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Abstract

We discuss the extension to the multi-dimensional case of the
Wick-Itô integral with respect to fractional Brownian motion, intro-
duced by [6] in the 1-dimensional case. We prove a multi-dimensional
Itô type isometry for such integrals, which is used in the proof of the
multi-dimensional Itô formula. The results are applied to study the
problem of minimal variance hedging in a market driven by fractional
Brownian motions.

1 Introduction

In the following we let H = (H1, H2, . . . , Hm) be an m-dimensional Hurst
vector with components Hi ∈ (1

2
, 1) for i = 1, 2, . . . ,m, and we let B(H)(t) =

(B
(H)
1 (t), . . . , B

(H)
m (t)) be anm-dimensional fractional Brownian motion (fBm)

with Hurst parameter H. This means that B(H)(t) = B(H)(t, ω); t ∈ R,
ω ∈ Ω is a continuous Gaussian stochastic process on a filtered probability
space (Ω,F (H)

t , µ) with mean

E[B(H)(t)] = 0 = B(H)(0) for all t (1)
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and covariance

E[B(H)
i (s)B

(H)
j (t)] = 1

2

{
|s|2Hi + |t|2Hi − |s− t|2Hi

}
δij (2)

where

δij =

{
0 if i 6= j

1 if i = j ; i ≤ i, j ≤ m ,

where E = Eµ denotes the expectation with respect to the probability law µ
of B(H)(·).

In other words, B(H)(t) consists of m independent 1-dimensional frac-
tional Brownian motions with Hurst parameters H1, . . . , Hm, respectively.
If Hi = 1

2
for all i, then B(H)(t) coincides with classical Brownian mo-

tion B(t). We refer to [11], [13] and [18] for more information about 1-
dimensional fBm. Because of its properties (persistence/antipersistence and
self-similarity) fBm has been suggested as a useful mathematical tool in
many applications, including finance [10]. For example, these features of
fBm seem to appear in the log-returns of stocks [18], in weather derivative
models [3] and in electricity prices in a liberated electricity market [20].

In view of this it is of interest to develop a powerful calculus for fBm.
Unfortunately, fBm is not a semimartingale nor a Markov process (unless
Hi = 1

2
for all i), so these theories cannot be applied to fBm. However,

if Hi >
1
2
then the paths have zero quadratic variation and it is therefore

possible to define a pathwise integral, denoted by∫
R
f(t, ω)δB(H)(t) ,

by a classical result of Young from 1936. See [12] and the references therein.
This integral will obey Stratonovich type (i.e. “deterministic”) integration
rules. Typically the expectation of such integrals is not 0 and it is known
([12], [15], [16], [19]) that the use of these integrals in finance will give markets
with arbitrage, even in the most basic cases. In fact, this unpleasant situation
(from a modelling point of view) occurs whenever we use an integration
theory with Stratonovich integration rules in the generation of wealth from
a portfolio. See e.g. the simple examples of [4] and [19].

Because of this – and for several other reasons – it is natural to try other
types of integration with respect to fBm. Let L1,2

φ be the set of (measurable)

processes f(·, ·) : R× Ω → R such that
∥∥f∥∥L1,2

φ

< ∞, where

∥∥f∥∥2

L1,2
φ

:= E
[ ∫

R

∫
R

f(s)f(t)φ(s, t)ds dt+
(∫

R

Dφ
t f(t)dt

)2]
. (3)
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In [6] a Wick-Itô type of integral is constructed, denoted by∫
R
f(t, ω)dB(H)(t) ,

where B(H)(t) is a 1-dimensional fBm withH ∈ (1
2
, 1). This integral exists as

an element of L2(µ) for all (measurable) processes f(t, ω) such that
∥∥f∥∥L1,2

φ

<

∞. Here, and in the following,

φ(s, t) = φH(s, t) = H(2H−1)|s−t|2H−2 ; (s, t) ∈ R2, 1
2
< H < 1 (4)

and

Dφ
t F =

∫
R
φ(s, t)DsF ds (5)

denotes the Malliavin φ-derivative of F (see [6, Definition 3.4]). If f(t, ω) is
a step process of the form

f(t, ω) =
n∑

i=1

fi(ω)X[ti,ti+1)(t) , where t1 < t2 < · · · < tn+1 , (6)

and
∥∥f∥∥L1,2

φ

< ∞, then the integral is defined by

∫
R
f(t, ω)dB(H)(t) =

n∑
i=1

fi(ω) � (B(H)(ti+1)−B(H)(ti)) , (7)

where � denotes the Wick product. We have the following basic properties
of the Wick-Itô integral:

E
[ ∫

R
f(t, ω)dB(H)(t)

]
= 0 for all f ∈ L1,2

φ (8)

E
[( ∫

R

f(t, ω)dB(H)(t)
)(∫

R

g(t, ω)dB(H)(t)
)]

=
(
f, g

)
L1,2
φ

for all f, g ∈L1,2
φ where

(9)(
f, g

)
L1,2
φ

= E
[ ∫

R

∫
R

f(s)g(t)φ(s, t)ds dt+
(∫

R
Dφ

t f(t)dt
)
·
(∫

R
Dφ

t g(t)dt
)]

.

(10)

See [6] for details and proofs.
This Wick-Itô fractional calculus was subsequently extended to a white

noise setting and applied to finance in [9]. Later this white noise theory was
generalized to all H ∈ (0, 1) by [7].
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All the above papers [6], [9] and [7] only deal with the 1-dimensional
case. In Section 2 of this paper we discuss the extension of this integral to
the m-dimensional case, i.e. we discuss the integral∫
R
f(t, ω)dB(H)(t) =

m∑
i=1

∫
R
fi(t, ω)dB

(H)
i (t) for f = (f1, . . . , fm) ∈ L1,2

φ (m)

whereB(H)(t) = (B
(H)
1 (t), . . . , B

(H)
m (t)) ism-dimensional fBm, φ = (φH1 , . . . , φHm)

and L1,2
φ (m) is the corresponding class of integrands (see (2.5) below). We

prove the m-dimensional analogue of the isometry (9), which turns out to
have some unexpected features (see Theorem 2.1). By combining the multi-
dimensional fractional Itô formula (Theorem 2.6) with Theorem 2.1 we obtain
another fractional Itô isometry (Theorem 2.7). Finally, we end Section 2 by
proving a fractional integration by parts formula (Theorem 2.9 and Theo-
rem 2.10).

In Section 3 we apply the above results to study the problem of minimal
variance hedging in a (possibly incomplete) market driven by m-dimensional
fBm. Here we use fractional mathematical market model introduced by
[9] and by [7]. For classical Brownian motions (and semimartingales) this
problem has been studied by many researchers. See for example the survey
[17] and the references therein. It turns out that for fBm this problem is
even harder than in the classical case and in this paper we concentrate on a
special case in order to get more specific results.

2 Multi-dimensional Wick-Itô integration with

respect to fBm

Let B(H)(t) = (B
(H)
1 (t), . . . , B

(H)
m (t)); t ∈ R, ω ∈ Ω be m-dimensional fBm

with Hurst vector H = (H1, . . . , Hm) ∈ (1
2
, 1)m, as in Section 1. Since the

B
(H)
k (·) are independent, we may regard Ω as a product Ω = Ω1×Ω2×· · ·×Ωm

of identical copies Ωk of some Ω̄ and write ω = (ω1, . . . , ωm) ∈ Ω.

Let F = F (m,H)
∞ be the σ-algebra generated by {B(H)

k (s, ·); s ∈ R, k =

1, 2, . . . ,m} and let Ft = F (m,H)
t be the σ-algebra generated by {B(H)

k (s, ·); 0 ≤
s ≤ t, k = 1, 2, . . . ,m}. If F : Ω → R is F -measurable, 1 ≤ k ≤ m, we set

Dφ
k,t F =

∫
R
φk(s, t)Dk,t F dt (if the integral converges) (11)

where
φ = (φ1, . . . , φm) (12)
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φk(s, t) = φHk
(s, t) = Hk(2Hk−1)

∣∣s−t
∣∣2Hk−2

; (s, t) ∈ R3, k = 1, 2, . . . ,m
(13)

and Dk,t F = ∂F
∂ωk

(t, ω) is the Malliavin derivative of F with respect to ωk, at

(t, ω) (if it exists).
Let B = B(R) denote the Borel σ-algebra on R. Similarly to the 1-

dimensional case we can define the multi-dimensional fractional Wick-Itô
integral ∫

R
f(t, ω)dB(H)(t) =

m∑
k=1

∫
R
fk(t, ω)dB

(H)
k (t) ∈ L2(µ) (14)

for all B × F -measurable processes f(t, ω) = (f1(t, ω), . . . , fm(t, ω)) ∈ Rm

such that∥∥fk∥∥L1,2
φk

< ∞ for all k = 1, 2, . . . ,m, where∥∥fk∥∥L1,2
φk

:= E
[ ∫

R

∫
R

fk(s)fk(t)φk(s, t)ds dt+
(∫

R
Dφ

k,t fk(t)dt
)2]

. (15)

Denote the set of all such m-dimensional processes f by L1,2
φ (m). As in the

1-dimensional case we obtain the isometries

E
[( ∫

R
fkdB

(H)
k

)2]
=

∥∥fk∥∥L1,2
φk

; k = 1, 2, . . . ,m . (16)

This is intuitively clear, since we (by independence of B
(H)
1 , . . . , B

(H)
m ) can

treat the remaining stochastic variables ω1, . . . , ωk−1, ωk+1, . . . , ωm as pa-
rameters and repeat the 1-dimensional approach in the ωk variable. It is
also easy to prove (16) rigorously by writing fk(t, ω1, ω2, . . . , ωm) as a limit
of sums of products of functions depending only on (t, ωk) and only on
(ω1, . . . , ωk−1, ωk+1, . . . , ωm), respectively.

In view of this it is clear that if f = (f1, . . . , fm) ∈ L1,2
φ (m), then the

Wick-Itô integral (14) is well-defined as an element of L2(µ) and by (16) we
have ∥∥∥∫

R
fdB(H)

∥∥∥
L2(µ)

≤
m∑
k=1

∥∥fk∥∥L1,2
φk

. (17)

It is useful to have an explicit expression for the norm on the left hand side
of (17). The following formula is our main result of this section:

Theorem 2.1 (Multi-dimensional fractional Wick-Itô Isometry I) Let
f, g ∈ L1,2

φ (m). Then

E
[( ∫

R
fdB(H)

)
·
(∫

R
gdB(H)

)]
=

(
f, g

)
L1,2
φ (m)

(18)
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where(
f, g

)
L1,2
φ (m)

= E
[ m∑

k=1

∫
R

∫
R

fk(s)gk(t)φk(s, t)ds dt+
m∑

k,`=1

(∫
R
Dφ

`,t fk(t)dt
)
·
(∫

R
Dφ

k,t g`(t)dt
)]

.

(19)

Remark. Note the crossing of the indices `, k of the derivatives and the
components fk, g` in the last terms of the right hand side of (19).

To prove Theorem 2.1 we proceed as in [6], but with the appropriate
modifications:

In the 1-dimensional case, let L2
φk

be the set of deterministic functions
α : R → R such that

(α, α)φk
:=

∣∣α∣∣2
φk

:=

∫
R

∫
R

α(s)α(t)φk(s, t)ds dt < ∞ . (20)

If α ∈ L2
φk

then clearly α ∈ L1,2
φk
. Hence we can define the Wick (or Doleans-

Dale) exponential

E(α) = exp�
(∫

R
α(t)dB

(H)
k (t)

)
= exp

(∫
R
α(t)dB

(H)
k (t)− 1

2

∣∣α∣∣2
φk

)
. (21)

See e.g. [6, (3.1)] or [9, Example 3.10].
Similarly, in the multidimensional case we put φ = (φ1, . . . , φm) and we

let L2
φ be the set of all deterministic functions α = (α1, . . . , αm) : R → Rm

such that αk ∈ L2
φk

for k = 1, . . . ,m. If α ∈ L2
φ we define the corresponding

Wick exponential

E(α) = exp�
(∫

R
α(t)dB(H)(t)

)
= exp�

( m∑
k=1

∫
R
αk(t)dB

(H)
k (t)

)
= exp

( m∑
k=1

∫
R
αk(t)dB

(H)
k (t)− 1

2
|α|2φ

)
, (22)

where

|α|2φ =
m∑
k=1

∫
R
αk(s)αk(t)φk(s, t)ds dt =

m∑
k=1

|α|2φk
. (23)

Let E be the linear span of all E(α); α ∈ L2
φ. Then we have
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Theorem 2.2 ([6, Theorem 3.1]) E is a dense subset of Lp(F , µ), for all
p ≥ 1.

and

Theorem 2.3 ([6, Theorem 3.2]) Let gi = (gi1, . . . , gim) ∈ L2
φ for i =

1, 2, . . . , n such that

|gik − gjk|φk
6= 0 if i 6= j, k = 1, . . . ,m . (24)

Then E(g1), . . . , E(gn) are linearly independent in L2(F , µ).

If F ∈ L2(F , µ) and gk ∈ L2
φk

we put, as in [6],

Dk,Φ(gk) F =

∫
R
Dφ

k,t F · gk(t)dt . (25)

We list some useful differentiation and Wick product rules. The proofs
are similar to the 1-dimensional case and are omitted.

Lemma 2.4 Let f = (f1, . . . , fm) ∈ L2
φ, g = (g1, . . . , gm) ∈ L2

φ. Then

(i) Dk,Φ(gk)

( m∑
i=1

∫
R fidB

(H)
i

)
= (fk, gk)φk

, k = 1, . . . ,m,

where

(fk, gk)φk
=

∫
R

∫
R
fk(s)gk(t)φk(s, t)ds dt ; k = 1, . . . ,m , (26)

(ii) Dφ
k,s

( m∑
i=1

∫
R fidB

(H)
i

)
=

∫
R fk(u)φk(s, u)du ; k = 1, . . . ,m ,

(iii) Dk,Φ(gk) E(f) = E(f) · (fk, gk)φk
; k = 1, . . . ,m ,

(iv) Dφ
k,s E(f) = E(f) ·

∫
R fk(u)φk(s, u)du ; k = 1, . . . ,m ,

(v) E(f) � E(g) = E(f + g)

(vi) F �
∫
R gkdB

(H)
k = F ·

∫
R gkdB

(H)
k −Dk,Φ(gk) F , k = 1, . . . ,m ,

provided that F ∈ L2(F , µ) and Dk,Φ(gk) F ∈ L2(F , µ).

(vii) E[E(f) · E(g)] = exp(f, g)φ .
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We now turn to the multi-dimensional case. We will prove

Lemma 2.5 Suppose αk ∈ L2
φk
, β` ∈ L2

φ`
, D`,Φ(β`) F ∈ L2(µ) and Dk,Φ(αk)G ∈

L2(µ). Then

E
[(

F �
∫
R
αkdB

(H)
k

)
·
(
G �

∫
R
β`dB

(H)
`

)]
= E

[
(D`,Φ(β`) F ) · (Dk,Φ(αk)G) + δk`FG(αk, βk)φk

]
, (27)

where

δk` =

{
1 if k = `

0 otherwise

Proof. We adapt the argument in [6] to the multi-dimensional case:
First note that by a density argument we may assume that

F = E(f) = exp
{∫

R
f(t)dB(H)(t)− 1

2
|f |2φ

}
and

G = E(g) = exp
{∫

R
g(t)dB(H)(t)− 1

2
|g|2φ

}
,

for some f ∈ L2
φ, g ∈ L2

φ.
Choose δ = (δ1, . . . , δm) ∈ Rm, γ = (γ1, . . . , γm) ∈ Rm and put δ × f =

(δ1f1, . . . , δmfm) and γ × g = (γ1g1, . . . , γmgm). Then by Lemma 2.4

E[(E(f) � E(δ × α)) · (E(g) � E(γ × β))] (28)

= E[E(f + δ × α) · E(g + γ × β)] = exp(f + δ × α, g + γ × β)φ

= exp
{ m∑

i=1

∫
R

∫
R

(fi + δiαi)(s)(gi + γiβi)(t)φi(s, t)ds dt
}
. (29)

We now compute the double derivatives

∂2

∂δk∂γ`

of (28) and (29) at δ = γ = 0. We distinguish between two cases:
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Case 1 k 6= `
Then if we differentiate (28) we get

∂2

∂δk∂γ`
E
[
(E(f) � E(δ × α)) · (E(g) � E(γ × β))

]
δ=γ=0

=
∂

∂γ`
E
[(

E(f) � E(δ × α) �
∫
R
αkdB

(H)
k )

)
· (E(g) � E(γ × β))

]
δ=γ=0

= E
[(

E(f) �
∫
R
αkdB

(H)
k

)
·
(
E(g) �

∫
R
β`dB

(H)
`

)]
. (30)

On the other hand, if we differentiate (29) we get

∂2

∂δk∂γ`

[
exp(f + δ × α, g + γ × β)φ

]
δ=γ=0

=
∂

∂γ`

[
exp(f + δ × α, g + γ × β)φ ·

∫
R

∫
R

αk(s)(gk + γkβk)(t)φk(s, t)ds dt
]
δ=γ=0

= exp(f, g)φ ·
∫
R

∫
R

αk(s)gk(t)φk(s, t)ds dt ·
∫
R

∫
R

β`(s)f`(t)φ`(s, t)ds dt

= exp(f, g)φ · (αk, gk)φk
· (β`, f`)φ`

= E[E(f) · (β`, f`)φ`
· E(g) · (αk, gk)φk

]

= E
[
D`,Φ(β`) E(f) ·Dk,Φ(αk) E(g)

]
. (31)

This proves (27) in this case.

Case 2 k = `.
In this case, if we differentiate (28) we get

∂2

∂δk∂γk
E
[
(E(f) � E(δ × α)) · (E(g) � E(γ × β))

]
δ=γ=0

=
∂

∂γk
E
[(

E(f) � E(δ × α) �
∫
R
αkdB

(H)
k

)
· (E(g) � E(γ × β))

]
δ=γ=0

= E
[(

E(f) �
∫
R
αkdB

(H)
k

)
·
(
E(g) �

∫
R
βkdB

(H)
k

)]
. (32)
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On the other hand, if we differentiate (29) we get

∂2

∂δk∂γk

[
exp(f + δ × α, g + γ × β)φ

]
δ=γ=0

=
∂

∂γk

[
exp(f + δ × α, g + γ × β)φ ·

∫
R

∫
R

αk(s)(gk + γkβk)(t)φk(s, t)ds dt
]
δ=γ=0

= exp(f, g)φ ·
[
(αk, gk)φk

· (βk, fk)φk
+

∫
R

∫
R

αk(s)βk(t)φk(s, t)ds dt
]

= E
[
Dk,Φ(βk) E(f) ·Dk,Φ(αk) E(g) + E(f)E(g)(αk, βk)φk

]
. (33)

This proves (27) also for Case 2 and the proof of Lemma 2.5 is complete. �

We are now ready to prove Theorem 2.1:

Proof. We may consider
∫
R fk(t)dB

(H)
k (t) as the limit of sums of the form

N∑
i=1

fk(ti) � (B(H)
k (ti+1)−B

(H)
k (ti))

when ∆ti = ti+1 − ti → 0, t1 < t2 < · · · < tN , N = 2, 3, . . . Hence

E
[(∫

R fdB
(H)

)2]
= E

[( m∑
k=1

∫
R fkdB

(H)
k

)2]
is the limit of sums of the form

∑
i,j,k,`

E
[
(fk(ti) � (B(H)

k (ti+1)−B
(H)
k (ti))) · (f`(tj) � (B(H)

` (tj+1)−B
(H)
` (tj))

]
,

which by Lemma 2.5 is equal to

∑
i,j,k,`

E
[( ti+1∫

ti

Dφ
`,t fk(ti)dt

)
·
( tj+1∫

tj

Dφ
k,t f`(tj)dt

)
+δk`

ti+1∫
ti

tj+1∫
tj

fk(ti)fk(tj)φk(s, t)ds dt
]
.

When ∆ti → 0 this converges to

E
[ m∑
k,`=1

(∫
R
Dφ

`,t fk(t)dt
)
·
(∫

R
Dφ

k,t f`(t)dt
)
+

m∑
k=1

∫
R

∫
R

fk(s)fk(t)φk(s, t)ds dt
]
.

(34)
This proves (19) when f = g. By polarization the proof of Theorem 2.1 is
complete. �
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Using Theorem 2.1 we can now proceed as in the 1-dimensional case
([6, Theorem 4.3]), with appropriate modifications, and obtain a fractional
multi-dimensional Itô formula. We omit the proof.

Theorem 2.6 (The fractional multi-dimensional Itô formula) Let X(t) =
(X1(t), . . . , Xn(t)), with

dXi(t) =
m∑
j=1

σij(t, ω)dB
(H)
j (t) ;

where σi = (σi1, . . . , σim) ∈ L1,2
φ (m) ; 1 ≤ i ≤ n . (35)

Suppose that for all j = 1, . . . ,m there exists θj > 1−Hj such that

sup
i

E[(σij(u)− σij(v))
2] ≤ C

∣∣u− v
∣∣θj if |u− v| < δ (36)

where δ > 0 is a constant. Moreover, suppose that

lim
0≤u,v≤t
|u−v|→0

{
sup
i,j,k

E[(Dφ
k,u{σij(u)− σij(v)})2

]
= 0 . (37)

Let f ∈ C1,2(R × Rn) with bounded second order derivatives with respect to
x. Then, for t > 0,

f(t,X(t)) = f(0, X(0)) +

∫ t

0

∂f

∂s
(s,X(s))ds+

∫ t

0

n∑
i=1

∂f

∂xi

(s,X(s))dXi(s)

+

∫ t

0

{ m∑
i,j=1

∂2f

∂xi∂xj

(s,X(s))
m∑
k=1

σik(s)D
φ
k,s(Xj(s))

}
ds (38)

= f(0, X(0)) +

∫ t

0

∂f

∂s
(s,X(s))ds+

m∑
j=1

∫ t

0

[ n∑
i=1

∂f

∂xi

(s,X(s))σij(s, ω)
]
dB

(H)
j (s)

+

∫ t

0

Tr
[
ΛT (s)fxx(s,X(s))

]
ds . (39)

Here Λ =
[
Λij

]
∈ Rn×m with

Λij(s) =
m∑
k=1

σikD
φ
k,s(Xj(s)) ; 1 ≤ i ≤ n , 1 ≤ j ≤ m , (40)

fxx =
[ ∂2f

∂xi∂xj

]
1≤i,j≤n

∈ Rn×n (41)

and (·)T denotes matrix transposed, Tr[·] denotes matrix trace.
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If we combine Theorem 2.6 with Theorem 2.1 we get the following result,
which also may be regarded as a fractional Itô isometry:

Theorem 2.7 (Fractional Itô isometry II) Suppose f = (f1, . . . , fm) ∈
L1,2

φ (m). Then, for T > 0,

E
[( ∫ T

0

Dφ
`,t fk(t)dt

)
·
(∫ T

0

Dφ
k,t f`(t)dt

)]
= E

[ ∫ T

0

{
fk(t)

∫ t

0

Dφ
k,t f`(s)dB

(H)
` (s) + f`(t)

∫ T

0

Dφ
`,t fk(s)dB

(H)
k (s)

}
dt
]

(42)

Proof. By the Itô formula (Theorem 2.6) we have

E
[( ∫ T

0

fkdB
(H)
k

)
·
(∫ T

0

f`dB
(H)
`

)]
= E

[ ∫ T

0

{
fk(t)D

φ
k,t

(∫ t

0

f`(s)dB
(H)
` (s)

)
+ fk(t)D

φ
`,t

(∫ t

0

fk(s)dB
(H)
k (s)

)}
dt
]

= E
[ ∫ T

0

{
fk(t)

∫ t

0

Dφ
k,t f`(s)dB

(H)
` (s) + f`(t)

∫ t

0

Dφ
`,t fk(s)dB

(H)
k (s)

}
dt
]

+ δk`E
[ T∫

0

t∫
0

{fk(t)fk(s) + f`(t)fk(s)}φk(s, t)ds dt
]
, (43)

where we have used that, for u > 0,

Dφ
k,t

(∫ u

0

f`(s)dB
(H)
` (s)

)
=

∫ u

0

Dφ
k,t f`(s)dB

(H)
` (s) + δk`

∫ u

0

fk(s)φk(t, s)ds .

(44)
(See [6, Theorem 4.2].)

On the other hand, the Itô isometry (Theorem 2.1) gives that

E
[( ∫ T

0

fkdB
(H)
k

)
·
(∫ T

0

f`dB
(H)
`

)]
= E

[( ∫ T

0

Dφ
`,t fk(t)dt

)
·
(∫ T

0

Dφ
k,t f`(t)dt

)
+ δk`

∣∣fk∣∣2φk

]
. (45)

Comparing (43) and (45) we get Theorem 2.7. �

We end this section by proving a fractional integration by parts formula.
First we recall
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Theorem 2.8 (Fractional Girsanov formula) Suppose γ = (γ1, . . . , γm) ∈
(L2(R))m and γ̂ = (γ̂1, . . . , γ̂m) ∈ L2

φ are related by

γk(t) =

∫
R
γ̂k(s)φk(s, t)ds ; t ∈ R, k = 1, . . . ,m . (46)

Let G ∈ L2(µ). Then

E[G(ω + γ)] = E[G(ω) exp�(〈ω, γ̂〉)] = E
[
G(ω)E

(∫
R
γ̂dB(H)

)]
. (47)

For a proof in the 1-dimensional case see e.g. [9, Theorem 3.16]. The
proof in the multi-dimensional case is similar.

If F ∈ L2(µ) and γ = (γ1, . . . , γm) ∈ (L2(R))m the directional derivative
of F in the direction γ is defined by

DγF (ω) = lim
ε→0

F (ω + εγ)− F (ω)

ε
, (48)

provided the limit exists in L2(µ). We say that F is differentiable if there
exists a process DtF (ω) = (D1,t F (ω), . . . , Dm,t F (ω)) such that Dk,t F (ω) ∈
L2(dµ⊗ dt) for all k = 1, . . . ,m and

DγF (ω) =

∫
R
DtF (ω) · γ(t)dt for all γ ∈ (L2(R))m . (49)

Theorem 2.9 (Fractional integration by parts I) Let F,G ∈ L2(µ), γ ∈
(L2(R))m and assume that the directional derivatives DγF , DγG exist. Then

E[DγF ·G] = E
[
F ·G ·

∫
R
γ̂dB(H)

]
− E[F ·DγG] . (50)

Proof. By Theorem 2.8 we have, for all ε > 0,

E[F (ω + εγ)G(ω)] = E[F (ω)G(ω − εγ) exp�(ε〈ω, γ̂〉)] .

Hence

E[DγF ·G] = E
[
lim
ε→0

1

ε
{F (ω + εγ)− F (ω)}G(ω)

]
= E

[
lim
ε→0

1

ε
{F (ω)[G(ω − εγ) exp�(ε〈ω, γ̂〉)−G(ω)]}

]
= E

[
F (ω)

d

dε

{
G(ω − εγ) exp

(
ε

∫
R
γ̂dB(H) − 1

2
ε2
∣∣γ̂∣∣2

φ

)}
ε=0

]
= E

[
F (ω)G(ω)

∫
R
γ̂dB(H)

]
− E[F (ω)DγG(ω)]
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�

We now apply the above to the fractional gradient

Dφ
t F =

∫
R
DsF · φ(s, t)ds =

m∑
k=1

∫
R
Dk,s F · φk(s, t)ds = DφF (ω) (51)

Theorem 2.10 (Fractional integration by parts II) Suppose F,G ∈ L2(µ)
are differentiable, with fractional gradients Dφ

t F , Dφ
t G. Then for each t ∈ R,

k ∈ {1, . . . ,m} we have

E[Dφ
k,t F ·G] = E[F ·G ·B(H)

k (t)]− E[F ·Dφ
k,t G] . (52)

Proof. Choose a sequence γ̂
(j)
k ∈ L2

φk
; j = 1, 2, . . ., such that lim

j→∞
γ̂
(j)
k =

δt(·) (the point mass at t), in the sense that if we define

φ
(j)
k (s) =

∫
R
γ̂
(j)
k φk(s, r)dr

then φ
(j)
k (·) → φk(·, t) in L2(R). Then by Theorem 2.9

E[Dφ
k,t F ·G] = E

[
lim
j→∞

D
φ
(j)
k

F ·G
]
= lim

j→∞
E[D

φ
(j)
k

F ·G]

= lim
j→∞

E
[
F ·G ·

∫
R
γ̂(j)dB(H)

]
− E[F ·D

φ
(j)
k

G]

= E[F ·G ·B(H)
k (t)]− E[F ·Dk,t G] .

�

3 Application to minimal variance hedging

Consider the multidimensional version of the fractional mathematical market
model introduced by [9] and by [7], consisting of n+1 independent fractional
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Brownian motions B
(H)
1 (t), . . . , B

(H)
m (t) with Hurst coefficients H1, . . . , Hm

respectively (1
2
< Hi < 1), as follows:

(bond price) dS0(t) = r(t, ω)dt ; S0(0) = s0 , 0 ≤ t ≤ T (53)

(stock prices) dSi(t) = µi(t, ω)dt+
m∑
j=1

σij(t, ω)dB
(H)
j (t) ; Si(0) = si,

(54)

i = 1, . . . , n, 0 ≤ t ≤ T .

Here r(t, ω), µi(t, ω) and σij(t, w) are F (H)
t -adapted processes satisfying rea-

sonable growth conditions. We refer to [7], [9], [14] and [21] for a general
discussion of such markets.

We say that g = (g1, . . . , gm) is an admissible portfolio if g(t) is F (H)
t -

adapted, gσ ∈ L1,2
φ (m) and E

[ ∫ T

0

∑n
i=1 |gi(t)µi(t)|dt

]
< ∞. Here we denote

by σ the volatility matrix [σ]i,j(·) = σij(·). Suppose we are only allowed to
trade in some, say k, of the securities S0, . . . , Sn. Let K be the set of i ∈
{1, . . . , n} such that trading in Si is allowed. Then, according to our model,
the wealth hedged by an initial value z ∈ R and an admissible portfolio
g(t) = (gi(t, ω))i∈K ∈ Rk up to time t is

V (t) = V g
z (t) = z +

∑
i∈K

∫ t

0

gi(u)dSi(u) ; 0 ≤ t ≤ T . (55)

Now let F (ω) be a T -claim, i.e. an F (H)
T -measurable random variable in

L2(µ).
The minimal variance hedging problem is to find a z∗ ∈ R and an admis-

sible portfolio g∗ such that

E[(F − V g∗

z∗ (T ))
2] = inf

z,g
E[(F − V g

z (T ))
2] . (56)

This is a difficult problem even in the classical Brownian motion setting.
See e.g. [8], [17] and the references therein. For a recent general martingale
approach see [5]. For fractional Brownian motion markets a special case is
solved in [1] by using optimal control theory.

Here we will discuss the two-dimensional case only, and we will simply
assume that

dS0(t) = 0, dS1(t) = dB
(H)
1 (t) and dS2(t) = dB

(H)
2 (t) .

Assume that only trading in S0 and S1 is allowed. Then the problem is
to minimize
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J(z, g1) = E
[(

F −
(
z +

∫ T

0

g1dS1

))2]
(57)

over all z ∈ R and all admissible portfolios g1.
By the fractional Clark-Haussmann-Ocone formula ([9, Theorem 4.15])

we can write

F (ω) = E[F ] +

∫ T

0

f1(t)dB
(H)
1 (t) +

∫ T

0

f2(t)dB
(H)
2 (t) (58)

where
fi(t) = Ẽ[Di,t F | F (H)

t ] ; i = 1, 2 .

Substituting this into (57) we get, by (8),

J(z, g1) = E
[(

E[F ]− z +

∫ T

0

(f1 − g1)dB
(H)
1 +

∫ T

0

f2dB
(H)
2

)2]
= (E[F ]− z)2 + E

[( ∫ T

0

(f1 − g1)dB
(H)
1 +

∫ T

0

f2dB
(H)
2

)2]
. (59)

Hence it is optimal to choose z = z∗ := E[F ]. The remaining problem is
therefore to minimize

J0(g1) = E
[( ∫ T

0

(f1 − g1)dB
(H)
1 +

∫ T

0

f2dB
(H)
2

)2]
. (60)

From now on we assume that f1 ∈ L1,2
φi

for i = 1, 2. By a Hilbert space
argument on L2(µ) we see that g∗1 minimizes (60) if and only if

E
[( ∫ T

0

(f1−g1)dB
(H)
1 +

∫ T

0

f2dB
(H)
2

)
·
(∫ T

0

γdB
(H)
1

)]
= 0

for all adapted γ ∈ L1,2
φ1

. (61)

By Theorem 2.1 (61) is equivalent to

E
[ T∫

0

T∫
0

(f1(t)− g1(t))γ(s)φ1(s, t)ds dt+
(∫ T

0

Dφ
1,t(f1(t)− g1(t))dt

)(∫ T

0

Dφ
1,t γ(t)dt

)
+
(∫ T

0

Dφ
1,t f2(t)dt

)
·
(∫ T

0

Dφ
2,t γ(t)dt

)]
= 0 for all adapted γ ∈ L1,2

φ . (62)

From this we immediately deduce
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Proposition 3.1 The portfolio

g1(t) = g∗1(t) := f1(t)

minimizes (60) if and only if∫ T

0

Dφ
1,t f2(t)dt = 0 a.s. (63)

This result is surprising in view of the corresponding situation for classical
Brownian motion, when it is always optimal to choose g1(t) = g∗1(t) = f1(t).

We also get

Proposition 3.2 Suppose g∗1(t) minimizes (60). Then

E
[ ∫ T

0

(f1(t)− g∗1(t))dt
]
= 0 . (64)

Proof. This follows by choosing γ(t) deterministic in (62). �

Now assume that Dφ
1,t(f1(t)) and Dφ

1,t(g1(t)) are differentiable with re-

spect to Dφ
1,s and that Dφ

1,t f2(t) is differentiable with respect to Dφ
2,s for all

s ∈ [0, T ]. Then we can use integration by parts (Theorem 2.10) to rewrite
equation (62) as follows:

E
[ T∫

0

T∫
0

{(f1(t)− g1(t))γ(s)φ1(s, t) +Dφ
1,t(f1(t)− g1(t)) ·Dφ

1,s γ(s)

+Dφ
1,t f2(t) ·D

φ
2,s γ(s)}ds dt

]
=

T∫
0

T∫
0

E[(f1(t)− g1(t))φ1(s, t)γ(s) +Dφ
1,t(f1(t)− g1(t))γ(s)B

(H)
1 (s)

−Dφ
1,s D

φ
1,t(f1(t)− g1(t))γ(s) +Dφ

1,t f2(t)γ(s)B
(H)
2 (s)

−Dφ
2,s D

φ
1,t f2(t)γ(s)

]
ds dt

= E
[ ∫ T

0

K(s)γ(s)ds
]
= 0 , (65)
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where

K(s) =

∫ T

0

G(s, t)dt , (66)

with

G(s, t) = (f1(t)− g1(t))φ1(s, t) +Dφ
1,t(f1(t)− g1(t))B

(H)
1 (s)

−Dφ
1,s D

φ
1,t(f1(t)− g1(t)) +Dφ

1,t f2(t)B
(H)
2 (s)−Dφ

2,sD
φ
1,t f2(t) . (67)

Since γ(s) is F (H)
s -measurable we get from (65) that

0 =

∫ T

0

E[K(s)γ(s)]ds =

∫ T

0

E
[
E[K(s)γ(s) | F (H)

s ]
]
ds

=

∫ T

0

E
[
γ(s)E[K(s) | F (H)

s ]
]
ds = E

[ ∫ T

0

E
[
K(s) | F (H)

s

]
γ(s)ds

]
. (68)

Since this holds for all adapted γ ∈ L1,2
φ we conclude that

E[K(s) | F (H)
s ] = 0 for a.a. (s, ω) . (69)

or, using (66),∫ T

0

{Es[f1(t)− g1(t)]φ1(s, t) + Es[D
φ
1,t(f1(t− g1(t))]B

(H)
1 (s)

− Es[D
φ
1,sD

φ
1,t(f1(t)− g1(t))] + Es[D

φ
1,t f2(t)]B

(H)
2 (s)− Es[D

φ
2,s D

φ
1,t f2(t)]}dt = 0 ,

(70)

where we have used the shorthand notation

Es[·] = E[· | F (H)
s ] .

We have proved:

Theorem 3.3 Suppose the claim F represented by (58) is such that Dφ
1,s D

φ
1,t f1(t)

and Dφ
2,s D

φ
1,t f2(t) exist for all s, t ∈ [0, T ]. Suppose ĝ1(t) is an adapted pro-

cess in L1,2
φ such that Dφ

1,t ĝ1(t) and Dφ
1,s D

φ
1,t ĝ1(t) exist for all s, t ∈ [0, T ].

Then the following are equivalent:

(i) ĝ1(t) is a minimal variance hedging portfolio for F , i.e. ĝ1(t) minimizes
(60) over all adapted g1(t) ∈ L1,2

φ

(ii) g1(t) = ĝ1(t) satisfies equation (70).
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Note that the same method also applies if we assume a fractional ex-
ponential dynamics for the asset prices, which represents a more realistic
financial model.
To illustrate this result we consider the following special case:

Example 3.4 Suppose f1(t) = 0 and

Dφ
1,t f2(t) = h(t) , a deterministic function . (71)

We seek a minimal variance hedging portfolio g∗1(t) for the claim

F (ω) =

∫ T

0

f2(t)dB
(H)
2 (t) . (72)

In this case (70) gets the form∫ T

0

{−Es[g1(t)]φ1(s, t)− Es[D
φ
1,t g1(t)]B

(H)
1 (s) + Es[D

φ
1,s D

φ
1,t g1(t)]

+ h(t)B
(H)
2 (s)}dt = 0 for a.a. (s, ω) . (73)

Let us try to choose g1(t) such that

Dφ
1,t g1(t) = 0 . (74)

Then (71) reduces to∫ T

0

Es[g1(t)]φ1(s, t)dt = B
(H)
2 (s)

∫ T

0

h(t)dt (75)

or, since g1 is adapted,∫ s

0

g1(t)φ1(s, t)dt+

∫ T

s

Es[g1(t)]φ1(s, t)dt = B
(H)
2 (s)

∫ T

0

h(t)dt, s ∈ [0, T ] .

(76)
In particular, if we choose s = T we get the equation∫ T

0

g1(t)φ1(T, t)dt = B
(H)
2 (T )

∫ T

0

h(t)dt , (77)

which clearly has no adapted solution g1(t). (However, it obviously has a
non-adapted solution.) Therefore an optimal portfolio g1(t) = g∗1(t) for the
claim (72), if it exists, cannot satisfy (74).
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