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Abstract

The “change of numéraire” technique has been introduced by Ge-
man, El Karoui and Rochet for pricing and hedging contingent claims
in the case of complete markets. In this article we study the “c. of n.”,
according to the “locally risk minimizing approach”, when the market
is not complete. We prove that, if the stochastic process which rep-
resents the prices is continuous, the l.r.m. strategy is invariant by a
change of numéraire (this result is false in the right-continuous case,
as it is shown by some counterexamples).
We also give an extension of Merton’s formula to the case of stochastic
volatility.
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1 Introduction

Hedging and pricing of contingent claims are two major issues in both theo-
retical and applied finance (see for instance [9] for general definitions): when
the market is complete, any sufficiently integrable contingent claim H is
the final value of a self-financing portfolio. More precisely, we have that
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H = V0 +
∫ T

0
ξs · dXs, where the multidimensional stochastic process Xt rep-

resents the random evolution of financial assets, the value V0 is the “arbitrage
price” of contingent claim H and the predictable process ξt represents the
“hedging strategy”.
The “change of numéraire” technique, introduced by Geman, El Karoui and
Rochet in [6] (see also [1] and [9]), turned out to be very powerful both for
pricing and hedging contingent claims. In [6] they are mainly concerned with
the case of complete markets; in [3], Delbaen and Schachermayer consider the
connections between the existence of equivalent martingale measures and the
change of numéraire, while in [7] Gouriéroux, Laurent and Pham investigate
the case of incomplete markets according to the “mean-variance hedging”
criterium.
In this paper we study the “change of numéraire” in the case of incomplet
markets according to the “locally risk minimizing” (shortly l.r.m. ) cri-
terium: the l.r.m. strategies were introduced in [5] for the martingale case
and extensively developped in the general case in [4] and in [11]. Differently
from [6] (where numéraire is whatever strictly positive stochastic process),
but according to the definition given in [7], a numéraire is for us the value
of a strictly positive self-financing portfolio (usually a particulare asset, or a
“index” or a combination of assets).
We remark that the definition of local risk minimizing strategy used in this
paper is slightly different from the usual one: this is because , according to
[5], the components of a l.r.m. strategy are predictable in the risky asset
but only adapted in the riskless asset. This definition cannot evidently be
invariant if one chooses another asset as a numéraire: we will give the link
between our definition and the original one.
The paper is organized as follows: in section 2 we introduce the model and
the definitions.
Section 3 contains the main result: if the stochastic process Xt, which models
the asset prices, is a continuous multidimensional semimartingale, the l.r.m.
strategy (if it exists) is invariant under a change of numéraire.
This result is false if Xt is only right-continuous: in section 4 we give two
counterexamples. The second one shows also that even a good property of
the filtration, such as “quasi-left continuity”, doesn’t guarantee this invari-
ance property.
Finally, section 5 contains an application of the previous results: we illus-
trate a generalization of the well-known “Merton’s formula” to the case of
stochastic volatility.
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2 General definitions

We consider a financial market where the price fluctuation of assets is given
by a d-dimensional stochastic process

Xt = (X1
t , . . . , Xd

t ), 0 ≤ t ≤ T, d ≥ 2

on a probability space (Ω,F ,P) endowed with a right-continuous filtration
(Ft)0≤t≤T . We assume that every component X i

t is a strictly positive and
continuous semimartingale (for general definitions on stochastic integration,
we refer to [2] or [10]).

Consider a d-dimensional predictable stochastic process Ht such that the
vector stochastic integral

∫ T

0
Hs · dXs is defined: in order to simplify the

notations, we will substitute the expression Yt − Y0 =
∫ t

0
HsdXs with the

compact one dYt = HtdXt. For instance, given F ∈ C2(R), Ito’s formula
becomes:

dF (t,Xt) =
∂F

∂t
(t,Xt)dt+

n∑
i=1

∂F

xi

(t,Xt)dX i
t +

1

2

n∑
i=1

∂2F

∂xi∂xj

(t,Xt)d〈X i, Xj〉t

Note that for two continuous semimartingales X i
t , Xj

t the quadratic co-
variation 〈X i, Xj〉 is always defined and it is invariant under a change of
equivalent probability measure (see e.g.[10]): we have in fact that 〈X i, Xj〉t =
limsupk|tk+1−tk|→0

∑
k(X

i
tk+1

−X i
tk

)(Xj
tk+1

−Xj
tk

), where the limit is in the sense
of uniform convergence in probability.
We recall that two local martingales M,N are orthogonal if MtNt is a local
martingale: if they are continuous, this property is equivalent to d〈M, N〉t =
0. In particular, if Xt is a continuous semimartingale and Mt is a local mar-
tingale (not necessarily continuous), Mt is orthogonal to the martingale part
of Xt if and only if d〈X, M〉t = 0.

Definition 2.1. We call strategy a pair (ξt, Vt) where ξt is a d-dimensional
predictable stochastic process integrable with respect to Xt and the portfolio
value Vt is a càdlàg optional process such that Vt− = ξt ·Xt. The difference
Ct = Vt −

∫ t

o
ξsdXs is called the cost accumulated up to time t.

We point out that (according to the definition given in [5]) we con-
sider strategies which are not in general self-financing: it is evident that
the portfolio is self-financing if and only if Ct = C0 = V0. In that case,
Vt = V0 +

∫ t

o
ξsdXs = ξt ·Xt.
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We remark also that our definition differs from the one given in [4], where
they consider a d-dimensional process St with a bond S0

t and work directly

with the discounted process X i
t =

Si
t

S0
t

. Following this approach, a strategy

is a pair (ξt, ηt) where ξt is a d-dimensional predictable process, ηt is an op-
tional process of dimension one and the value of the resulting portfolio Vt

is given by
Vt

S0
t

= ξt ·Xt + ηt. It follows that, with respect to our definition,

ηt = ξ0
t + ∆Vt: the components (ξ0

t , . . . , ξ
d
t ) represent a sort of “intrinsic”

strategy (independent from the chosen “numéraire”). Even if Xt is a con-
tinuous semimartingale, the value of the portfolio Vt is only right-continuous
(see example 5.3 in [4]): the istantaneous adjustment ∆Vt it is carried on
by the bond S0

t according to [4], while it is carried on by anyone of the
underlying assets according to our definition.

Definition 2.2. A numéraire is a strictly positive stochastic process Bt,
which is the value of a self-financing portfolio.

More precisely, Bt = θt ·Xt = B0 +
∫ t

0
θsdXs, where θt is integrable with

respect to Xt.

Remark 2.1. It is usually assumed the existence of a numéraire Bt and of

an equivalent probability P∗ such that
Xt

Bt

is a (local) martingale under P∗:
this is related to the so called “no-arbitrage property” under the numéraire
Bt. For further informations, see, for instance, [3].

Definition 2.3. Given a numéraire Bt such that
Xt

Bt

is a semimartingale of

class S2, a strategy (ξt, Vt) is said to be admissible with respect to a numéraire
Bt if:

1. the portfolio Vt is a square integrable stochastic process whose left limit

is equal to
Vt−
Bt

= ξt · Xt

Bt

2. the stochastic integral

∫ t

0

ξs d

(
Xs

Bs

)
is a semimartingale belonging to

the class S2.

More precisely, for every component X i
t , we have

X i
t

Bt

=
X i

0

B0

+ M i
t + Ai

t,

where M i
t is a square integrable martingale and Ai

t is a predictable process
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with finite variation such that the total variation |At| is square integrable.
Moreover, the d-dimensional predictable process ξt is such that

E

[∫ T

0

ξsd〈M〉sξ′s +
d∑

i=1

(∫ T

0

ξi
sd|Ai

s|
)2

]
< +∞

where ξ′t is the transposed vector.

The cost process under a numéraire Bt is given by CB
t =

Vt

Bt

−
∫ t

0

ξs d

(
Xs

Bs

)
.

Recall that an option H is a positive FT -measurable random variable.
The locally risk minimizing strategies have been introduced in the general
case by Schweizer: roughly speaking, the risk is minimal under all infinitesi-
mal pertubations of the strategy. This definition is made precise in [11] and
it is shown to be essentially equivalent to the following:

Definition 2.4. Given a contingent claim H such that H
Bt
∈ L2(Ω,F ,P), an

hedging strategy (ξt, Vt) is said to be locally risk minimizing (shortly, l.r.m.)
with respect to the numéraire Bt if the following conditions hold:

1. (ξt, Vt) is an admissible strategy under Bt

2. VT = H

3.
Vt

Bt

=

∫ t

0

ξs d

(
Xs

Bs

)
+ CB

t , where CB
t is a square integrable martingale

orthogonal to the martingale part of
Xt

Bt

.

Note that if the optimal strategy exists, it is unique, as it is shown in [5].

Definition 2.5. Let Bt be a numéraire such that
Xt

Bt

is a semimartingale

of the class S2: an equivalent measure P̂B ∼ P is called minimal (under a
numéraire Bt) if:

1. P̂B ≡ P on F0

2.
Xt

Bt

is a square integrable martingale under P̂B

3. Any square integrable martingale which is orthogonal to the martingale

part of
Xt

Bt

under P remains a martingale under P̂B.
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If the minimal martingale measure exists, it is unique and the optimal
strategy can be computed in terms of it ([4]). In fact, the value of the

l.r.m. portfolio is given by
Vt

Bt

= ÊB

[
H

BT

∣∣Ft

]
. The l.r.m. components

(ξ1
t , . . . , ξ

d
t ) can be computed by choosing a numéraire Bt and applying the

Kunita-Watanabe decomposition to
Vt

Bt

with respect to the P̂B-martingale

Xt

Bt

(see [4] for further details); theorem 3.1 will ensure us that this proce-

dure is well-defined because it is independent from the chosen numéraire.
Finally, we recall that a self-financing portfolio remains self-financing after a
change of numéraire ([6], pag.445): therefore if St is another numéraire, the

process
St

Bt

is a continuous local martingale under the minimal probability

P̂B.

3 Invariance under a change of numéraire

In this section, we consider two numéraires Bt and St : given a strategy

(ξt, Vt), we implicitely assume that the two stochastic integrals

∫ t

0

ξsd(
Xs

Bs

)

and

∫ t

0

ξsd(
Xs

Ss

) exist.

Lemma 3.1. If CB
t and CS

t are the costs of the strategy (ξt, Vt), then

dCS
t =

Bt

St

dCB
t + d〈CB

t ,
Bt

St

〉

Proof. The process
Bt

St

is a continuous semimartingale, so the “Itô’s multi-

plication rule” gives:

d(
Vt

St

) = d(
Vt

Bt

· Bt

St

) =
Vt−
Bt

d(
Bt

St

) +
Bt

St

d(
Vt

Bt

) + d〈 Vt

Bt

,
Bt

St

〉 =

= ξt
Xt

Bt

d(
Bt

St

) +
Bt

St

d(
Vt

Bt

) + d〈 Vt

Bt

,
Bt

St

〉

Since d(
Vt

Bt

) = ξtd(
Xt

Bt

) + dCB
t , d〈 Vt

Bt

,
Bt

St

〉 = ξtd〈Xt

Bt

,
Bt

St

〉+ d〈CB
t ,

Bt

St

〉 and

we obtain:
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d(
Vt

St

) = ξt

(
Xt

Bt

d(
Bt

St

) +
Bt

St

d(
Xt

Bt

) + d〈Xt

Bt

,
Bt

St

〉
)

+
Bt

St

dCB
t + d〈CB

t ,
Bt

St

〉 =

= ξt d(
Xt

St

) +
Bt

St

dCB
t + d〈CB

t ,
Bt

St

〉

Proposition 3.1. Under the same hypothesis of the previous lemma, if the

process CB
t is a local martingale such that d〈CB

t ,
Xt

Bt

〉 = 0, then the process

CS
t is a local martingale such that d〈CS

t ,
Xt

St

〉 = 0.

Proof. Recall that St is a self-financing portfolio: therefore d(
St

Bt

) = ηtd(
Xt

Bt

)

for a suitable predictable process ηt. From Itô’s formula, we have that

d

(
Bt

St

)
= d

[(
St

Bt

)−1
]

= −B2
t

S2
t

d(
St

Bt

) +
B3

t

S3
t

d〈St

Bt

,
St

Bt

〉

Since d〈CB
t ,

Xt

St

〉 = 0, d〈CB
t ,

Bt

St

〉 = 0 and from lemma 3.1, dCS
t =

Bt

St

dCB
t :

consequently CS
t is a local martingale. Again from lemma 3.1

d〈CS
t ,

Xt

St

〉 =
Bt

St

d〈CB
t ,

Xt

Bt

· Bt

St

〉 =

=
Xt

St

d〈CB
t ,

Bt

St

〉 +
B2

t

S2
t

d〈CB
t ,

Xt

Bt

〉 =
Xt

St

d〈CB
t ,

Bt

St

〉

Theorem 3.1. Let (ξt, Vt) be an admissible strategy with respect to numéraires
Bt and St. If (ξt, Vt) is locally risk minimizing under the numéraire Bt, then
(ξt, Vt) is l.r.m. also with respect to the numéraire St.

Proof. The proof is an immediate consequence of proposition 3.1: the cost CS
t

is a local martingale orthogonal to the martingale part of
Xt

St

. But since the

strategy is admissible with respect to St, CS
t is actually a square integrable

martingale.
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Before showing how the minimal probability varies under a change of
numéraire, we prove the following characterization of minimal probabilities.

In the following lemma, we consider a numéraire St such that
Xt

St

is a S2-

semimartingale, and an equivalent probability Q ∼ P such that
Xt

St

is a

square integrable martingale under Q.

Lemma 3.2. Suppose that the density process Lt =
dQ
dP

∣∣∣
Ft

is a continuous

martingale and that Q has the following property: every contingent claim

H such that
H

ST

∈ L2(Q) has a l.r.m. strategy and the value of the l.r.m.

portfolio Vt is given by

EQ
[

H

ST

∣∣∣ Ft

]
=

Vt

St

Then the minimal martingale measure P̂S exists and coincides with Q.

Proof. From definition 2.5, one obtains that the equivalent martingale mea-
sure Q is the minimal measure if every P-square integrable martingale Mt

orthogonal to the martingale part of
Xt

St

is orthogonal to Lt =
dQ
dP

∣∣∣
Ft

.

Consider the decomposition Mt = Md
t + M c

t , where Md
t is the purely dis-

continuous part of Mt and M c
t the continuous one. It is clear that Md

t is
orthogonal to Lt, so it is sufficient to prove the assertion only for continuous
martingales.
Besides, if Mt is a continuous martingale, we can suppose it bounded unless
of using stopping times. Therefore there exists a ∈ R such that MT + a ≥
0, P-a.e. Consider the option H such that

H

ST

= MT + a. The portfolio

Vt

St

= a + Mt = a +

∫ t

0

0 d

(
Xs

Ss

)
+ Mt gives the optimal strategy under St.

Moreover

EQ [a + MT |Ft] = EQ
[

H

ST

∣∣∣ Ft

]
=

Vt

St

= a + Mt

so Mt is a martingale under the probability Q.

Theorem 3.2. If there exists the minimal martingale measure P̂B and the

process
St

Bt

is a uniformly integrable martingale under P̂B, then there exists

the minimal martingale measure P̂S and the equation
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dP̂S

dP̂B
=

ST

BT

· B0

S0

is satisfied.

Proof. Consider the equivalent probabilityQ ∼ P̂B such that
dQ
dP̂B

=
ST

BT

· B0

S0

:

it is easy to verify that
Xt

St

is a Q-martingale and from Bayes formula one

obtains that

EQ
[

H

ST

∣∣∣ Ft

]
=

EB

[
H

BT

∣∣∣ Ft

]

St

Bt

=
Vt

St

where Vt is the value of the l.r.m. portfolio both under Bt and St.
Lemma 3.2 ensures that the probability Q is actually the minimal probability
under St.

4 Some counterexamples

If the stochastic process Xt is a right-continuous semimartingale, definition
2.1 has to be slightly modified: a strategy is a pair (ξt, Vt) where ξt is d-
dimensional predictable process integrable with respect to Xt and Vt− =
ξt ·Xt−. It is known that the minimal martingale measure (if it exists) is not
necessarily a true probability, but only a signed probability.
We exhibit here two counterexamples in which both probabilities P̂B and P̂S

exist, but the equality
dP̂S

dP̂B
=

ST

BT

· B0

S0

is false, so theorem 3.2 and and “a

fortiori” theorem 3.1 don’t hold for right-continuous processes.
Note that in example 4.2 the filtration is quasi-left continuous (i.e. for every
predictable stopping time τ one has Fτ = Fτ−, see [2] or [8]): therefore this
good property of the filtration doesn’t guarantee the validity of theorem 3.1.

Example 4.1. Consider a discrete time model (Ω,F ,P), (t = 0, t = 1), with
two assets St and Bt: we assume S0 ≡ 1, B0 ≡ B1 ≡ 1 and F0 = (∅, Ω).
It is easy to calculate the densities of P̂B, P̂S with respect to the given
probability P:

1.
dP̂B

dP
= 1− E [∆S1|F0]

V ar [∆S1|F0]
(∆S1 − E [∆S1|F0])
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2.
dP̂S

dP
= 1−

E
[
∆

(
1
S1

)
|F0

]

V ar
[
∆

(
1
S1

)
|F0

]
(

∆

(
1

S1

)
− E

[
∆

(
1

S1

) ∣∣∣F0

])

Note that ZB =
dP̂B

dP
is a random variable such that E[ZB] = 1 and

E[ZB∆S1] = 0; moreover, if E[∆N1] = 0 and E[∆N1∆S1] = 0, then

E[ZB∆N1] = 0. Similar computations can be made for
dP̂S

dP
.

If the equality
dP̂S

dP
= S1

dP̂B

dP
were true, the following equation should hold:

αS3
1 − (αβ + 1)S2

1 + (1 + γδ)S1 − γ = 0 (1)

where α =
E [∆S1]

V ar(∆S1)
, β = E [S1], γ =

E
[
∆

(
1
S1

)]

V ar[∆
(

1
S1

)
]
, δ = E

[(
1
S1

)]
. It

is immediate to find a discrete random variable which assumes at time t = 1
at least four distinct values and doesn’t satisfy equation (1).

Example 4.2. Consider a foreign exchange market: let Dt be the dollar cash
bond with Dt = eρt, ρ ∈ R+, St its sterling counterpart such that St = ert,
r ∈ R+, and Ct the exchange rate. We suppose that Ct follows Merton’s
model:

dCt = Ct− (µdt + σdWt + βdNt)

for some brownian motion Wt, Poisson process Nt with intensity λ and
constants β ≥ −1, µ, σ ∈ R+. We consider as assets Dt and Xt = StCt,
which is a dollar tradable. Assuming Dt as numéraire, the minimal measure

P̂D has been calculated in [13], where it is shown that, if η =
µ− λβ + r − ρ

σ2 + β2λ
belongs to the interval [−1, 0], then P̂D exists and

dP̂D

dP
= (1− ηβ)NT exp

[
−σηWT +

(
λβη − 1

2
σ2η2

)
T

]

Viceversa, the sterling investor is concerned about the sterling worth Dt

Ct

of 1 dollar and St, so he uses St as basic unit of account. This corresponds
to assume Xt = CtSt as numéraire in the dollar market. The minimal mar-
tingale measure P̂X with respect to Xt is given by the following expression
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dP̂X

dP
= exp

[
σγWT +

(
αλγ − 1

2
σ2γ2

)
T

]
· (1− αγ)NT

where α = − β

1 + β
and γ =

ρ− r − µ + σ2 + α2λ− αλ

σ2 + α2λ
.

If the equality
dP̂X

dP̂D
=

XT

DT

· D0

X0

were true, we would have

dP̂X

dP
=

XT

DT

D0

X0

dP̂D

dP
=

= [(1− ηβ) (1 + β)]NT exp
[
σ(1− η)WT +

(
λβη − 1

2
σ2η2 + r − ρ + µ− 1

2
σ2

)
T

]

Substituting numerical values to the parameters, it can easily be seen
with long but not complicated calculus that the desired equality is false.

5 A generalization of Merton’s formula

We recall Merton’s formula following closely the approach of [6] (see also
[1] and [9]). Consider a “call” option H = (XT − K)+ on a risky asset
Xt under the presence of a stochastic interest rate (we suppose H square-
integrable). Besides the risky asset Xt, we consider a zero-coupon bond

B(t, T ) of maturity T as tradable asset. If the process Zt =
Xt

B(t, T )
satisfies

the equation

dZt

Zt

= µtdt + σt · dWt

where Wt = (W 1
t , . . . , W d

t ) is a d-dimensional brownian motion and the
volatility σt is a deterministic function, then option H is attainable even
if the market is not necessarily complete. The value Vt of the replicating
portfolio at time t is given by Merton’s Formula:

Vt = XtN(d1(Xt, B(t, T ), t))−KB(t, T )N(d2(Xt, B(t, T ), t))

where N(x) is the distribution function of a standard gaussian random
variable and

d1,2 =
ln Xt − ln KB(t, T )± 1

2

∫ T

t
|σ(s)|2ds

(∫ T

t
|σ(s)|2ds

) 1
2
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We remark that, whatever is the equivalent probability measure Q under

the numéraire B(t, T ), one has that
Vt

B(t, T )
= EQ[H|Ft]. Besides, it is shown

in [6] that:

Vt = XtE
X [IA|Ft]−KB(t, T )ET [IA|Ft]

where A = {XT ≥ K}, EX [IA|Ft] is the conditional expectation of IA

under an equivalent martingale measure PX with respect to the numéraire
Xt and ET [IA|Ft] is the conditional expectation under an equivalent mar-
tingale measure PT for the numéraire B(t, T ). In particular, the two pre-
dictable stochastic processes ξ1

t = EX [IA|Ft] and ξ2
t = −KB(t, T )ET [IA|Ft]

(or better the the two continuous versions of the martingales EX [IA|Ft] and
ET [IA|Ft]) are the components of the unique replicating strategy.
We suppose now that the volatility σt is “stochastic” (more precisely, af-
fected by an exterior source of randomness), closely following the approach
given by Föllmer and Schweizer in [4], where the randomness of the volatility
is seen as a problem of “incomplete information”. The additional source of
randomness is given by a probability space (S,S, ν): more precisely, we work

on a product space Ω̄ = Ω × S and suppose that, letting Zt =
Xt

B(t, T )
, the

conditional law of Zt given η ∈ S is the law of the solution of equation

dZt

Zt

= µ(t, η)dt + σ(t, η) · dWt

where Wt = (W 1
t , . . . , W n

t ) is a d-dimensional Wiener process.
The probability on Ω̄ = Ω × S is given by

∫
S

ν(dη) dPη (see [4] for further
details). We remark that the law of Zt under Pη is the law of

dZt

Zt

= µ(t, η)dt + |σ(t, η)|dW σ
t

where |σ(t, η)| = (σ1(t, η)2 + · · ·+ σn(t, η)2)
1
2 and W σ

t is a one-dimensional
Wiener process.
The natural filtration for option H is actually the right-continuous filtration
Ft generated by (Xs, B(s, T ), 0 ≤ s ≤ t). Note that |σ(t, η)| is Ft-adapted
since

∫ t

0

|σ(s, η)|2Z2
s ds := lim

supi |ti+1−ti|→0

n∑
i=1

|Zti+1
− Zti|2

P- a.e. We suppose that µ(t, η) is Ft-adapted, so W σ
t results to be a

Ft-Wiener process.
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Consider now the larger filtration F̃ obtained by adding to F the full in-
formation about η since the initial instant t = 0: it follows that Ft ⊂ F̃t,
0 ≤ t < T . We suppose that FT = F̃T and that W σ

t is a F̃ -Wiener process.
Assuming B(t, T ) as numéraire, the minimal probability P̂T exists if and only
if

Lt = exp

[
−

∫ t

0

µ(s, η)

|σ(t, η)|dW σ
t −

1

2

∫ t

0

(
µ(s, η)

|σ(t, η)|
)2

ds

]

is a uniformly integrable martingale (see [4] for details) and under P̂T the
process Zt satisfies the following stochastic equation:

dZt

Zt

= |σ(t, η)|dŴ σ
t

where Ŵ σ
t is a P̂T -brownian motion both for F̃t and Ft. Note that the

density process Lt =
dP̂T

dP

∣∣∣
F̃t

is Ft-adapted and continuous; besides, the mini-

mal probability under the numéraire Xt satisfies
dP̂X

dP̂T

∣∣∣
F̃t

=
Xt

B(t, T )
· B(0, T )

X0

since
Xt

B(t, T )
is a F̃t-martingale under P̂T . With respect to the larger fil-

tration F̃t, option H is attainable because the volatility σ(t, η) results to be
deterministic ( see also [4]) and the replicating portfolio Ṽt is given by

Ṽt = XtN(d1(Xt, B(t, T ), t, η))−KB(t, T )N(d2(Xt, B(t, T ), t, η))

where

d1,2(Xt, B(t, T ), t, η) =
ln Xt − ln KB(t, T )± 1

2

∫ T

t
|σ(s, η)|2ds

(∫ T

t
|σ(s, η)|2ds

) 1
2

It is easy to adapt the argument of [6] pag.451 and find that

Ṽt = XtÊ
X

[
IA|F̃t

]
−KB(t, T )ÊT

[
IA|F̃t

]

with A = {XT ≥ K}. The two processes ξ̃1
t = ÊX

[
IA|F̃t

]
and ξ̃2

t =

−KB(t, T )ÊT
[
IA|F̃t

]
represent the components of the replicating portfolio

with respect to the filtration F̃t.

13



Let us calculate now the portfolio Vt and the components ξ1
t and ξ2

t of the
l.r.m. strategy with respect to the natural filtration Ft. The value Vt is given
by Vt = B(t, T )ÊT [(XT −K)+|Ft] and applying theorem 3.2, it follows that

Vt = B(t, T )ÊT
[
(XT −K)+|Ft

]
= XtÊ

X [IA|Ft]−KB(t, T )ÊT [IA|Ft]

In order to obtain the components ξ1
t and ξ2

t of the l.r.m strategy, we follow
closely the approach of [4](theorem 4.6). Chosen B(t, T ) as numéraire, we
have that

Ṽt

B(t, T )
=

∫ t

0

ξ̃1
s d

(
Xs

B(s, T )

)
+ Ṽ0

Let ηt be the predictable projection of ξ̃1
t with respect to the filtration Ft

and the minimal probability P̂T : one verifies that

Vt

B(t, T )
=

∫ t

0

ηsd

(
Xs

B(s, T )

)
+ CB

t

where CB
t is a martingale orthogonal to the martingale part of

Xt

B(t, T )

under P̂T (and therefore under P). It follows that ηt coincides with the first
component ξ1

t of the l.r.m. strategy. Simmetrically, one gets that ξ2
t is the

Ft-predictable projection of ξ̃2
t under P̂X .

Note that ξ̃1
t is the optional projection (with respect to the filtration F̃t

and the probability P̂X) of the measurable process Y (t, ω) = IA(ω).

Proposition 5.1. The process ξ1
t coincides with the Ft-predictable projection

of Y (t, ω) = IA(ω) with respect to the probability P̂X .

Proof. We remark that Rt =
dP̂X

dP̂T

∣∣∣
F̃t

=
Xt

B(t, T )
· B(0, T )

X0

is Ft-adapted and

continuous; therefore if τ is a Ft-predictable stopping time, it is easy to verify

that
dP̂X

dP̂T

∣∣∣
F̃τ−

= Rτ . Consequently, one obtains that

ξ1
τ = ÊT

[
ξ̃1
τ |Fτ−

]
= ÊT

[
ÊX

[
IA|F̃τ

]
|Fτ−

]
=

= ÊT

[
1

Rτ

ÊT
[
IA RT |F̃τ

]
|Fτ−

]
=

1

Rτ

ÊT [IA RT |Fτ−] = ÊX [IA|Fτ−]
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Similarly, ξ2
t turns out to be the predictable projection of IA with respect

to the probability P̂T .
Finally, we remark that if there exists a left-continuous version of the stochas-
tic process ÊX [IA|Ft−], then it coincides with the Ft-predictable projec-
tion under the probability P̂X : from now on, we suppose that the processes
ÊX [IA|Ft−] and ÊX [IA|Ft] have respectively a left-continuous version and a
a right-continuous one (and simmetrically for probability P̂T ).
Under these hypotheses, proposition 5.1 allows us to obtain the following
results.

Theorem 5.1. The value of the l.r.m. portfolio Vt is given by

Vt = XtÊ
X

[
IA|F̃t

]
−KB(t, T )ÊT

[
IA|F̃t

]

The components ξ1
t and ξ2

t of the l.r.m.strategy are respectively ξ1
t =

ÊX [IA|Ft−] and ξ2
t = −KÊT [IA|Ft−].

Remark 5.1. If we add as a tradable asset the money market account Dt =
exp(

∫ t

0
r(s)ds) (or a zero-coupon bond with a different maturity S), the l.r.m.

strategy doesn’t change and it is based on the two assets Xt and B(t, T ). In
fact the component ξ̃3

t relative to Dt in the F̃t-portfolio is zero, so it will be
zero its Ft-predictable projection under the minimal probability with Dt as
numéraire.

Example 5.1. We consider a market where the stock Xt follows the equation

dXt

Xt

= µ1dt + σ1dW 1
t

and the zero-coupon bond

dB(t, T )

B(t, T )
= µ2dt + σ2dW 2

t

where µ1, µ2, σ1, σ2 ∈ R+, W 1
t and W 2

t are brownian motions such that

d〈W 1
t ,W 2

t 〉 =
(
ρ1I[0,η[(t) + ρ2I[η,T ](t)

)
, ρi ∈ [0, 1], i = 1, 2

where η is an independent stopping time on (Ω,F ,P) such that P(η =
t) = 0, ∀t < T . In this example S = [0, 1] and ν is the law of the stopping

time η. The volatility of Zt =
Xt

B(t, T )
is σ(t, η) = (σ2

1 +σ2
2 +2ρ1σ1σ2)

1
2 I[0,η[ +

(σ2
1 + σ2

2 + 2ρ2σ1σ2)
1
2 I[η,T ]. Note that in this particular case the filtration Ft

and F̃t are given by
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1. F̃t = σ(Xs, B(s, T ), s ≤ t; {η ≤ s} , s ≤ T )

2. Ft = σ(Xs, B(s, T ), s ≤ t; {η ≤ s} , s ≤ t)

3. Ft− = σ(Xs, B(s, T ), s ≤ t; {η ≤ s} , s < t)

The replicating portfolio with respect to F̃ is

Ṽt = XtN(d1(Xt, B(t, T ), t, η))−KB(t, T )N(d2(Xt, B(t, T ), t, η))

where

d1,2(Xt, B(t, T ), t, η) =
ln Xt − ln KB(t, T )± 1

2

∫ T

t
σ2(s, η)ds

(∫ T

t
σ2(s, η)ds

) 1
2

From theorem 3.2 it follows that the local risk minimizing portfolio is Vt =
XtÊ

X [IA|Ft] − KB(t, T )ÊT [IA|Ft], while the components of the optimal
strategy are ξ1

t = ÊX [IA|Ft−] and ξ2
t = −KB(t, T )ÊT [IA|Ft−]. In order to

compute ξ1
t and ξ2

t , we introduce the following lemma.

Lemma 5.1. Consider a probability space (Ω,F ,P): let B be a sub σ-algebra
of F and B ∈ B , let PB = P(·|B) be the conditional probability with respect
to B and BB = σ(C ∩ B, C ∈ B) the trace σ-algebra. If X is a random
variable in L1(Ω,F ,P), then

E [X|B] = EB [X|BB] IB + EBc

[X|BBc ] IBc

where Bc is the complementary set of B.

Proof. For each C ∈ B one has that

∫
C

XP(dω) = P(B)
∫

C∩B
X IB

P(B)
P(dω) + P(Bc)

∫
C∩Bc X IBc

P(Bc)
P(dω) =

= P(B)
∫

C∩B
XPB(dω) + P(Bc)

∫
C∩Bc XPBc

(dω) =

= P(B)
∫

C∩B
EB [X|BB]PB(dω) + P(Bc)

∫
C∩Bc EBc

[X|BBc ]PBc
(dω) =

=
∫

C

(
EB [X|BB] IB + EBc

[X|BBc ] IBc

)
P(dω)

So the thesis follows.
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Consider B = {η < t}. From the lemma, one obtains that the component
relative to the asset Xt is given by

ξ1
t = ÊX [IA|Ft−] =

= ÊT
B

[
IA|FB

t−
]
I{η<t} + ÊT

Bc

[
IA|FBc

t−
]
I{η≥t}

It follows that:

1. ÊT
B

[
IA|FB

t−
]

= N(d1(Xt, B(t, T ), t, η)) because the σ-fields Ft− and F̃t−
coincide if restricted to the set {η < t};

2. ÊT
Bc

[
IA|FBc

t−
]

= ÊT
Bc

[
N(d1(Xt, B(t, T ), t, η))|FBc

t−
]
.

We remark that Xt and B(t, T ) are Ft−-adapted and η is independent
from the trace σ-algebra FBc

t− , Bc = {η ≥ t}: we obtain therefore that

ÊT
Bc

[
IA|FBc

t−
]

=

∫ T

t

N(d1(Xs, B(s, T ), s, η))νt(dη)

where νt(·) is the conditional law of η with respect to Bc = {η ≥ t}.

Finally, we have that

ξ1
t = N(d1(Xt, B(t, T ), t, η))I{η<t} + I{η≥t}

∫ T

t

N(d1(Xs, B(s, T ), s, η))νt(dη)

and simmetrically the amount ξ2
t of zero-coupon bond to be held in the

local risk minimizing portfolio, i.e.:

− 1

K
ξ2
t = N(d2(Xt, B(t, T ), t, η))I{η<t}+I{η≥t}

∫ T

t

N(d2(Xs, B(s, T ), s, η))νt(dη)

We remark that the event {η < t} is known at time t. With analogous
calculus, one obtains that

Vt = Xt[N(d1(Xt, B(t, T ), t, η))I{η≤t} + I{η>t}
∫ T

t
N(d1(Xs, B(s, T ), s, η))νt(dη)]+

−KB(t, T )[N(d2(Xt, B(t, T ), t, η))I{η≤t} + I{η>t}
∫ T

t
N(d2(Xs, B(s, T ), s, η))νt(dη)]

Note that the conditional laws of η given {η < t} and {η ≥ t} coincide
since we have supposed that {η = t} is a negligible set. Recalling that Vt− =
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Xtξ
1
t +B(t, T )ξ2

t , it follows that the discontinuities of the cost process Ct are
given by

∆Ct = ∆Vt =

= I{η=t}
(
N(d1(Xt, B(t, T ), t, η))− ∫ T

t
N(d1(Xs, B(s, T ), s, η))νt(dη)

)
Xt+

+KI{η=t}
(∫ T

t
N(d2(Xs, B(s, T ), s, η))νt(dη)−N(d2(Xt, B(t, T ), t, η))

)
B(t, T )
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