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Abstract

The recent deregulation of electricity markets has led to the creation
of energy exchanges, where the electricity is freely traded. In this paper,
we study the most salient statistical features of electricity prices with a
particular attention to the European energy exchanges. These features
can be adequately reproduced by the sum-OU model: a model represent-
ing the price as a sum of Lévy-driven Ornstein-Uhlenbeck (OU) processes.
We present a new method for filtering out the different OU components
and develop a statistical procedure for estimating the sum-OU model from
data.
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1 Introduction

Similarly to how the end of the Bretton Woods system in 1973 triggered the
appearance of currency exchanges, the recent deregulation of electricity mar-
kets has led to the creation, in Europe, United States and other countries of
a network of energy exchanges, where the electricity is quoted almost as any
other commodity. The power prices, which were fixed by governments before
competition was introduced, are now determined via an equilibrium of supply
and demand, and present a much higher volatility than equity prices. A pre-
cise statistical model of electricity spot price behavior is therefore necessary for
energy risk management, pricing of electricity-related options and evaluation of
production assets.

This paper focuses on statistical modeling of spot electricity prices with a
particular attention to the (more or less recently established) European energy

∗This research project was supported by the Europlace Institute of Finance
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exchanges. The electricity prices are usually quoted on hourly basis, however,
they cannot be seen as one long hourly series, because in most markets, the
delivery prices for all 24 hours of a given day are determined by the system
operator simultaneously on the previous day (day-ahead prices). Depending
on the market, this may happen between 11AM and 1PM of the previous day.
After this, the day-ahead market closes and only small changes can be made
to delivery contracts using the adjustment market in case of emergency such as
plant outage. There is thus no causality relationship between different hourly
prices on the same day, and the hourly electricity data should rather be seen as
24 dependent daily series than one long hourly series. Given the structure of
the day-ahead electricity market, a possible model for hourly prices would be

Xh
t = Ytf(t, h) + εh

t ,

where

• Xh
t , h ∈ {1, . . . , 24} is the price for day t and hour h;

• Yt is the common factor (average daily price);

• f(t, h) is a slowly varying daily pattern;

• εh
t is a white noise.

A principal component analysis on the Powernext hourly data shows that the
first component corresponding to a constant daily pattern f(t, h) = f(h) ex-
plains 70% of variance. Therefore, most of the variability of electricity prices,
as well as all interesting statistical features like mean reversion are contained in
the average daily price series, and the daily pattern is mostly related to season-
ality. In this paper, we therefore concentrate on modeling the daily electricity
price series.

The rest of this paper is structured as follows. In Section 2 we elucidate the
qualitative features of electricity prices common for different data sets that we
study. Section 3 discusses different models for electricity spot prices found in the
literature and how well they describe the stylized features of the data. At the
end of this section, we introduce our model of choice: the sum-OU model, where
the spot price is described as sum of several non-Gaussian Ornstein-Uhlenbeck
processes. This type of model was introduced in [3], and it both captures well
the stylized facts of electricity spot prices and is analytically tractable for deriva-
tives pricing and risk management. However, the important question of how to
estimate and implement the model has not yet been addressed in the literature.
The rest of this paper is therefore dedicated to the estimation of this model
from data: Section 4 shows how different components can be separated, and
Section 5 presents a detailed case study where the sum-OU model is estimated
completely from the EEX spot price series.

While the main objective of this work is to provide an estimation procedure
for the multi factor non-Gaussian OU model, the original contribution in this
paper is threefold:
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• We discuss the stylized features of electricity prices some of which are be-
ing reported here for the first time. In addition, we focus on quotes from
European energy exchanges which are much less studied than the Ameri-
can ones (except maybe the Nord Pool market) and present qualitatively
different characteristics.

• We propose a novel method for estimating the sum-OU model from price
data, based on recent findings in nonparametric statistics.

• We give a complete data-driven specification of the model and present a
detailed case study where all parameters of this specification are estimated
from EEX time series.

The principal application of our model lays in simulating market evolution sce-
narios for computing risk measures, testing hedging strategies and evaluating
investment policies.

2 Stylized features of electricity prices

This section discusses qualitative features of electricity prices common for dif-
ferent data sets that we study.

Description of data sets Our study uses the following six sets of daily data
(weekends removed), provided by Datastream. The last date in all series is
21/11/2006.

• Dow-Jones California-Oregon border firm on-peak electricity price index
(COB) starting 19/05/1997.

• Dow-Jones Mead/Marketplace firm on-peak electricity price index (MEAD)
starting 08/08/2000.

• European Power Exchange Phelix Base electricity price index (EEX) start-
ing 16/06/2000.

• Amsterdam Power Exchange daily average (APX) starting 26/05/1999.

• United Kingdom Power Exchange daily average (UKPX) starting 27/03/2001.

• Nord Pool system price daily average (NP) starting 1/1/1994.

For some illustrations we also use the Powernext (French energy exchange) daily
data downloaded from Powernext website.
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Series Intraweek exp. ret. FM exp. ret. Intraweek var. FM var.

COB −0.015(0.003) 0.061(0.007) 0.019(0.002) 0.028(0.006)
MEAD −0.011(0.003) 0.042(0.007) 0.014(0.001) 0.018(0.003)

EEX −0.006(0.006) 0.027(0.014) 0.050(0.006) 0.062(0.010)
APX −0.016(0.007) 0.068(0.022) 0.083(0.008) 0.191(0.035)

UKPX −0.013(0.005) 0.054(0.014) 0.025(0.002) 0.055(0.013)
NP −0.005(0.001) 0.019(0.004) 0.006(0.0006) 0.012(0.002)

Table 1: Expectations and variances of intraweek and Friday to Monday returns.
The standard deviations of the estimators, computed by bootstrap, are given in
brackets.
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Figure 1: Daily trade volume, in MWh, on the EEX market, from 24/09/2006
to 10/11/2006. Bright-colored bars correspond to weekends. Data downloaded
from EEX website at www.eex.de.

Weekend effect As shown in Table 1, the distribution of electricity index
returns from Friday to the following Monday is significantly different from the
distribution of intraweek daily returns for all six series under study. First of all,
the variances of weekend returns are 1.2 to 2 times larger than those of intraweek
returns. This is explained by the fact that unlike stocks, electricity is traded on
the weekends, although in much smaller volumes (see Fig. 1). Secondly, for all
six series under study, the expected Friday to Monday return is reliably positive
whereas the intraweek returns are negative or indistinguishable from zero. This
is behavior is opposite to what has been observed for equity returns [8, 17].
While weekends introduce a lot of seasonality into the price series they don’t
account for interesting statistical features (e.g., no spikes during weekends). In
order to make deseasoning easier and to concentrate on statistical aspects, we
consider time series without weekends.
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Series Affine trend R2 Seasonal trend R2

COB 0.0990 0.1031
MEAD 0.0274 0.0385
EEX 0.5160 0.5373
APX 0.1378 0.1715
UKPX 0.5615 0.5900
NP 0.2504 0.3106

Table 2: R2 (proportion of initial variance explained by the trend function) with
seasonality and without it (in this case, the trend function is affine).
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Figure 2: Left: Nord Pool series (strongest seasonal effect). Right: COB series
(weakest seasonality).

Yearly seasonality Many studies (see for instance [10]) have established the
presence of annual seasonality in electricity spot prices. Following [10], we
remove the seasonality by representing it as a linear combination of sinusoids
with periods 12 and 6 months. We estimate the seasonality by fitting a 6-
parameter trend function

f(t) = a + bt + c1 sin(2πt) + c2 cos(2πt) + d1 sin(4πt) + d2 cos(4πt) (1)

to the log-price series by ordinary least squares. A linear trend and both har-
monics are statistically significant at a 1% level in all 6 six series under study.
However as seen from the Table 2, the seasonality contributes very little to the
overall variability of the series. The proportion of variance explained by season-
ality is highest for the Nord Pool series (whose huge share of hydro energy highly
depends on weather cycles) and lowest for the COB series. These two series are
represented in Figure 2. From now on, we concentrate on the deseasonalized
series, that is, on the residuals of the least squares regression.

Stationarity and mean reversion Contrary to stock prices, the electricity
prices tend to exhibit stationary behavior. For all six series under study, the
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Figure 3: UKPX time series (after the seasonality has been removed) and its
6-month moving average.

Series APX COB EEX MEAD NP UKPX
Standard DF test on desea-
sonalized series

485 59.5 505 43.4 71.9 304

DF test with linear trend on
raw series

466 59.4 483 43.2 66.4 284

Table 3: Dickey-Fuller unit root test statistics for the six price series under study.
For all six series the non-stationarity hypothesis is rejected at 1% confidence
level. For the standard test, the non-stationarity hypothesis is rejected at 1%
level if the statistics is greater than 13.8. For the test with linear trend, it is
rejected if the statistics is greater than 29.5.

unit root hypothesis was confidently rejected by the Dickey-Fuller test, both
on the deseasonalized data and on the non-deseasonalized one (in the latter
case, a variant of the Dickey-Fuller test with a linear trend was used). The test
statistics are reproduced in Table 3.

The electricity prices, similarly to other commodities, are therefore mean
reverting to a trend which may exhibit slow stochastic variations as in Figure 3

Spikes A fundamental property of electricity spot prices, already observed
by many authors, and present in all 6 time series studied in this paper, is the
presence of spikes, that is, rapid upward price moves followed by a quick return
to about the same level. Typical spike profile for Nord Pool price series is shown
in Figure 4. During the peak period, the price process has different properties.
In particular, the rate of mean reversion is much higher than during normal
evolution. The presence of spikes is a fundamental feature of electricity prices
due to the non-storable nature of this commodity and any relevant spot price
model must take this feature into account.

The presence of long-term stochastic variation in the mean level of electricity
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Figure 4: Spikes in the Nord Pool price series (after logarithmic transformation
and seasonal trend removal).

APX COB EEX MEAD NP UKPX
513% 231% 363% 197% 133% 282%

Table 4: Annualized volatilities of electricity prices.

prices makes it difficult to establish a range of prices, for which the price process
is in peak mode: what is considered as peak level now, may become normal in 3
years. The rate of mean reversion is therefore determined not only by the current
price level but also by the previous evolution of the price, which suggests that
the behavior of electricity spot prices may be non-markovian.

As observed in [10], the intensity of spikes can exhibit yearly seasonal pat-
terns. We will come back to this issue in Section 4 devoted to spike detection.

Multiscale autocorrelation The examination of autocorrelation structure
of the six electricity price series (Figure 5) reveals the presence of two very
distinct types of behavior: the autocorrelations of COB, MEAD and NP series
decay very slowly, while the autocorrelation function of APX, EEX, and UKPX
series present a two-scale behavior with a quickly decaying component and a
slow one. This striking difference may be due to differences in the organization
of electricity markets [9]: the APX, EEX and UKPX markets are organized
as power exchanges where the reported price is simply the price of the last
transaction. On the other hand, the price index we use for the Nord Pool market
is the so-called system price resulting from the bids of all market participants,
and the COB and MEAD price series are indices compiled by Platts as average of
all transactions reported by market participants [16]. This suggests that APX,
EEX and UKPX prices will have a higher volatility and faster mean reversion
than COB, MEAD and NP, which is exactly what is observed in Figure 5 and
Table 4.
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Figure 5: Autocorrelation functions of electricity price series.

APX EEX UKPX
w1 0.300 0.161 0.468
λ1 81.5 94.3 112.6
w2 0.688 0.761 0.483
λ2 2.9 4.3 3.7

Table 5: Fitting the autocorrelation function with a sum of two exponentials.

Let us now focus on the study of the multiscale autocorrelation structure in
APX, EEX and UKPX time series. The observed structure is described quite
precisely with a sum of two exponentials:

ρ(h) = w1e
−h/λ1 + w2e

−h/λ2 .

Figure 6 and Table 5 show the quality of the fit and the fitted parameters.
This type of correlation structure arises in a model where the price is a sum of
two independent mean-reverting components with two different rates of mean
reversion. We conjecture that in this context, the fast rate of mean reversion,
corresponding to correlation length between 3 and 5 days corresponds to the
“spike mode” while the second slower rate of mean reversion, with correlation
length of about 100 days, corresponds to normal price evolution. This idea will
be further developed in the subsequent sections.

Non-gaussian distribution of returns The descriptive statistics of return
distributions (skewness and kurtosis) shown in Table 6 highlight the non-gaussian
character of electricity spot returns. This is explained by the presence of spikes
in the data since these low-probability large-amplitude moves clearly cannot
arise in a Gaussian framework. First of all, all six distributions are strongly
leptokurtic, with excess kurtosis values ranging from 9 to 29. For comparison,
the excess kurtosis of daily returns of the S&P 500 index is about 3. Secondly
all six series are slightly positively skewed. This is related to the fact that the
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Figure 6: Fitting the autocorrelation function with a sum of two exponentials.
From left to right: APX, EEX, UKPX.

downward price move at the end of a spike is not quite as fast as the upward
move in the beginning and can last several days.

Figure 7 plotting the logarithm of the empirical distribution function for the
right and left tail of EEX return distribution shows that these tails are fatter
than exponential. In case of exponential tail decay, the empirical distribution
function

Fn(x) =
1

n

n
∑

i=1

1Xi≤x

satisfies

Fn(x) ∼ e−λ1|x| as x → −∞ and 1 − Fn(x) ∼ e−λ2x as x → ∞.

Therefore log Fn(x) must behave like a linear function when x → −∞ and
similarly for the right tail. However, this is not what is observed in Figure 7:
the graph is convex and we conclude that both tails are fatter than exponential.
The same conclusion holds for all 6 series that we study.

To detect the possible power-law behavior in the tails of return distribution
we use the Hill estimator. To fix the ideas, let us concentrate on the upper tail
of the distribution and suppose that the distribution function satisfies

1 − F (x) ∼ x−αL(x), x → ∞, α > 0,

where L is a function satisfying limt→∞ L(tx)/L(t) = 1 for all x (slowly varying
function). Then the extreme value index γ = α−1 can be estimated with the
Hill estimator defined by

Hk,n :=
1

k

k
∑

i=1

log
X(i)

X(k+1)
,

where (X(i)) are order statistics. This estimator is consistent under a broad set
of assumptions (see [4] for a review). In practice, if Hk,n remains stable over a
large range of k, this is an indication of power-like tail behavior.

Looking at the data (see Figure 8), we see that for all six series under study,
in the range between k = 30 and k = 150, the Hill plot stabilizes around the
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Series APX COB EEX MEAD NP UKPX
Skewness 0.11 0.163 0.641 0.025 0.431 0.801
Excess kurtosis 14.8 15.4 12.7 9.5 29.0 15.0

Table 6: Descriptive statistics of electricity return distributions.

−1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
−9

−8

−7

−6

−5

−4

−3

−2

−1
Log of empirical CDF

LS fit

0.0 0.5 1.0 1.5 2.0 2.5
−12

−10

−8

−6

−4

−2

0
Log of empirical CDF

LS fit

Figure 7: Tails of the empirical distribution function of EEX returns. The left
graph shows log Fn(x) and the right graph log(1 − Fn(x))

value between 0.3 and 0.5 (for both tails). This suggests that the tail behavior
of electricity prices may be well described by a power law with decay parameter
2 < α < 3. Electricity returns have thus finite second moment, which, in
particular, justifies the use of autocorrelation functions above in this section.

3 Literature review

In this section we will give a short overview of the main types of continuous time
reduced form spot price models from the existing literature. We mention that
there also exist a variety of econometric time series models (see e.g. [7, 12, 14, 15]
and references therein). However, we don’t go further into this line of research
here.

Structural models In structural or equilibrium models [1, 11], one tries to
mimic the price formation in electricity market as a balance of supply and
demand. The (very inelastic) demand for electricity is described by a stochastic
process:

Dt = Dt + Xt,

dXt = (µ − λXt)dt + σdWt,

where Dt describes the seasonal component and Xt corresponds to the station-
ary stochastic part. The price is obtained by matching the demand level with
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Figure 8: Hill plots for MEAD (left) and UKPX (right) series.

0 100 200 300 400 500 600 700 800 900 1000
−10

−5

0

5

10

15

20

25

30

35

Figure 9: Spot price trajectory in the structural model of Kanamura and Ohashi
[11].

a deterministic supply function which must be nonlinear to account for the
presence of price spikes. Barlow [1] proposes

Pt =

(

a0 − Dt

b0

)1/α

for some α > 0 while Kanamura and Ohashi [11] suggest a “hockey stick” profile

Pt = (a1 + b1Dt)1Dt≤D0
+ (a1 + b1Dt)1Dt>D0

.

A typical spot price trajectory in the latter model is shown in Figure 9.
While structural models reproduce price spikes on a qualitative level, the

assumption of deterministic supply function is probably too restrictive. It im-
plies in particular that spikes can only be caused by surges in demand, while
in electricity markets spikes can also be due to sudden changes in supply, such
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as plant outages. In addition, prices in such models do not have the multiscale
autocorrelation property observed in the data, and, with a deterministic supply
function, do not allow for a stochastic base level as in Figure 3.

Markov models To make estimation easier, Geman and Roncoroni [10] model
the electricity log-price as a one-factor Markov jump diffusion.

dPt = θ(µt − Pt)dt + σdWt + h(t)dJt

The spikes are introduced by making the jump direction and intensity level-
dependent: if the price is high, the jump intensity is high and downward jumps
are more likely, whereas if the price is low, jumps are rare and upward-directed.
This approach produces realistic trajectories and reproduces the seasonal in-
tensity patterns observed in American price series, but once again, the process
reverts to a deterministic mean level rather than the stochastic pre-spike value.

Regime-switching models In the one-factor Markov specification of Geman
and Roncoroni [10], the ’spike regime’ is distinguished from the ’base regime’
by a deterministic threshold on the price process: if the price is higher than
a given value, the process is in the ’spike regime’ otherwise it is in the ’base
regime’. This threshold value may be difficult to calibrate and it is not very
realistic to suppose that it is determined in advance. The regime-switching
models of Deng [5] and Weron [19] alleviate this problem by introducing a two
state unobservable markov chain which determines the transition from “base
regime” to “spike regime” with greater volatility and faster mean reversion:

dPt = θ1(µt − Pt) + σ1dWt (base regime)

dPt = θ2(µt − Pt) + σ2dWt (spike regime).

This nonlinear model is more difficult to estimate than a one-factor Markov
specification (filtering must be used) and once again, the stochastic base level
is not taken into account since in the spike regime, the process quickly reverts
to the seasonal mean and not to the pre-spike base level.

Multifactor models To allow mean reversion to a stochastic base level, sev-
eral authors have suggested to model the price as sum of several factors. In
the simplest case of a two-factor model, the first factor corresponds to the base
signal with a slow mean reversion, and the second factor represents the spikes
and has a high rate of mean reversion. The first models of this type (see [2]
and references therein) represented the electricity price (or log-price) as sum
of Gaussian Ornstein-Uhlenbeck processes. However, while the first factor can
in principle be a Gaussian process, the second factor is close to zero most of
the time (when there is no spike) and takes very high values during a spike.
This behavior is hard to describe with a Gaussian process, and several authors
[3, 6, 18] have therefore explored a jump-diffusion specification.
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In Benth, Kallsen and Meyer-Brandis [3], the deseasonalized spot price is a
sum of independent Lévy-driven Ornstein-Uhlenbeck components:

X(t) =

n
∑

i=1

Yi(t) (2)

dYi(t) = −λ−1
i Yi(t)dt + dLi(t) , Yi(0) = yi , (3)

and processes Li(t) are independent, possibly time inhomogeneous Lévy pro-
cesses with E[L2

i (1)] < ∞.
In this model, the autocorrelation function ρt(h) defined as the correlation

between X(t) and X(t − h) satisfies

ρt(h) :=

∑n
i=1 wi(t)e

−h/λi

∑n
i=1 wi(t)

In the stationary case (i.e. the underlying processes are time homogeneous Lévy
processes), we have simply

ρ(h) :=

∑n
i=1 wie

−h/λi

∑n
i=1 wi

with wi = λiVarLi(1).

This modeling approach thus allows to explain the multiscale autocorrelation
phenomenon observed in European spot price series in Section 2

Figure 10 shows a typical price trajectory in this model, with two factors,
one of which is driven by a Brownian motion and another one by a compound
Poisson process (with Gaussian jump sizes).

This model, coupled with a good description of price seasonality, provides a
precise characterization of electricity spot price behavior, especially well suited
to European energy markets. In addition, due to its arithmetic structure, it is
analytically tractable when it comes to futures and other derivatives pricing.
In the remaining part of this paper we will discuss the question of fitting this
model to data.

4 Detecting and filtering the spikes

For the remaining parts of the paper we will deal with the question of how to
estimate a multi-factor model as presented in (2)–(3). In particular, we will
focus on the following two factor specification for the deseasonalized spot price
(eventually log-spot price) X(t):

X(t) = Y1(t) + Y2(t) (4)

dYi(t) = −λ−1
i Yi(t)dt + dLi(t) , i = 1, 2 . (5)

Here Y2(t), the Ornstein-Uhlenbeck component responsible for spikes, is driven
by a Lévy processes L2(t) with possibly time varying jump intensity. The
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Figure 10: Sample spot price trajectory in a two-factor non-Gaussian Ornstein-
Uhlenbeck model.

Ornstein-Uhlenbeck component Y1(t), responsible for the remaining price vari-
ations, is assumed to be Gaussian, i.e. driven by a Brownian motion L1(t). We
recall that the Ornstein-Uhlenbeck components (5) are explicitly given by

Yi(t) = e−(t−s)/λiYi(s) +

∫ t

s

e−(t−r)/λidLi(r) , s < t , i = 1, 2 . (6)

In this section we will discuss the methods to identify and filter out the spikes
in the time series of spot prices. First of all, since our two factor framework is
non-Markovian, this exercise is necessary to estimate the parameters for the two
components of the model. Especially when spike behavior (frequency and/or
size) appears in a non-stationary seasonal way (as for example seems to be the
case for the Nord Pool series), effective estimation of the model requires the
separation of the non-stationary spikes path from the stationary path of the
remaining daily variations. Further, besides serving estimation purposes, the
identification of the individual factors is essential to apply the model to futures
and other derivatives pricing (see Benth et al. [3]).

In the literature, most of the existing spot price models driven by processes
including jumps are of jump diffusion type. When estimating a model of this
type, the difficulty is to determine which price variations are caused by jumps
and which ones are caused by the continuous part of the process. The easiest
and most common way to deal with this problem is to fix a threshold (according
to some criteria) above which price variations are considered to be caused by
jumps.

For our purposes, these threshold methods are not appropriate. The reason is
that they are designed to filter out the path of jumps whereas we need to identify
the spike component Y2(t), i.e., we need to filter out the path of complete spikes
(jumps followed by rapid mean reversion).
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One potential method to filter out the spikes is stochastic filtering. The aim
of this procedure is to estimate the spike component at time t given the price
observations X(s), s ≤ t, until time t via the optimal filter

E[f(Y2(t))|F
X
t ] ,

where FX
t denotes the filtration generated by the observations X(t). In the

case where both factors are Gaussian, the solution is explicitly given by the
well known Kalman filter, which was used for calibrating Gaussian multifactor
models of electricity prices in [2]. In our framework, since the spike component
obviously has to be non-Gaussian, there is no explicit solution and Monte Carlo
methods (particle filters) have to be employed in order to approximate the filter.
However, when implementing the particle filter in our situation one encounters
several difficulties, in particular:

• the filter is not easy to design when parameters are unknown;

• rare events such as spikes lead to sample impoverishment;

• sequential filtering makes less sense when the complete series is available
for estimation.

Because of the above objections, we don’t pursue the particle filter approach
any further. The approach that we want to focus on in more detail in this section
is to filter out spikes by adopting methods from nonparametric statistics. In this
setting, the general idea is to consider the spike path as deterministic data given
through a function f(t) which is disturbed by Gaussian (autoregressive) noise
given through the base component Y1(t):

X(t) = Y1(t) + f(t) .

We will assume the spikes path is of the form as proposed by our model, i.e.
f(t) ∈ OU where OU is the space of all Ornstein-Uhlenbeck functions

f(t) =
M
∑

i=1

αi1t≥τi
e−(t−τi)/λ2 .

Here, M ∈ N denotes the number of spikes, αi ∈ R are the spike sizes, and
τi ∈ R are the starting times of the spikes in the spike path f(t).

Let N be the sample size of our price series and X(tj), j = 1, ..., N , the
deseasonalized (log) price observations, equally spaced in time (one day). For
notational convenience we introduce for a function g(t) the notation g(j) :=
g(tj). Then, according to our model,

(X(j) − f(j)) = Y1(j), j = 1, ..., N ,

is a sequence of correlated Gaussian random variables. In order to pass to a
sequence of iid Gaussian random variables suited for estimation purposes we
can consider the transformation

(∆X(j) − ∆f(j)), j = 2, ..., N , (7)
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where we define for a function g(t)

∆g(j) = g(j) − e−1/λ1g(j − 1).

Then

∆X(j) = Y1(j) + f(j) − e−1/λ1(Y1(j − 1) + f(j − 1)) = ∆Y1(j) + ∆f(j) ,

and from the explicit solution of an Ornstein-Uhlenbeck process we get that
∆Y1(j) is a sequence of iid Gaussian random variables. Taking (7) as a starting
point, we propose in the following two methods to filter out the spikes path f(t)
from our data, i.e. to determine the spike number M and spike sizes and times
(αi, τi): hard thresholding and the adapted Potts filter.

Hard thresholding Given the number M of spikes and assuming the two
mean reversion coefficients λ1 and λ2 to be known (estimated from the auto-
correlation function), we know that the maximum likelihood estimator (α∗

i , τ
∗
i )

of (αi, τi), i=1,...,M, is given by least squares estimation, i.e.

(α∗
i , τ

∗
i ) = arg inf

(αi,τi)

N
∑

j=1

(∆X(j) − ∆f(j))2.

However, the complexity of this optimization problem is of order NM which
makes it unfeasible for implementation.

Instead, the hard thresholding method suggests to approximate the problem
by placing the spikes one by one. To this end suppose we want to optimally
place one spike given through

f(t) = α1t≥τe−(t−τ)/λ2 .

In this case, the maximum likelihood estimator

(α∗, τ∗) = arg inf
(α,τ)

N
∑

j=1

(∆X(j) − ∆f(j))2

can be computed as

α∗ =

∑

∆X(j)∆f(j)

∆f(j)2
, τ∗ = arg sup

(
∑

∆X(j)∆f(j))2

∆f(j)2
.

It follows that the algorithm in order to place M spikes optimally one by one
can be formulated as follows:

1. Set X(1) = X and X(m+1) = X(m) − f (m) for m = 1, ...M .

2. For every m = 1, ...M , the m’th spike f (m)(t) = αm1t≥τme−(t−τm)/λ2 is
determined by

αm =

∑

∆X(m)(j)∆f(j)

∆f(j)2
, τm = arg sup

(
∑

∆X(m)(j)∆f(j)
)2

∆f(j)2
.
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Figure 11: Performance of hard thresholding on simulated data.

In contrast to the global maximum likelihood estimation, the hard thresholding
algorithm is of order MN and thus well suited for implementation. The pro-
cedure stops, that is the optimal number M of spikes is found, when the spike
size becomes small according to some criteria (see the following section for an
example of such a criteria).

In Figure 11 the hard thresholding method is tested on some simulated data,
and in Figure 12 we applied hard thresholding to Powernext data. The proce-
dure appears satisfactory, however, two remarks have to be made. Typically,
the performance of the filter improves when a spike correlation length λ2 is
chosen that is shorter than the one obtained from the autocorrelation function.
For Powernext data the autocorrelation function yields λ2 ∼ 2.5 − 4, whereas
λ2 ∼ 1 − 2 is a better choice for the filter. This indicates that λ2 captures
some additional mean reversion not belonging to spike behavior when fitting
the autocorrelation function. As for the first correlation length λ1, the filter
behaves in a rather robust way in the range λ1 = 10 − 100. Secondly, we see
that the hard thresholding algorithm works better for non-interacting spikes.
When there is a cluster of spikes closely following each other, hard thresholding
encounters problems in separating the spikes. In this situations, the adapted
Potts filter presented in the following might be a better choice.

Adapted Potts filter In Winkler and Liebscher [20] the authors introduce
a Potts filter which estimates a piecewise constant signal from noisy data by
penalized least squares. The idea we propose in this paragraph is to adapt the
Potts filter from [20] in order to detect spikes rather than piecewise constant
signals disturbed by some noise. In the situation of spike detection the penalized
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Figure 12: Performance on Powernext data. Left: in the log-price series both
positive and negative spikes are present. Right: in the price series mostly posi-
tive spikes are present.

least squares optimization problem takes the following form:

H(f∗) = arg inf
f∈OU



γ|{t : ft− 6= ft}| +

N
∑

j=1

(∆X(j) − ∆f(j))2



 . (8)

Here ft− denotes the left limit of f in t (where we set f0− = 0) and |{t : ft− 6=
ft}| is the number of spikes in the path of f . We thus want to find the spike
path f∗ that is closest to our data in the least squares sense (after accounting
for autoregressive noise) where, however, every spike is penalized by a weight γ.

In order to solve problem (8) we first consider the case of uncorrelated noise
which corresponds to λ1 = 0. In this situation problem (8) takes the form

H(f∗) = arg inf
f∈OU



γ|{t : ft− 6= ft}| +
N
∑

j=1

(X(j) − f(j))2



 , (9)

which can be explicitly solved by employing a dynamic programming argument.
For this purpose we denote by

B(r) := arg inf
f∈OU



γ|{t ≤ r : ft− 6= ft}| +
∑

t≤r

(X(j) − f(j))2





the solution of the problem on the interval [1, r] (such that B(N) = H(f∗)).
Further, we denote the cost of placing a spike on an interval [r, s], 1 ≤ r ≤ s ≤ N ,
as

H[r,s] := H[r,s](µ) := γ +

s
∑

j=r

(

X(j) − µe−(j−r)/λ2

)2

,
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and respectively we denote as

H[0,s] =

s
∑

j=1

X(j)2

the cost if now spike has been placed on [1, s]. Note here that µ does not denote
the spike size (which above was denoted by α) but the level f(r) of the spike
path at time r (i.e. spike size α plus f(r−)). Then, with the same arguments as
in ([20]), we can represent B(n), 1 ≤ n ≤ N , recursively by employing dynamic
programming:

B(n) = min
0≤r≤n

{

B(r − 1) + min
µ∈R

H[r,n](µ)

}

. (10)

Here we set B(−1) := 0 and B(0) := 0. The algorithm to solve problem (9) can
then be formulated as follows:

1. For all 1 ≤ r ≤ s ≤ N determine µ∗
[r,s] = argminµ H[r,s](µ) and H[r,s](µ

∗
[r,s]).

Determine further H[0,s] and set µ∗
[0,s] = 0 for all 1 ≤ s ≤ N .

2. Determine B(n) for all 1 ≤ n ≤ N , keeping track of (at least one) r∗n
giving the minimum in (10).

3. Determine recursively through N, r∗N , r∗r∗

N

, ... the spike number and spike

times of the optimal path f∗. The optimal spike sizes are then implied by
the corresponding µ∗

[r∗

N
,N ], µ∗

[r∗

r∗
N

,r∗

N
], ....

In the general case of autoregressive noise, i.e. λ1 ∈ (0,∞), problem (8) can
no longer be solved explicitly with the above algorithm. In this situation the
cost of placing a spike on an interval [r, s], 1 ≤ r ≤ s ≤ N , takes the form

H[r,s](µ) = γ +

s
∑

j=r

(∆X(j) − ∆f(j))
2

=
(

∆X(r) −
(

µ − e−1/λ1f(r − 1)
))2

+

s
∑

j=r+1

(

∆X(j) − µ∆e−(j−r)/λ2

)2

.

(11)

We see that in order to solve for an optimal level µ on the interval [r, s] we need
to know the spike path level f(r − 1) at time r − 1. In other words we can no
longer place spikes optimally using local considerations only on the interval [r, s],
and therefore the dynamic programming argument is not applicable. Instead we
propose to approximate the problem by substituting the optimal cost function
H[r,s](µ

∗
[r,s]) in step 1 of the above algorithm with

K[r,s] = γ +

s
∑

j=r+1

(

∆X(j) − X(r)∆e−(j−r)/λ2

)2

. (12)
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This amounts to assuming that the size of the optimally placed spike on the
interval [r, s] is equal to ∆X(r) (all the variation is explained by the spike) and
then spike function at time r is equal to X(r). Obviously, the cost of placing
spike of this type can then be computed locally. Also we set

K[0,s] =
s
∑

j=1

X(j)2

for the cost of not placing a spike. As before we then introduce the recurrence
relation

B(n) = min
0≤r≤n

{

B(r − 1) + K[r,s]

}

.

Note that in this case B(N) is not the solution of problem (8) but of the corre-
sponding problem where instead of optimizing over paths f ∈ OU we optimize
over paths resulting from the type of spikes in (12). We use this optimization
procedure in order to determine the spike number and times (but not spike
sizes) by the following algorithm:

1. For all 1 ≤ r ≤ s ≤ N determine K[r,s]. Also determine K[0,s] for all
1 ≤ s ≤ N

2. Determine B(n) for all 1 ≤ n ≤ N , keeping track of (at least one) r∗n
giving the minimum in (4).

3. Determine recursively through N, r∗N , r∗r∗

N

, ... the spike number and spike

times of the optimal path f∗.

Given the spike number M and spike times τ1, ..., τM obtained from the above
algorithm, the optimal spike sizes α∗

1, ...α
∗
M are then determined by global least

squares optimization:

(α∗
i ) = arg inf

αi

N
∑

j=1

(

∆X(j) − ∆

M
∑

i=1

αi1j≥τi
e−(j−τi)/λ2

)2

.

In Figure 13 the performance of the autoregressive Potts filter is compared
to the hard thresholding method on Powernext data. We see that both filters
deliver comparable and acceptable results.

5 Case study: Modeling EEX spot prices

We conclude this paper by estimating the two-factor Ornstein-Uhlenbeck model
defined by (4)-(5) on the EEX time series. We choose to estimate our model
on the spot price rather than on its logarithm to avoid introducing artificial
downward jumps by the logarithmic transformation. The final form of our
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Figure 13: Comparison of the adapted Potts filter and the hard thresholding
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hard thresholding procedure. The procedure is applied to the deseasonalized
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estimation of the spike size distribution.
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model is

X(t) = ef(t)(Y1(t) + Y2(t)) (13)

dY1(t) = λ−1
1 (µ − Y1(t)) + σdW (t) (14)

dY2(t) = −λ−1
2 Y2(t) + dL(t), (15)

where f is a multiplicative seasonal component, W is Brownian motion and
L is a compound Poisson process (possibly with time-dependent intensity). In
the rest of this section, we discuss both the reasons for choosing this particular
model specification and the parameter estimation procedure.

Remark The final form of our model is similar to the model used in [3],
with two differences. First, we use a multiplicative seasonality coefficient in-
stead of an additive one because we consider that it provides a better descrip-
tion of the seasonal effects in electricity prices. Second, in [3], both compo-
nents (or all components if there are more than two) are positive Lévy-driven
Ornstein-Uhlenbeck processes, whereas we suggest to describe the base signal
with a Gaussian Ornstein-Uhlenbeck process. The use of a Gaussian Ornstein-
Uhlenbeck process corresponds to the statistical properties of the signal and
facilitates the estimation, since the exact maximum likelihood estimator may
be used. If jumps were present in both components, they would have been
considerably more difficult to separate.

The use of a Gaussian Ornstein-Uhlenbeck process to model the base signal
may lead to negative prices, however with the parameter values estimated from
EEX data later in this section, the probability of obtaining negative prices is
rather low (we found by simulation that on average, the price takes a small
negative value on one day out of every 40 years). On the other hand, negative
prices have been observed in electricity markets and can be explained by the
non-storable nature of this commodity: in periods of extremely low demand it
can be less expensive to pay to someone to consume extra electricity than to
stop a nuclear power plant.

Step 1 (Deseasonalizing the data): We fit the seasonality function (1) to
logarithmic spot prices (multiplicative seasonality). This is carried out as de-
scribed in Section 2. The deseasonalized spot price series is

Xdes
t =

Xt

ef(t)
.

The seasonal component of the EEX series is plotted in Figure 14, left graph.
Step 2 (Separation of components): The spike component in the desea-

sonalized spot price series can be identified by using one of the two methods
described in the previous section (hard thresholding or Potts filter). Each of
these methods has 3 tuning parameters: the correlation lengths λ1 and λ2, and
a third parameter which determines how many spikes we want to remove.

Estimation from the autocorrelation function described in Section 2 gives
λ1 = 99.4 and λ2 = 2.9 for the EEX series (this is different from the numbers
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given in Table 5 because the latter were computed for the logarithm of the spot
price). As explained in Section 4, in practice, the hard thresholding algorithm
is insensitive to the value of λ1 in the range of 10− 100 and relatively sensitive
to the value of λ2, so that best results (the smallest residual volatility for the
same number of spikes removed) are obtained with λ2 between 1 and 2.

The number of spikes to remove can be determined by fixing some “target
noise level” and then removing spikes with the hard thresholding method, or
decreasing the penalty parameter γ in the Potts filter until the standard devi-
ation of returns of the residual signal (the signal from which spikes have been
removed) reaches this target noise level. The target noise level represents our a
priori knowledge of the noise level of the base signal. One possible way to assess
this quantity is to remove some percentage ǫ of returns with highest absolute
value, and compute the standard deviation of the remaining returns. The idea
is that ǫ biggest returns correspond to spikes. This procedure is not sensitive
to outliers (occasional very big returns).

For the actual estimation, we used the hard thresholding method taking
λ1 = 100, λ2 = 1. To compute the target noise level, the percentage of returns
to be removed was set to ǫ = 5%. This gives the target standard deviation
σ∗ = 0.154 (the standard deviation computed using all available returns is 0.38).
With this criterion, the adapted Potts filter algorithm detected 115 spikes in a
series of 6.5 years with the penalty parameter γ = 0.13. The hard thresholding
algorithm on the other hand needed to place only 62 jumps to achieve the
prescribed standard deviation. Despite this, the residual signal for the Potts
filter had a higher excess kurtosis than that for the hard thresholding algorithm,
suggesting that in the former case some spikes/jump persist after the filtering
procedure. We therefore concentrate on the hard thresholding algorithm for the
rest of this study. Figure 14, right graph, illustrates the spike detection using
the hard thresholding procedure.

Step 3 (Distribution of the base signal): In the case of EEX series, the
increments of the base signal have a skewness of −0.008 (down from 2.62 for
the initial deseasonalized series including spikes) and an excess kurtosis of 1.05
(down from 113). We conclude that the base signal is sufficiently close to Gaus-
sian to be modeled by an AR(1) process with Gaussian increments. The pa-
rameters of this process can be estimated by maximum likelihood, which gives
e−1/λ1 = 0.85 ⇒ λ1 = 6.2, µ = 1.025 and σ = 0.148. The difference between
this value and the value of λ1 estimated from the autocorrelation function may
be explained by the presence of not two but three exponential components in
the autocorrelation function. Indeed, fitting the autocorrelation function with
three exponentials, we obtain λ2 = 1.69, λ1 = 14.4 plus a third factor with a
very long decay rate. However, for the sake of simplicity, we concentrate on the
two-factor model.

Step 4 (Distribution of the spike signal): We need to estimate the spike
intensity and the distribution of the spike amplitude. Our knowledge of the
spike occurence dates enables us to construct an explicit maximum likelihood
estimator for the spike intensity, whether constant or time-dependent. Let Nt
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be the process counting the number of spikes up to date t, and let the intensity
be given by I(θ, t), where θ ∈ Θ is a (possibly multidimensional) unknown
parameter and suppose that I(θ, t) > 0 for all θ ∈ Θ and all t ∈ [0, T ]. Then
the maximum likelihood estimator of θ is given by [13]

θ∗ = arg max
θ

(

∫ T

0

log I(θ, t)dNt −

∫ T

0

I(θ, t)dt

)

,

which can be rewritten as

θ∗ = arg max
θ

(

NT
∑

i=1

log I(θ, τi) −

∫ T

0

I(θ, t)dt

)

, (16)

where τi are spike dates. For example, if I(θ, t) = θf(t) with f a known function,
this procedure yields

θ∗ =
NT

∫ T

0 f(t)dt
.

In the case of constant intensity, this reduces to

I =
number of spike detected

total number of data points
,

which gives I = 0.037 in the case of the EEX series.
However, a detailed analysis reveals that spike intensity in EEX data may

contain some seasonality, although not as pronounced as the one observed in
American electricity prices by Geman and Roncoroni [10]. Out of 20 biggest
positive spikes, 16 occured during summer or winter months. To account for
this behavior, we calibrate the parametric 6-month periodic intensity function
proposed in [10]:

I(θ, d, t) = θf(t)d with f(t) =
2

1 + | sin[2π(t − t0)]|
− 1,

where t0 is chosen so that the intensity function attains its maximum on July 15
and January 15, and d is the second parameter to be estimated from the data.
In this context, the maximum likelihood estimator (16) reduces to

d∗ = arg max
d

{

d

NT
∑

i=1

log f(τi) − NT log

(

∫ T

0

f(t)ddt

)}

,

θ∗ =
NT

∫ T

0
f(t)d∗dt

.

On the EEX data, this yields d = 0.11 and θ = 0.052. The seasonal intensity
pattern obtained with this parameter values is given in figure 15. For compara-
ison, we also give the intensity pattern used in Geman and Roncoroni (with
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Figure 15: Left: seasonal spike intensity. Right: Empirical CDF of spike size in
log-scale.

d = 2). As one can see, in EEX prices the seasonal intensity pattern is much
less pronounced than in American markets.

To model the spike size distribution, we choose the Pareto law with distri-
bution function

P (Z > z) =

(

z

z0

)−α

.

There are several reasons for this choice:

• Since the spike amplitudes are bounded from below by a threshold, we
need a distribution supported on the interval [z0,∞).

• The number of data points for estimation is limited (62 spikes in the case
of the EEX series) therefore we cannot estimate a distribution with many
parameters.

• Figure 15 shows that the empirical CDF of the spike amplitude distribu-
tion is very close to a straight line on a log-log scale, which is an indication
of a power-law decay.

For the EEX series, the threshold z0 was taken equal to 0.45 (smallest spike
amplitude), and the decay rate α is equal to 1.44 (this was found fitting a
straight line by least squares to the empirical CDF graph in the log-log scale).

In summary, we suggest to describe the EEX price using the model (13)–
(15) where L is a compound Poisson process with (possibly time-dependent)
intensity I and with jump size following Pareto distribution with parameters
z0 and α. This model specification can be used to simulate price trajectories.
Figure 16 confirms that indeed the model mimics the path behavior of the spot
price series very well.
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Figure 16: Comparison of the real EEX series and the simulated series with
estimated parameters. Which is which? (The market series is the lower one).
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