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1. Introduction

White noise analysis for Brownian motion was first introduced by Hida [12] and subse-
quently developed by him and other researchers. It has been proved to be a powerful tool
in different areas like mathematical physics (see [13] and references therein) or stochastic
partial differential equations (see [14]). More recently it has been successfully applied in
mathematical finance to generalize the Clark-Haussmann-Ocone Theorem and to handle
hedging situations in incomplete markets with jumps (see [1], [9], [25]). Also, it serves as a
useful framework for anticipative stochastic calculus (see [8]). Further, in [23] white noise
theory is employed to study existence of strong solutions of fully non-linear SDE’s.

This increasing interest in white noise analysis has initiated different extensions of the
original Gaussian setting. First extensions to a non Gaussian setting were performed in
[2], [16]. Recently, a white noise space for general Lévy processes has been constructed
in [20]. Another direction was taken by the authors in [11]. They stayed in the Gaussian
framework but extended the white noise theory for Rn-valued stochastic distributions as
presented in [14] to H-valued stochastic distributions for a general separable real Hilbert
space H. The authors define the white noise of an H-valued weak Wiener process and
the corresponding white noise concepts are applied to study H-valued stochastic evolution
equations.

The purpose of this paper is to combine ideas from [20] and [11] and to develop a white
noise framework for Hilbert-space-valued Lévy processes. As an application we then look
in Section 4 at stochastic evolution equations driven by additive Lévy noise with values in
spaces of stochastic H-valued distributions of the following type

dXt

dt
= AXt +B � Ẇt,(1.1)

X0 = x ∈ D(A) ⊂ S(H)−1, 0 ≤ t < T .

Here S(H)−1 is the Kondratiev space of H-valued stochastic distributions, A is the
generator with domain D(A) of a C0-semigroup St on H, B is a bounded operator on
H and Ẇt is the white noise of an H-valued weak Lévy process W (t) (see Section 2 for
definitions). For example, the stochastic Lévy noise driven heat equation

dX(t, x) = 4xX(t, x)dt+ dW (t, x)(1.2)
X(t, x) = 0 for t ∈ [0, T ], x ∈ ∂O, X(0, x) = 0 for x ∈ O,
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where O = {x ∈ Rn; 0 < xk < ak, k = 1, ..., n}, can be represented in the form (1.1) with
Hilbert space H = L2(O), generator A = 4x, and B = I. As in the Gaussian setting, one
can see that only for the case n = 1 there is an H-valued solution of equation (1.2). The
white noise framework proposed in this paper allows for a generalized solution in H-valued
stochastic distribution spaces for all n.

We mention that equations of type (1.2) could also be interpreted in the context of R-
valued stochastic distributions with (N + 1)-parameter Lévy noise (see [26]). One would
then get an R-valued stochastic distribution X(t, x) for every (t, x) ∈ [0, T ] × O ⊂ RN+1

instead of an L2(O)-valued stochastic distribution X(t) for every t ∈ [0, T ]. In particular,
when solving the equation by applying the Hermite transform H(X(t, x)) (see Section 3.5
for definition) one has to require strict differentiability of H(X(t, x)) in x. In contrast, in
the Hilbert space setting differentiability in x is relaxed to the sense of distribution.

The remaining parts of the paper are organized as follows. In Section 2 we recall
some preliminaries of Hilbert-space-valued Lévy processes and white noise analysis in
one dimension. In Section 3 we establish the white noise concepts around a Hilbert-
space-valued Lévy process. We mention that we are obliged to consider Lévy processes
that can be decomposed into independent components. However, from a modelling point
of view, these processes form an important class. Also, we focus on pure jump Lévy
processes, but the extension to processes including a Gaussian part is straight forward. The
construction of the stochastic distribution spaces as well as the characterization of their
elements through the Hermite transform follow closely the exposure in [11]. Concerning
the Wick product we choose a different approach than [11] and define the Wick product
between Hilbert-Schmidt-operator-valued distributions and H-valued distributions. We
introduce the weak Lévy process and define the Hitsuda-Skorohod integral with respect
to its white noise. We show that this integral corresponds to the Itô type integral with
respect to a Hilbert space valued Lévy process in case the integrator is predictable. In
Section 4 we then formulate the setting for evolution equations of type (1.1).

2. Preliminaries

Notation 2.1. For the whole paper we let H be a separable real Hilbert space of dimension
N ∈ {N,∞}. We denote by 〈·, ·〉H the inner product and by ‖·‖H the corresponding norm
on H and we let (hi)N

i=1 be an orthonormal basis of H.

In this Section we quickly recall the definition and some properties of Hilbert-space-
valued Lévy processes as well as some aspects of the white noise theory for Poisson random
measures developed in [20]. These concepts are going to be at the base of the next Section.

2.1. Hilbert-space-valued Lévy processes. Let (Ω,F ,P) be a probability space. Con-
cerning general theory about H-valued random variables we refer the reader for example
to the book [7]. As for the special case H = R, a Lévy process with values in H is defined
through the following properties:

Definition 2.2. Let L = (L(t))t≥0 be a family of H-valued random variables defined on
(Ω,F ,P). We call L a Lévy process if

(1) for every t ≥ s ≥ 0 the increment L(t) − L(s) is independent of the σ-algebra
generated by {L(u) : 0 ≤ u ≤ s},

(2) for every s, t, u ≥ 0 the increments L(t + u) − L(t) and L(s + u) − L(s) have the
same distribution,

(3) L(0) = 0 P-a.s.,
(4) t 7−→ L(t) is continuous in probability,
(5) for P almost every ω ∈ Ω the path t 7−→ L(t)(ω) is càdlàg.

As is known for Lévy processes in finite dimensional Hilbert spaces, there is a corre-
sponding Lévy-Khintchine formula and a Lévy-Itô decomposition into a finite variation,
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a Brownian and a jump part of infinite dimensional Hilbert space valued Lévy processes.
For more information on this see for example [3]. For general information on finite dimen-
sional Lévy processes we refer to [5], [27] or [15]. Putting Li(t) := 〈L(t), hi〉H the following
results can for example be found in [29].

Proposition 2.3. Let Li(t) be as defined above. Then

(1) for every i = 1, ..., N , Li(t) is an R-valued Lévy process,
(2)

∑N
i=1 |Li(t)|2 <∞ P-a.s. for all t ≥ 0,

(3) for any s, t, u ≥ 0 and any finite set F 3 i, the random vectors (Li(t+ u)− Li(t) :
i ∈ F ) and (Li(s+ u)− Li(s) : i ∈ F ) have the same distribution.

Conversely, if we have (1)-(3) above then L(t) :=
∑N

i=1 Li(t)hi converges P-a.s. in H for
every t ≥ 0 and (L(t))t≥0 is an an H-valued Lévy process.

Assume the Lévy process is integrable and set L̃(t) := L(t) − E [L(t)], where E [L(t)]
denotes the expectation of L(t). In the case L̃(t) is a Q-Brownian motion, where Q is
the covariance operator of L̃(t), the orthonormal basis (hi)i∈N consisting of eigenvectors
of Q decomposes L̃(t) into independent R-valued Brownian motions Li(t) (see [7]). In the

case L̃(t) is a Lévy process including jumps such that E
[∥∥∥L̃(t)

∥∥∥2

H

]
< ∞ for all t ≥ 0, a

corresponding decomposition into uncorrelated scalar processes can be achieved. In fact,
let Q be the symmetric, positive semi-definite operator of trace class uniquely defined
through the relation

〈Qx, y〉 = E
[〈
L̃(1), x

〉
H

〈
L̃(1), y

〉
H

]
, x, y ∈ H.

Then it can be shown that tQ is the covariance operator of L̃(t) for every t ≥ 0. Moreover,
let (λi)i∈N be the eigenvectors of Q with corresponding orthonormal basis consisting of
eigenvectors (hi)i∈N . If we set L̃i(t) :=

〈
L̃(t), hi

〉
H

it follows that

traceQ = E
[∥∥∥L̃(1)

∥∥∥2

H

]
= E

[
N∑

i=1

∣∣∣L̃i(t)
∣∣∣2] =

N∑
i=1

λi.

With this choice of orthonormal basis consisting of eigenvectors of Q we thus get that L̃(t)
is decomposed in uncorrelated scalar Lévy processes L̃i(t), i.e.

E
[
L̃i(t)L̃j(t)

]
= 0 if i 6= j.

2.2. White noise for Poisson random measures. In the scalar case H = R a white
noise theory for Poisson random measures has been developed in [25], [20] and [19]. Here,
we shortly present the construction of the white noise probability space for the Poisson
random measure associated to a pure jump Lévy processes from [20] which will be the
starting point in the next Section. For general information about white noise theory the
reader is referred to the excellent accounts of [13], [18] and [24].

Let ν(dζ) be a Lévy measure on R0 := R−{0}, i.e.
∫

R0
1∧x2ν(dζ) <∞. We denote by

S(Rd) the Schwartz space on Rd. The space S p(Rd) is the dual of S(Rd), that is the space
of tempered distributions. The space S̃(X) is defined as the quotient algebra

(2.1) S̃(X) = S(X)/Nπ,

where S(X) is a subspace of S(R2), given by

(2.2) S(X) :=
{
ϕ(t, ζ) ∈ S(R2) : ϕ(t, 0) = (

∂

∂ζ
ϕ)(t, 0) = 0

}
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and where the closed ideal Nπ in S(X) is defined as

(2.3) Nπ := {φ ∈ S(X) : ‖φ‖L2(π) = 0}

with π = ν(dζ)dt. The space S̃(X) is a (countably Hilbertian) nuclear algebra. We
indicate by S̃ p(X) its dual.

From the Bochner-Minlos theorem we deduce that there exists a unique probability
measure µ on the Borel sets of S̃ p(X) such that

(2.4)
∫

eS p(X)
ei〈ω,φ〉dµ(ω) = exp

(∫
X

(eiφ − 1)dπ
)

for all φ ∈ S̃(X), where 〈ω, φ〉 := ω(φ) denotes the action of ω ∈ S̃ p(X) on φ ∈ S̃(X). We
have established the white noise probability space

(2.5) (Ω,F , P ) =
(
S̃ p(X),B(S̃ p(X)), µ

)
.

By using generalized Charlier polynomials Cn(ω) ∈
(
S̃(X)b⊗n

)p
(dual of the n-th completed

symmetric tensor product of S̃(X) with itself) it is possible to construct an orthogonal
L2(µ)−basis {Kα(ω)}α∈J defined by

(2.6) Kα(ω) =
〈
C|α|(ω), δb⊗α

〉
,

where J is the multiindex set of all α = (α1, α2, ...) with finitely many non-zero compo-
nents αi ∈ N0. The symbol δb⊗α denotes the symmetrization of δ⊗α1

1 ⊗ ... ⊗ δ
⊗αj

j , where
{δj}j≥1 ⊂ S̃(X) is the following orthonormal basis of L2 (π):

(2.7) δk(t, ζ) = δk(j,l)(t, ζ) := ξj(t)ηl(ζ).

Here {ξj(t)}j is the orthonormal L2(dt) basis consisting of Hermite functions, {ηl(t)}l is
an orthonormal basis of L2(ν) and k(j, l) is the diagonally counting map given through

(2.8) k = ∆(i, j) :=
(i+ j)2 + i− j

2
.

We denote for a given k the inverse image by ∆−1(k) =: (i(k), j(k)).
Then every X ∈ L2(µ) has the unique representation

(2.9) X =
∑
α∈J

cαKα

with Fourier coefficients cα ∈ R. Moreover we have the isometry

(2.10) |X|2L2(µ) =
∑
α∈J

α!c2α

with α! := α1! α1!... for α ∈ J . In particular, if ν(dζ) is such that
∫

R0
x2ν(dζ) <∞, then

one can show that the family of L2(µ) random variables

(2.11) L(t, ω) :=
〈
C1(ω), 1[0,t](s)ζ

〉
=
∑
j≥1

∫∫
[0,t]×R0

δj(s, ζ)ζ ν(dζ)ds Kεj

defines a square integrable pure jump Lévy martingale with Lévy measure ν(dζ). Here,
εj stands for the multiindex with all entries 0 except a 1 on the j’th place. Moreover,
by the density of S̃(X) and the isometry (2.9) the action of C1(ω) has been extended
to f(s, ζ) = 1[0,t](s)ζ ∈ L2 (π). The associated compensated Poisson random measure is
denoted by

Ñ(dt, dζ) = N(dt, dζ)− ν(dζ)dt
where N(dt, dζ) = N(ω, dt, dζ) is the jump measure of L(t, ω).
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3. White Noise Framework for Hilbert Space valued Lévy Processes

In this Section we want to introduce concepts and techniques from white noise theory
that serve the purpose of studying stochastic differential equations driven by H-valued
Lévy white noise. The case when the noise is caused by a cylindrical Brownian motion
is treated in [11] where the approach of [14] for Rn is transferred to infinite dimensional
Hilbert spaces. As in the one dimensional case, the authors in [11] can take the space
of tempered distributions S′(R) as underlying white noise probability space due to the
Gaussian nature of cylindrical Brownian motion. For a general H-valued Lévy process the
space S′(R) becomes too small in order to define an appropriate white noise measure on
it. One alternative would be to construct a white noise measure on the space of Hilbert-
space-valued distributions, which is the space of all continuous functions from S(R) to H.
For differential equations driven by a Q-Brownian motion this is done in [4]. However, we
decide to take the direct product of S̃′(X)’s as introduced in Subsection 2.2 as underlying
probability space because this easier allows for the introduction of a weak Lévy process,
the analogue of a weak Brownian motion.

Further, we mention that we will focus on Hilbert space valued pure jump Lévy pro-
cesses L̃(t) where the corresponding decomposition is not only into uncorrelated but into
independent square integrable scalar Lévy processes L̃i(t).

3.1. Abstract stochastic distributions. Let (νi(dζ))N
i=1 be a sequence of Lévy mea-

sures on R0 such that for all i

0 < λi :=
∫

R0

ζ2νi(dζ) < R, R > 0.

To each νi we associate the corresponding test function space S̃i(X) and white noise space(
S̃i

p
(X),Fi, µi

)
as presented in (2.5). We form the direct sum S̃H =

⊕N
i=1 S̃i(X) induced

with the direct product topology and denote by S̃
′
H its topological dual. Then S̃

′
H is

isomorphic to the product
∏N

i=1 S̃
′
i(X) induced with the product topology. We define

FH :=
∏N

i=1Fi and µH :=
∏N

i=1 µi and establish our underlying white noise probability
space

(3.1) (Ω,F ,P) :=
(
S̃

′
H ,FH , µH

)
.

The first step will be to introduce an orthogonal basis for square integrable real valued
random variables L2(R, µH) on (Ω,F ,P). As in Subsection 2.6, we denote by {δij}j≥1

⊂ S̃i(X) an orthonormal basis of L2(dt × νi) for every i. We count the basis elements
diagonally and define δk := δij , where

k = ∆(i, j)

as in (2.8). For a multiindex α = (α1, α2, ...) ∈ J with index α = l we now define
Kα(ω) ∈ L2(R, µH) in the following way: to every entry αk determine the corresponding
tuple (i(k), j(k)) and group the entries according to the first index i(k). In this way one
creates finitely many, lets say p, submultiindices

βir = (β1, β2, ...),
ir = i(k), k ∈ ∆(ir, ·) ∩ {1, ...l} , r = 1, ..., p,

where

βj =
{
αj(k) if k ∈ ∆(ir, ·) ∩ {1, ...l}
0 otherwise.

For ω = (ω1, ω2, ...) ∈ S̃
′
H we set

Kir
α (ω) :=

〈
Cir
|βir |(ωir), δ

b⊗βir

ir·

〉
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where Cir
n (ωir) is the n-th Charlier polynomial on S̃

′
ir

(X) and δ
b⊗βir

ir· is the symmetrization
of δ⊗β1

ir1 ⊗ ...⊗ δ⊗βs

irs , s = index βir . We then define

(3.2) Kα(ω) :=
p∏

r=1

Kir
α (ω).

By the chaos expansion result from Subsection 3.3 and the product structure of (Ω,F , P )
one gets like in ([14], Thm 2.2.3 & 2.2.4) that the family {Kα(ω)}α∈J constitutes an
orthogonal basis of L2(R, µH):

Proposition 3.1. Every X ∈ L2(R, µH) has the unique representation

(3.3) X =
∑
α∈J

cαKα

with Fourier coefficients cα ∈ R. Moreover we have the isometry

(3.4) |X|2L2(µH) =
∑
α∈J

α!c2α

with α! := α1! α1!... for α ∈ J .

Having established a chaos expansion for real valued random variables on our probability
space it is now quite straight forward to introduce a chaos expansion for H-valued random
variables and spaces of stochastic distributions. We omit detailed proofs because they are
analogous to the Gaussian case presented in [11]. Denote by L2(H,µH) the space of
square integrable H-valued random variables. Given F (ω) ∈ L2(H,µH) we put ai(ω) :=
〈F (ω), hi〉H were (hi)N

i=1 was an orthonormal basis of H. Then ai(ω) ∈ L2(µH) and the
sum

N∑
i=1

ai(ω)hi

converges in L2(H,µH) to F (ω). Expressing each ai(ω) by its chaos expansion (3.3), say∑
α∈J ciαKα, yields:

Theorem 3.2. The family {Kα(ω)hi}N
i=1,α∈J is an orthogonal basis of L2(H,µH). Every

F (ω) ∈ L2(H,µH) has the unique representation

F (ω) =
N∑

i=1

ai(ω)hi =
N∑

i=1

∑
α∈J

ciαKα(ω)hi, ciα ∈ R,

with corresponding isometry

‖F (ω)‖2
L2(µH) =

N∑
i=1

∑
α∈J

α!c2
iα.

This chaos expansion is now employed to define Kondratiev spaces of H-valued stochas-
tic test functions and distributions. We remind that in the case of an H = R-valued pure
jump Lévy processes these spaces have been constructed in [19]. For α ∈ J we set

(2N)α :=
∞∏
i∈1

(2j)αj .

Definition 3.3. Let ρ ∈ [0, 1]. Define the space of H-valued stochastic test functions
S(H)ρ as all functions

f(ω) =
N∑

i=1

∑
α∈J

ciαKα(ω)hi, ciα ∈ R,
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in L2(H,µH) such that for all q ∈ N

‖f‖2
ρ,q :=

N∑
i=1

∑
α∈J

α!1+ρc2
iα(2N)qα =

∑
α∈J

N∑
i=1

α!1+ρc2
iα(2N)qα <∞.

Definition 3.4. Let ρ ∈ [0, 1]. Define the space of H-valued stochastic distributions
S(H)−ρ as all formal expansions

F (ω) =
N∑

i=1

∑
α∈J

ciαKα(ω)hi, ciα ∈ R,

such that for some q ∈ N

‖F‖2
−ρ,−q :=

N∑
i=1

∑
α∈J

α!1−ρc2
iα(2N)−qα =

∑
α∈J

N∑
i=1

α!1−ρc2
iα(2N)−qα <∞.

Note that we have the following representations for f(ω) ∈ S(H)ρ respectively F (ω) ∈
S(H)−ρ:

f(ω) =
N∑

i=1

∑
α∈J

ciαKα(ω)hi =
∑
α∈J

cαKα(ω) =
N∑

i=1

fi(ω)hi,

F (ω) =
N∑

i=1

∑
α∈J

ciαKα(ω)hi =
∑
α∈J

cαKα(ω) =
N∑

i=1

Fi(ω)hi,

where fi(ω) ∈ S(R)ρ, Fi(ω) ∈ S(R)−ρ and cα =
∑N

i=1 ciαhi ∈ H. Moreover, for q ∈ N

‖f‖2
ρ,q =

∑
α∈J

α!1+ρ ‖cα‖2
H (2N)qα =

N∑
i=1

|fi|2ρ,q ,

‖F‖2
ρ,q =

∑
α∈J

α!1−ρ ‖cα‖2
H (2N)−qα =

N∑
i=1

|Fi|2−ρ,−q ,

where |fi|2ρ,q respectively |Fi|2−ρ,−q are the corresponding norms in S(R)ρ respectively
S(R)−ρ.

The family of seminorms ‖f‖2
ρ,q, q ∈ N gives rise to a topology on S(H)ρ and it can be

shown that S(H)−ρ is the topological dual with dual action

〈F (ω), f(ω)〉 =
∑
α∈J

α! 〈bα, cα〉H

for F (ω) =
∑

α∈J bαKα(ω) ∈ S(H)−ρ and f(ω) =
∑

α∈J cαKα(ω) ∈ S(H)ρ. Finally we
note that for general ρ ∈ [0, 1] we have

S(H)1 ⊂ S(H)ρ ⊂ S(H)0 ⊂ L2(H,µH) ⊂ S(H)−0 ⊂ S(H)−ρ ⊂ S(H)−1.

The spaces S(H)0 respectively S(H)−0 are also referred to as H-valued Hida test function
respectively Hida distribution spaces.

3.2. Some key S(H)−1-valued processes. The purpose of the white noise theory pre-
sented in this paper is to provide a tool to solve stochastic differential equations in spaces
of generalized H-valued stochastic processes. A generalized H-valued stochastic process
is a function of t ∈ R that takes values in the space S(H)−1:

F (t) : R −→S(H)−1.

For these S(H)−1-valued functions the usual calculus concepts of continuity, differentia-
bility and integration in the strong sense (i.e. in the topology of S(H)−1) apply. For a
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more detailed description of how these concepts are expressed through the corresponding
chaos expansion we refer to [11] where the in this regard completely analogous Gaussian
case is treated. We now want to introduce some key generalized processes in the context
of white noise theory for Lévy processes: to our family (νi(dζ))N

i=1 of Lévy measures we
construct the corresponding the H-valued Lévy process (if existing), the weak Lévy process
and its singular white noise process.

Example 3.5. (H-valued Lévy process) As becomes clear from Proposition 2.3, a square
integrable pure jumpH-valued Lévy process with independent components is characterized
through the corresponding family of Lévy measures (νi)N

i=1 of scalar Lévy processes such
that

(3.5)
N∑

i=1

∫
R0

ζ2νi(dζ) <∞.

Lets assume condition (3.5) is valid for our family (νi)N
i=1. We put

Li(t) = Li(t, ω) :=
〈
Ci

1(ω), f i
〉
H
, i = 1, ..., N ,

where f i(s, ζ) = (0, ..., 0, 1[0,t](s)ζ, 0, ...) with 1[0,t](s)ζ on the i-th place. Then {Li(t)}N
i=1

is a family of R-valued independent, pure jump, square integrable Lévy martingales. Each
Li(t) has Lévy measure νi with corresponding isometry

E
[
Li(t)2

]
= t

∫
R0

ζ2νi(dζ) < tR.

Then by Proposition 2.3

(3.6) L(t) = L(t, ω) :=
N∑

i=1

Li(t)hi

is a square integrable H-valued Lévy process with covariance operator Q that has eigen-
values λi =

∫
R0
ζ2νi(dζ) and eigenvectors hi. We can derive its chaos expansion by using

expansion (2.11) on every Li(t):

L(t) =
N∑

i=1

∞∑
j=1

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds

)
Kε∆(i,j)

hi

=
N∑

i=1

∞∑
k=1

δk,∆(i,j)

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds

)
Kεk

hi

=
∞∑

k=1

δk,∆(i,j) hi

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds

)
Kεk

=
∞∑

k=1

θk(t)Kεk

where θk(t) := δk,∆(i,j)

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds
)
hi ∈ H. Because of condition (3.5) it is

clear that the sum in (3.6) converges in L2(H,µH) to L(t).

Example 3.6. (weak Lévy process) If condition (3.5) is not fulfilled then our sequence
(νi)N

i=1 does not correspond to an H-valued Lévy process and the formal sum in (3.6) does
not converge in L2(H,µH) any more. But it converges in S(H)−0 as will follow from the
calculations below. However, we don’t want to consider L(t) as defined in (3.6) but some
kind of normalization. More precisely, we define the weak Lévy process corresponding to
our family (νi)N

i=1 of Lévy measures (fulfilling condition (3.5) or not) to be the formal sum

(3.7) W (t) :=
N∑

i=1

Wi(t)hi =
∞∑

k=1

ψk(t)Kεk
,
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where Wi(t) := 1√
λi
Li(t) and

ψk(t) := δk,∆(i,j)
1√
λi

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds

)
hi ∈ H.

Note that W (t) is a normalization of L(t) in the sense that E
[
Wi(t)2

]
= 1 for all i. W (t)

is not in L2(H,µH) but it is a generalized process with values in S(H)−0. This can be
seen from

∞∑
k=1

εk! ‖ψk(t)‖2
H (2k)−q =

∞∑
k=1

δk,∆(i,j)
1
λi

(∫∫
[0,t]×R0

(δji ζ) νi(dζ)ds

)2

(2k)−q

≤
∞∑

k=1

(2k)−q <∞

for all q ≥ 2. It is the weak Lévy process W (t) and not the Lévy process L(t) which
will be the key underlying driving process in our study of stochastic differential equations.
However, if (νi)N

i=1 is such that L(t) exists the information contained in the integral with
respect to W (t) is identical to the information contained in the integral with respect
to L(t). But the scheme to construct the Hitsuda-Skorohod integral through the Wick
product gets standardized for all families (νi)N

i=1 by considering W (t) (see Section 3.4).

Example 3.7. (singular white noise) The singular white noise process Ẇ (t) is defined as
the time derivative of the weak Lévy process. It is given by the following chaos expansion

Ẇ (t) :=
∞∑

k=1

δk,∆(i,j)
1√
λi

(∫
R0

(δji(t, ζ) ζ) νi(dζ)
)
hiKεk

=
∞∑

k=1

κk(t)Kεk

where κk(t) := δk,∆(i,j)
1√
λi

(∫
R0

(δji(t, ζ) ζ) νi(dζ)
)
hi ∈ H. Similarly to the weak Lévy

process one can show that Ẇ (t) ∈ S(H)−0. To this purpose one uses the fact that by
the form of the basis δji(t, ζ) (see (2.7) ) and the uniform boundedness of the Hermite
functions ξ(t)l one has ‖κk(t)‖H ≤ C for some constant C.

3.3. Wick product. In the finite dimensional case the Wick product, denoted by �, can
be defined between S(Rm×n)−1-valued and S(Rn)−1-valued stochastic distribution. The
Wick product is thus an operation between generalized L(Rn,Rm)-valued and generalized
Rn-valued random variables:

� : S(Rm×n)−1 × S(Rn)−1 −→ S(Rm)−1.

Here L(Rn,Rm) denotes the space of linear operators between Rn and Rm, which equipped
with the Hilbert-Schmidt norm is identified with the Hilbert space Rm×n in the construc-
tion of S(Rm×n)−1.

In this Section we want to extend this concept to infinite dimensional Hilbert spaces.
Let U be another separable real Hilbert space with orthonormal basis {ui}M

i=1, where
M ∈ {N,∞}. The Wick product would thus be an operation between a generalized
random operator from H to U and a generalized H-valued random variable. However,
the space L(H,U) of bounded linear operators between H and U is not appropriate to
construct generalized random operators S(L(H,U))−1 because L(H,U) is not a Hilbert
space anymore when H or U are infinite dimensional. Instead we will consider the space of
Hilbert-Schmidt operators from H to U denoted by L2(H,U). An operator B ∈ L(H,U)
is Hilbert-Schmidt iff

N∑
i=1

‖Bhi‖2
U <∞.
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The reason L2(H,U) is the appropriate space is twofold. Firstly, L2(H,U) is a separable
Hilbert space with orthonormal basis given through the double sequence {uj⊗hi}i,j , where
uj ⊗ hi is the linear operator defined by

(uj ⊗ hi) (x) := uj 〈hi, x〉 , x ∈ H.

We can thus employ the machinery developed in the previous Section to construct spaces
of L2(H,U)-valued stochastic test functions S(L2(H,U))ρ and stochastic distributions
S(L2(H,U))−ρ. The second reason is that the relation between Wick product and Skoro-
hod/Itô integration known from the finite dimensional case (see next subsection) should
also be valid in infinite dimensions. And as has been shown in [28] for the case of Itô
integration with respect to a weak Wiener process, L2(H,U) is the appropriate space for
integrands to take values. The same makes sense for integration with respect to a weak
Lévy process as we will see.

Note that for B(ω) ∈ S(L2(H,U))−ρ we get the representation

B(ω) =
M,N∑
j,i=1

∑
α∈J

bjiαKα(ω) (uj ⊗ hi) =
∑
α∈J

bαKα(ω),

where bα =
∑M,N

j,i=1 bjiα (uj ⊗ hi) ∈ L2(H,U).

Definition 3.8. The Wick product B � F of

B =
∑
α∈J

bαKα ∈ S(L2(H,U))−1, F =
∑
α∈J

cαKα ∈ S(H)−1,

with bα ∈ L2(H,U), cα ∈ H is defined as

B � F :=
∑

α,β∈J
bα(cβ)Kα+β =

∑
γ∈J

 ∑
α+β=γ

bα(cβ)

Kγ,

where bα(cβ) denotes the operator bα applied to cα.

Example 3.9. If B ∈ L2(H,U) is deterministic and F (ω) ∈ L2(H,µH) then

B � F (ω) = B (F (ω)) .

This is easily seen from the definition.

As in the finite dimensional case, test function and distribution spaces are invariant
under the Wick operation in the following sense:

Lemma 3.10. For ρ ∈ {0, 1} we have

B ∈ S(L2(H,U))−ρ, F ∈ S(H)−ρ =⇒ B � F ∈ S(U)−ρ,
b ∈ S(L2(H,U))ρ, f ∈ S(H)ρ =⇒ b � f ∈ S(U)ρ.

Proof. We only show the statement for ρ = −1, the other cases being similar. There exist
q1, q2 ∈ N such that

‖B‖2
−1,−q1

=
∑
α∈J

‖cα‖2
H (2N)−q1α <∞,

‖F‖2
−1,−q2

=
∑
α∈J

‖bα‖2
L2(H,U) (2N)−q2α <∞.

Then with q = q1 + q2 + q3, where q3 > 1,

‖B � F‖2
−1,−q
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=
∑
γ∈J

∥∥∥∥∥∥
∑

α+β=γ

bα(cβ)

∥∥∥∥∥∥
2

U

(2N)−qγ ≤
∑
γ∈J

 ∑
α+β=γ

‖bα(cβ)‖U

2

(2N)−qγ

≤
∑
γ∈J

(2N)−q3γ

 ∑
α+β=γ

‖bα‖2
L2(H,U) (2N)−q2γ

 ∑
α+β=γ

‖cβ‖2
H (2N)−q1γ


≤
∑
γ∈J

(2N)−q3γ

(∑
α∈J

‖bα‖2
L2(H,U) (2N)−q2α

)∑
β∈J

‖cβ‖2
H (2N)−q1β

 <∞.

Here we have used that
∑

γ∈J (2N)−q3γ <∞ for q3 > 1 (see [30]). �

Next, we introduce the Wick composition of stochastic-operator-valued distributions.
Let V be a third separable Hilbert space.

Definition 3.11. Let B ∈ S(L2(H,U))−1 and G ∈ S(L2(U, V ))−1. We then define
G̊�B : S(H)−1 −→ S(V )−1 by

(G̊�B) � F := G � (B � F ) , F ∈ S(H)−1

and call G̊�B for Wick composition between G and B.

Note that because of Lemma 3.10 this definition is well defined. Also, the subspaces
specified in Lemma 3.10 stay invariant under B�̊G.

Example 3.12. Let B ∈ S(L2(H,H))−1. Then we define the Wick exponential of B as

(3.8) exp�̊B :=
∞∑

n=0

1
n!
B�̊n

where B�̊n := B�̊B...̊�B is the n-fold Wick composition of B. It will become clear in
Example 3.21 that exp�̊B is well defined in the sense that

l∑
n=0

1
n!
B�̊n � F

converges in S(H)−1 when l→∞ for every F ∈ S(H)−1.

3.4. Hitsuda-Skorohod integration. One of the most important properties of the Wick
product in finite dimensions is that it enables to express Itô-Skorohod integration as a
Bochner integral in S(Rn)−0 (for more information see [14] for the Gaussian and [9] for the
Lévy process case). In this Subsection we extend this concept to the infinite dimensional
case.

Definition 3.13. A process F (t) : R →S(H)−0 is said to be Pettis integrable if

〈F (t), f〉 ∈ L1(R, dt)

for all f ∈ S(H)0. Then the Pettis integral of F (t), denoted by
∫

R F (t) dt, is the unique
element in S(H)−0 such that〈∫

R
F (t) dt, f

〉
=
∫

R
〈F (t), f〉 dt.

The existence of the Pettis integral
∫

R F (t) dt in S(H)−0 follows from the fact that∫
R
〈F (t), ·〉 dt
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is a bounded linear operator on S(H)0. If we represent F (t) ∈ S(H)−0 as F (t) =∑
α∈J cα(t)Kα then it is straight forward to show (proof analogous to [11]) that F (t)

is Pettis integrable if

(3.9)
∑
α∈J

α!
(∫

R
‖cα(t)‖H dt

)2

(2N)−qα <∞

for some q ∈ N. In this case we have∫
R
F (t) dt =

∑
α∈J

∫
R
cα(t)dtKα ,

where
∫

R cα(t)dt is a Bochner integral in H.
Using the Wick product defined in the previous subsection we now construct the abstract

Hitsuda-Skorohod integral with respect to to a weak Lévy process. Let again U be another
separable real Hilbert space with orthonormal basis {ui}M

i=1, M ∈ {N,∞}, and recall that
Ẇ (t) denotes the singular white noise defined in Example 3.7.

Definition 3.14. Suppose B(t) : R →S(L2(H,U))−0 is such that B(t) � Ẇ (t) is Pettis
integrable in S(U)−0. Then the abstract Hitsuda-Skorohod integral with respect to to the
weak Lévy process W (t) is defined as∫

R
B(t) � Ẇ (t) dt ∈ S(U)−0.

The following Proposition gives a sufficient criteria for the existence of the abstract
Hitsuda-Skorohod integral.

Proposition 3.15. Let B(t) =
∑

α∈J bα(t)Kα ∈ S(L2(H,U))−0. If

(3.10) sup
α∈J

{
α!(2N)−qα

∫
R
‖bα(t)‖2

L2(H,U) dt

}
<∞

for some q ∈ N, then the abstract Hitsuda-Skorohod integral of B(t) exists.

Proof. By the definition of the singular white noise we have

B(t) � Ẇ (t) =
∑
γ∈J

( ∑
α+εk=γ

bα(t)(κk(t))

)
Kγ =:

∑
γ∈J

pγ(t)Kγ .

We first consider(∫
R
‖pγ(t)‖U dt

)2

≤
∫

R
‖pγ(t)‖2

U dt

≤
∫

R

( ∑
α+εk=γ

‖bα(t)‖L2(H,U) ‖κk(t)‖H

)2

dt

≤ C
∑

α+εk=γ

∫
R
‖bα(t)‖2

L2(H,U) dt

where we used the boundedness of ‖κk(t)‖H as in Example 3.7. Taking into account that
(α+ εk)! ≤ α!(|α|+ 1), we can now verify condition (3.9) for q > 1

2 . �

We conclude this subsection by demonstrating that the abstract Hitsuda-Skorohod in-
tegral also in infinite dimensions extends the Itô type integral with respect to a Hilbert-
space-valued Lévy process. Literature about stochastic integration with respect to infinite
dimensional Hilbert-space-valued Lévy process seems to be rather scarce. Two references
where such integrals are constructed are [6] and [29], whereas in [17] and [22] stochastic
integration with respect to general martingales in Hilbert spaces is treated. We will here
illustrate that the abstract Hitsuda-Skorohod integral generalizes the integral based on a
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series approach introduced in [29] (which in turn in [29] was shown to be equivalent to
the integral in [6]). Let L(t) be an H-valued Lévy process as defined in Example 3.5 with
corresponding independent scalar decomposition Li(t) and covariance operator Q with
eigenvalues λi. Denote by {Ft}t>0, Ft ⊂ FH , the augmented filtration generated by L(t).
Let a stochastic operator valued process

Φ(t) : [0, T ] → L2(L(H,U), µH)

be predictable and piecewise continuous in t, where L(H,U) is equipped with the operator
norm, and let Φi(t) := Φ(t)(hi). Then the stochastic integral of Φ(t) with respect to L(t)
is in [29] defined as the following L2(U, µH)-limit (which always exists):∫ T

0
Φ(t) dL(t) :=

n
lim

L2(U,µH)

N∑
i=1

n−1∑
k=0

Φi(tk) (Li(tk+1)− Li(tk))

for a sequence of refining partitions 0 = t0 < ... < tn = T .

Proposition 3.16. Define the stochastic L(H,U)-valued process B(t) through

B(t)(hi) :=
√
λiΦi(t),

where λi and Φi(t) are as above. Then B(t) ∈ L2(L2(H,U), µH) for all t, its abstract
Hitsuda-Skorohod integral exists and

(3.11)
∫ T

0
B(t) � Ẇ (t) dt =

∫ T

0
Φ(t) dL(t).

Proof. It is sufficient to show the statement for a simple process Φ(t) of the form

Φ(t) = Φ1(a,b](t),

where 0 ≤ a < b ≤ T and Φ ∈ L2(L(H,U), µH) is Fa-adapted.
Note first that

‖B(t)‖L2(H,U) =
N∑

i=1

λi ‖Φi(t)‖U ≤ ‖Φ(t)‖L(H,U)

N∑
i=1

λi <∞,

and we get B(t) ∈ L2(L2(H,U), µH). It is then straight forward to see that condition
(3.10) is fulfilled and the Hitsuda-Skorohod integral of B(t) exists.

To verify equality (3.11) we represent B(t) and Ẇ (t) in the following way

B(t) =
M,N∑
j,i=1

∑
α∈J

bjiα(t)Kα(ω) (uj ⊗ hi) =
M,N∑
j,i=1

Bji(t) (uj ⊗ hi) ,

Ẇ (t) =
N∑

i=1

∑
k∈∆(i,·)

κik(t)Kεk
hi =

N∑
i=1

Ẇi(t)hi,

where Bji(t) ∈ L2(R, µH) is predictable, κik(t) = 〈κk(t), hi〉H and Ẇi(t) is the chaos
expansion of the scalar white noise corresponding to the scalar Lévy process Wi(t). We
then get

B(t) � Ẇ (t) =
∑
α,k

N∑
i=1

M∑
j=1

bjiα(t)κik(t)uj Kα+εk

=
N∑

i=1

M∑
j=1

∑
α,k∈∆(i,·)

bjiα(t)κik(t)Kα+εk
uj

∗=
N∑

i=1

M∑
j=1

∫ b

a
Bji(t)dWi(t)uj

=
N∑

i=1

M∑
j=1

Bji(a)uj

∫ b

a
dWi(t) =

N∑
i=1

√
λiΦi(a)

∫ b

a
dWi(t)
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=
N∑

i=1

Φi(a) (L(b)− L(a)) =
∫ T

0
Φ(t) dL(t).

Here
∫ b
a Bji(t)dWi(t) is the usual Itô integral and where we have used the known relation

between the abstract Hitsuda-Skorohod integral and the Itô integral in one dimension in
the equality marked by ∗. �

Remark 3.17. As can be seen from Proposition 3.16, we have to ’scale’ the operator
process Φ(t) in the Itô integral by the sequence {

√
λi}i in order to get the corresponding

operator in the Hitsuda-Skorohod integral. This is due to the fact that we integrate with
respect to the ’normalized’ weak Lévy process W (t) in the Hitsuda-Skorohod integral; i.e.
we standardize the covariance information of the integrator and transfer this information
into the integrand. In this way, the space of Hilbert-Schmidt operators L2(H,U) is the
optimal space for the integrands in the Hitsuda-Skorohod integral for all sequences of Lévy
measures (νi(dζ))N

i=1.
If we didn’t consider the weak weak Lévy process W (t) but the Lévy process L(t) corre-
sponding to (νi(dζ))N

i=1 as integrator, the alternative but less convenient approach would
be to adopt the corresponding Hilbert spaces. More precisely, like in the construction of
the stochastic integral with respect to a Q-Brownian motion (see for example [7]), consider
the Hilbert space H0 = Q(H) ⊂ H with inner product induced by Q (as before Q is the
covariance operator of L(t)). Then L(t) would be in S(H0)−0 with the same chaos expan-
sion as the one of W (t) in S(H)−0. The abstract Hitsuda-Skorohod integral with respect
to L(t), which then generalizes the Itô integral without scaling the integrands, would be
defined for integrands taking values in S(L2(H0, U))−0.

3.5. Hermite transform. The last white noise concept we treat in this Section is the
Hermite transform. As in the finite dimensional case introduced in [14], the Hermite
transform is a very useful tool to characterize elements and topology of S(H)−1. In the
following of this Subsection we only state the key results we need later on. The proofs
are analogue to the ones in [11] where the Hermite transform and its properties in the
Gaussian case is elaborated.

We denote by HC respectively UC the complexification of H respectively U . Further,
we set zα =

∏
i z

αi
i for z ∈ CN and a multiindex α.

Definition 3.18. The Hermite transform of F =
∑

α∈J cαKα(ω) ∈ S(H)−1 is defined as

HF (z) :=
∑
α∈J

cαz
α

for z ∈ CN so that the limit exists in HC.

In the following we often drop the dependence on z and only write HF . From the
definition it becomes clear that the Hermite transform carries Wick operations over to
deterministic operations. More precisely, for B ∈ S(L2(H,U))−1, F ∈ S(H)−1 we have

(3.12) H (B � F ) = HB(HF )

where HB(z) ∈ L2(HC, UC) and HF (z) ∈ HC. Further, for B ∈ S(L2(H,U))−1, G ∈
S(L2(U, V ))−1

(3.13) H (G̊�B) = HGHB ,
whereHGHB denotes the composition of the operatorsHB(z) ∈ L2(UC, VC) andHB(z) ∈
L2(HC, UC).

For N 3 q > 1 we define the following infinite dimensional neighborhood of 0 in CN

Kq := {z ∈ CN : |zi| < (2i)−q, i ∈ N}.
The Hermite transform characterizes stochastic distributions in S(H)−1:
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Proposition 3.19. 1) For F ∈ S(H)−1 there exists q > 1 such that HF (z) converges
absolutely for all z ∈ Kq and HF (z) is bounded on Kq.
2) Conversely, suppose g(z) =

∑
α∈J cαz

α converges absolutely and is bounded on Kq for
some q > 1. Then there exists a unique F ∈ S(H)−1 such that HF (z) = g(z), namely

F =
∑
α∈J

cαKα(ω).

Also, the convergence of sequences in S(H)−1 can be connected to the convergence of
the corresponding Hermite transforms:

Proposition 3.20. The following statements are equivalent:
1) Fn −→ F in the topology of S(H)−1.
2) There exists q > 1 such that HFn(z) −→ HF (z) converges pointwise and boundedly on
Kq.

Example 3.21. Let B ∈ S(L2(H,H))−1 and F ∈ S(H)−1 We then consider the sum∑l
n=0

1
n!B

�̊n � F . Applying the Hermite transform yields

(3.14)
l∑

n=0

1
n!

(HB)n (HF ).

However, because HB is a Hilbert-Schmidt operator on HC the sum in (3.14) converges
pointwise boundedly on some Kq to eHB(HF ). So by Proposition 3.20 the Wick exponen-
tial in Example 3.12 is a well defined concept.

As a consequence of Proposition 3.20 we can characterize differentiation and integration
in S(H)−1 via the corresponding Hermite transforms.

Theorem 3.22. Consider two processes X(t), F (t) : [a, b] −→ S(H)−1. The following
statements are equivalent:
1) X(t) is differentiable in the topology of S(H)−1 on [a, b], F (t) is continuous in the
topology of S(H)−1 on [a, b], and

dX(t)
dt

= F (t) .

2) There exists q > 1 such that

a: HX(t, z) and HF (t, z) exist for all z ∈ Kq, t ∈ [a, b].
b: HF (t, z) is continuous on [a, b] and bounded on [a, b]×Kq.
c: HX(t, z) is differentiable on [a, b] with

dHX(t, z)
dt

= HF (t, z)

for all (t, z) ∈ [a, b]×Kq.

Example 3.23. Let us show that in S(H)−1 the singular white noise Ẇ (t) is differentiable.
We have that

HẆ (t) =
∞∑

k=1

κk(t) zk

converges for z ∈ Kq with q > 2 . Because

sup
t∈[a,b]

ξ′j(t) ≤ Cj,

where the constant C only depends on [a, b], we get that ‖κ′k(t)‖
2
H ≤ C2i(k)2λj(k) ≤ C1k

2

for another constant C1. Hence∣∣∣∣∣
∞∑

k=1

κ′k(t) zk

∣∣∣∣∣
2

≤

( ∞∑
k=1

∥∥κ′k(t)∥∥2

H
(2N)−4εk

)( ∞∑
k=1

|zk|2 (2N)4εk

)
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≤ C1

( ∞∑
k=1

k2 (2k)−4

)(∑
α∈J

|zα|2 (2N)4α

)
< C3

on (t, z) ∈ [a, b]×K4. Because
∑∞

k=1 κ
′
k(t) zk is clearly continuous in t we get by Theorem

3.22 that Ẇ (t) is differentiable in S(H)−1 with

dẆ (t)
dt

=
∞∑

k=1

κ′k(t)Kk.

Similarly one can show that the weak Lévy process W (t) is differentiable in S(H)−1 with
derivative Ẇ (t), and further that Ẇ (t) is infinitely many times differentiable.

Theorem 3.24. If X(t) : [a, b] −→ S(H)−1 is such that
∫ b
a HX(t, z)dt < ∞ on Kq for

some q > 1 and
sup

(t,z)∈[a,b]×Kq

‖HX(t, z)‖HC
<∞

then
∫ b
a X(t)dt exists in S(H)−1 and

H
∫ b

a
X(t)dt =

∫ b

a
HX(t, z)dt.

4. Stochastic Differential Equations in S(H)−1

We now want to apply the machinery developed in the previous Section to stochastic
differential equations with values in spaces of stochastic distributions. Hilbert-space-valued
differential equations often include unbounded linear operators and we first discuss their
concept in the framework of stochastic distributions. Let H,U be separable real Hilbert
spaces as before.

4.1. Deterministic operators on S(H)−1. Let A : H −→ U be a linear possibly un-
bounded operator with domain D(A) ⊆ H. We then define the action of A on S(H)−1.

Definition 4.1. The domain of A in S(H)−1 is defined to be

D(A)−1 :=

{
F =

∑
α∈J

cαHα ∈ S(H)−1 :
∑
α∈J

‖A(cα)‖2
U (2N)−qα <∞

}
for some q ∈ N . The action of A on F ∈ D(A)−1 is set to be

A(F ) :=
∑
α∈J

A(cα)Hα ∈ S(U)−1.

We define analogously the action of A on any S(H)±ρ, ρ ∈ {0, 1} with corresponding
domains D(A)±ρ.

Remark 4.2. If A ∈ L(H,U) is a bounded operator then one immediately sees that
D(A)±ρ = S(H)±ρ, ρ ∈ {0, 1}. If further A ∈ L2(H,U) we get that

A(F ) = A � F .

Note that we can extend this relation for all operators A ∈ L(H,H) that are compositions
of Hilbert-Schmidt operators, i.e.

A = B1 ◦ ... ◦Bn, B1, ..., Bn ∈ L2(H,H),

with the help of the Wick composition in Definition 3.11.

Like in [11] one can show that the Hermite transform is also factorizing unbounded
operators in the desired sense as long as they are closed:

Lemma 4.3. If A : H −→ U is a closed operator and F ∈ D(A)−1 then

H (A(F )) (z) = A(HF (z)).
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4.2. Stochastic Cauchy problem. Consider the following U -valued stochastic differen-
tial equation with additive Lévy noise

dXt = AXtdt+B dWt,(4.1)
X0 = x ∈ D(A), 0 ≤ t < T,(4.2)

where A is the generator of a C0-semigroup St on U (in particular A is a densely defined,
closed operator), W (t) is an H-valued weak Lévy process and B ∈ L2(H,U) is a Hilbert-
Schmidt operator. In the classical context of Hilbert space valued SDE’s one can show
analogously to the Gaussian case (see for example [6]) that there exists a weak solution of
equation (4.1) under the condition that StB ∈ L2(H,U) with

(4.3)
∫ T

0
‖StB‖L2(H,U) dt <∞.

This solution is then given by

Xt = Stx+
∫ t

0
S(t− s)BdWt, 0 ≤ t < T .

Interpreting the stochastic integral B dWt as a Hitsuda-Skorohod integral B � Ẇtdt we
arrive at the following reformulation of (4.1) in the white noise framework

dXt

dt
= AXt +B � Ẇt,(4.4)

X0 = x ∈ D(A), 0 ≤ t < T .

Using Definition 4.1 we can extend the classical result about weak solutions of (4.1) in the
following way:

Theorem 4.4. Let A be the generator of a strongly continuous semigroup {St}t>0 on U
and B ∈ L2(H,U). Then the process

(4.5) Xt = St(x) +
∫ t

0
St−sB(Ẇs) ds

solves equation (4.4) uniquely in S(U)−1.

Proof. For notational convenience we denote G̃ := HG for a distribution G in the rest
of the proof. Because a strongly continuous semigroup is exponentially bounded it is not
difficult to see that St−sB(Ẇs) is Pettis integrable and the integral in (4.5) is well defined.
Taking the Hermite transform in (4.5) we obtain

X̃t = St(x̃) +
∫ t

0
St−sB(

∼
Ẇs) ds.

Then the following calculations are standard from the theory of deterministic linear equa-
tions (see [10], [7], or [21] for a short overview). Define the integral

v(s) =
∫ t−s

0
SrB(

∼
Ẇs)dr

and consider its derivative which by Example 3.23 is well defined:

v′(s) = −St−sB(
∼
Ẇ s) +

∫ t−s

0
SrB(

∼
Ẇ ′

s)dr.

Integrating in s from 0 to t yields∫ t

0
St−sB(

∼
Ẇs)ds =

∫ t

0

∫ t−s

0
SrB(

∼
Ẇ ′

s)dr ds− v(t) + v(0).
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Because v(t) = 0 we get

(4.6) X̃t = St(x̃) +
∫ t

0

∫ t−s

0
SrB(

∼
Ẇ ′

s) dr ds+
∫ t

0
SrB(

∼
Ẇ0)dr.

Using the formula (see [10])

A

(∫ t

0
Ssu ds

)
= St(u)− u

(note that u ∈ D(A) is not required), we obtain

A
(
X̃t

)
= ASt(x̃) +

∫ t

0
St−sB(

∼
Ẇ ′

s) ds−
∫ t

0
B(

∼
Ẇ ′

s) ds+ StB(
∼
Ẇ0)−B(

∼
Ẇ0)

= S′t(x̃) +
∫ t

0
St−sB(

∼
Ẇ ′

s) ds−B(
∼
Ẇt) + StB(

∼
Ẇ0).

Hence, differentiating (4.6) yields

(4.7)
dX̃t

dt
= AX̃t +B(Ẇt).

Now, by Theorem 3.22 we can extract the Hermite transform in equation (4.7) and the
result follows. �

Note that for a Pettis integrable process Fs the process St−sFs is again Pettis integrable
by the exponential boundedness of Ss. So an immediate generalization of Theorem 4.4 is
that

Xt = St(x) +
∫ t

0
St−s

(
Fs +B(Ẇs)

)
ds

solves the equation
dXt

dt
= [AXt + Ft] +B � Ẇt,(4.8)

X0 = x ∈ D(A), 0 ≤ t < T .

We remark that since
∞∑

k=0

∥∥∥∥∫ T

0
ST−s (B(κk(s))) ds

∥∥∥∥2

U

≤ C

∞∑
k=0

∫ T

0
‖ST−s (B(hk))‖2

U ds

Xt is a solution in L2(U, µU ) (assuming Fs ∈ U is Bochner integrable) if

(4.9)
∫ T

0
‖SsB‖2

L2(H,U) ds <∞.

This was condition (4.3).

Further, the concepts developed in the previous Section allow us to consider more
general equations with random coefficients that stochastic distributions. They take the
form

dXt

dt
= A �Xt + Ft,(4.10)

X0 = x ∈ S(U)−1, 0 ≤ t < T,

where A ∈ S(L2(H,U))−1 and Ft ∈ S(U)−1.

Theorem 4.5. Assume that Ft is continuous in t in the topology of S(U)−1. Then the
process

(4.11) Xt = exp�̊(tA) � x+
∫ t

0

(
exp�̊((t− s)A) � Fs

)
ds

solves equations (4.10) uniquely in S(U)−1.
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Proof. For notational convenience we denote G̃ := HG for a distribution G in the rest of
the proof. First note that since exp�̊((t − s)A) � Fs is continuous in s in the topology of
S(U)−1, the process exp�̊((t− s)A) � Fs is S(U)−1-integrable (see [11]) and the integrand
in (4.11) is well defined. Takin the Hermite transform in (4.11) yields

X̃t = exp(tÃ)(x̃) +
∫ t

0
exp((t− s)Ã)(F̃s) ds.

We observe that
{

exp(tÃ)
}

t>0
is the strongly continuous semigroup on UC generated by

Ã. Clearly, since Ã is a bounded operator, X̃t is the variation of constant formula that
solves

(4.12)
dX̃t

dt
= Ã(X̃t) + F̃t.

Now, given the nature ofXt, we can apply Theorem 3.22 and extract the Hermite transform
in equation (4.12). This yields the desired result. �

In particular, if Ft = Bt � Ẇt for a continuous Bt, the process Xt given in (4.11) solves
a Lévy white noise driven stochastic Cauchy problem with random coefficients. However,
A takes values in a space of generalized bounded operators and is not allowed to be of
unbounded nature in this setting.

Remark 4.6. Let us mention that the above techniques can be employed in an analogous
way to treat linear stochastic differential equations with additive Lévy noise where A is
the generator of an n-times integrated semigroup. For this matter it is essential that the
white noise Ẇt is infinitely many times differentiable in S(H)−1.

Further, the introduced concepts allow for the treatment of generalized solutions of
equations with multiplicative noise. However, this is beyond the scope of the paper and
will be part of forthcoming work.

Example 4.7. As a first illustration we consider the stochastic Lévy noise driven heat
equation

dX(t, x) = 4xX(t, x)dt+ dW (t, x)(4.13)
X(t, x) = 0 for t ∈ [0, T ], x ∈ ∂O, X(0, x) = 0 for x ∈ O,

where O = {x ∈ Rn; 0 < xk < ak, k = 1, ..., n}, n ∈ N . We interpret (4.13) as equation
of type (4.4) with H = L2(O), B = I, A = 4x (in the sense of distributions) and
D(A) = H2,2(O) ∩H1,2

0 (O). The spectrum of A is given by{
−

n∑
i=1

k2
i π

2

a2
i

; k1, ..., kn ∈ N∗

}
.

Let {−λk} be an ordering of the eigenvalues with corresponding eigenvector basis {hk}.
Then A generates a C0 semigroup on H given through

St(u) =
∞∑

k=1

〈u, hk〉H e−λkthk, u ∈ H,

and the solution of the heat equation with values in S(H)−0 is given by (4.4). It is not
difficult to see that∫ T

0
‖Ss‖2

L2(H) ds =
∞∑

k=1

1
2λk

(
1− e−2λkT

)
≤

∞∑
k=1

1
2λk

.

Hence only if n = 1 the solution of the heat equation is H-valued.
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[5] Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge 1996.
[6] Chojnowska-Michalik, A.: On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics,

21 (1987), pp. 251-286.
[7] Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, Cambridge University

press, 1992.
[8] di Nunno G.; Meyer-Brandis T.; Øksendal B.; Proske F. (2005): Malliavin Calculus and antici-

pative Ito formulae for Levy Processes. Infin. Dimensi. Anal. Quantum Probab. Relet. Top. 2005,
8, pp. 235-258.

[9] di Nunno G., Øksendal, B., Proske, F.:White noise analysis for Lévy processes. Journal of Funct.
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