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Abstract. The mean-variance hedging approach for pricing and
hedging claims in incomplete markets was originally introduced for
risky assets. The aim of this paper is to apply the mean-variance
hedging approach to interest rate models in presence of stochastic
volatility, seen as a result of incomplete information. We set a
finite number of bonds such that the volatility matrix is invertible
and provide an explicit formula for the density of the variance-
optimal measure which is independent by the chosen times of ma-
turity.
Finally, we compute the mean-variance hedging strategy for a caplet
and compare it with the optimal one according to the local risk
minimizing approach.
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1. Introduction

The mean-variance hedging approach for pricing and hedging claims
in incomplete markets was originally introduced for risky assets by sev-
eral authors. Schweizer (1999) presents a general overview of the main
results of the mean-variance hedging theory and a complete bibliogra-
phy.
A typical example of market incompleteness is given by stochastic
volatility models. For risky assets, the mean-variance hedging criterion
has been analyzed in models where the volatility follows a diffusion by
Laurent and Pham (1999) and where the volatility jumps by Biagini,
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Guasoni and Pratelli (2000).
The aim of this paper is to apply the mean-variance hedging approach
to interest rate models in presence of stochastic volatility. Several sto-
chastic volatility models for bonds have been proposed in literature
(Longstaff and Schwartz (1992), Chiarella and Kwon (2000)). Here a
stochastic volatility model is seen as a model with incomplete infor-
mation as in the approach introduced for risky assets by Föllmer and
Schweizer (1991). In a Heath-Jarrow-Morton framework, we suppose
that the forward rate volatility is affected by an additional source of
randomness and is measurable with respect to a filtration larger than
the one available to the agent. In this setting the market is incom-
plete in spite of the fact that in principle an infinite number of bonds
is available for trade. Since a perfect replication is not possible, we
compute the variance-optimal measure’s density in order to find the
mean-variance optimal strategy for a given European option. We re-
mark that we consider only self-financing portfolios composed by a
finite number of bonds as in the approach of Musiela and Rutkowski
(1997).

2. The Model

We introduce here our basic model. Our set of states of natures is
given by the product probability space (Ω × E,FW ⊗ E , PW ⊗ PE),
where (Ω,FW ,FW

t , PW ) and (E, E , Et, PE) are two complete filtered
probability spaces. In particular, all filtrations are supposed to satisfy
the so-called “usual hypothesis”. We assume that Wt is a standard n-
dimensional Brownian motion on Ω = C([0, T ],R), PW is the Wiener
measure and FW

t is the PW -augmentation of the filtration generated
by Wt.
The space E represents an additional source of randomness which af-
fects the market. In the terminology of Föllmer and Schweizer (1991),
the market is now incomplete as a result of incomplete information: if
the evolution of η had been known the market would be complete.
We suppose that there exists on E a square integrable (eventually d-
dimensional) martingale Mt endowed with the predictable representa-
tion property, i.e. for every square integrable martingale Nt there exists
a predictable process Ht such that Nt = N0 +

∫ t

0
HsdMs.

We analyze the mean-variance hedging criterion in the case of inter-
est rates models. The assets to be considered on the market are zero
coupon bonds with different maturities. By following the notation of
Björk (1998), we denote by p(t, T ) the price at time t of a bond matur-
ing at time T , where for every fixed T , the process p(t, T ) is an optional
stochastic process such that p(t, t) = 1 for all t.
We assume that there exists a frictionless market for T -bonds for every
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T > 0 and that for every fixed t, p(t, T ) is almost surely differentiable
in the T -variable.

The forward rate f(t, T ) is defined as f(t, T ) = −∂ log p(t, T )

∂T
and

the short rate as rt = f(t, t) . The money market account is given by

the process Bt = exp (
∫ t

0
rsds).

According to the Heath-Jarrow-Morton approach (see Heath, Jarrow
and Morton (1992) for further details), we describe the forward rate
dynamics. In this setting, f(t, T ) is represented by a process on the
product probability space (Ω× E,FW ⊗ E , PW ⊗ PE) such that

df(t, T, η) = α(t, T, η)dt+ σ(t, T, η)dWt (1)

with initial condition f(0, T, η) = f∗(0, T ). We make the following
assumptions:

i) The equation (1) admits PE-a.e. a unique strong solution with
respect to the filtration FW

t . For example, it is sufficient that
µ and σ are PE-a.e. bounded.

ii) The information available at time t is given by the filtration
Ft = FW

t ⊗ Et.
iii) There exists a predictable Rn-valued process ht such that the

integral
∫
hsdWs is well defined and

α(t, T, η) = σ(t, T, η)

∫ T

t

σ(t, s, η)ds− σ(t, T, η)ht(η) (HJM)

for every T ≥ 0. This condition is usually addressed as
the Heath-Jarrow-Morton condition on the drift. In general,
it guarantees the existence of an equivalent martingale measure

for
p(t, T )

Bt

as long as E
(∫

hdW
)
is a uniformly integrable mar-

tingale. In the complete market case, it is even sufficient to
characterize the unique martingale measure, while in this set-
ting of incomplete information there exists an infinite number
of them.

By Proposition 15.5 of Björk (1998), we obtain the bond price dy-
namics:

dp(t, T )

p(t, T )
= (r(t, η) +

1

2
‖S(t, T, η)‖2 + A(t, T, η))dt+ S(t, T, η)dWt

where

(1) Si(t, T, η) = −
∫ T

t
σi(t, s, η)ds

(2) A(t, T, η) = −
∫ T

t
α(t, s, η)ds

Since in principle an infinite number of bonds is available for trade,
one can suppose that the market is complete in spite of lack of in-
formation. This is not true since the future evolution of η cannot be
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predicted neither through the observation of the entire term structure.
For a rigorous proof of this fact, see the doctoral dissertation of Biagini
(2001).

In this setting, the market would be complete if one had access to the
filtration F̃t = FW

t ⊗E , which contains at any time all the information
about past and future evolution of η. In terms of conditions on the
volatility matrix, by Proposition 4.3 by Björk (1997) we obtain that
this fact boils down to assume the existence of n times of maturity
T1, . . . , Tn, where n = dimWt, such that the matrix of elements [At]ji =∫ Tj

T0
σi(t, s)ds has rank equal to n for every t ∈ [0, T0] and for PE-almost

every η ∈ E. We assume it as standing hypothesis in the sequel. For
instance, sufficient conditions implying the existence of such maturities
are given by Proposition 5.5 and Theorem 5.6 of Björk, Kabanov and
Runggaldier (1997).

3. The Variance-Optimal Measure for Interest Rates

In this framework, we study the problem of an agent wishing to
hedge a certain European option H expiring at time T0 by using a self-
financing portfolio composed by a finite number of bonds of convenient
maturities and eventually by the money market account Bt. In the

sequel, for the sake of simplicity we will write
dQ

dP
instead of

dQ

dP

∣∣
FT0

.

Since a perfect replication is not possible, we look for a solution to the
minimization problem:

minE
[
(H − VT0)

2] (2)

Usually the money market account Bt = exp
(∫ t

0
r(s, η)ds

)
is used as

discounting factor. Now the spot rate is stochastic, so the choice of Bt

as numéraire becomes unfortunate. In Sekine (1999), the impact of a
stochastic interest rate is analyzed in a Markovian framework for the
futures case. If the chosen discounting factor is a stochastic process, by
Gouriéroux, Laurent and Pham (1998) we get that the minimization
problem

minE
[
(H − VT0)

2
]

is equivalent to

minEB

[
(
H

BT0

− VT0

BT0

)2
]

where EB is the expectation under the equivalent probability PB

with density
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dPB

dP
=

B2
T0

E
[
B2

T0

]
In order to avoid the computation of the new bond dynamics under

PB, we can choose as numéraire the bond p(t, T0) expiring at the same
time of maturity as H. We immediately have

dP T0

dP
=

p(T0, T0)
2

E [p(T0, T0)2]
= 1

or in other words P T0 ≡ P .
We choose T1 < · · · < Tn times of maturity such that such that the

matrix
∫ Tj

T0
σi(t, s)ds is PE-a.e. invertible for every t and set Xj

t =

p(t, Tj)

p(t, T0)
, j = 1, . . . , n. We define

Θ =

{
θ ∈ L(X) :

∫
θdX ∈ S2

}
where S2 is the space of square-integrable semimartingales and L(X)

is the set of integrable processes with respect to Xt.

Definition 3.1. A Rn+1-valued predictable process (θ0, θ), with θ =

(θ1, . . . , θn), is a self-financing strategy if the wealth process Vt =∑n
i=0 θ

j
tp(t, Tj) satisfies Vt = V0 +

∑n
i=0

∫ t

0
θjudp(u, Tj). Since under

the numéraire p(t, T0), the portfolio’s discounted value is given by
Vt

p(t, T0)
=

V0

p(0, T0)
+

∫ t

0

θudXu, we assume that θ belongs to Θ.

More precisely, we are not simply interested in a self-financing port-
folio whose final value has minimal quadratic distance by H, but we
look for a solution to the minimization problem:

min
V0∈R
θ∈Θ

E
[
(H − V0 −GT0(θ))

2] (3)

where Gt(θ) =

∫ t

0

θsdXs. The space of integrals G = GT0(Θ) rep-

resents the self-financing strategies with initial value V0 = 0. Hence,
by following Schweizer (1999), we impose on the underlying financial
market the so-called no-approximate profit condition:

1 /∈ Ḡ (4)

which represents a sort of no-arbitrage condition. Here Ḡ is the
closure of G in L2.
Problem (3) admits a unique solution (V0, θ) for all H ∈ L2 under
the hypothesis that GT0(Θ) is closed (see Gouriéroux, Laurent and
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Pham, 1998, and Rheiländer and Schweizer, 1997, for the proof). In
this case, θ is called the mean-variance optimal strategy and V0 the
approximation price and they can be computed in terms of the so-called
variance-optimal measure (Schweizer (1996), Rheiländer and Schweizer
(1997)).

We denote as M2
s(T1, . . . , Tn) and M2

e(T1, . . . , Tn) respectively the
set of signed martingale measures and the set of equivalent martingale

measures for Xj
t =

p(t, Tj)

p(t, T0)
, j = 1, . . . , n.

Definition 3.2. The variance-optimal measure P̃ 0 is the element of

M2
s(T1, . . . , Tn) of minimal norm, where for every Q ∈ M2

s(T1, . . . , Tn)

‖dQ
dP

‖2 = E

[
(
dQ

dP
)2
]

If M2
s(T1, . . . , Tn) is nonempty, then P̃ always exists, as it is the

minimizer of the norm in a convex set, and is actually an equivalent
martingale measure if Xt has continuous paths (Delbaen and Schacher-

mayer, 1996). Apparently, Definition 3.2 of P̃ 0 depends on the chosen
maturities T1, . . . , Tn. Theorem 3.3 provides an explicit expression for
the variance-optimal martingale measure’s density and shows that it
is actually invariant under a change of the set of maturities if the ma-

trix
∫ Tj

T0
σi(t, s)ds is PE-a.e. invertible for every t. Its proof follows by

Lemma 7.3 contained in the Appendix.

Theorem 3.3. Let H,K be two predictable processes such that the ex-

ponential martingales E
(
−
∫ ·
0
(hs(η) + S(s, T0, η))dWs +

∫ ·
0
KsdMs

)
and

E
(∫ ·

0
(−hs(η)− S(s, T0, η) +Hs)dŴs

)
are square-integrable. Then

dP̃ 0

dP
= E

(
−
∫ ·

0

(hs(η) + S(s, T0, η))dWs +

∫ ·

0

KsdMs

)
T0

(5)

or equivalently

dP̃ 0

dP
=

E
(
−
∫ ·
0
βsdXs

)
T0

E
[
E
(
−
∫ ·
0
βsdXs

)
T0

] (6)

where H,K are solutions of the equation (13) of Lemma 7.3 and

βj
s =

p(s, T0)

p(s, Tj)

∑
i

(hi
s(η) + Si(s, T0, η))−H i

s)[A
−1
s ]ij.

In particular, if σ(t, T, η, ω) = σ(t, T, η), by Biagini, Guasoni and

Pratelli (2000) we obtain that the density of P̃ has the form
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dP̃

dP
= E

(
−
∫ ·

0

λsdWs

)
T0

exp
(
−
∫ T0

0
‖λs‖2ds

)
E
[
exp

(
−
∫ T0

0
‖λs‖2ds

)] (7)

where λt = ht(η) + S(t, T0, η).

4. Examples

Here we illustrate some examples where the stochastic volatility is a
consequence of incomplete information and show how to construct the
additional probability space (E, E , E , PE) and the martingale Mt on E
with the representation property.
The Heath-Jarrow-Morton condition on the drift allows us to model
only the forward rate volatility σ(t, T, η) and ht(η). Without loss of
generality, we suppose that ht(η) is affected by the same behavior as
σ(t, T ) and we model only the volatility σ(t, T ).

Example 4.1. First we consider the case when dimWt = 1 and

σ(t, T ) = σ0I{t<η,t≤T} + σ1I{t≥η,t≤T}

where σ0, σ1 ∈ R+ and η is a totally inaccessible stopping time. Here

we set E = R+, Et = B([0, t]) ∨ (t,+∞] and a fundamental martingale

is given by Mt = I{t≥η}−at, where at is the compensator of the process

I{t≥η} associated to η.

More generically η can be assumed to be a Markov process ηt in con-

tinuous time with a finite set of states I. This example models the

situation when the volatility has multiple jumps occurring at indepen-

dent random times.

Example 4.2. If in Example 4.1 the volatility assumes values after

the jump according to a general probability distribution, there does

not exist a finite set of martingales with the predictable representation

property. By following Jacod and Shiryaev (1987), we can substitute

Mt with the compensated integer-valued random measure µ − ν asso-

ciated to ηt, which has the predictable representation property with

respect to the smallest filtration under which µ is optional.
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Example 4.3. Finally ηt can be given by a diffusion process

df(t, T ) = α(t, T, ηt)dt+ σ(t, T, ηt)dW
1
t

dηt = F (t, T, ηt)dt+G(t, T, ηt)dW
2
t

whereW 1
t can be correlated withW 2

t . This example has been studied

in the case of risky assets by using dynamic programming techniques

in Laurent and Pham (1999). Clearly, here Mt = W 2
t .

5. Mean-Variance Hedging for a Call Option

As in Biagini and Guasoni (1999), we suppose now that σ(t, T, ω, η) =
σ(t, T, η). We remark that in this particular case the variance-optimal
density is given by (7). We compute now the mean-variance optimal
strategy for a call option expiring at time T0 on a T1-bond (T0 < T1) by
exploiting the explicit characterization for the variance-optimal mea-
sure’s density provided by Theorem 3.3. Let T1 < T2 < · · · < Tn

be maturities such that the matrix
∫ Tj

T0
σi(t, s)ds is PE-a.e. invertible

for every t. If there exists at least an equivalent martingale mea-

sure for Xj
t =

p(t, Tj)

p(t, T0)
, j = 1, . . . , n, and the space of integrands

GT0(Θ) is closed, the variance-optimal strategy for the call option
H = (P (T0, T1)−K)+ is given by the following

Proposition 5.1. If p(T0, T1) is square-integrable with respect to P̃ ,

the components θj of the variance-optimal strategy are given in the

following feedback form:

(1) for j = 1

θ1t = ξ1t − β1
t (ξ

1
t

p(t, T1)

p(t, T0)
−Kξ0t − Ẽ0

[
(p(T0, T1)−K)+

]
−
∫ t

0

θsdXs)

(2) for j > 1

θjt = −βj
t (ξ

1
t

p(t, T1)

p(t, T0)
−Kξ0t − Ẽ0

[
(p(T0, T1)−K)+

]
−
∫ t

0

θsdXs)

where ξ0t = −KẼ0 [1A| Ft−], ξ̃
1
t = Ẽ1 [1A| Ft−] with A = {p(T0, T1) ≥ K}

and βj
t =

p(t, T0)

p(t, Tj)

∑
i

(hi
t(η) + Si(t, T0, η))[A

−1
t ]ij.

Proof. We need to compute all terms in the implicit characterization of

the mean-variance optimal strategy given in Theorem 6 by Rheiländer
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and Schweizer (1997).

By Schweizer (1996), it follows that c = Ẽ0
[
(p(T0, T1)−K)+

]
.

By Theorem 3.3 we obtain that

ζ̃jt

Z̃t

= βj
t =

p(t, T0)

p(t, Tj)

∑
i

(hi
t + Si(t, T0, η))[A

−1
t ]ij

In order to compute ξjt , note that with respect to the “enlarged”

filtration F̃t = Ft ⊗ ET0 that contains all information about η, H can

be perfectly replicated by the self-financing portfolio Ẽ0
[
H

∣∣∣F̃t

]
. If

we denote ξ̃jt the portfolio component with respect to p(t, Tj), by the

standard theory of complete markets we obtain ξ̃0t = −KẼ0
[
1A

∣∣∣F̃t

]
,

ξ̃1t = Ẽ1
[
1A

∣∣∣F̃t

]
and ξ̃jt = 0 for every j 6= 0, 1. ξit is given by the pre-

dictable projection of ξ̃it with respect to Ft, i.e. ξ
0
t = −KẼ0 [1A| Ft−],

ξ1t = Ẽ1 [1A| Ft−] and ξit = 0 for every i 6= 0, 1. For further details, see

the doctoral dissertation of Biagini (2001).

Moreover, by applying these results and the change of numéraire tech-

nique introduced in Geman, El Karoui and Rochet (1995) to Ṽt =

Ẽ0 [(p(T0, T1)−K)+| Ft], we obtain:

Ṽt− = p(t, T1)Ẽ
1 [1A| Ft−]−Kp(t, T0)Ẽ

0 [1A| Ft−]

where A = {p(T0, T1) ≥ K}. �

We remark that the mean-variance optimal strategy depends on a
number of bonds equal to (dimWt + 1).
We apply these results in order to price and hedge the caplet H =

δ(
1− p(T0, T1)

δp(T0, T1)
− R)+ in this framework of incomplete information by

using the mean-variance hedging approach. We refer to Björk (1997)
for all definitions and properties concerning the caplets.
Since the caplet is settled in arrears, we consider H as a T1-option and
we choose p(t, T1) as discounting factor. The approximation price of H
is equal to Ẽ1 [H], where the expectation is done under the variance-
optimal measure with p(t, T1) as numéraire. The caplet can be written
as

H =
R∗

p(T0, T1)
(
1

R∗ − p(T0, T1))
+

where R∗ = 1 + δR. The approximation price is given by
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Ẽ1 [H] = R∗Ẽ1

[
1

p(T0, T1)
(
1

R∗ − p(T0, T1))
+

]
(8)

Since

dP̃ 1

dP̃ 0

∣∣
FT0

=
p(T0, T1)

p(T0, T0)
· p(0, T0)

p(0, T1)
(9)

we can exploit in (8) the change of numéraire technique obtaining

Ẽ1 [H] = R∗Ẽ0

[
(
1

R∗ − p(T0, T1))
+

]
H has the same approximation price of R∗ put options K = (

1

R∗ −
p(T0, T1))

+ on p(t, T1) expiring at time T0.

Remark 5.2. Since H is actually FT0-measurable, a natural question

is whether the mean-variance optimal strategy up to time T0 for T1-

option H coincides with (R∗ times) the one for the T0-put option K as

in the complete market case (see Björk, 1997). The answer is negative

as expected since ΘT0 ⊆ ΘT1 .

We fix (n+ 1) bonds p(t, T1), p(t, T2), . . . , p(t, Tn+1) such that the ma-

trix [Bt]ji =
∫ Tj

T1
σi(t, s)ds is invertible for every t PE-almost every-

where and put Y j
t =

p(t, Tj)

p(t, T1)
, j = 2, . . . , n + 1. Note that in or-

der to compute the two mean-variance hedging strategies, we need to

use the same assets for both. Consequently, we cannot choose p(t, T0)

since it is not defined after t = T0. All computations are done un-

der p(t, T1) as numéraire. We set Ṽt = p(t, T1)Ẽ
1 [H| Ft]. Recall that

Ṽt = R∗p(t, T1)Ẽ
1

[
K

p(T0, T1)

∣∣∣∣Ft

]
.

By Proposition 5.1, we obtain that

(1) for j > 2, the optimal components for H as T1-option are given

by

θj,1t = −βj
t (Ṽt− − Ṽ0 −

∫ t

0

θ1sdYs)

where βj
t =

p(t, T1)

p(t, Tj)

∑
i

(hi
t + S(t, T0, η))[B

−1
t ]ij.

(2) for j > 2, the optimal components for the T0-option R∗K are

given by
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θj,0t = −(βj
t + γ1

t )(Ṽt− − Ṽ0 −
∫ t

0

θ0sdYs)

where γ1
t is the solution of the following equation

dP T 1

dP
=

p(T0, T1)
2

E [p(T0, T1)2]
= E

(∫ ·

0

γ1
sdWs +

∫ ·

0

γ2
sdMs

)
T0

since the use of p(t, T1) as discounting factor for a T0-option

compels us to work under the probability P T1 .

We can easily conclude that two strategies do not coincide up to time

t = T0 unless γ1
t = 0, which is in general not the case.

In order to compute an approximation strategy for the caplet, we
can proceed like in the complete market case (see Björk, 1997). We

find the variance-optimal portfolio for the T0-put option K = (
1

R∗ −
p(T0, T1))

+ and invest the final value VT0 in p(t, T1) from time t = T0

to T1. As shown in Remark 5.2, this strategy is not the optimal one
for H. Nevertheless, this method results of some interest since the
strategy can be computed in terms of the “natural” assets p(t, T0) and
p(t, T1) and the approximation price Ẽ0 [K] for K coincides with the
approximation price Ẽ1 [H] for H.

6. A comparison with the local risk minimizing approach

An alternative approach in order to price and hedge a contingent
claim in the incomplete market case is represented by the local risk min-
imization one (for a complete treatment of the subject, see Schweizer,
1999). The main difference with respect to mean-variance hedging is
that a local risk minimizing strategy perfectly replicates the value of
a given option, but it is not self-financing. More precisely, suppose
we want to hedge a T0-option H by using a portfolio based on a fi-
nite number of bonds p(t, T0), p(t, T1), . . . , p(t, Tn) such that the matrix∫ Tj

T0
σi(t, s)ds is PE-a.e. invertible for every t. As in the previous sec-

tions, we set Xj
t =

p(t, Tj)

p(t, T0)
, j = 1, . . . , n. By exploiting the approach

of Biagini and Pratelli (1999), we have the following

Definition 6.1. An L2-strategy is a pair (θ, θ0) such that θ ∈ Θ ={
θ ∈ L(X) :

∫
θdX ∈ S2

}
and θ0 is a real predictable process such that

the value process left limit Vt− = θt · Xt + θ0t is square integrable for

0 ≤ t ≤ T0.
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The (cumulative) cost process is defined by Ct = Vt −
∫ t

0
θsdXs, 0 ≤

t ≤ T0 .

By Definition 6.1, we get that the portfolio’s jumps coincide with
the jumps in the cost process. In a self-financing portfolio, the cost is
constant.

Definition 6.2. Let H ∈ L2(FT0 , P ) be a contingent claim. An L2-

strategy (θ, θ0) with VT0 = H P − a.s. is called pseudo-locally risk-

minimizing or pseudo-optimal for H if the cost process Ct is a P -

martingale and is strongly orthogonal to the martingale part of X.

We remark that the optimal strategy is invariant under a change of
numéraire (for more details, see Biagini and Pratelli, 1999).
By Definition 6.2, it immediately follows that a contingent claim H ∈
L2(FT0 , P ) admits a pseudo-optimal strategy if and only if H can be
written as

H = H0 +

∫ T0

0

ξudXu + LT0 (10)

where H0 ∈ L2(FT0 , P ), ξ ∈ Θ and L is a square integrable martin-
gale strongly P -orthogonal to the martingale part of X. Equation (10)
is usually addressed in literature as the Föllmer-Schweizer decomposi-
tion of H. It is connected to a suitably chosen martingale measure, the
so-called minimal martingale measure.

Definition 6.3. P̂ 0 ∈ M2
e(T1, . . . , Tn) is the minimal measure (with

respect to p(t, T0) as numéraire) if any locally square integrable local

martingale which is orthogonal to the martingale part of X under P

remains a local martingale under P̂ 0.

By Definition 6.3 follows immediately that the pseudo-optimal port-

folio V̂ (φ) is a local P̂ 0-martingale and we get

V̂t(φ) = p(t, T0)Ê
0 [H| Ft]

The optimal portfolio is a true martingale if Ẑt = Ê0

[
dP̂ 0

dP

∣∣∣∣∣Ft

]
is itself a square-integrable martingale. By exploiting the results of
Theorem 3.3, we obtain that

dP̂ 0

dP
= E

(
−
∫ ·

0

(hs(η) + S(s, T0, η))dWs

)
T0
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define the minimal measure’s density as long as the Doleans Expo-
nential E

(
−
∫ ·
0
(hs(η) + S(s, T0, η))dWs

)
is a uniformly integrable mar-

tingale.
The pseudo-optimal strategy for a call option in presence of incomplete
information has been computed in Biagini and Pratelli (1999) for the
risky assets case. Their results can be easily extended to the interest
rate case. By Theorem 5.1 of Biagini and Pratelli (1999), we obtain
that the pseudo-optimal portfolio is given by

V̂t(φ) = p(t, T0)Ê
0 [H| Ft] = p(t, T1)Ê

1 [IA| Ft]−Kp(t, T0)Ê
0 [IA| Ft]

and the optimal strategy components are θ0t = −KÊ0 [1A| Ft−], θ
1
t =

Ê1 [1A| Ft−] and θjt = 0 for all j = 2, . . . , n. Note that in the local risk
minimization case, the pseudo-optimal strategy depends only on two
assets in spite of the dimension of the driving Brownian motion. On
the contrary, the mean-variance optimal strategy is based on (n + 1)
bonds, where n = dimWt.
We apply these results in order to compute the local risk minimizing
strategy for a caplet. In the same notation of the previous section, the

pseudo-optimal portfolio for the caplet H =
R∗

p(T0, T1)
(
1

R∗ −p(T0, T1))
+

is given by V̂t = p(t, T1)Ê
1 [H| Ft] which for t ≤ T0 coincides with the

optimal portfolio for the T0-put option K = (
1

R∗ − p(T0, T1))
+ since by

Theorem 3.2 of Biagini and Pratelli (1999) we have

dP̂ 1

dP̂ 0
= p(T0, T1)

p(0, T0)

p(0, T1)

For t > T0, V̂t = Ê [H| Ft] = H since H is FT0-measurable. In other
words, the pseudo-optimal portfolio for H is constant after t = T0.
Consequently, in the local risk-minimization case the strategies for the
T1-option H and for the T0-option K coincide up to time T0 and we
can behave exactly as in the complete market case. The key is that
in this approach we perfectly replicate the option value in spite of
approximating it as in the mean-variance hedging criterion.

7. Appendix

Here we simply sketch how to find an explicit characterization of P̃ 0

in order to solve the mean-variance hedging problem in the interest-rate
case. In the doctoral dissertation of Biagini (2001), all computations
are done to full extent.
In order to obtain an explicit formula for the variance-optimal measure,
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first we characterize the martingale measures for (
p(t, T )

p(t, T0)
)t∈[0,T0] for

every T > 0.

Lemma 7.1. Let Zt be a local martingale with Z0 = 1. The following

conditions are equivalent:

(1) Zt
p(t, T )

p(t, T0)
is a local martingale for every T > 0

(2) Zt = E
(
−
∫ ·
0
(hs + S(s, T0, η))dWs

)
t
(1 +

∫ t

0
ksdMs) for some

predictable process ks such that the integral
∫ t

0
ksdMs is a lo-

cal martingale.

Proof. (Wt,Mt) has the representation property on (Ω×E,F⊗E , PW⊗
PE), hence there exist predictable processes λt and kt such that

Zt = 1 +

∫ t

0

λsdWs +

∫ t

0

ksdMs

(see for example Biagini, Guasoni and Pratelli, 2000). By applying

Itô’s formula, we get that the process Zt
p(t, T )

p(t, T0)
is a local martingale if

and only if the process λt solves the following equation for every T > 0:

Zt−
∑
i

(hi
t(η) + Si(t, T0, η))

∫ T

T0

σi(t, s, η)ds+ λt

∫ T

T0

σi(t, s, η)ds = 0

(11)

Since we assume that there exist T1, . . . , Tn such that the matrix∫ Tj

T0
σi(t, s)ds is PE-a.e. invertible for every t, it follows immediately

that

λi
t = −(hi

t(η) + Si(t, T0, η))

for i = 1, . . . , n.

�

By equation (11) follows immediately that the set M2
s(T1, . . . , Tn) of

martingale measures for
p(t, Tj)

p(t, T0)
, j = 1, . . . , n, coincides with the set

M2
s(T ) of martingale measures for

p(t, T )

p(t, T0)
, T ≥ 0. We synthesize it in

the following
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Proposition 7.2. (1) If Q ∈ M2
s(T1, . . . , Tn), then

dQ

dP
= E

(
−
∫ ·

0

(hs(η) + S(s, T0, η))dWs

)
T0

(1 +

∫ T0

0

ksdMs)

for some predictable process kt such that the above expression

is square integrable.

(2) If Q ∈ M2
e(T1, . . . , Tn), then

dQ

dP
= E

(
−
∫ ·

0

(hs(η) + S(s, T0, η))dWs

)
T0

E
(∫ ·

0

ksdMs

)
T0

for some predictable process kt such that kt · ∆Mt > −1

and E
(
−
∫ ·
0
(hs(η) + S(s, T0, η))dWs +

∫ ·
0
ksdMs

)
t
is a square-

integrable martingale.

We define the two process Ŵt and W ∗
t as follows:

Ŵt = Wt +

∫ t

0

(hs(η) + S(s, T0, η))ds

W ∗
t = Wt + 2

∫ t

0

(hs(η) + S(s, T0, η))ds

Lemma 7.3 is quite technical, but together with Proposition 7.2 let
us write an explicit expression for the density of the variance-optimal
measure. Its proof is formally analogous to the one of Lemma 1.15 of
Biagini, Guasoni and Pratelli (2000).

Lemma 7.3. Let H,K be two predictable stochastic processes whose

stochastic integrals
∫ t

0
HsdW

∗
s and

∫ t

0
KsdMs are defined. The following

conditions are equivalent:

exp

(∫ T

0

‖(hs(η) + S(s, T0, η))‖2ds
)

= c
E
(∫ ·

0
HsdW

∗
s

)
T

E
(∫ ·

0
KsdMs

)
T

(12)

E
(
−
∫ ·

0

(hs(η) + S(s, T0, η))dWs +

∫ ·

0

KsdMs

)
T

=

= c E
(∫ ·

0

(−hs(η)− S(s, T0, η) +Hs)dŴs

)
T

(13)

where c is the same constant in both equations.
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We obtain the proof of Theorem 3.3 in the following way. Equation

(13) characterizes completely the variance-optimal measure P̃ 0 since
by Schweizer (1996) it is the unique martingale measure which can be

written in the form E
(∫

βdX
)
, where Xj

t =
p(t, Tj)

p(t, T0)
. By using the

equivalence stated in Lemma 7.3 we solve instead equation (12): since
a solution (H,K) always exists because of the representation property
of (Wt,Mt) on (Ω × E,F ⊗ E , PW ⊗ PE), we obtain equation (5) for
the variance-optimal measure’s density.
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