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In this paper, we first study the problem of minimal hedging for an insider trader in
incomplete markets. We use the forward integral in order to model the insider portfolio
and consider a general larger filtration. We characterize the optimal strategy in terms of a

martingale condition. In the second part we focus on a problem of mean-variance hedging
where the insider tries to minimize the variance of his wealth at time T given that this
wealth has a fixed expected value A. We solve this problem for an initial enlargement of
filtration by providing an explicit solution.
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1. Introduction

The problem of modeling insider trading in finance has been addressed by several
authors. By an insider we mean a person who has access to a filtration {Ht}0≤t≤T

which is strictly bigger than the filtration {Ft}0≤t≤T generated by the underlying
assets. Therefore the question is how to interpret integrals of the form∫ T

0

ψ(t, ω)dB(t), (1.1)

where ψ is assumed to be adapted to Ht ⊃ Ft and represents the self-financing
portfolio of an insider.
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A natural, and the most common, approach to this question is to assume that
Ht is such that B(t) is a semimartingale with respect to Ht [1, 2, 7, 8, 12, 13, 16–19].
In this case we can write

B(t) = B̂(t) + A(t), 0 ≤ t ≤ T, (1.2)

where B̂(t) is a Ft-Brownian motion and At is a continuous Ft-adapted finite vari-
ation process. If A(t) has the form

A(t) =
∫ t

0

α(u)du, (1.3)

then the process α(·) is called the information drift [18]. If a relation of the form (1.2)
holds, then it is natural to define∫ T

0

ψ(t, ω)dB(t) =
∫ T

0

ψ(t, ω)dB̂(t) +
∫ T

0

ψ(t, ω)dA(t), (1.4)

because both terms of the right-hand side are well-defined. In general, there are
several difficulties with this approach. Partial answers to when decomposition (1.2)
holds can be found in the contributions to the book of Jeulin and Yor [21]. See
also [18].

In the first part of this paper we follow the approach of [6, 14, 26] and use the
forward integral to model the insider portfolio. This allows us to consider a general
larger filtration, i.e., we do not necessarily assume that the underlying Ft-Brownian
motion B(t) is also a semimartingale with respect to the filtration Ht. In the case
when the enlargement of filtration holds, we remark that the use of forward integrals
coincides with the enlargement of filtration approach.

In particular, here we assume that the market is influenced by an additional
source of randomness. For example, one can suppose that there exist two assets but
trading is allowed only on one of them. The resulting market is incomplete and here
we select the minimal variance hedging approach as pricing and hedging criterion.
The purpose of this paper is to study the minimal variance hedging problem from
the point of view of an insider trader who has access to larger information and check
if she can do any better than the honest trader. This has been recently studied also
in [7] by using initial enlargement of filtration technique. His results concern only the
case when Ht = Ft ∨ σ(L), where L is a suitable random variable representing the
additional information, while in this paper we consider a general larger filtration.
For the honest trader case, we refer to [39] for a complete survey on mean-variance
hedging and a complete bibliography.

In the first part of this paper, we characterize the optimal strategy and the
approximation cost (when they exist) in terms of a martingale condition and,
when further differentiability conditions hold, as an equation involving Malliavin
derivatives.

In the second part of this paper, we focus on a problem of mean-variance hedging
where the insider tries to minimize the variance of his wealth at time T given a fixed
expected value of the wealth at this time. To the best of our knowledge this is the
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first time this problem is discussed in an insider context. Here we are able to provide
an explicit solution of it in the case of an initial enlargement of filtration of the form
Ht = Ft ∨ σ(B(T0)).

2. Some Preliminaries

Throughout the first part of this paper, we will use the standard tools of Malliavin
calculus. As a general reference, we refer to [28, 30].

Here we give the definition and some properties of the forward integral. For more
information, see [3, 4, 24, 29, 36–38].

Let B(t) be a standard Brownian motion on the stochastic base (Ω,F ,Ft, P).
In the sequel we denote respectively by Dsψ(t) the Malliavin derivative and by∫ t

0
ψ(s)δB(s) the Skorohod integral of a process ψ(t), when they exist. For further

details on Malliavin calculus, we refer to [28, 31].

Definition 2.1. Let ψ(t, ω) be a measurable process.
(i) The forward integral of ψ is defined by∫ T

0

ψ(t, ω)d−B(t) = lim
ε→0

∫ T

0

ψ(t, ω)
B(t + ε) − B(t)

ε
dt, (2.1)

if convergent in probability. If the limit exists in L2(P ) we write ψ ∈ Dom2δ
−.

(ii) We say that ψ is forward integrable in the strong sense and write ψ ∈ D if ψ is
càglàd, Skorohod integrable and Dt+ψ(t) = lims→t+ Dsψ(t) exists in L2(dP ⊗ dt).
In particular,

E

[∫ T

0

|Dt+ψ(t)|2dt

]
< ∞. (2.2)

By Proposition 2.3 of [36] we get:

Lemma 2.1. Let ψ ∈ D. Then ψ is forward integrable and∫ T

0

ψ(t, ω)d−B(t) =
∫ T

0

ψ(t, ω)δB(t) +
∫ T

0

Dt+ψ(t)dt. (2.3)

In particular,

E

[∫ T

0

ψ(t, ω)d−B(t)

]
= E

[∫ T

0

Dt+ψ(t)dt

]
. (2.4)

Note that if ψ is càglàd and forward integrable, then by Eq. (2.2) of [6], (2.1)
coincides with the limit in probability of the Riemann sums∫ T

0

ψ(t, ω)d−B(t) := lim
|∆t|→0

∑
j

ψ(tj) · ∆B(tj), (2.5)

if convergent in probability for any partition 0 = t0 < t1 < · · · < tN = T of [0, T ],
with ∆tj = tj+1 − tj, |∆t| = supj=0,...,N−1 ∆tj and ∆B(tj) = B(tj+1) − B(tj).



November 22, 2006 12:22 WSPC-104-IJTAF SPI-J071 00399

1354 F. Biagini & B. Øksendal

Remark 2.1. Consider the integrand ψ(t, ω) = I{τ1<t≤τ2}, where τ1, τ2 are random
variables with values in [0, T ]. As an immediate consequence of (2.5) we obtain that∫ T

0

ψ(t, ω)d−B(t) = lim
∆tj→0

∑
j

ψ(tj)·∆B(tj) =
∫ τ2

τ1

dB(t) = B(τ2)−B(τ1). (2.6)

In finance the process ψ(t, ω) is sometimes called the “buy-and-hold” portfolio. Note
also that τ1, τ2 need not be Ft-stopping times.

Moreover, we note that if ψ is a predictable process such that E
[ ∫ T

0
ψ(t)2dt

]
<

∞, then ψ is forward integrable, belongs to Dom2δ
− and its forward integral coin-

cides with the Itô integral
∫ T

0
ψ(t)dB(t) (see Proposition 1.1 of [37] and Lemma 2.1).

The following Lemma illustrates why the forward integral appears naturally in
insider modeling. Let Ht ⊃ Ft and assume that B(t) is a semimartingale with
respect to Ht, so that (1.2) holds, i.e.

B(t) = B̂(t) + A(t), 0 ≤ t ≤ T, (2.7)

where B̂(t) is a Ht-adapted Brownian motion, A(t) is a Ht-adapted finite variation
continuous process. Using Riemann sum approximations we see that the following
holds:

Lemma 2.2. Suppose that (2.7) holds and that ψ(t, ω) is an Ht-adapted càglàd
process which is integrable with respect to B̂(t) and A(t). Then ψ(t, ω) is forward
integrable and∫ T

0

ψ(t)d−B(t) =
∫ T

0

ψ(t)dB̂(t) +
∫ T

0

ψ(t)dA(t). (2.8)

In view of Remark 2.1 and Lemma 2.2, following the approach initiated in [6],
and subsequently applied in [9, 10, 14, 22, 23, 32, 33], we model the stochastic
integral “

∫ T

0 ψ(t, ω)dB(t)” of the insider portfolio as given by the forward integral∫ T

0 ψ(t, ω)d−B(t), when ψ(t) is Ht-adapted, without assuming that (1.2) holds.

3. Minimal Variance Hedging of an Insider

Let B1(t), B2(t) be two independent standard Brownian motions on the filtered
product probability space (Ω,F ,Ft, P) = (Ω1 × Ω2,F1 ⊗ F2,F1

t ⊗ F2
t , P1 ⊗ P

2).
Here Ft = F1

t ⊗F2
t is the natural filtration generated by B1, B2. In this framework

we consider the following market:

1. A risk-free asset S0(t), which we assume constantly equal to 1;
2. A risky asset S(t) with the following dynamics:{

dS(t) = S(t)[µ(t)dt + σ(t)d−B1(t)]

S(0) = s1.
(3.1)
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As in the approach of [6], we suppose that there exist on Ω two other filtrations
Gt,Ht in addition to Ft such that

Ft ⊂ Gt ⊂ Ht ⊂ F , ∀t ∈ [0, T ], (3.2)

and that the coefficients µ(t), σ(t) are Gt-adapted. Moreover, we assume that the
coefficients satisfy the following conditions:

σ(t) ∈ D, (3.3)

E

[∫ T

0

{
µ(t)2(1 + S2(t)) + σ(t)2

}
dt

]
< ∞, (3.4)

σ(t) 	= 0 for a.a. (t, ω) ∈ [0, T ]× Ω. (3.5)

By [38], we get that condition (3.4) guarantees that the solution of Eq. (3.1) exists
and is unique in the sense that two solutions coincide for a.a. t, ω. By the Itô formula
for the forward integral (Theorem 2.2 of [37]), by Lemma 1.1 of [36] and Corollary
5.5 of [38], we obtain the following explicit form for S(t):

S(t) = S(0) exp
(∫ t

0

σ(s)d−B1(s) +
∫ t

0

{
µ(s) − 1

2
σ2(s)

}
ds

)
.

We interpret the corresponding anticipative integrals in the dynamics of S as for-
ward integrals with respect to the Brownian motion B1. Since the agent trades in
the asset price S(t), we need to introduce the following

Definition 3.1. Let φ(t, ω) be a measurable process and let S(t) be as in (3.1).
Then we define the forward integral of φ with respect to S as follows∫ T

0

φ(s)d−S(s) :=
∫ T

0

φ(s)µ(s)S(s)ds +
∫ T

0

φ(s)S(s)σ(s)d−B1(s), (3.6)

if the right-hand side exists. In this case, we say that φ(t) is forward integrable with
respect to S.

By using this approach, we model a market influenced by large investors with access
to insider information, i.e., with access to the information Gt, or more generally, a
market influence by other random events than those described by Ft.

Here we also assume that the market is influenced by an additional source of
randomness represented by the standard Brownian motion B2(t). This is an example
of the so-called “almost complete markets”, where there exist two assets but trading
is allowed only on one of them. In the classical case this has been studied by using the
mean-variance hedging approach by [5, 25, 34]. The resulting market is incomplete
and one must choose a suitable pricing and hedging criterion. The purpose of the
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first part of this paper is to study the minimal variance hedging problem from the
point of view of an insider trader who has access to larger information and check
if she can perform better than the honest trader. Now we introduce the set A of
admissible trading strategies for the insider:

Definition 3.2. Let A be the space of all stochastic processes φ(t, ω) such that

1. φ(t) is an Ht-adapted process, forward integrable with respect to S such that
φ(t)S(t)σ(t) ∈ Dom2δ

−;
2. E

[ ∫ T

0 |µ(t)S(t)φ(t)|dt
]

< ∞, E
[ ∫ T

0 (σ(t)S(t)φ(t))2dt
]

< ∞.

We call this space A the set of admissible portfolios for the insider.

Definition 3.3. A random variable F ∈ L2(FT , P) is called a claim.

In this framework we study the following problem.

Problem 3.1. Let F ∈ L2(FT , P) be a claim. Find V H
T ∈ R, x∗ ∈ R and φ∗ ∈ A

such that

V H
T = inf

φ∈A,x∈R

J(x, φ) = J(x∗, φ∗), (3.7)

where

J(x, φ) = E

(F − x −
∫ T

0

φ(t)d−S(t)

)2
 for φ ∈ A. (3.8)

We call V H
T < ∞ the value of the minimal variance hedging problem, φ∗ a minimal

variance hedging portfolio and x∗ an approximation price (if it exists), in the same
notation as in [39]. Moreover, we call x∗ +

∫ T

0 φ∗(t)d−S(t) the closest hedge. The
interpretation of this problem is the following: we assume that the insider can only
trade in the asset with price S(t). How close can she get (in terms of minimal
variance) at time T to a given claim F if she has access to the insider information
Ht ⊃ Gt ⊃ Ft?

Example 3.1. Assume that the trader is honest, i.e. Ht = Ft, ∀t ∈ [0, T ], and that
µ(t) = 0. Let F ∈ L2(FT , P) be a claim. By the Itô representation theorem we know
that F ∈ L2(Ω,FT , P) can be written as

F = E[F ] +
∫ T

0

β1(t, ω)dB1(t) +
∫ T

0

β2(t, ω)dB2(t), (3.9)

where βi, i = 1, 2 are Ft-adapted processes such that

E

[∫ T

0

(β2
1(t, ω) + β2

2(t, ω))dt

]
< ∞. (3.10)
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This decomposition is unique. Then for any x ∈ R and Ft-adapted square integrable
process φ we have

E

[(
F − x −

∫ T

0

φ(t)d−S(t)
)2
]

= E

[(
E[F ] − x −

∫ T

0

(φ(t)S(t)σ(t) − β1(t))dB1(t) +
∫ T

0

β2(t)dB2(t)
)2
]

= (E[F ] − x)2 + E

[∫ T

0

[(φ(t)S(t)σ(t) − β1(t))2 + β2(t)2]dt

]
.

Hence it is optimal to choose x∗ = E
[
F
]

and φ∗(t) = β1(t)
S(t)σ(t) , which corresponds

to the minimal variance E
[ ∫ T

0 β2(t)2dt
]
.

Example 3.2. This example shows how an insider trader can actually obtain better
results than the honest trader.

Assume that µ(t) = 0 and σ(t) = 1 for every t ∈ [0, T ]. We suppose that
Ht = F1

T ∨F2
T . Then B1(t) is not a semimartingale with respect to Ht. Consider F =∫ T

0 (S(s)− S(0))dB2(s). Then F is replicable with (x∗, φ∗(t)) = (0, B2(T )−B2(t)).
To see this, it is sufficient to show that∫ T

0

(S(s) − S(0))dB2(s) =
∫ T

0

(B2(T ) − B2(s))S(s)d−B1(s) =
∫ T

0

φ∗(s)d−S(s).

The right-hand side is equal to∫ T

0

(B2(T ) − B2(s))S(s)d−B1(s) = B2(T )
∫ T

0

S(s)dB1(s) −
∫ T

0

B2(s)S(s)dB1(s)

= B2(T )(S(T )− S(0)) −
∫ T

0

B2(s)S(s)dB1(s).

By the Itô formula, this is the same as the left-hand side.
This simple example shows the essential role of forward integrable when the

enlargement of filtration does not hold. Moreover it shows a case when a solution
for the minimal hedging problem exists and can be explicitly computed.

We now focus on the general insider case. Let H be the space generated by the
integrals of the form x +

∫ T

0 φ(t)d−S(t), x ∈ R, φ ∈ A. We wish to use a clas-
sical Hilbert space argument, but unfortunately we don’t know if H is closed in
L2(Ω,F , P). Given F ∈ L2(FT , P), let F̂ be the closest element to F in the closure
H̄ in L2 of H. Then

E
[
(F − F̂ )k

]
= 0 ∀k ∈ H
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Hence, we see that Problem (3.1) is equivalent to finding x∗ ∈ R and φ∗ ∈ A
such that

E

[(
F − x∗ −

∫ T

0

φ∗(t)d−S(t)

)(
y +
∫ T

0

θ(t)d−S(t)

)]
= 0, (3.11)

for all y ∈ R, θ = θ(t, ω) ∈ A. We split it into the following

yE

[
F − x∗ −

∫ T

0

φ∗(t)d−S(t)

]

+ E

[(
F − x∗ −

∫ T

0

φ∗(t)d−S(t)

)(∫ T

0

θ(t)d−S(t)

)]
= 0. (3.12)

Since it holds for all y we get the two equations:

x∗ = E

[
F −

∫ T

0

φ∗(t)d−S(t)

]
, (3.13)

(by using Eqs. (3.10) and (2.3)) and

E

[(
F − x∗ −

∫ T

0

φ∗(t)d−S(t)
)(∫ T

0

θ(t)d−S(t)
)]

= 0, (3.14)

for all θ = θ(t, ω) ∈ A. We now put

G = F − x∗ −
∫ T

0

φ∗(t)d−S(t). (3.15)

In particular, for θ(s, ω) = θ0χ(t,t+h](s), h > 0, where θ0 is a bounded Ht-
measurable random variable, we obtain

E

[
G

∫ T

0

θ(t)d−S(t)

]
= E[Gθ0(S(t + h) − S(t))] = 0 ∀h > 0, ∀t ∈ [0, T ]. (3.16)

We can summarize this result in the following

Theorem 3.1. Let F ∈ L2(FT , P) be a claim. Suppose that there exists an optimal
solution (x∗, φ∗) ∈ R × A for Problem 3.1. Define G = F − x∗ − ∫ T

0 φ∗(t)d−S(t).
Then the process

S(t)E [G|Ht] , (3.17)

is an Ht-martingale.
Conversely, if there exists (x̂, φ̂) ∈ R × A such that (3.17) holds, then (x̂, φ̂) is

optimal.
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Proof. We choose θ0 = IA, A ∈ Ht, in (3.16). Hence, by using the definition of
conditional expectation and Eq. (3.16) we have∫

A

StE [G|Ht] dP =
∫

A

GStdP =
∫

A

GSt+hdP

=
∫

A

St+hE[G|Ht+h]dP =
∫

A

E [St+hE[G|Ht+h]|Ht] dP).

Hence the process S(t)E [G|Ht] is an Ht-martingale.
The second part of the Theorem follows by reversing the above argument.

Corollary 3.1. Let F ∈ L2(FT , P) be a claim. Suppose that there exists an optimal
solution (x∗, φ∗) ∈ R×A for Problem 3.1. If E [G|Ht] 	= 0 for a.a. (t, ω) ∈ [0, T ]×Ω,

then S(t) is a semimartingale with respect to Ht.

Proof. This is an immediate consequence of the well-known fact that the product
of two semimartingales is a semimartingale.

Here there are some examples when the enlargement of filtration does not hold,
i.e., when S(t) is not a semimartingale with respect to Ht. Assume Ht = FT for
all t ∈ [0, T ]. If St is an Ht-semimartingale with decomposition St = Mt + At,
where Mt is an Ht-local martingale and At an Ht-adapted finite variation process,
then Mt = E [MT |Ht] = E

[
MT |FT

]
= MT , i.e., St coincide with a finite variation

process. Since S(t) is continuous and has positive quadratic variation in every open
interval of [0, T ], we see that this is not possible. Hence in this case we cannot have
any enlargement of filtration.

We can generalize now the same argument to the case when Ht = Ft+δ(t) where
δ(t) > 0 for all t ∈ [0, T ).

Corollary 3.2. Let F ∈ L2(FT , P) be a claim and suppose that Ht = Ft+δ(t) where
δ(t) > 0 for all t ∈ [0, T ). If there exists an optimal solution (x∗, φ∗) ∈ R × A for
F, then F can be perfectly replicated by the insider trader.

Proof. By Theorem 3.1 we know that for h > 0,

E [S(t + h)E[G|Ht+h]|Ht] = S(t)E [G|Ht] ,

i.e.,

E
[
S(t + h)E

[
G|Ft+h+δ(t+h)

] |Ft+δ(t)

]
= S(t)E

[
G|Ft+δ(t)

]
.

If 0 ≤ h ≤ δ(t) this gives

S(t + h)E
[
G|Ft+δ(t)

]
= S(t)E

[
G|Ft+δ(t)

]
.

Since S(t + h) − S(t) 	= 0 for almost every (t, ω) ∈ (0, T )× Ω, we get that

E
[
G|Ft+δ(t)

]
= 0 for a.e. (t, ω) ∈ (0, T ) × Ω.
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Letting t → T we get by the martingale convergence theorem that

G = E[G|FT ] = 0,

and hence F is perfectly replicable.

If the optimal strategy for F does not exist, then we may still have replication
in the limit.

4. A Further Characterization of the Optimal Strategy

In this section we show that if the optimal strategy satisfies some additional deriv-
ability conditions, then it can be obtained as the solution of an equation involving
Malliavin derivatives. We denote by D

1,2 the space of Malliavin differentiable ran-
dom variables F such that ‖DF‖2

L2([0,T ]×Ω) < ∞.

Definition 4.1. (i) The set AD of strongly admissible portfolios is defined by

AD = A ∩ D,

where D is as in Definition 2.1.
(ii) We say that a claim F is smooth if F ∈ L2(FT , P) ∩ D

1,2.

Suppose now that the optimal strategy φ ∈ AD and that the claim F is smooth. If
φ is optimal, then by Theorem 3.1 we obtain that for every bounded Ht-measurable
random variable θ we have

0 = E[Gθ(S(t + h) − S(t))]

= E

[
Gθ

(∫ t+h

t

S(u)µ(u)du +
∫ t+h

t

S(u)σ(u)d−B(u)

)]
. (4.1)

By using the property of the forward integral, Eq. (4.1) can be rewritten as

0 = E

[
θ

(∫ t+h

t

S(u)µ(u)Gdu +
∫ t+h

t

S(u)σ(u)Gd−B1(u)

)]
. (4.2)

If in addition S(t)σ(t)G ∈ D, by Lemma 2.1 we have

∫ t+h

t

S(u)σ(u)Gd−B1(u) =
∫ t+h

t

S(u)σ(u)GδB1(u)

+
∫ t+h

t

D1,u(S(u)σ(u)G)du, (4.3)
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where D1,u represents the Malliavin derivative with respect to B1. Hence we can
rewrite Eq. (4.2) as

0 = E

[
θ

∫ t+h

t

(S(u)µ(u)G + D1,u(S(u)σ(u)G)) du

]
. (4.4)

Dividing by h and letting h → 0, we have

0 = E[θ (S(t)µ(t)G + D1,t(S(t)σ(t)G))] . (4.5)

Since Eq. (4.5) holds for every bounded Ht-measurable θ, we obtain the following
Theorem.

Theorem 4.1. Let F be a smooth claim. Suppose that there exists an optimal
solution (x∗, φ∗) ∈ R × AD for Problem 3.1 with σφ∗S ∈ L

1,2. Then, with G =
F − x∗ − ∫ T

0
φ∗(t)d−S(t), (x∗, φ∗) is the solution of

0 = S(t)µ(t)E [G|Ht] + S(t)σ(t)E [D1,tG|Ht] + E [GD1,t(S(t)σ(t))|Ht] . (4.6)

Conversely, if there exists (x̂, φ̂) ∈ R×A such that (4.6) holds, then (x̂, φ̂) is optimal.

We consider now the case when the enlargement of filtration holds and restate
Theorem 4.1 in this special case. In addition, the following result provides a partial
converse of Theorem 3.1. Suppose that S(t) is an Ht-semimartingale, i.e. that the
enlargement of the filtration holds. This is equivalent to assuming that there exists
an Ht-Brownian motion B̂1(t) and an Ht-adapted integrable process α(t) such that

B1(t) = B̂1(t) +
∫ t

0

α(s)ds. (4.7)

Fix t ∈ [0, T ) and choose an Ht-adapted process θ(s) = θ0χ[t,t+h)(s) ∈ AD where
θ0 is a Ht-measurable random variable. From Theorem 3.1 we have that

0 = E[G(S(t + h) − S(t))θ0]

= E

[
Gθ0

(∫ t+h

t

S(s)µ(s)ds +
∫ t+h

t

S(s)σ(s)d−B1(s)

)]

= E

[
Gθ0

(∫ t+h

t

S(s)(µ(s) + σ(s)α(s))ds +
∫ t+h

t

S(s)σ(s)dB̂1(s)

)]

= E

[
θ0

(∫ t+h

t

GS(s)(µ(s) + σ(s)α(s))ds +
∫ t+h

t

S(s)σ(s)D̂1,sGds

)]
,

where D̂1,t is the Malliavin derivative with respect to B̂1(t). Dividing by h and
letting h → 0 we obtain

E[θ0(GS(t)(µ(t) + σ(t)α(t)) + S(t)σ(t)D̂1,tG)] = 0. (4.8)

Since this holds for any Ht-measurable θ we conclude that

E[GS(t)(µ(t) + σ(t)α(t)) + S(t)σ(t)D̂1,tG|Ht] = 0. (4.9)

Hence we have proved:
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Theorem 4.2. Let F be a smooth claim. Suppose that there exists an optimal
solution (x∗, φ∗) ∈ R × AD for Problem 3.1 with σφ∗S ∈ D. Then, with G =
F − x∗ − ∫ T

0 φ∗(t)d−S(t), (x∗, φ∗) is the solution of

(µ(t) + σ(t)α(t))E [G|Ht] + σ(t)E[D̂1,tG|Ht] = 0, 0 ≤ t ≤ T. (4.10)

From now on we use Eq. (4.10) in order to study the optimal strategy φ∗. First note
that D̂1,tG = D̂1,tF − D̂1,t(

∫ T

0
φ∗(s)dS(s)) and

D̂1,t

(∫ T

0

φ∗(s)dS(s)

)

= D̂1,t

(∫ T

0

φ∗(s)S(s)(µ(s) + σ(s)α(s))ds +
∫ T

0

φ∗(s)S(s)σ(s)dB̂1(s)

)

=
∫ T

t

D̂1,t(S(s)(µ(s) + σ(s)α(s))φ∗(s))ds +
∫ T

t

D̂1,t(φ∗(s)S(s)σ(s))dB̂1(s))

+ φ∗(t)S(t)σ(t).

Hence

E

[
D̂1,t

(∫ T

0

φ∗(s)dS(s)
)∣∣∣∣∣Ht

]

= E

[∫ T

t

D̂1,t (φ∗(s)S(s)(µ(s) + σ(s)α(s)))ds

∣∣∣∣∣Ht

]
+ φ∗(t)S(t)σ(t).

Corollary 4.1. Let F be a smooth claim. Suppose that there exists an optimal
solution (x∗, φ∗) ∈ R ×AD for Problem 3.1. Then

(µ(t) + σ(t)α(t))

(
E [F |Ht] − x∗ − E

[∫ T

0

φ∗(s)dS(s)

∣∣∣∣∣Ht

])

+ σ(t)

(
E[D̂1,tF |Ht] − E

[∫ T

t

D̂1,t (φ∗(s)S(s)(µ(s) + σ(s)α(s)))ds

∣∣∣∣∣Ht

])
−φ∗(t)S(t)σ2(t) = 0. (4.11)

Since the optimal price x∗ (if it exists), it is given by Eq. (3.13), we have that
Eq. (4.11) characterizes completely the optimal strategy φ∗(t) even if it cannot
be easily solved. Indeed the problem of computing explicitly the mean-variance
hedging strategy is already quite complicated also in the honest trader case. See for
example [5, 25, 34, 39].

Corollary 4.2. Suppose (x∗, φ∗) ∈ R ×AD is optimal and

µ(t) + σ(t)α(t) = 0 for a.a. (t, ω).
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Then

φ∗(t)S(t)σ(t) = E[D̂1,tF |Ht].

This result is related to the Clark–Ocone Theorem, which states that any smooth
claim F can be given by the representation

F = E[F ] +
∫ T

0

E[D̂1,tF |Ht]dB̂1(t) +
∫ T

0

E[D̂2,tF |Ht]dB̂2(t).

If µ(t) + σ(t)α(t) = 0 then

dS(t) = σ(t)S(t)dB̂1(t).

Corollary 4.3. If F is a smooth claim, then (x∗, φ∗) = (0, 0) is optimal if and only
if F satisfies

(µ(s) + σ(s)α(s))E [F |Ht] + σ(t)E[D̂1,tF |Ht] = 0.

Unfortunately even in the case when an optimal strategy exists, it is not in general
unique as shown by the following example.

Example 4.1. Suppose that µ(t) = 0 almost everywhere for every t ∈ (0, T ).
We recall that F1

t and F2
t are the filtrations generated respectively by B1

t and
B2

t . Consider now the case when Ht ⊃ F1
T for every t. Then, the process ψ(t) =

B1(T )−2B1(t)
σ(t)S(t) belongs to the space AD of strongly admissible strategies and we have∫ T

0

ψ(t)d−B1(t) =
∫ T

0

(B1(T ) − 2B1(t))d−B1(t) = T. (4.12)

Hence, if (x∗, φ∗) is an optimal strategy for Problem 3.1, then (x∗ − T, φ∗ + ψ) is
optimal too. We conclude that in general the optimal strategy may be not unique.

5. The Mean-Variance Portfolio Problem for an Insider

From now on let A be the set of all Ht-adapted càglàd processes φ ∈ Dom2δ
−.

We now study in detail the following problem. Let X(φ)(t) denote the wealth at
time t of an insider using the portfolio φ(t) ∈ A. Consider the problem of finding a
portfolio which minimizes the variance

Var[X(φ)(T )] = E
[
(X(φ)(T ) − E

[
X(φ)(T )

]
)2
]
, (5.1)

under the condition that

E
[
X(φ)(T )

]
= A, (5.2)

where A is a given constant. An optimal portfolio for this problem is called an
“efficient strategy” and the pair (Var[Xφ∗

(T )], A) an “efficient point”. The set of
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all efficient points is called the “efficient frontier”. See [15] for more information on
this point. By the Lagrange multiplier method we are led to study the expression

E[(X(φ)(T )−A)2−λ(X(φ)(T )−A)] = E

[(
X(φ)(T ) −

(
λ

2
+ A

))2
]
− λ2

4
, (5.3)

for given λ ∈ R. Thus the problem is equivalent to minimizing, for a given a ∈ R,

J(φ) = [(X(φ)(T ) − a)2], (5.4)

over all admissible insider strategies φ ∈ A.
In the classical, honest trader, case this problem has been studied by many

researchers. See for example [25, 27, 39].
To the best of our knowledge this is the first time this problem is discussed in an

insider context. Here we address this problem using both the results of Sec. 4 and the
properties of the initial enlargement of filtration. In [7] a feedback representation for
the difference process between the honest trader and the insider optimal strategies is
provided only in some particular stochastic volatility models, while in more general
settings the author is able to compare only one of the terms in the mean-variance
hedging backward equation characterizing the two optimal strategies.

For simplicity we assume that the market is simply given by

(bond price) S0(t) = 1, 0 ≤ t ≤ T,

(stock price) S1(t) = B(t), 0 ≤ t ≤ T,

where B(t) = B1(t) is 1-dimensional Brownian motion with filtration Ft. We
remark that all the following results hold with suitable modification and can
be obtained with the same method also when S1(t) = E(∫ σ(s)dB(s)

)
t

=

exp
(∫ t

0 σ(s)dB(s) − 1
2

∫ t

0 σ2(s)ds
)
, for deterministic σ(t) such that the stochastic

exponential E(∫ σ(s)dB(s)
)

t
is well defined. The insider filtration is

Ht = Ft ∨ σ(B(T0)), 0 ≤ t ≤ T, (5.5)

where T0 ≥ T is some given constant. Hence the problem is to find

J∗(T ) := inf
φ∈A

JT (φ), (5.6)

where

JT (φ) = E

(a −
∫ T

0

φ(s)d−B(s)

)2
 . (5.7)

If T = T0, we see that by using the forward integral, as in Example 3.2, that problem
(5.6) has an optimal solution given by

φ̂(t) :=
a

T0
(B(T0) − 2B(t)), 0 ≤ t ≤ T0, (5.8)
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which corresponds to the variance J∗(T0) = JT0(φ̂) = Var(
∫ T0

0 φ̂(u)d−B(u)) = 0,
since

a =
∫ T0

0

φ̂(s)d−B(s). (5.9)

For T < T0, we see that the variance associated to φ̂(t) is given by

JT (φ̂) = E

(a −
∫ T

0

φ̂(s)d−B(s)

)2


= E

(∫ T0

T

φ̂(s)d−B(s)

)2
 = a2

(
1 − T

T0

)
. (5.10)

Hence we see that the insider can always obtain a smaller variance than the honest
trader. Unfortunately we cannot conclude that φ̂(t) is also optimal for the case
T < T0 since by lengthy computations we can show that it does not satisfy Eq.
(4.10). Hence we look for the optimal strategy of the insider by using the following
method instead.

By a result of Itô [20], B(t) is a semimartingale with respect to Ht. In fact, we
can write

B(t) = B̂(t) +
∫ t

0

α(s)ds, 0 ≤ t ≤ T, (5.11)

where B̂(t) is an Ht-Brownian motion and

α(t) =
B(T0) − B(t)

T0 − t
. (5.12)

By Lemma 2.2, the forward integral with respect to B(t) coincides with∫ t

0

φ(s)d−B(s) =
∫ t

0

φ(s)dB̂(s) +
∫ t

0

φ(s)α(s)ds, (5.13)

if φ ∈ A. If we rewrite Eq. (5.11) as

dB(t) =
−B(t)
T0 − t

dt +
B(T0)
T0 − t

dt + dB̂(t), (5.14)

we see that dividing by T0 − t and integrating, we get, if B(0) = 0,

B(t) =
t

T0
B(T0) + (T0 − t)

∫ t

0

1
T0 − s

dB̂(s), 0 ≤ t ≤ T. (5.15)

Since for the insider the value y = B(T0) is a “known” quantity, by using (5.13)
and (5.15) we reduce problem (5.6) to a classical stochastic control problem for each
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value of the parameter y = B(T0) ∈ R as follows. Note that

E

(a −
∫ T

0

φ(t)d−B(t)

)2


= E

E

(a −
∫ T

0

φ(t)d−B(t)

)2 ∣∣∣∣∣B(T0)



= E

E

(a −
∫ T

0

φ(t)d−B(t)

)2 ∣∣∣∣∣B(T0) = y


y=B(T0)



= E

E

(a −
∫ T

0

φ(t)dB(y)(t)

)2


y=B(T0)

 , (5.16)

where

B(y)(t) = B(y)(0) +
ty

T0
+ (T0 − t)

∫ t

0

1
T0 − s

dB̂(s), 0 ≤ t ≤ T. (5.17)

We can solve this by minimizing the inner part of this variance point-wise in y for
each y ∈ R and then take the expectation when evaluated at y = B(T0).

More precisely, for each y we let A(y) be the set of Ft-adapted portfolios φ ∈ A
(which are allowed to depend on y) and we study the problem

Problem 5.1. (Mean-variance insider portfolio problem) For each y ∈ R find φ∗ =
φ∗

y ∈ A(y) and J∗
y (T ) such that

J∗
y (T ) = inf

φ∈A(y)
E

(a −
∫ T

0

φ(t)dB(y)(t)

)2
 = E

(a −
∫ T

0

φ∗(t)dB(y)(t)

)2
 ,

(5.18)

where

dB(y)(t) =
(

y

T0
−
∫ t

0

1
T0 − s

dB̂(s)
)

dt + dB̂(t), (5.19)

where a is a known constant.

Remark 5.1. By the above we conclude that the corresponding solution of the
problem (5.6) is

J∗(T ) = inf
φ∈A

J(φ) = J(φ∗
B(T0)), (5.20)

where φ∗
B(T0) = (φ∗

y)y=B(T0).
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We can make Problem 5.1 Markovian by introducing the system

dZ(t) =


dZ1(t)
dZ2(t)
dZ3(t)
dZ4(t)

 =


dt

dB(y)(t)
dM(t)
dX(t)



=


1

y

T0
− M(t)

0

φ(t)(
y

T0
− M(t))

 dt +


0

1
1

T0 − t
φ(t)

 dB̂(t), (5.21)

with

Z(0) =


s

b

m

x

 = z, (5.22)

where φ(t) is Ft-adapted (but may depend on y). This transforms Eq. (5.18) into
J∗

y (T ) = Fy(0, 0, 0, 0), where

Fy(z) = Fy(s, b, m, x) = inf
φ∈A(y)

Es,b,m,x

(a −
∫ T−s

0

φ(u)dB(y)(u)

)2
 . (5.23)

Thus we have transformed the original insider mean-variance portfolio problem
into a classical stochastic control problem which can be approached by dynamic
programming, as we now describe. In the following we will write F in the place of
Fy for the sake of simplicity.

The Hamilton–Jacobi–Bellman (HJB) equation for the problems (5.18)–(5.23)
is, with z = (s, b, m, x),

inf
ψ∈R

{
∂F

∂t
+
(

y

T0
− m

)
∂F

∂b
+ ψ

(
y

T0
− m

)
∂F

∂x
+

1
2

∂2F

∂b2
+

1
2

1
(T0 − t)2

∂2F

∂m2

+
1
2
ψ2 ∂2F

∂x2
+

1
T0 − t

∂2F

∂b∂m
+ ψ

∂2F

∂b∂x
+

ψ

T0 − t

∂2F

∂m∂x

}
= 0, t < T, (5.24)

F (T, b, m, x) = (a − x)2. (5.25)

It is easy to see that the infimum in (5.24) is attained when

ψ = ψ̂ = −
(

∂2F

∂x2

)−1 [(
y

T0
− m

)
∂F

∂x
+

∂2F

∂b∂x
+

1
T0 − t

∂2F

∂m∂x

]
, (5.26)
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if we assume that ∂2F
∂x2 	= 0. Substituted in (5.24) this gives

∂F

∂t
+
(

y

T0
− m

)
∂F

∂b
+

1
2

∂2F

∂b2
+

1
2

1
(T0 − t)2

∂2F

∂m2
+

1
2
ψ2 ∂2F

∂x2
+

1
T0 − t

∂2F

∂b∂m

− 1
2

(
∂2F

∂x2

)−1 [(
y

T0
− m

)
∂F

∂x
+

∂2F

∂b∂x
+

1
T0 − t

∂2F

∂m∂x

]2
= 0, t < T.

(5.27)

We try a solution of the form

F (t, b, m, x) = (a − x)2 exp [θ(t, b, m)], (5.28)

for some function θ : R
3 → R to be determined. This transforms (5.26) into

ψ = φ̂ = (a − x)
[

y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

]
, (5.29)

and (5.27) becomes

∂θ

∂t
+
(

y

T0
− m

)
∂θ

∂b
+

1
2

[
∂2θ

∂b2
+
(

∂θ

∂b

)2
]

+
1
2

1
(T0 − t)2

[
∂2θ

∂m2
+
(

∂θ

∂m

)2
]

+
1

T0 − t

[
∂2θ

∂b∂m
+

∂θ

∂b

∂θ

∂m

]
−
[

y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

]2
= 0, t < T,

(5.30)

with the boundary condition [from (5.25)]

θ(T, b, m) = 0. (5.31)

Equation (5.30) may be written as

∂θ

∂t
− 1

T0 − t

(
y

T0
− m

)
∂θ

∂m
+

1
2

∂2θ

∂b2
+

1
2

1
(T0 − t)2

∂2θ

∂m2
+

1
T0 − t

∂2θ

∂b∂m

− 1
2

(
y

T0
− m

)2

− 1
2

[
y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

]2
= 0, t < T. (5.32)

By using the approach of [35], we note that

min
v∈R

{
v

(
y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

)
+

1
2
v2

}

= −1
2

[
y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

]2
. (5.33)
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Therefore equation (5.32) can be written as

min
v∈R

{
∂θ

∂t
− 1

T0 − t

(
y

T0
− m

)
∂θ

∂m
+

1
2

∂2θ

∂b2
+

1
2

1
(T0 − t)2

∂2θ

∂m2
+

1
T0 − t

∂2θ

∂b∂m

−1
2

(
y

T0
− m

)2

+ v

(
y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

)
+

1
2
v2

}
= 0, t < T.

(5.34)

We note that

−1
2

(
y

T0
− m

)2

+ v

(
y

T0
− m

)
+

1
2
v2 = −

(
y

T0
− m

)2

+
1
2

(
y

T0
− m + v

)2

(5.35)

and rewrite equation (5.34) as

min
v∈R

{
∂θ

∂t
+

1
T0 − t

(
m − y

T0
+ v

)
∂θ

∂m
+ v

∂θ

∂b
+

1
2

∂2θ

∂b2
+

1
2

1
(T0 − t)2

∂2θ

∂m2

+
1

T0 − t

∂2θ

∂b∂m
−
(

y

T0
− m

)2

+
1
2

(
y

T0
− m + v

)2
}

= 0, t < T. (5.36)

We recognize (5.36) as the HJB equation of the following stochastic control problem:

θ(t, b, m) = λ(t, m), (5.37)

λ(s, m)= inf
u∈Â

Es,m

[∫ T−s

0

{
1
2

(
u(t) +

y

T0
− m̃(t)

)2

−
(

y

T0
− m̃(t)

)2
}

dt

]
, (5.38)

where the state process m̃(t) is given by

dm̃(t) =
1

T0 − t

(
m̃(t) − y

T0
+ u(t)

)
dt +

1
T0 − t

dW̃ (t), m̃(0) = m, (5.39)

where W̃ (t) is an auxiliary Brownian with filtration F̃t and Ã is the set
of all F̃t-adapted processes u(t) such that (5.39) has a unique solution with
E
[ ∫ T

0
m̃(t)2dt

]
<∞. If we consider v(t) = u(t) − m̃(t) + y

T0
and ζ(t) = m̃(t) − y

T0
,

we simplify problem (5.38) in the following way:

λ(s, ζ) = inf
v∈Ã

Es,ζ

[ ∫ T−s

0

{
1
2
v(t)2 − ζ(t)2 dt

}]
. (5.40)

This is a linear quadratic control (LQC) problem, hence we can solve it for example
by using the approach described in Example 11.2.4 of [31]. The solution of (5.40) is
given by

λ(t, ζ) = ψ(t)ζ2 + a(t), (5.41)

where ψ(t) is the solution of the following Riccati equation:

ψ′(t) = − 4
T0 − t

ψ(t) +
2

(T0 − t)2
ψ(t)2 + 1, (5.42)
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and a(t) is given by:

a(t) =
∫ T

t

σ(s)2ψ(s)ds =
∫ T

t

ψ(s)
(T0 − s)2

ds. (5.43)

By following the approach of [11], Sec. 3.2, we consider the change of variable

ψ(t) =
(T0 − t)2

2
d

dt
(log |η(t)|), (5.44)

to obtain the following linear second order differential equation (since t ≤ T < T0)

(T0 − t)2η′′(t) + 2(T0 − t)η′(t) + 2η(t) = 0. (5.45)

This is an Euler equation, with solution

η(t) = A1(T0 − t)γ1 + A2(T0 − t)γ2 , (5.46)

where A1, A2 are arbitrary constants and γ = γi, i = 1, 2 solves the equation

γ(γ − 1) − 2γ − 2 = 0, (5.47)

i.e., γ1 = 1 and γ2 = 2. Since η(t) is only determined up to a multiplicative constant,
we may choose A2 = 1

2 and put

η(t) = A1(T0 − t) +
1
2
(T0 − t)2. (5.48)

Since we have required that ψ(T ) = 0, by (5.44) we get

A1 = −(T0 − T ), (5.49)

and consequently

ψ(t) = −1
2
(T0 − t)2

−A1 − (T0 − t)
A1(T0 − t) + 1

2 (T0 − t)2
=

(T0 − t)(T − t)
2T − T0 − t

. (5.50)

The solution ψ(t) presents a singularity if T > T0
2 . Hence, we restrict ourselves to

the case when T < T0
2 . If T < T0

2 , we can gather all our results together and get

λ(t, ζ) = ψ(t)ζ2 + a(t), (5.51)

i.e.,

θ(t, b, m) = ψ(t)
(

m − y

T0

)2

+ a(t), (5.52)

where

a(t) =
∫ T

t

ψ(s)
(T0 − s)2

ds = −1
2

log
[

(T0 − T )2

(T0 − t)(T0 + t − 2T )

]
. (5.53)
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By (5.28) the optimal value function for our mean-variance hedging problem is

F = Fy(t, b, m, x) = (x − a)2 exp[θ(t, b, m)]

= (x − a)2 exp
[
ψ(t)

(
m − y

T0

)2

+ a(t)
]
. (5.54)

In feedback form, by (5.29) we see that the optimal strategy for the insider is
given by

φ∗
y = (a − x)

[
y

T0
− m +

∂θ

∂b
+

1
T0 − t

∂θ

∂m

]
= (a − x)

[
y

T0
− m +

ψ(t)
T0 − t

]
. (5.55)

By Remark 5.1 we obtain that the optimal value function for (5.6) is given by

J∗(T ) = inf
y∈A

J(φ) = E
[
Fy(0, 0, 0, 0)y=B(T0)

]
= a2E

[
exp
[
−ψ(0)

B2(T0)
T 2

0

+ a(0)
]]

= a2

(
1 − T

T0 − T

)
, (5.56)

since B(T0) is a Gaussian random variable N(0, T0).
Analogously, if we put y = B(T0) in (5.55), the optimal strategy for the insider

trader is given by (in a feedback form):

φ∗(t) = (a − X∗(t))

[
B(T0)

T0
−
∫ t

0

dB̂(s)
T0 − s

+
ψ(t)

T0 − t

]

=
a − X∗(t)

T0 − t
[B(T0) − B(t) + ψ(t)] , (5.57)

with

X∗(t) =
∫ t

0

φ∗(u)
(

B(T0)
T0

− M(u)
)

du +
∫ t

0

φ∗(u)dB̂(u)

=
∫ t

0

φ∗(u)d−B(u), (5.58)

where the last equality follows by (5.14). One can check that a process φ∗(t) that
solves (5.57) is admissible. We summarize our results in the following

Theorem 5.1. Consider the initial enlargement of filtration Ht = Ft ∨ σ(B(T0)).
Then for problem (5.6) the following holds:

1. For T = T0, there exists an optimal portfolio φ∗(t) given by

φ∗(t) = φ̂(t) =
a

T0
(B(T0) − 2B(t)), 0 ≤ t ≤ T0, (5.59)

which corresponds to the minimal variance J∗(T0) = JT0(φ∗) = 0.
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a2

T0/2 T0

J*(T)

T

J*(T)

Fig. 1. The value function J∗(T ).

2. For 0 < T < T0
2 , there exists an optimal portfolio φ∗(t) given in feedback form by

φ∗(t) =
a − X∗(t)

T0 − t
[B(T0) − B(t) + ψ(t)], (5.60)

where X∗(t) =
∫ t

0
φ∗(u)d−B(u) and ψ(t) = (T0−t)(T−t)

2T−T0−t . This corresponds to the
minimal variance

J∗(T ) = JT (φ∗) = inf
y∈A

J(φ) = E
[
Fy(0, 0, 0, 0)y=B(T0)

]
= a2

(
1 − T

T0 − T

)
. (5.61)

3. For T0
2 ≤ T < T0, we have

J∗(T ) = JT (φ∗) = inf
y∈A

J(φ) = 0, (5.62)

but an optimal portfolio φ∗ does not exist.

For an illustration of these cases, see Fig. 1.

Proof. We have already proved statements 1 and 2. It remains to prove 3. First
note that by (5.61) we have

lim
S→T

−
0
2

J∗(S) = 0. (5.63)

Next, note that with T0 fixed the function T → J∗(T ) is decreasing, since the space
of admissible strategies for the interval [0, T ] increases with T . Hence we have

J∗(T ) ≤ J∗(S), for all S <
T0

2
≤ T ≤ T0, (5.64)
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and therefore

J∗(T ) ≤ lim
S→T

−
0
2

J∗(S) = 0 for
T0

2
≤ T ≤ T0, (5.65)

as claimed.
Finally, we claim that if T < T0 then there does not exist φ∗

y ∈ A(y) such that∫ T

0

φ∗
y(t)dB(t) = a a.s. for all y ∈ R. (5.66)

To see this, assume that (5.66) holds. Then by (5.9) we have, with φ̂y(t) = a
T0

(y −
2B(t)), ∫ T0

0

φ̂y(t)dB(t) = a =
∫ T

0

φ∗
y(t)dB(t). (5.67)

Hence ∫ T

0

(φ∗
y(t) − φ̂y(t))dB(t) =

∫ T0

T

φ̂y(t)dB(t), (5.68)

which implies that∫ T

0

(φ∗
y(t) − φ̂y(t))dB(t) = E

[∫ T

0

(φ∗
y(t) − φ̂y(t))dB(t)|FT

]

= E

[∫ T0

T

φ̂y(t)dB(t)|FT

]
= 0.

But then∫ T

0

φ∗
y(t)dB(t) =

∫ T

0

a

T0
(y − 2B(t))dB(t) =

a

T0
[B(T )(y − B(T )) + T ] 	= a.

(5.69)

This contradiction shows that (5.66) cannot hold. This completes the proof of
Theorem 5.1.
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[3] J. Asch and J. Potthoff, Itô lemma without non-anticipatory conditions, Probability
Theory and Related Fields 88 (1991) 17–46.



November 22, 2006 12:22 WSPC-104-IJTAF SPI-J071 00399

1374 F. Biagini & B. Øksendal

[4] M. A. Berger and V. J. Mizel, An extension of the stochastic integral, Annals of
Probability 10 (1982) 235–450.

[5] F. Biagini, P. Guasoni and M. Pratelli, Mean-variance hedging for stochastic volatility
models, Mathematical Finance 10 (2000) 109–123.

[6] F. Biagini and B. Øksendal, A general stochastic calculus approach to insider trading,
Applied Mathematics and Optimization 52 (2005) 167–181.

[7] L. Campi, Some results on quadratic hedging with insider trading, Stochastics 77
(2005) 327–348.

[8] J. M. Corcuera, P. Imkeller, A. Kohatsu-Higa and D. Nualart, Additional utility of
insiders with imperfect dynamical information, Finance Stochast. 8 (2004) 437–450.

[9] G. Di Nunno, T. Meyer-Brandis, B. Øksendal and F. Proske, Optimal portfolio for an
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