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Abstract

In this paper we estimate operational risk by using the convex risk
measure Expected Shortfall (ES) and provide an approximation as the
confidence level converges to 100% in the univariate case. Then we
extend this approach to the multivariate case, where we represent the
dependence structure by using a Lévy copula as in [6]. We compare
our results to the one obtained in [6] for Operational VaR and discuss
their practical relevance.
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1 Introduction

Within the framework of Basel II banks not only have to put aside equity
reserves for market and credit risk but also for operational risk. In §664 of [1]
the Basel Committee defines: “Operational risk is the risk of loss resulting
from inadequate or failed internal processes, people and systems or from
external events.”

The particular difficulty in measuring this new risk type arises from
the fact that partially the corresponding events are extremely rare with
enormously high losses and at the same time there are comparatively few
data.

Banks have to apply one of three methods in order to calculate the capi-
tal requirement: the Basis Indicator Approach, the Standardized Approach
or the Advanced Measurement Approach (AMA). Within the first two meth-
ods, the capital charge is a percentage of the average annual gross income.
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According to the AMA, a bank is allowed to develop an internal operational
risk model with individual distributional assumptions and dependence struc-
tures. Hence it is of great interest to develop suitable estimating measures
for the capital reserve.

The most common way of estimating the amount of equity reserve for
operational risk is by using the risk measure Value at Risk (VaR). In [5] the
so-called Operational Value at Risk (OpVaR) at level κ ∈ (0, 1) is defined
as the κ-quantile of the aggregated loss process. Operational Value at Risk
has been extensively studied both in the univariate and multivariate case
respectively in [5] and [6].

An essential disadvantage of this risk measure is that, in general, it is
not coherent. In particular, it can happen that VaR attributes more risk to
a loss portfolio than to the sum of the single loss positions. Moreover, VaR
exclusively regards the probability of a loss whereas its size remains out of
consideration.

The most popular alternative to VaR is the Expected Shortfall (ES),
which is also known as Average VaR, Conditional VaR or Tail VaR. This
risk measure is coherent and indicates the expected size of a loss provided
that it exceeds the VaR. In particular, the ES seems to be the best convex
alternative to the VaR, since it is the smallest law-invariant, convex risk
measure continuous from below that dominates VaR (Theorem 4.61 of [12]).
In addition, within the framework of Solvency II and the Swiss Solvency
Test, insurances have to calculate their target capital by using the ES. The
Federal Office of Private Insurance justifies this in chapter 2.4.1 of [11] as
follows:

The risk measure Expected Shortfall is more conservative than
the VaR at the same confidence level. Since it can be assumed
that the actual loss profile exhibits several extremely high losses
with a very low probability, the Expected Shortfall is the more
appropriate risk measure, as, in contrast to the VaR, it regards
the size of this extreme losses.

This argumentation is also suitable for operational risk, since it is very
similar to the quoted actuarial risk. In [7] and [15] ES is then suggested as
an alternative to VaR for quantifying operational risk. Hence, in this paper
we evaluate operational risk by using the Expected Shortfall and derive
asymptotical results in univariate and multivariate models.

The organization of the paper is the following. First we consider a one-
dimensional Loss Distribution Approach (LDA) model. Since in §667, [1],
the Basel Committee sets the confidence level at 99,9%, it is reasonable to
focus on the right distribution tail instead of estimating the whole distribu-
tion. Therefore we study the asymptotic behavior of the right distribution
tail and, assuming that the severity distribution has a regularly varying tail
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with index α > 1, we derive an asymptotic approximation of the Operational
Expected Shortfall:

ESt(κ) ∼ α

α− 1
V aRt(κ), κ→ 1, α > 1.

Then we consider a multivariate model, whose cells represent the differ-
ent operational risk classes, since according to the AMA, operational risk
shall be allocated to eight business lines ([1], §654) and seven loss types ([1],
appendix 7).

In the literature, the single risk classes are prevalently modelled by a
compound Poisson process, i.e. the loss in one risk category i at time t ≥ 0
is represented by the random sum

Si(t) =
Ni(t)∑

k=1

Xi
k,

where Ni(t) is a Poisson process and (Xi
k)k∈N is an independent and iden-

tically distributed (iid) severity process. The total operational risk is the
sum

S+(t) = S1(t) + · · ·+ Sd(t).

However it is not realistic to assume that risk classes are independent.
Hence in order to describe the dependencies between the Si(t), 1 ≤ i ≤ d,
we follow the approach of [6] and use a Lévy copula. This yields a rela-
tively simple model with comparatively few parameters as the dependencies
between severities and frequencies are modelled simultaneously.

In this setting, we derive asymptotical conclusions for the OpES in var-
ious scenarios. For further details, we also refer to [18].

Finally we examine the practical relevance of our results.

2 Approximation of the OpES in a one-dimensional
model

We suppose that operational risk follows an LDA model.

Definition 2.1 (Loss Distribution Approach (LDA) model)

1. The severity process: The severities are modelled by a sequence of posi-
tive iid random variables (Xk)k∈N. Let F be the distribution function
(in short, df) of the Xk.

2. The frequency process: The random number N(t) of losses in the time
interval [0, t] is a counting process, i.e. for t ≥ 0

N(t) := sup{n ≥ 1 : Tn ≤ t}
is generated by a sequence of random points in time (Tn)n∈N, which
satisfy 0 ≤ T1 ≤ T2 ≤ . . . a.s.
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3. The severity process and the frequency process are assumed to be in-
dependent.

4. The aggregated loss process is defined as S(t) :=
∑N(t)

k=1 Xk.

In order to measure operational risk, we introduce the Operational Value
at Risk (OpVaR) and the Operational Expected Shortfall (OpES). In this
paper we will then focus on the OpES.

Definition 2.2 (OpVaR, OpES) Let Gt be the df of the aggregated loss
process S of an LDA model. The Operational Value at Risk until time t at
level κ ∈ (0, 1) is the generalized inverse G←t of Gt

V aRt(κ) := G←t (κ) = inf{x ∈ R : Gt(x) ≥ κ}.

The Operational Expected Shortfall until time t at level κ ∈ [0, 1) is defined
as

ESt(κ) :=
1

1− κ

∫ 1

κ
V aRt(u)du.

In order to compute these risk measures, we need to know the df Gt of
S(t). Because of the independence assumptions we know

Gt(x) = P(S(t) ≤ x) =
∞∑

n=0

Fn∗(x) P(N(t) = n), (1)

where Fn∗ is the n-th convolution of F and F 1∗ = F and F 0∗ = 1[0,∞).

We study now the asymptotic behavior of Gt(x) = P(S(t) > x) for x→
∞ and derive asymptotical results in univariate and multivariate models.

We say two real functions F,G are asymptotically equal for x → ∞
(F (x) ∼ G(x), x→∞) if

lim
x→∞

F (x)
G(x)

= 1.

Remark 2.3 From the asymptotic equality of the summands we can infer
the asymptotic equality of the sum. The same holds for the integrand and
the integral:

a) Let Fi, Gi, i = 1, . . . , d, be real functions with

Fi(x) ∼ Gi(x), x→∞. (2)

Then

F1(x) + · · ·+ Fd(x) ∼ G1(x) + · · ·+Gd(x), x→∞,
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because (2) is equivalent to Fi(x) = Gi(x)(1 + oi(1)), x → ∞, and
hence,

F1(x) + · · ·+ Fd(x)
G1(x) + · · ·+Gd(x)

= 1 +
G1(x)oi(1) + · · ·+Gd(x)od(1)

G1(x) + · · ·+Gd(x)
x→∞−→ 1.

b) Let ϕ,ψ : [0, 1] → [0,∞) with ϕ(κ) ∼ ψ(κ), κ→ 1, and suppose there
exists a τ ∈ [0, 1) such that

∫ 1
τ ϕ(t)dt <∞ and

∫ 1
τ ψ(t)dt <∞. Then

∫ 1

κ
ϕ(t)dt ∼

∫ 1

κ
ψ(t)dt, κ→ 1,

because for every ε > 0 there exists a δ > 0 such that for all t ∈ (1−δ, 1]

ϕ(t)
ψ(t)

− 1
 ≤ ε

Hence,
(1− ε)ψ(t) ≤ ϕ(t) ≤ (1 + ε)ψ(t).

By integrating these inequalities from κ := max(τ, 1− δ) to 1 we get

(1− ε)
∫ 1

κ
ψ(t)dt ≤

∫ 1

κ
ϕ(t)dt ≤ (1 + ε)

∫ 1

κ
ψ(t)dt,

which yields the asymptotic equality of the integrals.

Furthermore, by §667, [1], operational risk usually presents a heavy-tailed
distribution. We take this into account by admitting only regularly varying
distribution tails.

Definition 2.4 (regularly varying) A positive measurable function U on
(0,∞) is called regularly varying in ∞ with index ρ ∈ R (U ∈ Rρ) if

lim
x→∞

U(xt)
U(x)

= tρ, t > 0.

From now on we will consider dfs with regularly varying tails F ∈ R−α

for α ≥ 0. Note that F becomes more heavy-tailed for α smaller. Examples
for this kind of dfs are the Pareto and the Burr distribution.

Definition 2.5 (slowly varying) A positive measurable function L on (0,∞)
is called slowly varying in ∞ (L ∈ R0) if

lim
x→∞

L(xt)
L(x)

= 1, t > 0.
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Examples for slowly varying functions are the logarithm and functions
that converge to a positive constant. For U ∈ Rρ, L(x) := U(x)

xρ ∈ R0. Thus,
for every U ∈ Rρ there exists an L ∈ R0 with U(x) = xρL(x).

In addition, Rρ is closed with respect to asymptotic equivalence. This
means that, if V is a positive measurable function on (0,∞) and U ∈ Rρ

and for some c > 0
V (x) ∼ c · U(x), x→∞,

holds, then V ∈ Rρ, because

lim
x→∞

V (xt)
V (x)

= lim
x→∞

V (xt)
U(xt)

U(xt)
U(x)

U(x)
V (x)

= c−1tρc = tρ.

By Theorem 2.13 of [6] we obtain that given an LDA model for a fixed
time t > 0 with a severity distribution tail F ∈ R−α, α > 0, the following
asymptotic equality for the OpVaR holds:

V aRt(κ) ∼ F←
(
1− 1− κ

E[N(t)]

)
, κ→ 1, (3)

if there exists an ε > 0 such that

∞∑

n=0

(1 + ε)nP(N(t) = n) <∞. (4)

For further details about (4), we refer to Theorem 1.3.9 of [10].
Both economically relevant frequency processes, the Poisson process and

the negative binomial process, satisfy condition (4). For the Poisson process
we see this as follows:

∞∑

n=0

(1 + ε)nP(N(t) = n) =
∞∑

n=0

(1 + ε)neλt (λt)
n

n!
= eλt(2+ε).

For the negative binomial process we refer to [10], Example 1.3.11.
To derive a similar representation of the OpES as in (3) we need several

properties of regularly varying distribution tails (see Appendix) and the next

Lemma 2.6 Let F and G two df with

G(x) ∼ CF (x), x→∞,

for a C ∈ R\{0}. Then for every ψ ∈ L1(G) ∩ L1(F ), i.e. a measurable
function ψ : R→ R that is integrable with respect to G and F , the following
holds ∫ ∞

q
ψ(x)dG(x) ∼ C

∫ ∞
q

ψ(x)dF (x), q →∞.
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The proof follows by the Monotone Class Theorem.

We are now able to prove our Theorem.

Theorem 2.7 (Analytic OpES) Consider an LDA model at a fixed time
t > 0. We assume that the distribution tail F of the severities is regularly
varying with index −α for α > 1 with an ultimately decreasing Lebesgue
density f (i.e. f is decreasing on (z,∞) for a z > 0). Moreover, we assume
that there exists an ε > 0 such that

∞∑

n=0

(1 + ε)nP(N(t) = n) <∞.

Then we have the following asymptotic equality for the OpES:

ESt(κ) ∼ α

α− 1
F←

(
1− 1− κ

E[N(t)]

)
∼ α

α− 1
V aRt(κ), κ→ 1. (5)

Proof. Since F has a Lebesgue density, it is continuous. From the
representation (1) and by the monotone convergence for sums we get that
Gt is also continuous. Thus, we know from Corollary 4.49 of [12] that the
Expected Shortfall is given by

ESt(κ) = E[S(t)|S(t) > V aRt(κ)] =
E[S(t)1{S(t)>qκ}]
P(S(t) > qκ)

=
1

1− κ

∫ ∞
qκ

xdGt(x)

with qκ := V aRt(κ). Since condition (4) is satisfied and the df F is subex-
ponential1 due to Proposition A.1 c), by Theorem 1.3.9 of [10] we have that

Gt(x) ∼ E[N(t)]F (x), x→∞.

Since for F ,Gt ∈ R−α, α > 1, the expectation is finite due to Proposition
A.1 b), we can apply Lemma 2.6 with C = E[N(t)] and ψ(x) = x and obtain

∫ ∞
qκ

xdGt(x) ∼ E[N(t)]
∫ ∞

qκ

xdF (x), qκ →∞.

From Theorem 2.13 of [6] we know:

qκ := V aRt(κ)
(3)∼ F←

(
1− 1− κ

E[N(t)]

)
, κ→ 1. (6)

1Let Xk, k ∈ N, be positive iid random variables with df F . The df F (or F ) is called
subexponential, if F (x) > 0 for all x ∈ R, and if for all n ≥ 2:

lim
x→∞

P(X1 + · · ·+ Xn > x)

P(max(X1, . . . , Xn) > x)
= 1.
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Observe that limκ→1 qκ = ∞, since F and Gt are subexponential. For
F ∈ R−α there exists an L ∈ R0 such that

F (x) = x−αL(x), x > 0. (7)

From the Monotone Density Theorem (Prop. A.1 g)) with U = F , ρ = −α
and c = 1 we obtain

f(x) ∼ αx−α−1L(x), x→∞.

Thus,

ESt(κ) ∼ E[N(t)]
1− κ

∫ ∞
qκ

xdF (x)

=
E[N(t)]
1− κ

∫ ∞
qκ

xf(x)dx

∼ E[N(t)]
1− κ

α

∫ ∞
qκ

x−αL(x)dx, κ→ 1,

where in the last step we have used Proposition A.1 i).
Since α > 1 we can apply Karamata’s Theorem (Prop. A.1 h)) for ρ = −α,
and obtain

E[N(t)]
1− κ

α

∫ ∞
qκ

x−αL(x)dx
(39)∼ E[N(t)]

1− κ

α

α− 1
qκ

1−αL(qκ), κ→ 1.

Since F ∈ R−α and by (6), from Proposition A.1 d) with c = 1 we have that

F (qκ) ∼ F
(
F←

(
1− 1− κ

E[N(t)]

))
, κ→ 1. (8)

The continuity of F yields:

F (F←(x)) = x, x > 0. (9)

Putting everything together we obtain:

ESt(κ) ∼ E[N(t)]
1− κ

α

α− 1
qκ

1−αL(qκ)

(7)
=
E[N(t)]
1− κ

α

α− 1
qκ F (qκ)

(8)∼ E[N(t)]
1− κ

α

α− 1
F←

(
1− 1− κ

E[N(t)]

)
F

(
F←

(
1− 1− κ

E[N(t)]

))

(9)
=

α

α− 1
F←

(
1− 1− κ

E[N(t)]

)

(6)∼ α

α− 1
V aRt(κ), κ→ 1,

that proves (5). ¤
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Example 2.8 (Pareto distribution) If the severities are Pareto distributed,
i.e. with distribution function

F (x) = 1−
(
1 +

x

θ

)−α
, α, θ, x > 0,

then F is regularly varying with index −α and has an ultimately decreasing
Lebesgue density. By (5) we obtain

ESt(κ) ∼ α

α− 1
F←

(
1− 1− κ

E[N(t)]

)

∼ α

α− 1
θ
(E[N(t)]

1− κ

) 1
α
, κ→ 1. (10)

Example 2.9 (Burr distribution) Let

F (x) = 1−
(
1 +

xτ

θ

)−α
, τ, α, θ, x > 0

be the Burr df. Then F ∈ R−ατ since

lim
x→∞

F (xt)
F (x)

= lim
x→∞

(θ + (xt)τ

θ + xτ

)−α
= t−ατ , t > 0.

By differentiating we obtain the density

f(x) = F ′(x) =
α

θ

(
1 +

xτ

θ

)−α−1
τxτ−1 = ατθα(θ + xτ )−α−1xτ−1.

Since the derivative of f is negative for large x, F is ultimately decreasing.
Thus, the Burr distribution satisfies the conditions of Theorem 2.7 if ατ > 1,
and we have

ESt(κ) ∼ α

α− 1

[
θ
((E[N(t)]

1− κ

) 1
α − 1

)] 1
τ
, κ→ 1. (11)

For a further example, we also refer to Section 2 of [4], where an an-
alytical expression for the ES of operational risk has been computed for
high-severity losses following a generalized Pareto distribution.
Comparing our result with the ones of [6], we have

lim
κ→1

ESt(κ)
V aRt(κ)

> 1,

and the closer α is to 1, the higher is the difference between Expected
Shortfall and Value at Risk. For instance if

α = 1, 1 ESt(κ) ∼ 11 · V aRt(κ), κ→ 1,
α = 2 ESt(κ) ∼ 2 · V aRt(κ), κ→ 1.

Hence using OpVaR and its asymptotic estimation, we obtain an under-
estimation of the capital reserve that becomes bigger for α smaller.

We now extend the results of Theorem 2.7 in the following Corollary,
that we are going to use in Section 3.
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Corollary 2.10 Consider an LDA model at fixed time t > 0. Assume that
condition (4) is satisfied and that there exists a df H with the following
properties:

• H is regularly varying with index −α, α > 1,

• H has an ultimately decreasing Lebesgue density h,

• there exists a constant C > 0 such that for the df F of the severities

F (x) ∼ C ·H(x), x→∞. (12)

Then

ESt(κ) ∼ α

α− 1
H←

(
1− 1− κ

E[N(t)]C

)
∼ α

α− 1
V aRt(κ), κ→ 1.

Proof. First we show

V aRt(κ) ∼ H←
(
1− 1− κ

E[N(t)]C

)
, κ→ 1.

Because of (12) F ∈ R−α. Hence, we get

V aRt(κ)
(3)∼ F←

(
1− 1− κ

E[N(t)]

)
= inf

{
x ∈ R : F (x) ≥ 1− 1− κ

E[N(t)]

}

= inf
{
x ∈ R :

1
F (x)

≥ E[N(t)]
1− κ

}
=

( 1
F

)←(E[N(t)]
1− κ

)
, κ→ 1.

Applying Proposition A.1 g) with c = 1 and (12) we get
( 1
F

)←
(x) ∼

( 1
CH

)←
(x) =

( 1
H

)←
(Cx), x→∞.

This yields with x = 1
1−κ and for κ→ 1

qκ := V aRt(κ) ∼
( 1
H

)←(E[N(t)]C
1− κ

)
= H←

(
1− 1− κ

E[N(t)]C

)
. (13)

Since F may be not continuous, we proceed as follows. By Lemma 4.46
of [12] we have that for any df F the following representation holds:

ESt(κ) =
1

1− κ
E[(S(t)− qκ)+] + qκ

=
1

1− κ
E[(S(t)− qκ)1{S(t)>qκ}] + qκ

=
1

1− κ
E[S(t)1{S(t)>qκ}]−

qκ
1− κ

Gt(qκ) + qκ

∼ 1
1− κ

∫ ∞
qκ

xdGt(x), κ→ 1.
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In order to prove the last asymptotic equality, we need to show that

Gt(qκ) ∼ 1− κ, κ→ 1. (14)

Since limκ→1 qκ = ∞ and by Theorem 1.3.9 of [10] we have

Gt(x) ∼ E[N(t)]F (x)
(12)∼ E[N(t)]CH(x), x→∞,

it follows that
Gt(qκ) ∼ E[N(t)]CH(qκ), κ→ 1. (15)

By Proposition A.1 f) with c = 1, we deduce from (13) and H ∈ R−α that

H(qκ) ∼ H
(
H←

(
1− 1− κ

E[N(t)]C

))
=

1− κ

E[N(t)]C
, κ→ 1, (16)

due to the continuity of H. This yields (14).
From (15) and Lemma 2.6 follows that

∫ ∞
qκ

xdGt(x) ∼ E[N(t)]C
∫ ∞

qκ

xdH(x) = E[N(t)]C
∫ ∞

qκ

xh(x)dx, κ→ 1.

For H ∈ R−α there exists an L ∈ R0 with

H(x) = x−αL(x), x > 0. (17)

From the Monotone Density Theorem (Prop. A.1 g)) with U = H, ρ = −α
and c = 1, we get

h(x) ∼ αx−α−1L(x), x→∞.

Hence, ∫ ∞
qκ

xh(x)dx ∼ α

∫ ∞
qκ

x−αL(x)dx, κ→ 1.

Since α > 1 we can apply Karamata’s Theorem (Prop. A.1 h)) for ρ = −α:

α

∫ ∞
qκ

x−αL(x)dx
(39)∼ α

α− 1
qκ

1−αL(qκ), κ→ 1,

and finally we obtain

ESt(κ) ∼ E[N(t)]C
1− κ

α

α− 1
qκ

1−αL(qκ)

(17)
=
E[N(t)]C

1− κ

α

α− 1
qκ H(qκ)

(16)∼ E[N(t)]C
1− κ

α

α− 1
H←

(
1− 1− κ

E[N(t)]C

) 1− κ

E[N(t)]C

=
α

α− 1
H←

(
1− 1− κ

E[N(t)]C

)

(13)∼ α

α− 1
V aRt(κ), κ→ 1.

¤
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3 Total OpES in the multivariate model

As mentioned before, the banks using AMA shall divide their operational
risk into several risk classes. Therefore, we investigate now a higher dimen-
sional model, in which the single risk cells may be dependent.

Following the approach of [6] we model the dependence structure with
a Lévy copula. From now on we assume that the frequency process is a
Poisson process. As a result our aggregated loss process (S(t))t>0 becomes
a compound Poisson process, which is a Lévy process with piecewisely con-
stant trajectories. For the definition of a Lévy process and related results
we refer to [9].

Since operational risks are always losses, we concentrate on Lévy pro-
cesses admitting only positive jumps in every component, hereafter called
spectrally positive Lévy processes.

Definition 3.1 (Lévy measure) Let (Lt)t≥0 be a spectrally positive Lévy
process on Rd. The measure Π on Rd defined by

Π(A) := E[#{t ∈ [0, 1] : Lt > Lt−, Lt − Lt− ∈ A}], A ∈ B(Rd),

is called Lévy measure of L. Here Π(A) is the expected number of jumps in
[0, 1] such that the jump size is an element of A.

For a one-dimensional compound Poisson process S(t) =
∑N(t)

k=1 Xk ad-
mitting only positive jumps, the Lévy measure is finite and

Π([0, x]) = λF (x), x > 0. (18)

Being interested in very high losses we introduce the notion of tail integral
following [13].

Definition 3.2 (tail integral) Let L be a spectrally positive Lévy process
on Rd with Lévy measure Π. The tail integral of L is the function Π :
[0,∞]d → [0,∞] with the following properties:

1. Π(x) = Π((x1,∞)× · · · × (xd,∞)), x ∈ [0,∞)d,
where Π(0) = limx1↓0,...,xd↓0 Π((x1,∞)× · · · × (xd,∞)).

2. Π(x) = 0 if for any i ∈ {1, . . . , d} xi = ∞.

3. Π(0, . . . , 0, xi, 0, . . . , 0) = Πi(xi), xi ∈ [0,∞), i = 1, . . . , d, where
Πi(x) = Πi((xi,∞)) is the tail integral of the i-th component.

For a one-dimensional compound Poisson process with any jump size df
F , we have that Π(x) = λF (x).

We model the dependence structure of the d components with a Lévy
copula.
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Definition 3.3 (Lévy copula) A d-dimensional Lévy copula of a spec-
trally positive Lévy process is a measure defining function C : [0,∞]d →
[0,∞] with marginals, which are the identity functions on [0,∞].

The next Theorem is a version of Sklar’s Theorem for spectrally positive
Lévy processes and can be found as Theorem 3.6 in [13].

Theorem 3.4 (Sklar for spectrally positive Lévy processes) Let Π
denote the tail integral of a d-dimensional spectrally positive Lévy process,
whose components have Lévy measures Π1, . . . ,Πd. Then there exists a Lévy
copula C : [0,∞]d → [0,∞] such that for all (x1, . . . , xd) ∈ [0,∞)d

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)). (19)

C is unique on the range of the marginal tail integrals Π1([0,∞]) × · · · ×
Πd([0,∞]). If Π1, . . . ,Πd are continuous, then C is unique.
Conversely, if C is a Lévy copula and Π1, . . . ,Πd are marginal tail integrals
of spectrally positive Lévy processes, then (19) defines the tail integral of
a d-dimensional spectrally positive Lévy process and Π1, . . . ,Πd are the tail
integrals of its components.

By Theorem 3.4 we know that by combining a Lévy copula with d one-
dimensional Lévy processes with positive jumps, we obtain a d-dimensional
spectrally positive Lévy process.

From now on we consider a special case of the LDA model. As frequency
process we choose the Poisson process and we assume that the severity
distribution satisfies all the prerequisites of Theorem 2.7 such that in this
model the asymptotic approximation (5) for the OpES holds.

Definition 3.5 (RVCP model) A regularly varying compound Poisson model
consists of the following elements:

1. The severity process: The severities are modelled by a sequence of
positive iid random variables (Xk)k∈N. Let the distribution tail F of
the Xk be regularly varying with index −α, α > 1, with an ultimately
decreasing Lebesgue density.

2. The frequency process: The random number N(t) of losses in the time
interval [0, t], t ≥ 0, is a Poisson process with parameter λ > 0.

3. The severity process and the frequency process are assumed to be in-
dependent.

4. The aggregated loss process is defined as S(t) :=
∑N(t)

k=1 Xk.

The severities Xk being positive, S(t) is a compound Poisson process
with positive jumps. From (18) we know the tail integral of S(t) is

Π(x) = λF (x), x ≥ 0.
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According to the AMA operational risk shall be divided into eight business
lines and seven loss types. We describe every single risk cell with an RVCP
model in order to be able to approximate the OpES as in Theorem 2.7. As
in [6] we model the dependence structure by a Lévy copula and focus on a
multivariate RVCP model.

Definition 3.6 (Multivariate RVCP model)

1. Let every single risk cell be an RVCP model with aggregated loss process
Si, severity distribution tail F i ∈ R−αi , αi > 1, and Poisson process
N i

t with parameter λi, 1 ≤ i ≤ d.

2. The dependence between cells is modelled by a Lévy copula. More
precisely, with the tail integral Πi(x) = λiF i(x) of Si, 1 ≤ i ≤ d, and
a Lévy copula C the tail integral of (S1, . . . , Sd) is given by

Π(x1, . . . , xd) = C(Π1(x1), . . . ,Πd(xd)), (x1, . . . , xd) ∈ [0,∞)d.

3. The total aggregated loss process is defined as

S+(t) := S1(t) + · · ·+ Sd(t), t > 0,

with tail integral

Π+(x) = Π({(y1, . . . , yd) ∈ [0,∞)d :
d∑

i=1

yi > x}), x ≥ 0.

We denote G+
t the df of S+(t).

Sklar’s Theorem 3.4 yields that (S1, . . . , Sd) is a d-dimensional spectrally
positive Lévy process. Since this Lévy process has piecewisely constant tra-
jectories, it is a multidimensional compound Poisson process (see Proposi-
tion 3.3 of [9]). From Proposition 3.2 of [6] we obtain that S+ is also a
compound Poisson process with positive jumps and frequency parameter

λ+ = lim
x↓0

Π+(x) (20)

and with jump size distribution

F+(x) = 1− F
+(x) = 1− Π+(x)

λ+
, x ≥ 0. (21)

Definition 3.7 (total OpES, total OpVaR) The total Operational Ex-
pected Shortfall until time t > 0 at level κ ∈ [0, 1) is defined as

ES+
t (κ) :=

1
1− κ

∫ 1

κ
V aR+

t (u)du,

where V aR+
t (κ) := inf{x ∈ R : G+

t (x) ≥ κ} is the total Operational Value
at Risk until time t at level κ.

14



3.1 One dominating cell

First we consider the case where one severity distribution is more heavy-
tailed than the other severity distributions. Without loss of generality we
assume that it is the first cell. For this scenario in Theorem 3.4 of [6] it is
proved that

lim
x→∞

Π+(x)
Π1(x)

= 1 (22)

and
V aR+

t (κ) ∼ V aR1
t (κ), κ→ 1.

We now consider the case of OpES.

Theorem 3.8 (dominating first cell) Consider a multivariate RVCP
model with 1 < α1 < αi, 2 ≤ i ≤ d and jump size df F+ of the compound
Poisson process S+. Then

F
+(x) ∼ λ1

λ+
F 1(x), x→∞, (23)

and the total OpES is asymptotically equal to the OpES of the first cell

ES+
t (κ) ∼ ES1

t (κ), κ→ 1.

Proof. By Proposition 3.2 of [6] S+ is a compound Poisson process
with parameter λ+ and with jump size df F+. Thus, (23) is equivalent
to (22) which holds because of Theorem 3.4 of [6], since for every δ ∈
(α1,min{αi, 2 ≤ i ≤ d}) by Proposition A.1 a) we have

lim
x→∞x

δΠi(x) = 0.

Since (23) holds, we can apply Corollary 2.10 with H = F1 and C = λ1
λ+

and obtain

ES+
t (κ) ∼ α1

α1 − 1
F←1

(
1− 1− κ

λ+t λ1
λ+

)
∼ ES1

t (κ), κ→ 1.

¤

We see that in this case the total OpES is asymptotically equal to the
OpES of the first cell independently of the general dependence structure.
Consequently, a huge operational loss occurs very likely because of one single
loss in the first cell instead of several dependent losses in different risk cells.

Now we turn to the situations of complete dependence and independence.
Although these scenarios are highly unlikely in practice, we obtain a deeper
insight into operational risk by considering these extreme cases.
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3.2 Completely dependent cells

We assume now that the Lévy processes Si(t), 1 ≤ i ≤ d, are completely
dependent meaning that in all risk cells losses occur simultaneously. By
Theorem 4.4 of [13] this leads to a Lévy copula

C‖(x1, . . . , xd) = min{x1, . . . , xd}

and thus, by Definition 3.6 to a tail integral

Π(x1, . . . , xd) = min{Π1(x1), . . . ,Πd(xd)},

where the whole mass is concentrated on

{x ∈ [0,∞)d : Π1(x1) = . . . = Πd(xd)}. (24)

Since the compound Poisson processes S1, . . . , Sd always jump together the
intensities are identical:

λ := λ1 = . . . = λd.

However, the severity dfs F1, . . . , Fd may be different. Hence, (24) is equal
to

{x ∈ [0,∞)d : F1(x1) = . . . = Fd(xd)}.
For simplicity we assume that the dfs F1, . . . , Fd are strictly increasing

and thus invertible. By Theorem 3.5 of [6] S+ is a compound Poisson process
with parameter λ+ = λ and jump size distribution tail

F
+(·) = F 1(H−1(·)), (25)

where H(x1) = x1 +
∑d

i=2 F
−1
i (F1(x1)), x1 ∈ [0,∞), and the total OpVaR

is asymptotically equal to the sum of the OpVaR of the cell processes

V aR+
t (κ) ∼

d∑

i=1

V aRi
t(κ), κ→ 1. (26)

We show that the same holds for the OpES.

Theorem 3.9 (OpES in the completely dependent model) Consi-
der a multivariate RVCP model at fixed time t > 0. We assume that the
aggregated loss processes S1, . . . , Sd are completely dependent with strictly
increasing severity dfs F1, . . . , Fd. Then the total OpES asymptotically equals
the sum of the cell OpES

ES+
t (κ) ∼

d∑

i=1

ESi
t(κ), κ→ 1. (27)
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Proof. We can deduce (27) directly from (26) using Remark 2.3 b) and
the fact that the integral

∫ 1

0
V aR+

t (u)du =
∫ ∞

0
xdG+

t (x)

is finite due to Proposition A.1 b) and G+
t ∈ R−α, α > 1.

ES+
t (κ) :=

1
1− κ

∫ 1

κ
V aR+

t (u)du ∼ 1
1− κ

∫ 1

κ

d∑

i=1

V aRi
t(u)du

=
d∑

i=1

1
1− κ

∫ 1

κ
V aRi

t(u)du =
d∑

i=1

ESi
t(κ), κ→ 1.

¤

In §669d) of [1], the Basel Committee indicates the sum over all the
risk cells as the standard procedure to quantify the total risk. Therefore, it
seems that the Basel Committee acts on the assumption that the completely
dependent case is the worst case that can happen. If applying a coherent,
convex or subadditive risk measure like Expected Shortfall, this assumption
is true, since the ES of a loss portfolio is always less or equal than the sum
of the ES of the single losses, in spite of the prevailing kind of dependence.
It fails, however, if VaR is applied.

Now we assume that the first b ∈ {1, . . . , d} risk cells are more heavy-
tailed than the remaining risk cells. Also in this case we show that the total
OpES is asymptotically equivalent to the OpES of the dominating cells, as
it also happens in the case of the OpVaR (see Proposition 3.7 of [6]).

Proposition 3.10 (b dominating cells in the dependent model)
Consider a multivariate RVCP model at fixed time t > 0. We assume that
the aggregated loss processes S1, . . . , Sd are completely dependent with strictly
increasing severity dfs F1, . . . , Fd.
Let b ∈ {1, . . . , d} and 1 < α1 = . . . = αb =: α < αj , j = b + 1, . . . , d and
let ci ∈ (0,∞), i = 2, . . . , b such that

lim
x→∞

F i(x)
F 1(x)

= ci.

Then with c1 := 1 and C :=
∑b

i=1 c
1/α
i

ES+
t (κ) ∼ C · ES1

t (κ) ∼ α

α− 1
F−1

1

(
1− 1− κ

λtCα

)
, κ→ 1. (28)
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Proof. In the case b = 1 we are in the same situation as in Theorem 3.8
and we have ES+

t (κ) ∼ ES1
t (κ)

(5)∼ α
α−1F

−1
1

(
1− 1−κ

λt

)
, κ→ 1.

Let b > 1. Due to Proposition A.1 f) F i(x) ∼ ciF 1(x), x → ∞, for
2 ≤ i ≤ b yields

( 1
F i

)←
(x) ∼ c

1/α
i

( 1
F 1

)←
(x), x→∞.

Because of
( 1
F i

)←
(x) = inf

{
y ∈ R : 1− Fi(x) ≤ 1

x

}
= F←i

(
1− 1

x

)
(29)

and the invertibility of F , this is equivalent to

F−1
i (1− y) = c

1/α
i F−1

1 (1− y)(1 + oi(1)), y ↓ 0. (30)

Now we show that for j = b+ 1, . . . , d,

F−1
j (1− y) = o(F−1

1 (1− y)), y ↓ 0, (31)

holds. From Proposition A.1 e) we know that
(

1
F i

)← ∈ R1/αi
for 1 ≤ i ≤ d.

Hence, there exists Li ∈ R0 with
(

1
F i

)←(x) = x1/αiLi(x). Since 1
αj

< 1
α

there exists a δ > 0 with 1
αj
< δ < 1

α . Therefore, we have

lim
x→∞

(
1

F j

)←(x)
(

1
F 1

)←(x)
= lim

x→∞
x

1
αj
−δ
Lj(x)

x
1
α
−δL1(x)

= 0,

since the numerator converges to zero and the denominator to infinity due
to Proposition A.1 a). Together with (29) this yields (31).

By applying Theorem 3.9 we obtain

ES+
t (κ)

(27)∼
d∑

i=1

ESi
t(κ)

(5)∼
d∑

i=1

αi

αi − 1
F−1

i

(
1− 1− κ

λt

)

(30),(31)∼
b∑

i=1

α

α− 1
c
1/α
i F−1

1

(
1− 1− κ

λt

)
(5)∼

b∑

i=1

c
1/α
i ES1

t (κ), κ→ 1.

Thus, we have shown the first asymptotic equality.
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In order to derive (28), we compute with limx→∞ F 1(x) = 0 for x1 →∞

H(x1) := x1 +
d∑

i=2

F−1
i (1− F 1(x1))

(30),(31)
=

= x1 +
b∑

i=2

c
1/α
i F−1

1 (1− F 1(x1))(1 + oi(1))

+
d∑

j=b+1

o(F−1
1 (1− F 1(x1)))

= x1 +
b∑

i=2

c
1/α
i x1(1 + o(1)) + (d− b− 1)o(x1)

= Cx1(1 + o(1)) + (d− b− 1)o(x1).

Hence, H(x1) ∼ Cx1, x1 → ∞, and also H−1(x) ∼ x/C, x → ∞. Because
of this and since F 1 ∈ R−α, by Proposition A.1 d) we obtain

F
+(x)

(25)
= F 1(H−1(x)) ∼ F 1(x/C) ∼ CαF 1(x), x→∞. (32)

Now we can apply Corollary 2.10 and obtain

ES+
t (κ) ∼ α

α− 1
F−1

1

(
1− 1− κ

λtCα

)
, κ→ 1.

¤

Example 3.11 (Pareto distribution) Let Fi, i = 1, . . . , d, the Pareto dis-
tributions with parameters αi, θi > 0 and suppose that for b ∈ {1, . . . , d}
1 < α1 = . . . = αb =: α < αj , j = b + 1, . . . , d holds. Furthermore,
let the aggregated loss processes S1, . . . , Sd be completely dependent, i.e.
N i

t = Nt ∀i = 1, . . . , d. For i = 1, . . . , b it follows that

lim
x→∞

F i(x)
F 1(x)

= lim
x→∞

(
1 + x

θi

)−αi

(
1 + x

θ1

)−α1
= lim

x→∞

(
(θ1 + x)θi

(θi + x)θ1

)α

=
(
θi

θ1

)α

.

Hence, we know that ci =
(

θi
θ1

)α in Proposition 3.10. For the severity dis-

tribution tail F+ of the compound Poisson process S+ we have

F
+(x)

(32)∼
( b∑

i=1

c
1/α
i

)α

F 1(x) =
( b∑

i=1

θi

θ1

)α(
1 +

x

θ1

)−α

=
( b∑

i=1

θi

)α

(θ1 + x)−α ∼
( b∑

i=1

θi

)α

x−α, x→∞.

19



For the total Operational Expected Shortfall we obtain

ES+
t (κ) ∼ C · ES1

t (κ)
(10)∼

( b∑

i=1

θi

θ1

)
α

α− 1
θ1

( λt

1− κ

) 1
α

=
( b∑

i=1

θi

)
α

α− 1

( λt

1− κ

) 1
α
, κ→ 1.

3.3 Independent cells

Now we turn to the case where the aggregated loss processes S1, . . . , Sd

are independent. This holds if and only if they almost surely never jump
together. Therefore, the tail integral of the total aggregated loss process S+

equals:

Π+(x) = Π({(y1, . . . , yd) ∈ [0,∞)d :
d∑

i=1

yi > x})

= Π((x,∞)× {0} × · · · × {0}) + · · ·+ Π({0} × · · · × {0} × (x,∞))
= Π((x,∞)× (0,∞)× · · · × (0,∞)) + · · ·

+Π((0,∞)× · · · × (0,∞)× (x,∞))
= Π1(x) + · · ·+ Πd(x), x ≥ 0. (33)

The last equality holds, since, in the case of independence, the total Lévy
mass is concentrated on the coordinate axes. From this we can derive that
total OpES behaves asymptotically as in the one-dimensional case, analo-
gously to the case of the OpVaR (see Theorem 3.10 of [6]).

Theorem 3.12 (OpES in the independent model) Consider a multi-
variate RVCP model at fixed time t > 0 with independent aggregated loss
processes S1, . . . , Sd.

a) Then S+ is a one-dimensional RVCP model with Poisson parameter

λ+ = λ1 + · · ·+ λd

and severity distribution tail

F
+(x) =

1
λ+

(
λ1F 1(x)+ · · ·+λdF d(x)

) ∈ R−α, α := min(α1, . . . , αd).

The total OpES behaves asymptotically as in the one-dimensional case,
i.e.

ES+
t (κ) ∼ α

α− 1
F+←

(
1− 1− κ

λ+t

)
, κ→ 1. (34)
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b) Let 1 < α1 = . . . = αb =: α < αj , j = b + 1, . . . , d for b ∈ {1, . . . , d}
and consider for i = 2, . . . , b ci ∈ (0,∞) with

lim
x→∞

F i(x)
F 1(x)

= ci.

Then the total OpES can be approximated in the following way:

ES+
t (κ) ∼ α

α− 1
F←1

(
1− 1− κ

Cλt

)
∼ α

α− 1
V aR+

t (κ), κ→ 1, (35)

with Cλ := λ1 + c2λ2 + · · ·+ cbλb.

Proof. a) By Proposition 3.2 of [6] S+ is a compound Poisson process
with jump size distribution tail

F
+(x)

(21)
=

Π+(x)
λ+

(33)
=

Π1(x) + · · ·+ Πd(x)
λ+

=
1
λ+

(
λ1F 1(x) + · · ·+ λdF d(x)

)

and with frequency parameter

λ+ (20)
= lim

x↓0
Π+(x)

(33)
= lim

x↓0
(
Π1(x) + · · ·+ Πd(x)

)
= λ1 + · · ·+ λd.

Since F1, . . . , Fd have ultimately decreasing Lebesgue densities, the same
holds for F+.

Now we show F
+ ∈ R−α, α := min(α1, . . . , αd). Without loss of gener-

ality we assume d = 2, λ1 = λ2 = 1 and α1 ≤ α2. Let Li ∈ R0 such that
F i(x) = x−αiLi(x), i = 1, 2.

In the case α1 < α2, there exists a δ > 0 with α1 < δ < α2, and by
Proposition A.1 a) we have:

lim
x→∞

F
+(x)

F 1(x)
= lim

x→∞
F 1(x) + F 2(x)

2F 1(x)
=

1
2

+ lim
x→∞

xδ−α2L2(x)
2xδ−α1L1(x)

=
1
2
.

Hence, we know F
+ ∈ R−α1 .

Now let α1 = α2 =: α. From F i(xt) = t−αF i(x)(1 + o(1)), i = 1, 2, it
follows that F 1(xt) + F 2(xt) = t−α

(
F 1(x) + F 2(x)

)
(1 + o(1)). Thus, the

sum of two regularly varying functions with the same index is again regularly
varying with the same index. Therefore, we have F+ ∈ R−α as well in this
case.

Obviously, this also holds for any d ≥ 2 and λ1, . . . , λd > 0.
Hence, we have shown that S+ is a one-dimensional RVCP model and

(34) holds because of Theorem 2.7.
b) For j = b+ 1, . . . , d we obtain by Proposition A.1 a) that

lim
x→∞

F j(x)
F 1(x)

= 0,
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and

lim
x→∞

F
+(x)

F 1(x)
= lim

x→∞
λ1F 1(x) + · · ·+ λdF d(x)

λ+F 1(x)
=
Cλ

λ+
. (36)

Thus, the conditions of Corollary 2.10 are satisfied with C = Cλ
λ+ andH = F1,

which yields (35). ¤

Example 3.13 (Pareto distribution) If all severities are Pareto-distribu-
ted as in Example 3.11, then ci =

(
θi
θ1

)α
, i = 1, . . . , b. For independent

S1, . . . , Sd we know from Theorem 3.12 with Cλ =
∑b

i=1 ciλi that

F
+(x)

(36)∼ Cλ

λ+
F 1(x) =

1
λ+

b∑

i=1

( θi

θ1

)α
λi

(
1 +

x

θ1

)−α
∼ 1
λ+

b∑

i=1

θα
i λix

−α,

if x→∞. The total OpES can be approximated:

ES+
t (κ)

(34)∼ α

α− 1
F+←

(
1− 1− κ

λ+t

)

∼ α

α− 1

( t∑b
i=1 θ

α
i λi

1− κ

) 1
α

(10)∼
( b∑

i=1

(
ESi

t(κ)
)α

) 1
α

, κ→ 1.

For identical frequency parameters λ := λ1 = · · · = λb we obtain

ES+
t (κ) ∼ α

α− 1

( λt

1− κ

) 1
α

( b∑

i=1

θα
i

) 1
α

, κ→ 1.

Our results hold for α > 1. At first sight this requirement may appear
more restrictive with respect to the case of OpVaR, since for the OpVaR the
parameter α can be chosen from the interval (0,∞). The restriction to α > 1
in Theorem 2.7 was a result of the Expected Shortfall being an integral of
the Value at Risk. However, also the OpVaR cannot provide a “good” risk
measure for the case 0 < α < 1, as shown in the following Example.

Example 3.14 Consider identical frequency parameters λ also in the inde-
pendent case and suppose that 0 < α1 = . . . = αb =: α < αj , j = b+1, . . . , d
for b ∈ {1, . . . , d} like in the Examples 3.11 and 3.13. Denote by V aR+

‖ the
total OpVaR of the completely dependent Pareto model and by V aR+

⊥ the
OpVaR of the independent Pareto model. Then in Section 3.1.2 of [6] it is
shown that

V aR+
⊥(κ)

V aR+
‖ (κ)

∼
(∑b

i=1 θ
α
i

)1/α

∑b
i=1 θi





< 1, α > 1
= 1, α = 1
> 1, α < 1.
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In the case 0 < α < 1, the total OpVaR allocates more risk to the inde-
pendent model than to the dependent model, V aR+

⊥(κ) > V aR+
‖ (κ) assuming

κ close to 1. Hence, the Pareto distribution for α ∈ (0, 1) is so heavy-tailed
that the OpVaR is not subadditive or convex anymore.

4 Practical relevance

We now discuss the practical relevance of our results. First of all a nat-
ural question is whether regularly varying distributions with index −α for
α > 1 estimate correctly real loss size distributions. Moscadelli examined
in [15] over 45.000 operational losses of 89 banks for the year 2002, catego-
rized according to the eight business lines. Due to the scarcity of data, the
representation of the few high losses proves to be considerably more compli-
cated. Moscadelli therefore uses Extreme Value Theory, in particular Peaks
Over Threshold, and assumes that the high loss sizes have a Generalized
Pareto Distribution, where the Generalized Pareto Distribution (GPDξ,β)
with form parameter ξ ∈ R and scale parameter β > 0 is defined as

GPDξ,β(x) :=

{
1− (1 + ξ x

β )−
1
ξ for ξ 6= 0

1− exp(−x/β) for ξ = 0,

where x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −β/ξ for ξ < 0. The GPDξ,β is regularly
varying with parameter α = 1/ξ for ξ > 0. In [15] the parameters (ξ, β)
are estimated for every business line by means of the Maximum Likelihood
method. The result of this inquiry is that in six out of eight business lines
the parameter α is less than 1. If Moscadelli’s analysis were an accurate
account of the actual operational risk, then the conditions of Theorem 2.7
would be satisfied in 25% of the business lines, since the GPD with parameter
ξ > 0 has a decreasing Lebesgue density. However, Nešlehová, Embrechts
and Chavez-Demoulin hint in [16] to the fact that the aggregation chosen in
[15] is questionable, since the seven loss types are inhomogeneous. Therefore
the problem of estimating the parameter α is still highly debated and needs
further research.
The second problem to be discussed is which kind of measure is the most
suitable for the estimation of capital reserves for operational risk.

As a solution Moscadelli suggests in [15] the risk measure Median Short-
fall, which adds the median of the exceedance distribution to the threshold
u:

MS(u) := u+ F←u
(1

2

)
, u > 0,

with

Fu(x) := P(X − u ≤ x|X > u) =
F (x+ u)− F (u)

1− F (u)
, 0 ≤ x < xF − u, (37)
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where xF ≤ ∞ is the right end point of F . The advantage of the median is
that it minimizes the absolute deviation. Reserving equity in the amount of
MS(u), a bank presumably can pay half of all losses that exceed u.

In order to include a confidence level κ into the risk measure, we choose
VaR as the threshold

u = V aRt(κ) = G←t (κ),

and obtain the following representation of the Median Shortfall in our model:

MSt(κ) = V aRt(κ)

+ inf
{
y ∈ R : P

(
S(t)− V aRt(κ) ≤ y

S(t) > V aRt(κ)
) ≥ 1

2

}

(37)
= G←t (κ) + inf

{
y ∈ R :

Gt(y +G←t (κ))−Gt(G←t (κ))
1−Gt(G←t (κ))

≥ 1
2

}

If Gt is continuous, we can simplify the second summand

inf
{
y ∈ R : Gt(y +G←t (κ))− κ ≥ 1− κ

2

}

= inf
{
x ∈ R : Gt(x) ≥ 1 + κ

2

}
−G←t (κ)

= G←t
(1 + κ

2

)
−G←t (κ)

and obtain
MSt(κ) = G←t

(1 + κ

2

)
= V aRt

(1 + κ

2

)
.

Hence, in the case of a continuous aggregated loss df Gt, the Median
Shortfall at confidence level κ equals the Value at Risk at level 1+κ

2 , i.e.
for κ = 99.9% MSt(0.999) = V aRt(0.9995). This directly yields that Me-
dian Shortfall is not coherent and thus is no ideal candidate for measuring
operational risk.

To conclude we remark again that the choice of VaR is not completely
satisfactory, since it is too optimistic (see (5)) and not convex. Indicating
only the probability of a loss and not the size of it, it may underestimate the
“potentially severe tail loss events” ([1], §667). In addition, for α ∈ (0, 1)
the mere summation of the OpVaR of the single cells is not an upper bound
of the total OpVaR, as the Basel Committee assumes in [1], §669d). This is
only accurate if applying a convex risk measure like the ES.

A Regularly varying distribution tails

The class of regularly varying functions has several properties, that we recall
here for the reader’s convenience. For further details, see [3], [10] and [17]
(especially Theorem 1.7.2 and Proposition 1.5.10 of [3], Lemma 1.3.1 and
Appendix A3 of [10], Proposition 0.8 of [17]).
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Proposition A.1 a) Let ε > 0 and L : (0,∞) → (0,∞) slowly varying.
Then

lim
x→∞x

εL(x) = ∞ and lim
x→∞x

−εL(x) = 0.

b) Let F ∈ R−α be the tail of a df and let X be distributed according to
F . Then

E[Xβ] <∞ ⇐⇒ β < α.

c) Every regularly varying distribution tail is subexponential.

d) Let U ∈ Rρ with ρ ∈ R and f, g positive functions on (0,∞) with
f(x) →∞, g(x) →∞, x→∞, and such that there exists a constant
c ∈ (0,∞) with

f(x) ∼ c · g(x), x→∞.

Then
U(f(x)) ∼ cρU(g(x)), x→∞.

e) Let F ∈ R−α, α > 0, a distribution tail. Then
(

1
F

)← ∈ R1/α.

f) Let F ,G ∈ R−α, α > 0, F a df, G decreasing. If F (x) ∼ c G(x), x→
∞, for some c > 0, then

( 1
F

)←
(x) ∼ c1/α

( 1
G

)←
(x), x→∞. (38)

g) (Monotone Density Theorem) Let U(x) =
∫∞
x u(y)dy such that u

is ultimately monotone (i.e. u is monotone on (z,∞) for a z > 0). If

U(x) ∼ cxρL(x), x→∞,

with c ∈ R, ρ ∈ R, L ∈ R0, then

u(x) ∼ −cρxρ−1L(x), x→∞.

h) (Karamata’s Theorem) Let L be slowly varying and ρ < −1. Then
∫ ∞

x
tρL(t)dt ∼ −1

ρ+ 1
xρ+1L(x), x→∞. (39)

i) Let U, V ∈ Rρ, ρ < −1, such that U(x) ∼ V (x) if x→∞. Then
∫ ∞

q
U(x)dx ∼

∫ ∞
q

V (x)dx, q →∞.
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