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Abstract

We discuss the extension to the multi-dimensional case of the
Wick-It6 integral with respect to fractional Brownian motion, intro-
duced by [6] in the 1-dimensional case. We prove a multi-dimensional
It6 type isometry for such integrals, which is used in the proof of the
multi-dimensional It6 formula. The results are applied to study the
problem of minimal variance hedging in a market driven by fractional
Brownian motions.

1 Introduction

In the following we let H = (Hy, Hs, ..., H,,) be an m-dimensional Hurst

vector with components H; € (%, 1) fori=1,2,...,m, and we let BU(t) =
(B]EH)(t), ...,B{M (t)) be an m-dimensional fractional Brownian motion ( f Bm)

with Hurst parameter H. This means that B (t) = B (t,w); t € R,

w € () is a continuous Gaussian stochastic process on a filtered probability
(H) :

space (2, F;, 1) with mean

EBD () =0=B"(0) forall t (1)
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and covariance

E[B{™ (s)BY™ (t)] = L{|s[* + [t — |s — ¢ )6 (2)

where

1 if i=j; i<ij<m,

%_{o if i

where E = E,, denotes the expectation with respect to the probability law u
of BH) (),

In other words, B (t) consists of m independent 1-dimensional frac-
tional Brownian motions with Hurst parameters H,,..., H,,, respectively.
If H, = % for all 4, then BY)(t) coincides with classical Brownian mo-
tion B(t). We refer to [11], [13] and [18] for more information about 1-
dimensional f Bm. Because of its properties (persistence/antipersistence and
self-similarity) fBm has been suggested as a useful mathematical tool in
many applications, including finance [10]. For example, these features of
fBm seem to appear in the log-returns of stocks [18], in weather derivative
models [3] and in electricity prices in a liberated electricity market [20].

In view of this it is of interest to develop a powerful calculus for fBm.
Unfortunately, fBm is not a semimartingale nor a Markov process (unless
H;, = % for all 7), so these theories cannot be applied to fBm. However,
if H; > % then the paths have zero quadratic variation and it is therefore
possible to define a pathwise integral, denoted by

/ £t w)sBI (1)

by a classical result of Young from 1936. See [12] and the references therein.
This integral will obey Stratonovich type (i.e. “deterministic”) integration
rules. Typically the expectation of such integrals is not 0 and it is known
([12], [15], [16], [19]) that the use of these integrals in finance will give markets
with arbitrage, even in the most basic cases. In fact, this unpleasant situation
(from a modelling point of view) occurs whenever we use an integration
theory with Stratonovich integration rules in the generation of wealth from
a portfolio. See e.g. the simple examples of [4] and [19].

Because of this — and for several other reasons — it is natural to try other
types of integration with respect to f Bm. Let E;’z be the set of (measurable)

processes f(-,-) : R x © — R such that Hfllﬁl,Q < 00, where
¢

Hin;,Q ;:E[//f(s)f(t)¢(s,t)dsdt+ (/Df’f(t)dt)z]. (3)
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In [6] a Wick-1t6 type of integral is constructed, denoted by

/f(t,w)dB(H)(t) ,

where BU)(t) is a 1-dimensional fBm with H € (3, 1). This integral exists as
an element of L?(u) for all (measurable) processes f(t,w) such that || f|| e <
¢

0o. Here, and in the following,
o(s,t) = ¢p(s,t) = H(2H —1)|s—t|*" 72, (s, ) eR?, 1< H<1 (4)

and
Dsz/(b(s,t)Dsts (5)
R

denotes the Malliavin ¢-derivative of F' (see [6, Definition 3.4]). If f(t,w) is
a step process of the form

ZfZ X[t tz+1 ) s Where t]_ < tQ <L e tn+1 5 (6)
and Hch” < 00, then the integral is defined by
6

/f (t,w)dBH Zfz J(ti1) — BP()) (7)

where ¢ denotes the Wick product. We have the following basic properties
of the Wick-Ito integral:

/ftde )} 0 forall feLl? (8)
/ftde(H) /gtde(H) )] (£,9) g2 forall f.g €£}? where
4
(9)
//f stdsdt+(/D¢f( dt /D )]
(10)

See [6] for details and proofs.

This Wick-Ito fractional calculus was subsequently extended to a white
noise setting and applied to finance in [9]. Later this white noise theory was
generalized to all H € (0,1) by [7].
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All the above papers [6], [9] and [7] only deal with the 1-dimensional
case. In Section 2 of this paper we discuss the extension of this integral to
the m-dimensional case, i.e. we discuss the integral

[ B ® ) =3 [ faaan0  tor f= (g € £%m)

where B (t) = (B§H)(t)7 ..., B (t)) is m-dimensional fBm, ¢ = (¢y,, ..., 0n,,)
and E;Q(m) is the corresponding class of integrands (see (2.5) below). We
prove the m-dimensional analogue of the isometry (9), which turns out to
have some unexpected features (see Theorem 2.1). By combining the multi-
dimensional fractional It6 formula (Theorem 2.6) with Theorem 2.1 we obtain
another fractional It6 isometry (Theorem 2.7). Finally, we end Section 2 by
proving a fractional integration by parts formula (Theorem 2.9 and Theo-

rem 2.10).

In Section 3 we apply the above results to study the problem of minimal
variance hedging in a (possibly incomplete) market driven by m-dimensional
fBm. Here we use fractional mathematical market model introduced by
[9] and by [7]. For classical Brownian motions (and semimartingales) this
problem has been studied by many researchers. See for example the survey
[17] and the references therein. It turns out that for fBm this problem is
even harder than in the classical case and in this paper we concentrate on a
special case in order to get more specific results.

2 Multi-dimensional Wick-Ito integration with
respect to fBm

Let B (1) = (B1),...,B¥(t)): t € R, w € Q be m-dimensional fBm
with Hurst vector H = (H,..., Hy,) € (3,1)™, as in Section 1. Since the
B,EH)(') are independent, we may regard €2 as a product €2 = Q; xyx---xQ,,
of identical copies  of some €2 and write w = (w1, ..., wy) € .

Let F = Fi) be the o-algebra generated by {B")(s,);s € R,k =
1,2,...,m}andlet F; = E(m’H) be the o-algebra generated by {B,(CH)(S, ;0 <
s<t,k=1,2,....m}. If F:Q — R is F-measurable, 1 <k < m, we set

D,?t F = /quk(s, t)Dy, Fdt (if the integral converges) (11)

where

¢ = (o1, Pm) (12)
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On(s,1) = b (5. t) = Hu@He=1)|s=t[ "5 (s,t) € R, k=12...,m
(13)
and Dy, F' = g—i(t, w) is the Malliavin derivative of F' with respect to wy, at
(t,w) (if it exists).
Let B = B(R) denote the Borel o-algebra on R. Similarly to the 1-
dimensional case we can define the multi-dimensional fractional Wick-1to

integral

/f (t,w)dBY(t) /fk (t,w)dB™ (1) € L2(p) (14)

for all B x F-measurable processes f(t,w) = (fi(t,w),..., fm(t,w)) € R™
such that

kaHL(IZ)Q <oo  forall k=1,2,...,m, where
2
2 =E t)dsd DY, fe®dt) |, (15
[l [!!n@ﬁmmwwsu(é L) ] (19)

Denote the set of all such m-dimensional processes f by E;;Q(m). As in the
1-dimensional case we obtain the isometries

/fkdB [ =iz k=12 m (16)
This is intuitively clear, since we (by independence of B%H), ey B,(nH)) can
treat the remaining stochastic variables wy,...,wg_1,Wkt1, ..., Wy, as pa-
rameters and repeat the 1-dimensional approach in the w; variable. It is
also easy to prove (16) rigorously by writing fi(¢,wi,ws,...,wy,) as a limit
of sums of products of functions depending only on (t,wy) and only on
(Wi ey W1, Wkt - - -, W), TESPeCtively.

In view of this it is clear that if f = (f1,..., fm) € £3f(m), then the
Wick-Ito integral (14) is well-defined as an element of L?(u) and by (16) we

have .
H/deUf)( < Sl pre - (17)
R k=1 o

It is useful to have an explicit expression for the norm on the left hand side
of (17). The following formula is our main result of this section:

L2(n)

Theorem 2.1 (Multi-dimensional fractional Wick-It6 Isometry I) Let
f.g¢€ E(lb’z(m). Then

[( [ras)-( fom)] = (Fdepy 19
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where

(fvg)L:lQ(m)

=E fr(8)gr(t)Pr(s, t)ds dt + D f dt Dy,
[;R/R/k 9k k(S,1)as NZI/ k /kge

REMARK. Note the crossing of the indices ¢, k of the derivatives and the
components fx, go in the last terms of the right hand side of (19).

To prove Theorem 2.1 we proceed as in [6], but with the appropriate
modifications:

In the 1-dimensional case, let Lg,k be the set of deterministic functions
a: R — R such that

‘a‘m // (t)pr(s,t)ds dt < oo . (20)

Iface Lik then clearly a € ﬁ;; Hence we can define the Wick (or Doleans-
Dale) ezponential

£(a) = exp® (/Ra(t)dB,gH)(t)) :exp</R a(t)aBI () — -\a\¢) (21)

See e.g. [6, (3.1)] or [9, Example 3.10].

Similarly, in the multidimensional case we put ¢ = (¢1,...,¢,,) and we
let L3 be the set of all deterministic functions o = (o, ..., am) : R — R™
such that a4 € Lik fork=1,...,m. If a € Lé we define the corresponding
Wick exponential

S(Oz):exp°(/R (t)aB" —exp Z/ak dB )
— o (3 [ antaB0) - Halz), 22)

where . .
af = Z/ on(8)on(t)ox(s, s dt = 3 [al?, (23)
k=1"R k=1

Let € be the linear span of all £(a); a € L. Then we have
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Theorem 2.2 ([6, Theorem 3.1]) & is a dense subset of LP(F,u), for all
p=>1

and

Theorem 2.3 ([6, Theorem 3.2]) Let g; = (gir,.--,9im) € L for i =
1,2,...,n such that

Then E(g1), .- .,E(gn) are linearly independent in L*(F, ).

If F e L*(F,p) and g, € L] we put, as in [6],

Dyagg) F = /R D,‘f’tF-gk(t)dt. (25)

We list some useful differentiation and Wick product rules. The proofs
are similar to the 1-dimensional case and are omitted.

Lemma 2.4 Let f = (fi,..., fm) € L}, 9= (91,---,9m) € L. Then

) Dot (3 o B = (ogidows k=1...m,

where

(fr> ) o //fk $)gk(t)pr(s, t)ds dt ; k=1,...,m, (26)

(i) Df;s(ifR FAB™) = [ elw)on(s,w)du; k=1,..m
=1

(ill) Dk,@(gk)g(f) = g(f) : (fk?gk)dnc 5 k= 17' c,m,
(iv) DL E(f)=E(f) - [g felwon(s,u)du; k=1,....m,
(v) E(f)o&(g) =E(f +9)

(vi) Fo [, udB{ = F- [, gudB™ — Dyoy F, k=1,...,m,
provided that F € L*(F, i) and Doy F € L*(F, ).

(vii) E[E(f)-E(9)] = exp(f, 9)s
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We now turn to the multi-dimensional case. We will prove

Lemma 2.5 Suppose oy € L7 , By € LY, Dygsy F' € L*(n) and Dy o(a,) G €
L?(w). Then

E[(Fo/akdB,g Go/ﬁgdB )
R

= E[(Dea) F) - (Dro(an G) + 0k FG(ar, Br)s,] (27)
where
{1 if k=¢
Oke = .
0 otherwise

PrROOF. We adapt the argument in [6] to the multi-dimensional case:
First note that by a density argument we may assume that

F=&(f) = exp{ [ F0aB0) - 3171}
and
G = () = exp{ [ 9B = 33}

for some f € L7, g € L.
Choose 6 = (01,.-.,0m) € R™ v = (71,...,7m) € R™ and put § x f =
(01f1, -+, 0mfm) and ¥ X g = (7141, - - -, YmGm)- Then by Lemma 2.4

E[(E(f) 0 €6 x a)) - (E(g) o E(y x B))] (28)
=EE(f+dxa)-E(g+yxP)]=exp(f+0xa,g+7 xSy

e {3 [ [Ghrsa)oe s o nasar). (9

We now compute the double derivatives

82
0010V

of (28) and (29) at 6 = v = 0. We distinguish between two cases:
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Casel k#/
Then if we differentiate (28) we get

85(3875E[<8(f) o0& x ) (E(g)o&(y x ﬁ))h:y:o
0 H
:a—WE[ E(f)oE(6 x a)o /akdB( ’))-(5( ><>5(7X5>)]MO

:E[(g( fo /R ardBY / ﬁgdB(H) (30)

On the other hand, if we differentiate (29) we get

2
35k3’yg[eXp(f+5xa g+7%Bas__y

zai[exp(fﬂL(Sxa g+ % B //ak (gr + VBr) (1) dr(s, t)dsdt]

=exp(f,9)e //ak $)gr(t)Pr (s, t)ds dt - //@; )V fo(t)de(s,t)ds dt

=exp(f,9)s (@k,gk)qﬁk (Bes fo) s
=E[E(f) - (B, fo)g, - E(9) - (ks r) gy
=E[Dyos) E(f) - Draay) £(9)] - (31)

This proves (27) in this case.

Case 2 k=1
In this case, if we differentiate (28) we get

a&f;%E[(g(f) 0 E(0 x a)) - (E(g) o E(y % B))]

= (e oexm) / x| )<5<><>5<v><ﬁ>>L:7:o

- ]E[(S( fo /R a dB(H) / Bd B! H> (32)

6=v=0
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On the other hand, if we differentiate (29) we get
82
T [exp(f+0 x a,g+7 % B)g],_

— o [ewts 45 x g+ x 0 [ [ans) o+ wson(s)ds ]

R R =r=0
=exp(f, 9)¢ - [(@k,gk) (Brs fr)or + //Oék (t)or(s,t)ds dt}
R R

= E[Di.a,) E(f) - Draoy) E(9) + E(FE(9) (s Br)s,] - (33)

This proves (27) also for Case 2 and the proof of Lemma 2.5 is complete. [
We are now ready to prove Theorem 2.1:

PrROOF. We may consider [, fk(t)dB,iH) (t) as the limit of sums of the form

N
> filt) o (B (tian) = B (1)
i=1
when At; =t —t; — 0,8 < ty < --- < ty, N = 2,3,... Hence

E [(fR de(H))Q] =K [( i Iz fkdBlgH)>2] is the limit of sums of the form
k=1

i7j7k7z

> E[(felts) o (B (tin) = B (1) - (fulty) o (B (t541) = B (1),

which by Lemma 2.5 is equal to

tit1

”ZME /thfk dt ]/HDktfe dt +0ke 71jlfk(ti>fk(tj)¢k(8,t)det].

When At; — 0 this converges to

M | /D /D’ftf‘Z dt +k§;//fk qbkst)dsdt].

(34)
This proves (19) when f = g. By polarization the proof of Theorem 2.1 is
complete. Il



MINIMAL VARIANCE HEDGING FOR FRACTIONAL BROWNIAN MOTION11

Using Theorem 2.1 we can now proceed as in the 1-dimensional case
([6, Theorem 4.3]), with appropriate modifications, and obtain a fractional
multi-dimensional [to6 formula. We omit the proof.

Theorem 2.6 (The fractional multi-dimensional It6 formula) Let X (t) =

(X1(8),..., Xn(t)), with

dX;(t § 0y;(t,w)dBY ()
7=1
where  o; = (041, -+, 0im) € quf(m) ; 1<i<n. (35)

Suppose that for all j =1,...,m there exists 0; > 1 — H; such that

SUpE[(05(u) = 035(0))*) < Clu—o|” if u—v| <6 (30)

where & > 0 is a constant. Moreover, suppose that

Jim | {supE[(DF {oy;(w) — 035()})*] = 0. (37)
|u—v|—0 4.5,

Let f € CY*(R x R™) with bounded second order derivatives with respect to
x. Then, fort >0,

Ft.X(1) = / 54 (5, X())ds +/ Z 3. (s, X (s))dX;(s)
+ /t { m 352333] Z"zk ))}ds (38)

— J(0,X(0)) + gi (5, X (s ds+z/ X))oy (s,0)| B

+ [ Tr[AT(s) fau(s, X (s))]ds . (39)

Here A = [Aij} € R™™ with

$) =Y ouDf (X;(s)); 1<i<n, 1<j<m, (40)
82f nxn
Jaz = [8%0%} 1<i,j<n €R (41)

and ()T denotes matriz transposed, Tr[-] denotes matriz trace.



MINIMAL VARIANCE HEDGING FOR FRACTIONAL BROWNIAN MOTION12

If we combine Theorem 2.6 with Theorem 2.1 we get the following result,
which also may be regarded as a fractional Ito isometry:

Theorem 2.7 (Fractional It isometry IT) Suppose f = (f1,..., fm) €
£;’Q(m). Then, for T > 0,

2|( /0 g, snar) - ( /0 " Dj, o)
:E[/OT{fk(t) /Otp;jtff(s s)+ fult / D, fils)aBy (s) pat|

(42)

ProOOF. By the It6 formula (Theorem 2.6) we have

e ([ ) - (st
—E| /0 ' { DL ( /0 t fg(s)dBéH)(s)> + Je) D ( / t fk(s)dglgm(s))}dt}
:E[/OT {fk(t) /OtD,jtfg(s) dB™ (s) / D¢, B (s )}dt]

+0uB] [ [{OR06) + 105 ouls. s ] (13)
where we have used that, for u > 0,
Dz ( / f(s)dB (s / DY, fy(s)dB™(s) + 6 / " Fu()6u(t, 5)ds
0
(44)

(See [6, Theorem 4.2].)
On the other hand, the It6 isometry (Theorem 2.1) gives that

E[(/OTfkdB,gm) . </0T 1)
~E|( /OT Dy, filt)dt) - (/OT DY, folt)dt) + 0wl £}, | (45)
Comparing (43) and (45) we get Theorem 2.7. O

We end this section by proving a fractional integration by parts formula.
First we recall
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Theorem 2.8 (Fractional Girsanov formula) Supposey = (71,...,%m) €
(L*(R)™ and ¥ = (Y1, ..., %m) € L} are related by

V() = /&k(s)@(s,t)ds ; teR, k=1,....m. (46)
R
Let G € L*(n). Then

BIG(w +1)] = EIG() ew*(w, )] = E[clw)e ([

wBW))] LD

For a proof in the 1-dimensional case see e.g. [9, Theorem 3.16]. The
proof in the multi-dimensional case is similar.

If e L*(p) and v = (71, ..,7m) € (LA(R))™ the directional derivative
of F' in the direction vy is defined by

D,F(w) = lim : (48)

provided the limit exists in L?*(u). We say that F is differentiable if there
exists a process D F(w) = (D14 F(w), ..., Dy F(w)) such that Dy, F(w) €
L*(dp @ dt) for all k =1,...,m and

D,F(w) = /RDtF(w) ~y(t)dt  for all vy € (L*(R))™ . (49)

Theorem 2.9 (Fractional integration by parts I) Let F,G € L*(u), v €
(L*(R))™ and assume that the directional derivatives D, F, DG exist. Then

IE[DVF-G]:IE{F-G-/

ﬁdB“”} —E[F-D,G] . (50)
R

PrOOF. By Theorem 2.8 we have, for all £ > 0,
ElF(w+e7)G(w)] = E[F(w)G(w — £7) exp®(e(w, 7))] -
Hence

E[D,F - €] = E[ lim é{F(w + 1) — Fw)}G(w)

= E[lim L {F(0)[Gw — o) exp?(e(w,3)) — G(W)]}}

Le—0 g

=E F(w)d%{G(w — £7) exp <5/R%dB(H) — 1e?

— E:F(w)G(w) /R @dB<H>} — E[F(w)D,G(w)]
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g

We now apply the above to the fractional gradient

DYF = /RDSF (s, t)ds = ;/RDMF (s, t)ds = DyF(w)  (51)

Theorem 2.10 (Fractional integration by parts II) Suppose F,G € L*(u)
are differentiable, with fractional gradients DfF, DfG. Then for eacht € R,
ke {l,...,m} we have

E[D},F-G)=E[F-G B (t)] - E[F-D},G. (52)

Proor. Choose a sequence ’Ay,(gj) € LQk; 7 =1,2,..., such that lim ’y,ij) =

j—o0

d¢(+) (the point mass at t), in the sense that if we define
0 (g = [ 20 p
o (s) = | A drls,r)dr
R

then gbg)(-) — ¢ (-, t) in L*(R). Then by Theorem 2.9

E[D,‘jtF-G]:E[limD yale)

j—o0 (bg

>F-G} = lim E[D

j—o0 ¢§cj
= lim E[F-G-/fy(j)dB(H)} —E[F-D G

—E[F-G-B" )] -E[F- Dy, G .

3 Application to minimal variance hedging

Consider the multidimensional version of the fractional mathematical market
model introduced by [9] and by [7], consisting of n+ 1 independent fractional
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Brownian motions B§H) (t),..., B (t) with Hurst coefficients Hy, ..., H,,
respectively (3 < H; < 1), as follows:

(bond price) dSo(t) =r(t,w)dt ; Sp(0) =350, 0<t<T (53)

(stock prices) dS;(t) = p(t,w)dt + Zaij(t,w)dBJ(-H) (t); Si(0) = sy,
j=1

(54)
i=1,...,n, 0<t<T.

Here r(t,w), pi(t,w) and o;;(t, w) are E(H)—adapted processes satisfying rea-
sonable growth conditions. We refer to [7], [9], [14] and [21] for a general
discussion of such markets.

We say that ¢ = (g1,...,9m) is an admissible portfolio if g(t) is .Ft(H)—
adapted, go € E;Z(m) and ]E[fOT Yoy |gi(t)ui(t)]dt] < 0. Here we denote

by o the volatility matrix [o]; ;(-) = 0;(-). Suppose we are only allowed to
trade in some, say k, of the securities Sp,...,S,. Let K be the set of i €
{1,...,n} such that trading in S; is allowed. Then, according to our model,
the wealth hedged by an nitial value z € R and an admissible portfolio
g(t) = (gi(t,w))iex € R¥ up to time ¢ is

V(t) = VI(t) = = + Z/tgi(u)dSi(u) . 0<t<T. (55

1€

Now let F'(w) be a T-claim, i.e. an F}H)—measurable random variable in
L*().

The minimal variance hedging problem is to find a z* € R and an admis-
sible portfolio g* such that

E[(F - V2 (T))*] = inf E[(F - V2(T))7] . (56)

This is a difficult problem even in the classical Brownian motion setting.
See e.g. [8], [17] and the references therein. For a recent general martingale
approach see [5]. For fractional Brownian motion markets a special case is
solved in [1] by using optimal control theory.

Here we will discuss the two-dimensional case only, and we will simply
assume that

dSe(t) =0, dSi(t) =dB™ ()  and dSy(t) = dB{™ ().

Assume that only trading in Sy and S is allowed. Then the problem is
to minimize



MINIMAL VARIANCE HEDGING FOR FRACTIONAL BROWNIAN MOTION16

J(z,91) = E[(F — <z + /OT gld5'1>>2] (57)

over all z € R and all admissible portfolios ¢;.
By the fractional Clark-Haussmann-Ocone formula ([9, Theorem 4.15])

we can write
T T
[ nwao+ [ poae 6

() =KD, F|F™);  i=12.
Substituting this into (57) we get, by (8),

where

00 <[ (511 =+ [ (- 0an + [ pant”
= 1) 22 +[( [ (e s [ deBgH ) [ED

Hence it is optimal to choose z = z* := E[F|. The remaining problem is
therefore to minimize
T
o) =E[( [ (- aan™+ [ papg) (60)
0

From now on we assume that f; € E;’f for i« = 1,2. By a Hilbert space
argument on L?(u) we see that ¢gf minimizes (60) if and only if

E[(/ (fi—g1)dB™ / f2d B /OTfydB§H))] —0

for all adapted ~ € £¢1 : (61)

By Theorem 2.1 (61) is equivalent to
T T
E )Y(5)¢1 (s, t)ds dt DY, (f(t) — dt DY, ~(t)dt
[0/0/ 1(s,t)as dt + (/ 1,1 gi(t / 1e( )
/ Dltf2 dt / th’Y

=0 for all adapted v € £¢> . (62)

From this we immediately deduce
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Proposition 3.1 The portfolio
91(t) = gi(t) == f1(t)

minimizes (60) if and only if
T
/ DY, fo(t)dt =0 a.s. (63)
0

This result is surprising in view of the corresponding situation for classical
Brownian motion, when it is always optimal to choose ¢1(t) = gi(t) = fi(t).

We also get

Proposition 3.2 Suppose gi(t) minimizes (60). Then

5[ [ (- sioyar] =0, (o4

Proor. This follows by choosing (t) deterministic in (62). O

Now assume that Dit( fi(t)) and D‘f’t(gl (t)) are differentiable with re-

spect to DY {5 and that D‘fyt fo(t) is differentiable with respect to D‘Qz’js for all
€ [0,T7. Then we can use integration by parts (Theorem 2.10) to rewrite
equation (62) as follows:

O\'ﬂ

B[ [ [{(:0) = 9u(0)11(6)n(s.6) + DE((8) = (8) - DE (9
Dy f2(t) - Dy y(s)}ds dt
-/ / E[(A(8) = 0 (0)6a(s,17(5) + DL(A(D) = ()(5) B (o)

— D}, D¢ (fi(t) — 1(£)y(s) + DY, Fa2(0)4(5) B (s)
- D;)s D(ft fa(t)y (S)]ds dt

/ K(s =0, (65)
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where

with

G(s.t) = (fi(t) — g1 () (s,t) + D, (fi(t) — g1 (£) By (s)
— DY, DY (fi(t) — g1 (1) + DY, fo(t) BS(s) — Dy, DY, fo(t) . (67)

Since 7(s) is F) _measurable we get from (65) that
0= [ B = [ B[R | F0]ds
- | b | Fds = B[ [ B[R | FO )] . 69

Since this holds for all adapted v € E;ﬂ we conclude that

E[K (s) | FH] =0 for a.a. (s,w) . (69)

or, using (66),

/ (E.[1(0) = 3 (0)0n(5.0) + B[Pt = (1)) B9

E,[D{, DY, (f(t) — 9:1(t)] + Es[DY, fo(t)] B (s) — E,[D§, DY, fo(t)]}dt =0,
(70)

where we have used the shorthand notation
E[]=E[ | FM].

We have proved:

Theorem 3.3 Suppose the claim F represented by (58) is such that Dis Df’t f1(t)
and D;ﬁ,s D‘ﬁt fa(t) ezist for all s,t € [0,T]. Suppose g:1(t) is an adapted pro-
cess in E(y such that D(ﬁt G1(t) and Dﬁs th g1(t) exist for all s,t € [0,T].
Then the following are equivalent:

(1) §1(t) is a minimal variance hedging portfolio for F', i.e. §1(t) minimizes
(60) over all adapted g,(t) € E;;Q

(11) g1(t) = §1(t) satisfies equation (70).
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Note that the same method also applies if we assume a fractional ex-
ponential dynamics for the asset prices, which represents a more realistic
financial model.

To illustrate this result we consider the following special case:

Example 3.4 Suppose fi(t) =0 and
D‘ﬁt fa(t) = h(t), a deterministic function . (71)

We seek a minimal variance hedging portfolio ¢;(¢) for the claim

F(w) = / fo()dBS (1) (72)

In this case (70) gets the form

/0 R (05, 0) B, (DY, g1(8)) B (5) + Ey[DY , DY, g1 (1))
+ h(t)BY (s)Ydt = 0 for a.a. (s,w) . (73)
Let us try to choose g;(t) such that
DY gi(t) = 0. (74)

Then (71) reduces to

/0 Eulg2 (1)) (s, £)dt = BY™ (s) / h(t)dt (75)

or, since g is adapted,

s T T
| twonts. it + [ Baln®loits, 0 = BGs) [ e, s €0,
0 s 0
(76)
In particular, if we choose s =T we get the equation

/ D O (T, ) dt = B (T) / "ty (77)

which clearly has no adapted solution g;(¢). (However, it obviously has a
non-adapted solution.) Therefore an optimal portfolio ¢;(t) = g{(t) for the
claim (72), if it exists, cannot satisfy (74).
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