) whose expansion

P(w) = Zaag{a(w)

a€gld

satisfies
[ll7 == a2l 2N)* < oo for allk =1,2, ... (2.6)
ae]
where

CN)Y = (2-1)(2-2)2---(2-m)"™ ify=(71,..-,%m) € 7. (2.7)

b)  We define the Hida space (8)* of stochastic distributions to be the set
of formal expansions

Gw) =) baHa(w)

aEd
such that

||G||3 = Zbia!(ZN)_qa < oo for someq < 0. (2.8)

a€ld



We equip (8) with the projective topology and (8)* with the inductive topol-
ogy. Convergence in (8) means convergence in || - || for every k = 1,2,---,
while convergence in (8)* means convergence in || - ||, for some ¢ < co. Then
(8)* can be identified with the dual of (8) and the action of G € (8)* on
Y € (8) is given by

(G ) sy () = Y alaaba (2.9)

a€gld

In the sequel, we will denote the action (-,- )(s)«s) simply with the symbol
(-,-). We can in a natural way define (8)*-valued integrals as follows:

Definition 2.3 (Integration in (8)*) Suppose Z : R — (8)* has the prop-
erty that
(Z(t),v) € L'(R, dt) for all ¢y € (8).

Then the integral
/ Z(t)dt
R

is defined to be the unique element of (8)* such that

</RZ(t)dt,1/1> = /R<Z(t),¢>dt for all ¥ € (8). (2.10)

Such functions Z(t) are called dt-integrable in (8)*.

Let B(t) a standard Brownian motion on (Q,F,P). If we consider B(t) as

amap B(-) : R — (8)*, then B(t) is differentiable with respect to ¢ and its
d

derivative W(t) := EB@) exists in (8)* and is called white noise.

A fundamental property of the Wick product is the following relation to

(Ito-)Skorohod integration. We recall the definition of Skorohod integral.

Let u(t,w), w € Q, t € [0,T] be a stochastic process (always assumed to
be (t,w)-measurable), such that

u(t,-)  is F-measurable for all t € [0, T (2.11)

and
E[u*(t,w)] < oo  forallte0,T]. (2.12)

Definition 2.4 Suppose u(t,w) is a stochastic process satisfying (2.11), (2.12)
and with Wiener-Ito chaos expansion

u(t,w) =Y Lifal-1)). (2.13)
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Then we define the Skorohod integral of u by

o(u): = / (t,w)oB(t Zln_l,_l ) (when convergent) — (2.14)
R

where ﬁ is the symmetrization of fu(t1,...,t,,t) as a function of n + 1
variables ty, ..., t,,t.

We say u is Skorohod-integrable and write u € dom(d) if the series in
(2.14) converges in L*(P). This occurs iff

o0

E[Bu)? = (n+ D fallfs @i < 0. (2.15)

n=0

Theorem 2.5 Suppose f(t,w) : R x Q@ — R is Skorohod integrable. Then
f(t,-) o W (t) is dt-integrable in (8)* and

/ftwaB /ftwoW (2.16)

where the integral on the left is the Skorohod integral (which coincides with
the Ité integral if f is adapted) and f(t,w) o W(t) denotes the Wick product
in (8)*.

2.1 Integration

We now review briefly how the classical white noise theory can be used in
order to construct a stochastic integral with respect to a fractional Brownian
motion BH)(t) for any H € (0,1) as in the approach of [10]. The main idea
is to relate the fractional Brownian motion BU?)(t) with Hurst parameter
H € (0,1) to classical Brownian motion B(t) via the following operator M:

Definition 2.6 The operator M = M) is defined on functions f € S$(R)

by - ) R
Mf(y)=1lylz"f(y); yeR (2.17)

where

i) i= [ e glads (2.18)

denotes the Fourier transform.



For further details on the operator M, we refer to [10] and to [6]. The
operator M extends in a natural way from 8(IR) to the space

L% (R) :={f : R — R (deterministic); |y|2~7 f(y) € L2(R)}
={fR—=R;Mf(z) € L*(R)}
={/R—=RK; ||f||L§,(R) < oo}, where ||f||L§{(R) = [|M fll2r)-

The inner product on this space is
(f,9) L2, = (M [, Mg)r2(r).- (2.19)
If (&,)nen is the orthonormal basis of L*(R) introduced in (2.3), then
en = MTE,, Vn € N (2.20)

is an orthonormal basis for L% (R). In particular, the indicator function
X[o0,4(+) is easily seen to belong to this space, for fixed ¢t € R, and we write

MX[O’t](QZ) = M[O,t}(:v)
We now define, for t € R
B () .= Bt w) =< w, M[0,](-) > (2.21)

Then BU)(t) is Gaussian, B (0) = E[B™)(t)] = 0 for all t € R and
. - 1
BB (s)BUD(1)| = Sl + s — |s =t

as follows by [10], (A.10). Therefore the continuous version of B (t) of
BW)(t) is a fractional Brownian motion on (€2, F,P). Let f € L%(R) and
define

/f(t)dB(H)(t) ::/Mf(t)dB(t); f € L4 (R). (2.22)

Now define the fractional white noise WH)(t) as the derivative with respect
to ¢t of BU)(¢)
dBW) (1)
dt
In particular, by [7] we obtain that the relation between fractional and clas-
sical white noise is given by

= W (t) in (8)*. (2.23)

WU (1) = MW (t). (2.24)

In view of Theorem 2.5 the following definition is natural:
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Definition 2.7 (The fractional Wick-It6-Skorohod (WIS) integral)
LetY : R — (8)* be such that Y (t)oWH)(t) is dt-integrable in (8)*. Then we
say that Y is dB™)-integrable and we define the Wick-Ito-Skorohod (WIS)
integral of Y (t) = Y (t,w) with respect to BUD(t) by

/Y(t,w)dB(H)(t) ::/Y(t)oW(H)(t)dt. (2.25)

Note that this definition coincides with (2.22) if Y = f € L% (R).

Definition 2.8 A process Y (t) = ) c5ca(t)Ho(w) € (8)" belongs to the
space M if co(-) € L (R) and Y, cq Mco(t)Ha(w) converges in (8)* for all
t.

Then the following fundamental relation holds.

Proposition 2.9 (Integration) BOSW, (5.2)], [@, (3.16)] Suppose Y :
R — (8)* is dB")-integrable (Definition 2.7) and Y € M. Then

/ Y (t)dBY)(t) = / MY (t)6B(t). (2.26)

2.2 Differentiation

We now recall the approach in [16] to differentiation, as modified and ex-
tended by [10]:

Definition 2.10 Let F : Q0 — R and choose v € Q). Then we say F has a
directional M-derivative in the direction v if

D\ F(w) := lim H[F(w + eMy) — F(w)] (2.27)
e—

exists almost surely in (8)*. In that case we call DgH)F the directional M-
derivative of F in the direction .

Definition 2.11 We say that F' : Q0 — R is differentiable if there exists a
function

UV:R— (8)"
i M such that
DSH)F(W) = /RM\If(t)Mv(t)dt forall v € L%(R). (2.28)
Then we write
() HH)
D;VF = a—F(t,w) = U(t) (2.29)
W

and we call DIEH)F the Malliavin derivative or the stochastic gradient of F
at t.



In the classical case (H = %) we use the notation D, for the corresponding
Malliavin derivative.

Proposition 2.12 [BOSW, (5.1)] Let F' € (8)*. Then
D,F = MDF  for a.a. t € R. (2.30)

Proposition 2.13 [BOSW, Theorem 5.3] Suppose Y : R — (8)* is
dBW) integrable. If DY (-) : R — (8)* is dB)-integrable for every t, then

D / Y (5)dB)(5)) = / DY (6)dBH (s) + Y (8). (2.31)

Definition 2.14 Let ]D)gg) be the set of all F € L*(P) such that the Malliavin

derivative DgH)F exists and

E { /R (D) F2at

The following result has been obtained with a different proof in Lemma 2 of

[18].

< 00 (2.32)

Lemma 2.15 Suppose g € L% (R) and let F € ]D)gg). Then
Fo [ gdB™ @) = F- [ g0dB"0) ~ (0. D)y (233
R R

3 The forward integral

By following the approach of [23], we now define the forward integral with
respect to the fractional Brownian motion as follows:

Definition 3.1

a) The (classical) forward integral of a real valued measurable process Y
with integrable trajectories is defined by

/ Y (td- B (#) = lim / Ly Bt - BOM

e—0 €

provided that the limit exists in probability under P.



b) The (generalized) forward integral of a real valued measurable process
Y with integrable trajectories is defined by

/0 Yt B (#) = lim /0 R0

e—0

B (t 4+ ¢) — BUD(t)
€

dt,

provided that the limit exists in (8)*.

Note that in the generalized definition of forward integral, the limit is re-
quired to exist in the Hida space of stochastic distributions (8)* introduced
in Definition 2.2. Convergence in (8)* is also explained in Section 2.

Corollary 3.2 Let ¢(t) = ¥(t,w) be a measurable forward integrable process
and assume that ¢ s caglad. The forward integral of ¢ with respect to the
fractional Brownian motion B coincides with

tyd- B (1) = 1 t;)ABY 3.1

/ Y(t) ‘ Aﬂgon (3.1)

whenever the left-hand limit exists in probability, where m : 0 = tog < t; <

- <ty =T is a partition of [0,T] with mesh size |A| = sup  |tj41 —1t;]
j=0,- ,N—1

and AB{" = B{") — B

tit1 J

PrROOF. Let ¢ be a caglad forward integrable process and

@ZJ(A Z¢ tk X(t tk+1]( ) (32)

be a caglad step function approximation to ¢». Then (%) (t) converges bound-
edly almost surely to ¢(t) as |A] — 0. The forward integral of ¥(®)(¢) is
then given by

/Tw(A)@)d_ _hm/ S (s (s+6) B(H)(S)ds
0

e—0

tet1 |
_ () (4
= lim Z U(tr) / / dB
) tk+1 ()
— lg%;w(tk) /tk Z/u_e dsdB

=Y w(t)ABY, (3.3)




where ABt(f )= B _ Bt(kH ). Hence (3.1) follows by the dominated conver-

T Tt

gence theorem and by (3.3). O

For the sequel we will use the same notation as in Section 2.
Definition 3.3 The space ng) consists of all caglad processes
V() = calt)Ha(w) € (8)°
acd

for every t € [0,T] and such that

19150 =D > aiallleallfzgom < o0 (34)

acd 1=1

Note that if 1(t) € (8)* for every t € [0,T], then D () exists in (8)* (see
Lemma 3.10 of [1]). We recall a preliminary lemma needed in the following.

Lemma 3.4 Let (I',G,m) be a measure space. Let fo : ' — B, e € R, be

measurable functions with values in a Banach space (B, || - ||g). If f(v) —
fo(y) as € = 0 for almost every v € I' and there ezists K < oo such that
J 1 lam() < K (35)

for all e € R, then

[ £im) = [ oydmia) (3.
r r

in | -5

PROOF. The proof is analogous to the one of Theorem 11.21.2 of [22]. O

Lemma 3.5 Suppose that 1) € ]Lg). Then

1 t+e
My, Dy b(t) = lim / M, D (t)ds (3.7)
e—0 € t

exists in L*(P) for all t. Moreover

T T 1 t+e
0 c—%Jo € Jt

in L*(P) and

E

( /0 ' MS+DS+¢(s)ds) 2] < 0. (3.9)
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PROOF. Suppose that () has the expansion
= calt)H
a€d

In the sequel we drop w in H,(w) for the sake of simplicity. Then we have

=3 ) calt)aH, wéils)

acd i=1

M Dg)(t) Z Z Ca(t); H o _ymi(s),

acd i=1

where 7;(s) = M¢&;(s). Hence

t+e
/ MyDgp(t)ds = Z Z (calt / ni(s)ds)o;H i -

acd i=1

and

Since n;(s) = M&(s) is a continuous function, we have that

1/t eﬁi(s)ds — mi(t)

€

as € — 0.

We apply now Lemma 3.4 with v = («, i), dm(y) = Zaeg > o1 O(ayi), where
d, denotes the point mass at 2, B = L*(P) and f. = (co(t): HE n;i(s ) s)a;
We obtain

/ o Bdme) = S 15

a e(@) -

acd 1=1
1 t+e
=Y Y@t [ ndsrae
acd 1=1 €Je
2
(t 4 €)*T — 21
< | S5 1o,
acd =1
since
1 t+e
E/ ( )dS - <M€17 X[tt+e]>L2(R)
t
5 1 1
<M €, EX[t,t+e]>L2(R) = <€z', EX[t,t+e]>L§I(R) <
1 (t + )" — 2
leill 2,y —Ixteer [l @) = ,

€
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where we have used that the fact that e;|| 2 ) = 1 and the equality

/R (M{a, b)(2)Pde = (b — a)*"

Since we have Y 4> ca(t)?asal < oo for almost every ¢, by Lemma
3.4 it follows that Y- s > (ca(t): t+€ ni(s)ds)a; H

Z Z Ca <t)77i(t)aij{a_€(i)

acd i=1

a—e(i converges to

in L*(P).
We now prove (3.8). Consider

/ / M,Dg(t)dsdt = ZZ / ( / v i(s)ds) dt oy H,, o -

acd i=1

¢
(a,1), B = L*(P), dm(y) = Zaeg > o2, 0ai, where 0, denotes the point mass
at x, we use again Lemma 3.4. We obtain

[ lame) = 3 S 15

acd i=1

Now assuming f, = fo ( Ca e m(s)ds) dt a;H,,_.» and as before v =

2

-y (/ /tm ni(s)ds dt) i

acd 1=1

SZZ(/ [HG)QGH_tQH] dt)2 al

acd i=1

SZZ/ /OT[(tJre)Z:’—tzHrdt) el

acd i=1
(3.10)

Since ¥ € ng) by Lemma 3.4 we can conclude that the limit 3.8 exists in
L*(P) and also that (3.9) holds. O

Lemma 3.6 Suppose that 1) € ]ng) and let

2) 3) = Zw(tk)X(tk,tkH}(S) (3-11)
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be a caglad step function approximation to ¢, where A = max; |At;| is the

maximal length of the subinterval in the partition 0 =ty < --- < t, =T of
[0,T]. Then ¢®) € ng) for all A and

T T
/ My, Dy )™ (s)ds —» / Mg, Dy ap(s)ds — in L*(P) (3.12)
0 0

as |A] — 0.

PROOF. Since ¢ (s) =3 ) (5)H o (w) with

C&A)(s) = Z Caltk)X(thtrs1] (5)
k

and
||C&A)”L2([O,T]) S COHSt.HCaHLz([O’T]) \V/Oé, (313)

it follows that (&) € Lg). We have

t+e S T t+e
% /t M (1)ds =33 ( /0 (cgf)(t)% /1t m(s)ds)dt) W .

acd i=1

If we assume v = (1), B = L*(P), m(dy) = 3 c5 it O(avi), Where 0, de-
notes the point mass at z, and fa = (fOT ) OLY m(s)ds)dt) a;H,, ),

€ Jt

with the same argument as in (3.10) by Lemma 3.4 we obtain that

T 1 t+e T 1 t+e
/ (— / Mstw(t)ds) dt = lim / (— / Mstw(A)(t)ds> dt
o \€J¢ [Al—=0Jo  \ € J¢

(3.14)
in L?(PP) for almost every s, since B converges by dominated convergence
to ¢, in L?(P) and () € ]ng). Using (3.14) and Lemma 3.5 we conclude
that (3.12) holds. O

We now investigate the relation among forward integrals and WIS-integrals
for H > 3. In [4] and [19] a similar relation is established between the sym-
metric integral and the divergence, in [9] between the forward integral and
the fractional Wick-Ito-Skorohod integral. For the case H < %, we refer to
[2].

Theorem 3.7 Let H € (0,1). Suppose ¢ € ng) and that one of the follow-
ing conditions holds:

13



i) ¥ is Wick-Ito-Skorohod integrable (Definition 2.7);
ii) 1 is forward integrable in (8)* (Definition 3.1).

Then

/w £d- B /w pdB )+/0TMt+Dt+zp(t)dt, (3.15)

holds as an identity in (8)*, where here fo t)dBY)(t) is the WIS-integral

of Definition 2.7.

PrOOF.  We prove (3.15) assuming that hypothesis i) is in force The
argument works symmetrically under hypothesis ii). Let ¢ € IL . Since ¥
is caglad, we can approximate it as

Y(t) = lim Z¢<tj)x(tj,tj+1}(t) a.e.
J

where for any partition 0 = ¢, < t; < --- < ty =T of [0,T], with At; =

tiy1 —t;, we have put |At| = sup At
=0, ,N—1
As before we put ¢®)(t) = Zj.\;l Y (tk) X (tg 1,1 (t) and evaluate
T T
B (¢ — BWE)(¢
[ o a0 =ty [0 EE DI
0 €

) 1 t+e

iy [ (ot [ 4B
) 1 t+e (H)
g%/ Zw X(t3.t341] ))Og/t dB"™ (u)dt+

limZ/ X(tj,tj+1](t)_/X[t,t+e](U)MfoLH)Qﬁ(tj)dUdt'
- 0 € Jr

e—0
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The first limit is equal to

) 1 t+e
hm Z'IJ) t tj+1] ))0_/ dB(H)(u)dt:
t

€

1 t+e
lim <Z VO o [ W u)dude =

lim / Z¢ X(tt522) (1) © W (w)du =

/ ) () o WO (),

that converges in (8)* to fOT¢(u) o WU (u)du = fo u)dBY (u). For the
second limit we get

2 (H
15%62/ X(tt51] ( / MZDSDy(t;)dudt =

lim / = / M2DIDyR) () dudt =
e—0 o €Jt
Tl t+e
lim / - / M, D)™ (t)dudt.
€ Jt

e—0 0

By Lemmas 3.5 and 3.6 the last limit converges to

T
/0 M, Dy, tb(u)du (3.16)
in L?(P). O

An analogous relation to the one of Theorem 3.7 between Stratonovich
integrals and Wick-Ito-Skorohod integrals for fractional Brownian motion is
proved under different conditions in [18].

An Ito formula for forward integrals with respect to classical Brownian mo-
tion was obtained by [23] and then extended to the fractional Brownian
motion case in [12]. Here we prove the following 1t6 formula for forward inte-
grals with respect to fractional Brownian motion as a consequence of Lemma

3.8.

Lemma 3.8 Let G € (8)* and suppose that ¢ is forward integrable. Then
T T
o) [ B0 = [ Gewnd B0 (an
0 0

15



ProoOF. This is immediate by Definition 3.1. a

Definition 3.9 Let ¢ be a forward integrable process and let a(s) be a mea-
surable process such that fot la(s)|ds < oo a.s. for allt > 0. Then the process

X(t):=x+ /ta(s)ds + /tw(s)d_B(H)(s); t>0 (3.18)

is called a fractional forward process. As a shorthand notation for (3.18) we
write

d=X(t) == a(t)dt +(t)d- B (t); X(0) ==z (3.19)
Theorem 3.10 Let
d-X(t) = a(t)dt +(t)d- B (t); X(0) ==z

be a fractional forward process. Suppose f € C*(R?) and put Y (t) = f(t, X (t)).
1
Then Zfé < H <1, we have

of
ot

—(t, X (t))dt + %(t X(t)d™ X(t)

dY (t) = -

PROOF. Let 0 =ty <ty <--- <ty =1 be a partition of [0,¢]. By using
Taylor expansion, we get by equation (3.17)

= Zy(tj+1) - Y()
= Zf(tj+1,X(tj+1)) — f(t;, X(t)))
D3 W, xanan+ 0 L, xanaxe)
2 EAX())? + Y0 ol(A)7) + ol (AX (1))
Z (t;, X (t;) At +Z/J+1 af (1), X(t;))d" X;
Z x4 IO o((AX(1)))?)

16



1
where AX (t;) = X(tj+1) — X(¢;). Since 5 < H < 1, the quadratic variation
of the fractional Brownian motion is zero and we are left with the first terms of

the sum above, which converges to [ af(s X(s ds+f0t gi (s, X(s))dX(s).
U

Using the results of Theorem 3.7 and 3.10, we obtain a general [to formula
for functionals of Wick-Ito-Skorohod integrals with respect to the fractional

1 1

Brownian motion when 3 < H < 1. An It6 formula for 3 < H < 1 has been
already proved in [9] and in [4], but under more restrictive hypotheses. Here
1
we provide a different proof under weaker assumptions. If 3 < H < 1 this
theorem extends Theorem 3.8 in [7]. A related result, obtained independently
and by a different method, can be found in [11]. Moreover our results hold
in a different setting.

1
Theorem 3.11 (It6 formula for the WIS-integral) Suppose 3 < H <

1. Let y(s) be a measurable process such that fot |v(s)|ds < oo a.s. for all
t >0, let Y(t) = 3 e Calt)Ho(w) be caglad, WIS-integrable and such that

Z Z Z ||Ca||L2([0,T})ai(Ozk + 1)a! < oc.

a€d =1 k=1

Suppose that MyDy)(s) is also WIS-integrable for almost all t € [0,T]. Con-
sider

t t
X(t) = d dB" (), 0,77,
0 =a+ [9@ds+ [ wEaB). tenT
or, in short-hand notation,
dX (t) = ~y(t)dt + (t)dBP) (1), X(0) = z.

Suppose X; has a cadlag version (Remark 3.12). Let f € C*(R?) and put
Y(t) = f(t,X(t)). Then on [0,T]

A (1) = 20, X ()4 92 (0, X ()X (0)+ 5 % (1, X(1))6(0) My Des X (1)
(3.20)
and equivalently
av (1) = 2o x @) + g—f@ XX (1) + (1, X ()0 (M (W )
+ ;J; /M2 (u)dB™) (u)| dt, (3.21)
where M2(¢X[O,t})t = (¢X[o,t])( ).
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ProoOF. For simplicity we put a = 0. By Theorem 3.7 we have

/1/1 Yd~ B / s)ds
We note that

t+e t+e
o[ I = ), / M2DUp(t)ds

+1(t) / M2DM X (t)ds
(3.22)

Since ¢ € ]L,1 =2, the first term converges to f’(X(t))Mt%rDt(f)z/J(t) as € —
0. For the second term we restrict our attention to

/ M2 DX (t)ds = = / /M2 u)dB™ (u)ds

1 t+e
+g/ Mf(¢X[0,t})d5
t
by

a) To study the convergence of the term a), we proceed as in Lemma 3.5.
By using the chaos expansion we obtain

/ /M: ) (w)dB") (u)ds =

1 t+e
D3N (ear &k E/ ni(8)ds o Ho_ e
t

a€d =1 k=1

Put ¥ .o i= (Cas &r)e 2 f”e ni(s)ds ;H,_ ) ery. Then

€ Jt
Z Z Z ||¢i,k,a,e||%2(]p) =

acgd =1 k=1
2

Zii(cmfk)? (% /;JrE m(s)ds) a;(ap + 1)a! <

[(t+e)2H—t2Hr .

acd 1=1 k=1

t+ e — 2P S 12 |
- > 3N leallizomeilar + )al,  (3.23)




where we have used that ||£k”%2(07T) < kaH%Q(O,T) =1,Vk=1,2,---. Since

t+e
! / ni(s)ds — (1) (3.24)

€
and (3.23) holds, by Lemma 3.4 we conclude that

hm0 / /]\42 dS—/M2 u)dB™) (u)
e—0 €

(3.25)
in L?(P).
b) Since ¢ € ]ng), we have
1 t+e
2/ MZ(Yxpq)ds — M*(xo4)i,  a-e. and in L*(P), (3.26)
t

where for the sake of simplicity we have put M?(¢¥xp.q)e = M*(¥X[04)(t).

Let A, = — fo ¥ (s)ds. Then by the It6 formula for forward integrals
(Theorem 3. 10) We obtam

dY (t) = f/(X(t))d” X (t)
= f(X(1)dA; + f/(X(t)d B (t)

= — /(X (t)) My Deptp(t)dt + /(X ()0 (t)dBY(t)
[P e Dei(t) + 00 (X (1) My Dy X ()] d

= [ (X @)X () + f(X(#)9 (8) My Doy X (2)dt
and by (3.25) and (3.26) we can conclude that

aY (1) = /(X)X (1) + 1"(X / MEDI™ 4 (u)dB) ()t
+ f”<X(t))w(t)M2<¢X[0,t])tdt-

Note that all the integrands appearing in (3.27) are well-defined because X
is cadlag. O

Remark 3.12 Conditions under which the integral process admits a contin-
uous modification are proved in [3] and [4].
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Corollary 3.13 Assume that vy € L% (R), a = 0 and otherwise let H, X, f,Y
be as in Theorem 3.11. Then

N %(t, X(t))dt + %(ta X(t)dX(t) + %@, X ()Y ()M (x o) )eclt
(3.27)

Remark 3.14 In the case when (s) is deterministic, a (different) Ité for-
mula, valid for all H € (0,1) and for all z-entire functions f(t,z) of order
2, has been obtained in Theorem 11.1 of [15].

dY ()

4 Examples

4.1 A special case

In [5] and [7] an Ito formula for the case when Y (t) = f(B¥)(t)) is provided,
valid for all H € (0,1). We recall here that formula

dY (t) = f/(X()dX (t) + HE" (X (2)(t)dt (4.1)
1
We now show that if H > 5 then (3.20) and (4.1) coincide in this case.
Proposition 4.1 For every H € (0,1) we have

M, Dy BH(t) = H* -1 ¢ > 0.

PROOF. Let t > 0. We recall that D{") B() (1) = X[o,u)(t). Hence we need
to prove that

1 t+e
M Dy BT (t) = lim - / MDD BUD (1) ds
t

s—tt €
= [MtQX[O,u) (t)]u:t = Ht2H—1

We consider ¢(u) = [ (Myxp,u)(t))?dt. Since, by [10], we have that 1 (u) =
u*™| we only need to show that ¢'(u) = 2[M?X(0.u)(t)]i=u- We rewrite ¢ (u)
as follows

Y(u) = /R(MtX[o,u)(t))th
:/RX[O,u)(t)MEX[O,u)(t)dt

= / M X0 (t)dt
0
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by using the properties of the operator M. We compute

U(u+€) —P(u)

) —
6(/ MZXoutd(t / My xip (t )dt>
_ (/ M2y (0 uiq ()t + /U[fo[o,u+e](t) M X(o.u)(t )]dt)

by adding and subtracting fo 2X[0.u+e (t)dt. Since the operator M trans-
forms xo,4)() into a continuous function, we obtain

1
€
1

[

1. f;ﬁe fo[oﬂﬁe](t)dt = [Mt2X[0,u+e] (t)]t=¢.€, where u < (& < u+ €. By
writing

[MPX (0,0t (8)]ime. = [MP (Xjo,uq — Xo.)) (E)]i=e. + [MPX[0,0) ()] 1=

we obtain that, when taking the limit as ¢ — 0, the first term goes to
zero, while the second term converges to [Mgx(0,u) (¢)]¢=y since & — u
when e — 0.

2. We have that

1 u
- / [M7 X[0,u+¢ (t)dt — M7 X[0,.0)(t)]dt =
0

1 u
o RO
€ Jo

1 /7 )

<) X10,u) (1) (M [X (uyure () ]dt =

1 u+e€ )
S M

converges to [MZx[0,u)(t)]i=u as € — 0.

Hence

Plu+€) = p(u)

Y (u) = lim

o 2
lim, = 2[M; X[0,u) (t)]i=

Le. the equality [MZx[0,u)(t)]i=« = Hu*"~! holds for every H € (0,1).
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4.2 An integration by parts formula

Let ¢(s) = ¢(s,w) € L3 be dB™)-integrable and define

t
= [ wts1asms)
0
and
Y (t) = X2(¢).
By (3.25) and (3.26) we have
MDLX(0) = [ MDGEIBDE) 40 s (42)
where M?(Yxp.q): = M*(¥X[04)(t). Then by Theorem 3.11 and by Propo-

sition 2.12 we have

dY (t) = 2X (t)dX (t) 4 2¢(t) < /O t M, D) (s)dB (s) + M2(¢X[O,ﬂ)t> dt

(4.3)
In particular, if ¢ € L% (R), we get

4Y () = 2X ()X (1) + 20() M2 (b0, )udt (1.4)
1
By using that XX, = 5[(X1 + X3)? — X? — X2] this gives the following
product rule:

Proposition 4.2 (Product rule) Suppose 11,1, € L% (R) and define

= /ths)dB(H)(s); i=1,2
0

and
Y () = X1 (¢) Xa(t).
Then
dY (t) = X1 (t)dXo(t) + Xo(t)d Xy (t)
+ {% )M (oX(0.)e + Yo(t) M 2(¢1X[0,t])t} dt (4.5)

Corollary 4.3 (Integration by parts) Let X;(t), i = 1,2, be as in Propo-
sition 4.2. Then

/O X, (5)dXa(s) = X, (1) Xa(t) — / Xy (s)d X, (s)

/{%111 *(VaX(0,5)s + V2() M (Y1 X(0,5))s } ds.  (4.6)
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