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Abstract

An insider is an agent who has access to larger information than the one given by
the development of the market events and who takes advantage of this in optimizing
his position in the market . In this paper we consider the optimization problem of an
insider who is so influential in the market to affect the price dynamics: in this sense he
is called a “large” insider. The optimal portfolio problem for a general utility function
is studied for a financial market driven by a Lévy process in the framework of forward
anticipating calculus.
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1 Introduction.

The modeling of insider trading is a challenge that recently has been taken up by many
scientists with the aim of understanding the behavior and quantifying the gain of a dealer
who takes advantage of some extra information, i.e. not deducible from the market be-
havior itself, that he may happen to have at his disposal.

Thus in a market model on the probability space (Ω,F , P ) with two investment pos-
sibilities such as

• a bond with price S0(t), t ∈ [0, T ],

• a stock with price S1(t), t ∈ [0, T ],

an “honest” agent is taking decisions relying only on the flow of information

F :=
{
Ft ⊂ F , 0 ≤ t ≤ T

}
given by the development of the market events, while an “insider” would rely on the flow
of information

H :=
{
Ht ⊂ F , 0 ≤ t ≤ T

}
: Ht ⊃ Ft.
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Therefore the insider’s portfolios are in general stochastic processes adapted to H.
Different aspects of the insider trading have been considered and with different ap-

proaches. It is rather hard to mention all past and recent achievements, so we will restrict
ourselves to the papers that have mostly inspired the present work.

The subject we are dealing with is the optimization problem

(1.1) max
π∈A

E
[
U(Xπ(T ))

]
of an insider who wants to maximize the expected utility of his final wealth Xπ(T ) given
by the dynamics

dXπ(t) =
(
1− π(t)

)
Xπ(t)dS0(t) + π(t)Xπ(t)dS1(t), Xπ(0) > 0,

over all admissible choices of portfolios π ∈ A. See Section 3.
Optimization problems of this kind have been studied widely. Here we mention the

pivotal work of Karatzas and Pikovski [KP]. They were considering the problem (1.1) for a
market driven by a Brownian motion and a logarithmic utility function in the framework of
classical enlargement of filtrations. This framework applies under the a priori assumption
that the F-adapted Brownian motion driving the market is a semimartingale with respect
to H. This assumption is often difficult if not impossible to be verified since it depends on
the kind of information H available to the insider.

In [BØ] a general approach is suggested to the modeling of insider trading that over-
comes the need of the above assumption in the framework of forward anticipating calculus.
In this setting the authors give a solution to problem (1.1) for a general utility function.
However, they restrict themselves to the case of markets driven by Brownian motion only.

Remark.
The reasons for taking this approach into account can be summarized in the following
points:

(a) The forward integral provides the natural interpretation of the gains from the trade
process. Indeed, suppose that a trader buys one stock at a random time τ1 and
keeps it until the random time τ2 > τ1. When he sells it, the gain obtained is
S1(τ2) − S1(τ1) =

∫
1(τ1,τ2](t)d−S1(t), where the integral is a forward stochastic

integral

(b) If the integrand is càglàd (i.e. left continuous and with right sided limits), the
forward integral may be regarded as the limit of Riemann sums, see e.g. [BØ], [KS1]

(c) If the stochastic process driving the market happens to be a semimartingale with
respect to the insider filtration H, then the corresponding stochastic integral coincide
with the forward integral.

In [ØS] the forward integral calculus and anticipative calculus is used to study the
optimal portfolio problem with logarithmic utiliy for a trader with partial information in
a (Lévy-Brownian type) anticipative market (e.g. a market influenced by insiders).

In [KS1] the study of [ØS] is extended to cover the case when there are no a priori
assumptions about the relation between the information available to the trader and the
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information generated by the possibly anticipative market. Here the market is assumed
to be driven by Brownian motion and the utility function is logarithmic.

In [DMØP1] and [DMØP2] the authors extend the forward integration to the case of
compensated Poisson random measures and thus to more general Lévy processes and solve
problem (1.1) in the case of a logarithmic utility function. This extension of framework
to Lévy processes is motivated by the ongoing discussion on the better fitting of these
models to real financial markets than the ones driven only by Brownian motion. Here we
can refer to [B-N], [CT], [ER] and [Sc], for example.

In the same line of [BØ] and relying on the achievements in [DMØP1] and [DMØP2],
we now solve problem (1.1) for a general utility function and for a general Lévy process.
This represents the major contribution of this paper.

Besides there is also another element of novelty. In fact, inspired by [CC] and [KS1], we
consider the problem (1.1) from the point of view of a trader so influential in the market
that his decisions effect the price process dynamics. In this sense our dealer is called
“large” trader. In [CC] the impact of the trader’s positions on the prices is exogenously
specified. In our paper we chose to use a similar approach - see (3.1)-(3.2). This visible
impact of a large trader on the price dynamics may arise because of the volumes traded or
also because the other market investors may suppose, though without certainty, that the
large trader is an insider. Note that actually in [CC] the large trader is not an insider. On
the other hand paper [KS1] considers a similar model for prices, but extends the analysis
to the cases in which the large trader is truly an insider. The analysis in [KS1] is however
restricted to the case of logarithmic utility and Brownian motion driven dynamics.

In this present paper, as said, the major concern is the solution of an optimal portfolio
problem from the point of view of a “large insider” and we do not attempt to discuss here
price formation. This would require a study of equilibria under asymmetric information.
For this we can refer to the seminal paper [Ky], [Ba] and the recent literature in this line.

This paper is organized as follows. In Section 2 we recall the basic tools of forward
calculus for Lévy processes and in particular the Itô formula (see Theorem 2.6), which are
then applied in Section 3 where criteria for the existence of the solution of the “large”
insider’s portfolio optimization problem (1.1) are given. In Section 4 some examples are
considered.

For related works in the context of insider modeling and portfolio optimization see also
[EJ], [EGK], [KS2], [KY1], [KY2], [Ku] and [Ø], for example.

We emphasize that our paper is mainly intended as a survey. Thus we have left out
some technical details in some of the proofs.

2 Framework: forward anticipating calculus.

In this section we briefly recall some properties of the forward integral. Our presentation
is already in the form we are going to apply later. We can refer to e.g. [BØ], [NP], [RV1],
[RV2], [RV3] for information on the forward integration with respect to the Brownian
motion and to e.g. [DMØP1] for the integration with respect to the compensated Poisson
random measure.
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As announced in the introduction we are interested in a Lévy process

(2.1) η(t) = σB(t) +
∫ t

0

∫
R0

zÑ(ds, dz), t ∈ [0, T ],

on the complete filtered probability space (Ω,F , P ), F = {Ft ⊂ F , 0 ≤ t ≤ T} (F0 trivial)
with a finite time horizon T > 0. In the Itô representation (2.1) (see [I]) of the Lévy
process we can distinguish the standard Brownian motion B(t), t ∈ [0, T ] (B(0) = 0), the
constant σ ∈ R and the compensated Poisson random measure

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt.

Here ν(dz), z ∈ R0, is a σ-finite Borel measure on R0 = (−∞, 0) ∪ (0,∞) such that∫
R0

z2ν(dz) <∞.

Then E[η2(t)] = t
(
σ2 +

∫
R0
z2ν(dz)

)
<∞ for all t ∈ [0, T ]. For more information on Lévy

processes we can refer to e.g. [A], [Be], [P], [Sa].
The following definition is due to [RV2].

Definition 2.1 We say that the (measurable) stochastic process ϕ = ϕ(t), t ∈ [0, T ], is
forward integrable over the interval [0, T ] with respect to the Brownian motion if there
exists a process I(t), t ∈ [0, T ], such that

(2.2) sup
t∈[0,T ]

∣∣∣ ∫ t

0
ϕ(s)

B(s+ ε)−B(s)
ε

ds− I(t)
∣∣∣ −→ 0, ε→ 0,

in probability. Then, for any t ∈ [0, T ],

I(t) =
∫ t

0
ϕ(s)d−B(s)

is called the forward integral of ϕ with respect to the Brownian motion on [0, t].

The corresponding definition of forward integral with respect to the compensated Pois-
son random measure is due to [DMØP1]. Here a modified version of what is suggested in
[DMØP1] is actually given to be in the line with the definition suggested in [RV2]. Note
that these definitions are such that the Itô formulae for forward integrals with respect to
the Brownian motion and the compensated Poisson random measure hold true, see [RV2]
and [DMØP1].

Definition 2.2 We say that the (measurable) random field ψ = ψ(t, z), t ∈ [0, T ], z ∈ R0,
is forward integrable over [0, T ] with respect to the compensated Poisson random measure
if there exists a process J(t), t ∈ [0, T ], such that

(2.3) sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫
R0

ψ(s, z)1Un(z)Ñ(ds, dz)− J(t)
∣∣∣ −→ 0, n→∞,
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in probability. Here Un, n = 1, 2, ..., is an increasing sequence of compact sets Un ⊆ R0

with ν(Un) <∞ such that
⋃

n Un = R0. Then, for any t ∈ [0, T ],

J(t) =
∫ t

0

∫
R0

ψ(s, z)Ñ(d−s, dz)

is called the forward integral of ψ with respect to the compensated Poisson random measure
on [0, t].

Remark 2.3
i) If the integrands in the above definitions are adapted to the filtration F, then the limits
(2.1) and (2.2) coincide with the Itô integral. In particular, if we consider the stronger
convergence in L2(P ) in the above definitions we obtain an extension of the classical Itô
integral. This is useful for the forthcoming applications and is the case we take into
account in the sequel.
ii) If G is a random variable then

G ·
[ ∫ T

0
ϕ(t)d−B(t) +

∫ T

0

∫
R0

ψ(t, z)Ñ(d−t, dz)
]

=
∫ T

0
Gϕ(t)d−B(t) +

∫ T

0

∫
R0

Gψ(t, z)Ñ(d−t, dz).
(2.4)

Note that this property does not hold in general for the Itô integral. �

Definition 2.4 A forward process is a measurable stochastic function X(t) = X(ω, t),
ω ∈ Ω, t ∈ [0, T ], that admits the representation

(2.5) X(t) = x+
∫ t

0
α(s)ds+

∫ t

0
ϕ(s)d−B(s) +

∫ t

0

∫
R0

ψ(s, z)Ñ(d−s, dz),

where x = X(0) is a constant. A shorthand notation for (2.5) is

(2.6) d−X(t) = α(t)dt+ ϕ(t)d−B(t) +
∫

R0

ψ(t, z)Ñ(d−t, dz), X(0) = x.

We call d−X(t) the forward differential of X(t), t ∈ [0, T ].

Remark 2.5 There is a relation between the forward integral and the Skorohod integral,
see [DMØP1], Lemma 4.1. Using this we can see that under mild conditions there is a
càdlàg version of the process X(t), t ∈ [0, T ]. From now on we will consider and use this
càdlàg version. �

We can now state the Itô formula for forward integrals. See e.g. [RV2], [RV3], for the
Brownian motion case, and [DMØP1], for the compensated Poisson random measure case.
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Theorem 2.6 Let X(t), t ∈ [0, T ], be a forward process of the form (2.5) and assume that
ψ(ω, t, z) is continuous in z around zero for (ω, t)-a.a. and

∫ T
0

∫
R0
ψ(t, z)2ν(dz)dt < ∞

ω-a.e. Let f ∈ C2(R). Then the forward differential of Y (t) = f
(
X(t)

)
, t ∈ [0, T ], is

given by the following formula:

d−Y (t) =
[
f ′

(
X(t)

)
α(t) +

1
2
f ′′(X(t))ϕ2(t)

+
∫

R0

(
f
(
X(t−) + ψ(t, z)

)
− f

(
X(t−)

)
− f ′

(
X(t−)

)
ψ(t, z)

)
ν(dz)

]
dt

+ f ′(X(t))ϕ(t)d−B(t) +
∫

R0

(
f
(
X(t−) + ψ(t, z)

)
− f

(
X(t−)

))
Ñ(d−t, dz),

(2.7)

where f ′(x) = d
dxf(x) and f ′′(x) = d2

dx2 f(x), x ∈ R.

3 Optimal portfolio problem for a “large” insider.

In this section we study the existence of an optimal portfolio for the problem (1.1).
Let us consider the following market model with a finite time horizon T > 0 and two

investment possibilities:

• a bond with price dynamics

(3.1)

{
dS0(t) = r(t)S0(t)dt, t ∈ (0, T ],
S0(0) = 1

• a stock with price dynamics

(3.2)

{
dS1(t) = S1(t−)

[
µ(t, π(t))dt+ σ(t)d−B(t) +

∫
R0
θ(t, z)Ñ(d−t, dz)

]
, t ∈ (0, T ],

S1(0) > 0

on the complete probability space (Ω,F , P ). The stochastic coefficients r(t), µ(t, π), σ(t)
and θ(t, z), t ∈ [0, T ], z ∈ R0, are measurable, càglàd processes with respect to the
parameter t, adapted to some given filtration G, for each constant value of π. Here
G := {Gt ⊂ F , t ∈ [0, T ]} is a filtration with

Gt ⊃ Ft, t ∈ [0, T ].

We also assume that θ(t, z) > −1, dt× ν(dz)-a.e. and that

E

∫ T

0

{
|r(t)|+ |µ(t)|+ σ2(t) +

∫
R0

θ2(t, z)ν(dz)
}
dt <∞.

We recall that F := {Ft ⊂ F , t ∈ [0, T ]} is the filtration generated by the development of
the noise events, i.e. the driving processes B(t) and Ñ(t, z), t ∈ [0, T ], z ∈ R0.
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In this model the coefficient µ(t), t ∈ [0, T ], depends on the portfolio choice π(t),
t ∈ [0, T ], of an insider who has access to the information represented by the filtration
H := {Ht ⊂ F , t ∈ [0, T ]} with

Ht ⊃ Gt ⊃ Ft, t ∈ [0, T ].

Accordingly the insider’s portfolio π = π(t), t ∈ [0, T ], is a stochastic process adapted to
H. With the above conditions on µ, we intend to model a possible situation in which an
insider is so influencial in the market to affect the prices with his choices. In this sense we
talk about a “large” insider.

This exogenous model for the price dynamics (3.1)-(3.2) is in line with [CC]. In [CC]
a dependence of the coefficient r on the portfolio π is also considered. In our paper, this
can also be mathematically carried through without substantial change, however the as-
sumption that the return of the bond depends on the agent’s portfolio could be considered
unrealistic.

We consider the insider’s wealth process to be given by

dXπ(t) = Xπ(t−)
{[
r(t) +

(
µ(t, π(t))− r(t)

)
π(t)

]
dt

+ π(t)σ(t)d−B(t) + π(t)
∫

R0

θ(t, z)Ñ(d−t, dz)
}
,

(3.3)

with initial capital Xπ(0) = x > 0. In the sequel we put x = 1 for simplicity in notation.
By the Itô formula for forward integrals, see Theorem 2.6, the final wealth of the admissible
portfolio π is the unique solution of equation (3.3):

Xπ(t) = exp
{∫ t

0

[
r(s) + (µ(s, π(s))− r(s))π(s)

− 1
2
σ2(s)π2(s)

]
ds−

∫ t

0

∫
R0

[
π(s)θ(s, z)− ln

(
1 + π(s)θ(s, z)

)]
ν(dz)ds

+
∫ t

0
π(s)σ(s)d−B(s) +

∫ t

0

∫
R0

ln
(
1 + π(s)θ(s, z)

)
Ñ(d−s, dz)

}
.

(3.4)

Taking the point of view of an insider, with the only purpose of understanding his
opportunities in the market, we are interested in solving the optimization problem

(3.5) Φ := sup
π∈A

E [U(Xπ(T ))] = E [U(Xπ∗(T ))] ,

for the given utility function

U : [0,∞) −→ [−∞,∞)

that is a non-decreasing, concave and lower semi-continuous function which we assume
to be continuously differentiable on (0,∞). Here the controls belong to the set A of
admissible portfolios characterized as follows.
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Definition 3.1 The set A of admissible portfolios consists of all processes π = π(t),
t ∈ [0, T ], such that

π is càglàd and adapted to the filtration H;(3.6)
π(t)σ(t), t ∈ [0, T ], is forward integrable with respect to d−B(t);(3.7)

π(t)θ(t, z), t ∈ [0, T ], z ∈ R0, is forward integrable with respect to

Ñ(d−t, dz);
(3.8)

π(t)θ(t, z) > −1 + επ for a.a. (t, z) with respect to dt× ν(dz), for some επ ∈ (0, 1)
depending on π;

(3.9)

E

∫ T

0

{
|µ(s, π(s))− r(s)||π(s)|+ (1 + σ2(s))π2(s) +

∫
R0

π2(s)θ2(s, z)ν(dz)
}
ds <∞

and E
[
exp

{
K

∫ T

0
|π(s)|ds

}]
<∞ for all K > 0;

(3.10)

ln
(
1 + π(t)θ(t, z)

)
is forward integrable with respect to Ñ(d−t, dz);(3.11)

E
[
U(Xπ(T ))

]
<∞ and 0 < E

[
U ′(Xπ(T ))Xπ(T )

]
<∞,

where U ′(w) =
d

dw
U(w), w ≥ 0.

(3.12)

for all π, β ∈ A, with β bounded, there exists a ζ > 0 such that the family(3.13) {
U ′(Xπ+δβ(T ))Xπ+δβ(T )

∣∣Mπ+δβ(T )
∣∣}

δ∈(−ζ,ζ)

is uniformly integrable. Note that, for π ∈ A and β ∈ A bounded, π + δβ ∈ A for any
δ ∈ (−ζ, ζ) with ζ small enough. Here the stochastic process Mπ(t), t ∈ [0, T ], is defined
as

Mπ(t) :=
∫ t

0

{
µ(s, π(s))− r(s) + µ′(s, π(s))π(s)

− σ2(s)π(s)−
∫

R0

π(s)θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
}
ds

+
∫ t

0
σ(s)d−B(s) +

∫ t

0

∫
R0

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz)

(3.14)

where µ′(s, π) = ∂
∂πµ(s, π).

Remark 3.2 Condition (3.13) may be difficult to verify. Here we give some examples of
conditions under which it holds.

First, consider M(δ) := Mπ+δβ(T ). The uniformly integrability of {M(δ)}δ∈(−ζ,ζ) is
assured by

sup
δ∈(−ζ,ζ)

E
[
|M |p(δ)

]
<∞ for some p > 1.
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Observe that, since π, β ∈ A (see (3.9)), we have that 1 +
(
π(s) + δβ(s)

)
θ(s, z) ≥ επ − ζ

dt× ν(dz)-a.e. for some ζ ∈ (0, επ). Moreover, for ε > 0,∫ T

0

∫
|z|≥ε

θ(s, z)
1 + (π(s) + δβ(s))θ(s, z)

Ñ(d−s, dz) =
∫ T

0

∫
|z|≥ε

θ(s, z)
1 + (π(s) + δβ(s))θ(s, z)

Ñ(ds, dz).

Thus we have that

E
[( ∫ T

0

∫
|z|≥ε

θ(s, z)
1 + (π(s) + δβ(s))θ(s, z)

Ñ(d−s, dz)
)2]

≤ 1
(επ − ζ)2

E
[ ∫ T

0

∫
|z|≥ε

θ2(s, z)ν(dz)ds
]
<∞.

So, if

E
[( ∫ T

0
σ(s)d−B(s)

)2]
<∞ and E

[( ∫ T

0

∫
|z|<ε

|θ(s, z)|Ñ(d−s, dz)
)2]

<∞

(see Remark 2.3 (i)), we have that E[M2(δ)] <∞ uniformly in δ ∈ (−ζ, ζ) if, for example,
the coefficients µ, µ′, r, σ are bounded. This shows that (3.13) holds if U ′(x)x is uniformly
bounded for x ∈ (0,∞). This is the case, for example, of U(x) = lnx and U(x) =
− exp{−λx} (λ > 0).

Similarly, in the case of power utility function

U(x) =
1
γ
xγ , x > 0 for some γ ∈ (0, 1),

we see that U ′(Xπ+δβ(T ))Xπ+δβ(T )|M(δ)| = Xγ
π+δβ(T )|M(δ)| and condition (3.13) would

be satisfied if

sup
δ∈(−ζ,ζ)

E
[
(Xγ

π+δβ(T )|M(δ)|)p
]
<∞ for some p > 1.

Note that we can write
Xπ+δβ(T ) = Xπ(T )N(δ),

where

N(δ) := exp
{∫ T

0

[
(µ(s, π(s) + δβ(s))− r(s))δβ(s) + (µ(s, π(s) + δβ(s))− µ(s, π(s))π(s)

− σ2(s)δβ(s)π(s)− 1
2
σ2(s)δ2β2(s)

]
ds+

∫ T

0
δσ(s)β(s)d−B(s)

+
∫ T

0

∫
R0

[
ln(1 + (π(s) + δβ(s))θ(s, z))− ln(1 + π(s)θ(s, z))− δβ(s)θ(s, z)

]
ν(dz)ds

+
∫ T

0

∫
R0

[
ln(1 + (π(s) + δβ(s))θ(s, z))− ln(1 + π(s)θ(s, z))

]
Ñ(d−s, dz)

}
.

From the iterated application of the Hölder inequality we have

E
[
(Xγ

π+δβ(T )|M(δ)|)p
]

≤
(
E

[(
Xπ(T )

)γpa1b1]) 1
a1b1

(
E

[(
N(δ)

)γpa1b2]) 1
a1b2

(
E

[(
|M(δ)|

)pa2
]) 1

a2 ,
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where a1, a2: 1
a1

+ 1
a2

= 1 and b1, b2: 1
b1

+ 1
b2

= 1. Then we can choose a1 = 2
2−p , a2 = 2

p

and also b1 = 2−p
γp , b2 = 2−p

2−p−γp for some p ∈ (1, 2
γ+1). Hence

E
[
(Xγ

π+δβ(T )|M(δ)|)p
]

≤
(
E

[(
Xπ(T )

)2]) γp
2

(
E

[(
N(δ)

) 2γp
2−p−γp

]) 2−p−γp
2

(
E

[(
|M(δ)|

)2]) p
2 .

If the value Xπ(T ) in (3.4) satisfies

(3.15) E
[(
Xπ(T )

)2]
<∞,

then the condition (3.13) holds if

sup
δ∈(−ζ,ζ)

E
[
(N(δ)

) 2γp
2−p−γp }

]
<∞.

Since (3.10) holds, it is enough, e.g., that µ, µ′, r, σ are bounded to have E
[
(N(δ)

) 2γp
2−p−γp }

]
<

∞ uniformly in δ ∈ (−ζ, ζ). Note that condition (3.15) is verified, for example, if for all
K > 0

E
[
exp

{
K

( ∫ T

0
|π(s)|ds+

∣∣ ∫ T

0
π(s)σ(s)d−B(s)

∣∣+∣∣ ∫ T

0

∫
R0

ln(1+π(s)θ(s, z))Ñ(d−s, dz)
∣∣)}]

<∞.

By similar arguments we can also treat the case of a utility function such with U ′(x) is
uniformly bounded for x ∈ (0,∞). We omit the details. �

The forward stochastic calculus gives an adequate mathematical framework in which
we can proceed to solve the optimization problem (3.5). Define

J(π) := E
[
U

(
Xπ(T )

)]
, π ∈ A.

First, let us suppose that π is optimal for the insider. Choose β ∈ A bounded, then
π+ δβ ∈ A for all δ small enough. Since the function J(π+ δβ) is maximal at π, by (3.13)
and (2.4), we have that

0 =
d

dδ
J(π + δβ)|δ=0

= E
[
U ′(Xπ(T ))Xπ(T )

{∫ T

0
β(s)

[
µ(s, π(s))− r(s)

+ µ′(s, π(s))π(s)− σ2(s)π(s)

−
∫

R0

{
θ(s, z)− θ(s, z)

1 + π(s)θ(s, z)
}
ν(dz)

]
ds

+
∫ T

0
β(s)σ(s)d−B(s) +

∫ T

0

∫
R0

β(s)θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz)
}]
.

(3.16)

Now let us fix t ∈ [0, T ) and h > 0 such that t+ h ≤ T . We can choose β ∈ A of the form

β(s) = αχ(t,t+h](s), 0 ≤ s ≤ T,
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where α is an arbitrary bounded Ht-measurable random variable. Then (3.16) gives

0 = E
[
U ′(Xπ(T ))Xπ(T )

{∫ t+h

t

[
µ(s, π(s))− r(s)

+ µ′(s, π(s))π(s)− σ2(s)π(s)

−
∫

R0

π(s)θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
]
ds

+
∫ t+h

t
σ(s)d−B(s) +

∫ t+h

t

∫
R0

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz)
}
· α

]
.

(3.17)

Since this holds for all such α we can conclude that

(3.18) E
[
Fπ(T )

(
Mπ(t+ h)−Mπ(t)

)
|Ht

]
= 0

where

(3.19) Fπ(T ) :=
U ′(Xπ(T ))Xπ(T )

E
[
U ′(Xπ(T ))Xπ(T )

]
and

Mπ(t) :=
∫ t

0

{
µ(s, π(s))− r(s) + µ′(s, π(s))π(s)

− σ2(s)π(s)−
∫

R0

π(s)θ2(s, z)
1 + π(s)θ(s, z)

ν(dz)
}
ds

+
∫ t

0
σ(s)d−B(s) +

∫ t

0

∫
R0

θ(s, z)
1 + π(s)θ(s, z)

Ñ(d−s, dz), t ∈ [0, T ]

(3.20)

- cf. (3.14). Define the probability measure Qπ on (Ω,HT ) by

(3.21) Qπ(dω) := Fπ(T )P (dω)

and denote the expectation with respect to the measure Qπ by EQπ . Then, by (3.19), we
have

EQπ

[
Mπ(t+ h)−Mπ(t)|Ht

]
=
E

[
Fπ(T )

(
Mπ(t+ h)−Mπ(t)

)
|Ht

]
E

[
Fπ(T )|Ht

] = 0.

Hence the process Mπ(t), t ∈ [0, T ] is a (H, Qπ)-martingale (i.e. a martingale with respect
to the filtration H and under the probability measure Qπ).
On the other hand, the argument can be reversed as follows. If Mπ(t), t ∈ [0, T ], is a
(H, Qπ)-martingale, then

E
[
Fπ(T )

(
Mπ(t+ h)−Mπ(t)

)
|Ht

]
= 0,

for all h > 0 such that 0 ≤ t < t+ h ≤ T , which is (3.18). Or equivalently,

E
[
αFπ(T )

(
Mπ(t+ h)−Mπ(t)

)]
= 0

11



for all bounded Ht-measurable α ∈ A. Hence (3.17) holds for all such α. Taking linear
combinations we see that (3.16) holds for all caglad step processes β ∈ A. By our as-
sumptions (3.7) and (3.8) on A and using that the forward integral of a caglad process
is the limit of Riemann sums (see Remark (b) in Section 1) we get, by an approxima-
tion argument, that (3.16) holds for all β ∈ A. If the function g(δ) := E

[
U(Xπ+δβ(T ))],

δ ∈ (−ζ, ζ), is concave for each β ∈ A, we conclude that its maximum is achieved at δ = 0.
Hence we have proved the following result.

Theorem 3.3 (i) If the stochastic process π ∈ A is optimal for the problem (3.5), then
the stochastic process Mπ(t), t ∈ [0, T ], is an (H, Qπ)-martingale.
(ii) Conversely, if the function g(δ) := E

[
U(Xπ+δβ(T ))], δ ∈ (−ζ, ζ), is concave for each

β ∈ A and Mπ(t), t ∈ [0, T ], is an (H, Qπ)-martingale, then π ∈ A is optimal for the
problem (3.5).

Remark.
Since the composition of a concave increasing function with a concave function is concave,
we can see that a sufficient condition for the function g(δ), δ ∈ (−ζ, ζ), to be concave is
that the function

(3.22) Λ(s) : π −→ r(s) + (µ(s, π)− r(s))π − 1
2
σ2(s)π2

is concave for all s ∈ [0, T ]. For this it is sufficient that µ(s, ·) are C2 for all s and that

(3.23) µ′′(s, π)π + 2µ′(s, π)− σ2 ≤ 0

for all s, π. Here we have set µ′ = ∂µ
∂π and µ′′ = ∂2µ

∂π2 .
Moreover, we also obtain the following result

Theorem 3.4 (i) A stochastic process π ∈ A is optimal for the problem (3.5) only if the
process

(3.24) M̂π(t) := Mπ(t)−
∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

, t ∈ [0, T ],

is an (H, P )-martingale (i.e. a martingale with respect to the filtration H and under the
probability measure P ). Here

(3.25) Zπ(t) := EQπ

[ dP
dQπ

|Ht

]
=

(
E

[
Fπ(T )|Ht

])−1
, t ∈ [0, T ].

(ii) Conversely, if g(δ) := E
[
U(Xπ+δβ(T ))], δ ∈ (−ζ, ζ), is concave and (3.24) is an

(H, P )-martingale, then π ∈ A is optimal for the problem (3.5).

Proof. If π ∈ A is an optimal portfolio for an insider, then by Theorem 3.3 we know that
Mπ(t), t ∈ [0, T ], is an (H, Qπ)-martingale. Applying the Girsanov theorem (see e.g. [P]
Theorem III.35) we obtain that

M̂π(t) := Mπ(t)−
∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

, t ∈ [0, T ],
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is an (H, P )-martingale with

Zπ(t) = EQπ

[ dP
dQπ

|Ht

]
= E

[
(Fπ(T ))−1 Fπ(T )

E
[
Fπ(T )|Ht

]∣∣Ht

]
=

(
E

[
Fπ(T )|Ht

])−1
.

Conversely, if M̂π(t), t ∈ [0, T ], is (H, P )-martingale, then Mπ(t), t ∈ [0, T ], is an (H, Qπ)-
martingale. Hence π is optimal by Theorem 3.3.

4 Examples.

In this section we give some examples to illustrate the contents of the main results in
Section 3.

Example A. Suppose that

(4.1) σ(t) 6= 0, θ = 0 and Ht = Ft ∨ σ(B(T0)), for all t ∈ [0, T ] (for some T0 > T ),

i.e. we consider a market driven by the Brownian motion only and where the insider’s
filtration is a classical example of enlargement of the filtration F by the knowledge derived
from the value of the Brownian motion at some future time T0 > T . Then we obtain the
following result.

Theorem 4.1 Suppose that the function Λ in (3.22) is concave for all s ∈ [0, T ]. A
portfolio π ∈ A is optimal for the problem (3.5) if and only if d[Mπ, Zπ](t) is absolutely
continuous with respect to the Lebesgue measure dt and

µ′(t, π(t))π(t) + µ(t, π(t))− r(t)

− σ2(t)π(t) + σ(t)
[B(T0)−B(t)

T0 − t
− 1
Zπ(t)

d

dt
[B,Zπ](t)

]
= 0.

(4.2)

Proof. By Theorem 3.4 the portfolio π ∈ A is optimal for the problem (3.5) if and only
if the process

M̂π(t) =
∫ t

0

{
µ′(s, π(s))π(s)

+ µ(s, π(s))− r(s)− σ2(s)π(s)
}
ds+

∫ t

0
σ(s)d−B(s)−

∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

(4.3)

is an (H, P )-martingale. Since M̂π(t) is continuous and has quadratic variation

[M̂π, M̂π](t) =
∫ t

0
σ2(s)ds

we conclude that M̂π(t) can be written

(4.4) M̂π(t) =
∫ t

0
σ(s)dB̂(s)

13



for some (H, P )-Brownian motion B̂.
On the other hand, by a result of Itô [I] we know that B(t) is a semimartingale with

respect to (H, P ) with decomposition

(4.5) B(t) = B̃(t) +
∫ t

0

B(T0)−B(s)
T0 − s

ds, 0 ≤ t ≤ T,

for some (H, P )-Brownian motion B̃(t). Combining (4.3), (4.4) and (4.5) we get

σ(t)dB̂(t) = dM̂π(t) =
{
µ′(t, π(t))π(t)

+ µ(t, π(t))− r(t)− σ2(t)π(t)
}
dt+ σ(t)dB̃(t)

+ σ(t)
B(T0)−B(t)

T0 − t
dt− d[Mπ, Zπ](t)

Zπ(t)
.

(4.6)

By uniqueness of the semimartingale decomposition of M̂π(t) with respect to (H, P ) we
conclude that B̂(t) = B̃(t) and{

µ′(t, π(t))π(t) + µ(t, π(t))− r(t)− σ2(t)π(t)

σ(t)
B(T0)−B(t)

T0 − t

}
dt− d[Mπ, Zπ](t)

Zπ(t)
= 0.

(4.7)

From this we deduce that d[Mπ, Zπ](t) = σ(t)d[B,Zπ](t) is absolutely continuous with
respect to dt and (4.2) follows.

Corollary 4.2 Assume that (4.1) holds and, in addition, that

(4.8) µ(t, π) = µ0(t) + a(t)π

for some F-adapted processes µ0 and a with 0 ≤ a(t) ≤ 1
2σ

2(t), t ∈ [0, T ], which do not
depend on π. Then π ∈ A is optimal if and only if d[Mπ, Zπ](t) is absolutely continuous
with respect to dt and

(4.9)
(
σ2(t)− 2a(t)

)
π(t) = µ0(t)− r(t) + σ(t)

[B(T0)−B(t)
T0 − t

− 1
Zπ(t)

d[B,Zπ](t)
dt

]
.

Proof. In this case we have that µ′(t, π(t)) = a(t). Therefore the function Λ defined in
(3.22) is concave (by (3.23)) and the result follows from Theorem 4.1.

Next we give an example for a pure jump financial market.

Example B. Suppose that

(4.10) σ(t) = 0 and θ(t, z) = βz,

where βz > −1 ν(dz)-a.e. (β > 0) and that

(4.11) Ht = Ft ∨ σ(η(T0)) for some T0 > T,
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where

η(t) =
∫ t

0

∫
R0

zÑ(ds, dz)

(i.e. the insider’s filtration is the enlargement of F by the knowledge derived from some
future value η(T0) of the market driving process). Then by a result of Itô, as extended by
Kurtz (see [P] p. 256), the process

(4.12) η̂(t) := η(t)−
∫ t

0

η(T0)− η(s)
T0 − s

ds

is an (H, P )-martingale. By Proposition 5.2 in [DMØP2] the H-compensating measue νH
of the jump measure N is given by

(4.13) νH(ds, dz) = νF(dz)ds+ E
[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
ds

= E
[ 1
T0 − s

∫ T0

s
N(dr, dz)

∣∣Hs

]
ds.

where νF = ν. This implies that the H-compensated random measure ÑH is related to
ÑF = Ñ by

(4.14) ÑH(ds, dz) = N(ds, dz)−νH(ds, dz) = Ñ(ds, dz)−E
[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
ds.

Hence, directly from the definition of the forward integral, we have∫ t

0

∫
R0

βz

1 + π(s)βz
Ñ(d−s, dz) =

∫ t

0

∫
R0

βz

1 + π(s)βz
ÑH(ds, dz)

+
∫ t

0

∫
R0

βz

1 + π(s)βz
E

[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
ds.

(4.15)

By Theorem 3.4 a portfolio π ∈ A is optimal if and only if the process

M̂π(t) =
∫ t

0

{
µ(s, π(s))− r(s) + µ′(s, π(s))π(s)

−
∫

R0

β2z2π(s)
1 + π(s)βz

ν(dz)
}
ds

+
∫ t

0

∫
R0

βz

1 + π(s)βz
Ñ(d−s, dz)−

∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

(4.16)

is an (H, P )-martingale. Therefore, if we put

Gπ(s) := µ(s, π(s))− r(s) + µ′(s, π(s))π(s)

−
∫

R0

β2z2π(s)
1 + π(s)βz

ν(dz)

+
∫

R0

βz

1 + π(s)βz
E

[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
,

(4.17)
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and combine (4.15) and (4.16), we obtain that the process

M̂π(t) =
∫ t

0
Gπ(s)ds−

∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

+
∫ t

0

∫
R0

βz

1 + π(s)βz
ÑH(ds, dz)

is an (H, P )-martingale. This is possible if and only if∫ t

0
Gπ(s)ds−

∫ t

0

d[Mπ, Zπ](s)
Zπ(s)

= 0, for all t ∈ [0, T ].

This implies that d[Mπ, Zπ](t) is absolutely continuous with respect to the Lebesgue mea-
sure dt. We have thus proved the following statement.

Theorem 4.3 Assume that (4.10) and (4.11) hold. Then π ∈ A is optimal if and only if
d[Mπ, Zπ](t) is absolutely continuous with respect to the Lebesgue measure dt and

(4.18) Gπ(t) =
1

Zπ(t)
d

dt
[Mπ, Zπ](t) for almost all t ∈ [0, T ]

where Gπ is given by (4.17).

In analogy with Corollary 4.2 we get the following result in the special case when the
influence of the trader on the market is given by (4.8).

Corollary 4.4 Assume that (4.10) and (4.11) hold and, in addition, that also (4.8) holds.
Then π ∈ A is optimal if and only if d[Mπ, Zπ](t) is absolutely continuous with respect to
the Lebesgue measure dt and

π(s)
∫

R0

β2z2

1 + π(s)βz
ν(dz)−

∫
R0

βz

1 + π(s)βz
E

[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
− 2a(s)π(s) = µ0(s)− r(s)− 1

Zπ(s)
d

ds
[Mπ, Zπ](s).

(4.19)

Corollary 4.5 Suppose that (4.8), (4.10) and (4.11) hold and that

(4.20) U(x) = lnx, x ≥ 0.

Then π ∈ A is optimal if and only if

π(s)
∫

R0

β2z2

1 + π(s)βz
ν(dz)−

∫
R0

βz

1 + π(s)βz
E

[ 1
T0 − s

∫ T0

s
Ñ(dr, dz)

∣∣Hs

]
− 2a(s)π(s)

= µ0(s)− r(s).

Proof. If U(x) = lnx then Fπ(T ) = 1 = Zπ(t), t ∈ [0, T ]. Hence [Mπ, Zπ] = 0.
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Finance 9 (1999), 31-53.
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