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Abstract
We apply the local risk-minimization approach to defaultable claims
and we compare it with intensity-based evaluation formulas and the
mean-variance hedging. We solve analytically the problem of finding
respectively the hedging strategy and the associated portfolio for the
three methods in the case of a default put option with random recovery
at maturity.
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1 Introduction
In this paper we discuss the problem of pricing and hedging defaultable
claims, i.e. options that can lose partly or totally their value if a default
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event occurs.
We consider a simple market model with two not-defaultable primitive as-
sets (the money market account Bt and the discounted risky asset Xt) and a
(discounted) defaultable claim H and we assume that there exists a unique
martingale measure P∗ for Xt with square integrable density.
In this context by following the approach of [9], [10] and [11], we first con-
sider the so-called “intensity-based approach”, where a defaultable claim is
priced by using the risk-neutral valuation formula as the market would be
complete. However the market model extended with the defaultable claim
is incomplete since the default process is not a traded asset. Hence it is
impossible to hedge against the occurrence of a default by using a portfolio
consisting only of the (not defaultable) primitive assets. Then this method
can only provide pricing formulas for the discounted defaultable payoff H,
since it is impossible to find a replicating portfolio for H consisting only of
the risky asset and the bond, and it makes sense to apply some of the meth-
ods used for pricing and hedging derivatives in incomplete markets.
In particular we focus here on quadratic hedging approaches, i.e. local
risk-minimization and mean-variance hedging1. The mean-variance hedging
method has been already extensively studied in the context of defaultable
markets by [6], [7], [8] and [9]. Here we extend some of their results to the
case of stochastic drift µt and volatility σt in the dynamics (4) of the risky
asset price, and random recovery rate. In fact empirical analysis of recovery
rates shows that they may depend on several factors, among which default
delays (see for example [12]). For the sake of simplicity here we assume that
the recovery rate depends only on the random time of default.
The main contribution of this paper is that we apply for the first time the
local risk-minimization method to the pricing and hedging of defaultable
derivatives. We focus on the particular case of a default put option with
random recovery rate and solve explicitly the problem of finding the pseudo-
local risk-minimizing strategy and the portfolio with minimal cost.
For the local risk minimization approach for a general defaultable claim, we
refer to [1] and [2].

2 General setting
We make the following assumptions:

• We consider a simple market model, given by:

- the money market account Bt (riskless asset);
1For an extensive survey of the subject, we refer to [25]
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- a risky asset St, represented by a continuous semimartingale such
that it admits an equivalent martingale measure for the discounted

price process Xt =
St

Bt

(there are no arbitrage opportunities). The

price process St and the risk-free bond Bt are both defined on the
probability space (Ω̃,F,P), endowed with the filtration (Ft)t≥0;

- the default time τ , given by a stopping time on the probability
space (Ω̂,H, ν). We assume that τ is independent of Ft, for every
t ≥ 0.

• For a given default time τ , we introduce the associated jump process
H by setting Ht = I{τ≤t} for t ∈ R+. H is called the default process.

• Let (Ht)t≥0 be the filtration generated by the process H, i.e. Ht =
σ(Hu : u ≤ t), and H := ∨t≥0Ht.

Hence we consider the following product probability space

(Ω,G,Q) = (Ω̃× Ω̂,F∞ ⊗H,P⊗ ν)

endowed with the filtration

Gt = Ht ⊗ Ft.

All the filtrations are assumed to satisfy the usual hypotheses of completeness
and right-continuity.
We introduce the hazard process under Q:

Γt := − ln(1− Ft), ∀t ∈ R∗,

where
Ft = Q(τ ≤ t) = ν(τ ≤ t) (1)

is the cumulative distribution function of the default time τ . We assume that
the hazard process Γt admits the following representation:

Γt =

∫ t

0

λsds, ∀t ∈ R∗,

where λt is a non-negative, integrable function. The function λ is called in-
tensity or hazard rate. If Ft is absolutely continuous with respect to Lebesgue
measure, that is when Ft =

∫ t

0
fudu for an integrable positive function f , then

we have

Ft = 1− exp (−Γt) = 1− exp

(
−
∫ t

0

λsds

)
,
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where in this case λt =
ft

1− Ft

. By Proposition 5.1.3 of [11], we obtain that

the compensated process M̂ given by the formula

M̂t := Ht −
∫ t∧τ

0

λudu = Ht −
∫ t

0

λ̃udu, ∀t ∈ R+ (2)

is a Q-martingale with respect to the filtration (Gt)t≥0. Notice that for the
sake of brevity we have denoted λ̃t := I{τ≥t}λt.
We fix a maturity date T > 0. In this framework we can introduce the
defaultable claim which is represented by a quintuple (X1, A,X2, Z, τ), where:

- the promised contingent claim X1 represents the payoff received by the
owner of the claim at time T , if there was no default prior to or at time
T ;

- the process A represents the promised dividends - that is, the stream
of cash flows received by the owner of the claim prior to default;

- the recovery process Z represents the recovery payoff at the time of
default, if default occurs prior to or at the maturity date T ;

- the recovery claim X2 represents the recovery payoff at time T , if de-
fault occurs prior to or at the maturity date T .

For the sake of simplicity, we can assume A ≡ 0, i.e. the claim does not
pay any dividends prior to default, so in the sequel we will use the simpler
notation (X1, X2, Z, τ). Furthermore the discounted value of a defaultable
claim (X1, X2, Z, τ) is given by:

H =
X1

BT

I{τ>T} +
X2

BT

I{τ≤T} +
Zτ

Bτ

I{τ≤T}. (3)

3 Case of a default-put
We focus in particular on the following model for the risky asset price Xt

and consider the case of a default put.

Model:

• Let Wt be a standard Brownian motion on (Ω̃,F,FW
t ,P) endowed with

the natural filtration FW
t of Wt. The risky asset price is represented by
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a stochastic process on (Ω̃,F,FW
t ,P) whose dynamics are described by

the following equations:{
dSt(ω̃) = µt(ω̃)St(ω̃)dt+ σt(ω̃)St(ω̃)dWt

dBt = r(t)Btdt,
(4)

with S0(ω̃) = s0 ∈ R+, where r(t) is deterministic, σt(ω̃) > 0 for
every t ∈ [0, T ] and µt(ω̃), σt(ω̃) are FW -adapted processes such that

the discounted price process Xt :=
St

Bt

belongs to L2(P), ∀t ∈ [0, T ]. In

addition we assume that µt(ω̃) is adapted to the filtration FS
t generated

by St. We remark that if σt(ω̃) has a right-continuous version, then it
is FS-adapted (see [15]) since∫ t

0

σ2
sS

2
sds = lim

supi |ti+1−ti|→0

n∑
i

|Sti+1
− Sti|2,

where 0 = t0 ≤ t1 ≤ · · · tn = t is a partition of [0, t]. Hence we obtain
that FS

t = FW
t for any t ∈ [0, T ] and from now on we assume it as the

reference filtration Ft := FS
t = FW

t on (Ω̃,F,P).

• We denote by

θt =
µt − r(t)

σt

(5)

the market price of risk. We also assume that µ, σ and r are such
that there exists a unique equivalent martingale measure for the di-

scounted price process Xt whose density
dP∗

dP
:= E

(
−
∫

θdW

)
T

is

square-integrable. If we denote by P2
e(X) the set of equivalent martin-

gale measures for Xt with square-integrable density, we have then that
the no-arbitrage hypothesis P2

e(X) 6= ∅ is satisfied.

• There exists a stopping time τ with diffuse law on R+ that represents
the random time of default. By [14] IV.107, this implies that τ is a
totally inaccessible stopping time.

Note that by construction Wt is a Brownian motion also with respect to Gt.

Definition 3.1. The buyer of a default put has to pay a premium to the
seller who undertakes the default risk linked to the underlying asset. If a
credit event occurs before the maturity date T of the option, the seller has to
pay to the put’s owner an amount (default payment), which can be fixed or
variable.
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If we restrict our attention to the simple case of

Z ≡ 0,

the default put is given by a triplet (X1, X2, τ), where

1. the promised claim is given by the payoff of a standard put option with
strike price and exercise date T :

X1 = (K − ST )
+; (6)

2. the recovery payoff at time T is given by

X2 = δ(K − ST )
+, (7)

where δ = δ(ω) is supposed to be a random recovery rate.

In particular we assume that δ(ω) = δ(ω̃, ω̂) = δ(ω̂) is represented by a
HT -measurable random variable in L2(Ω̂,HT , ν), i.e.

δ(ω) = h(τ(ω) ∧ T ) (8)

for some square-integrable Borel function h : (R,B(R)) → (R,B(R)), 0 ≤
h ≤ 1. Here we differ from the approach of [11], since we assume that X2

is GT -measurable and not necessarily FT -measurable. This is due to the fact
that in our model we allow the recovery rate δ to depend on the default time
τ . This represents a generalization of the models presented in [9] and [11].

Example 3.2. We remark that in this paper we restrict our attention to the
case when the recovery rate depends only on the random time of default. For
example δ(ω) can be of the form:

δ(ω) = δ1I{τ≤T0} + δ2I{T≥τ>T0},

when δ1, δ2 ∈ R+
0 and 0 < T0 < T . In this example we are considering a case

when we obtain a portion of the underlying option according to the fact that
the default occurs before or after a certain date. The recovery claim is always
handled out at time T of maturity.

In this case the discounted value of the default put can be represented as
follows:

H =
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

=
(K − ST )

+

BT

(
I{τ>T} + δ(ω)I{τ≤T}

)
=

(K − ST )
+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

)
, (9)
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where δ is given in (8). Our aim is then to apply three different hedging
methods for H in this setting:

1. Reduced-Form model;

2. Local-Risk Minimization;

3. Mean-Variance Hedging.

4 Reduced-Form model
In this section we present the main results that can be obtained through the
intensity-based approach to the valuation of defaultable claims and then we
see an application to the case of a default-put. We follow here the approach
of [9], [10] and [11].
Under the assumption of Section 3 the no-defaultable market is complete
since there exists a unique equivalent martingale measure P∗ for the discoun-

ted price process Xt =
St

Bt

. See [22] for further details. We put

Q∗ = P∗ ⊗ ν

in the sequel. Note that by construction, Q∗ is still a martingale measure for
Xt with respect to the filtration Gt.
By using no-arbitrage arguments, in Section 8.1.1 of [11] they show that a
valuation formula for a defaultable claim can be obtained by the usual risk-
neutral valuation formula as follows.
Under the probability measure Q∗, if A ≡ 0 and Zτ ≡ 0, the discounted price
process of the default put at time t is given by:

St

Bt

= EQ∗
[
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

∣∣∣∣Gt

]
= BtE

Q∗

[
(K − ST )

+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

) ∣∣∣∣∣Gt

]

= BtE
Q∗

[
(K − ST )

+

BT

∣∣∣∣∣Gt

]
︸ ︷︷ ︸

a)

EQ∗

[
(1 + (δ(ω)− 1)HT )

∣∣∣∣∣Gt

]
︸ ︷︷ ︸

b)

,

where the last equality follows from the fact that ST and HT are independent.
We compute separately the terms a) and b).
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a) This term represents the well-known price Pt of a standard put option:

Pt = BtE
Q∗
[
(K − ST )

+

BT

∣∣∣∣Gt

]
= EQ∗

[
e−

∫ T
t r(s)ds(K − ST )

+

∣∣∣∣Gt

]
(10)

= EQ∗
[
e−

∫ T
t r(s)ds(K − ST )

+

∣∣∣∣Ft

]
= Ke−

∫ T
t r(s)dsEQ∗

[IA|Ft]− StE
Q∗,X

[IA|Ft] ,

where by [16] we have
dQ∗,X

dQ∗ =
XT

X0

.

b) It remains to compute the second term:

EQ∗ [
1 + (δ(ω)− 1)HT

∣∣Gt

]
= (11)

1 + EQ∗ [
δ(ω)HT

∣∣Gt

]︸ ︷︷ ︸
c)

−EQ∗ [
HT

∣∣Gt

]
.

Then, we have to examine the conditional expectation EQ∗ [
HT

∣∣Gt

]
. First

we note that
EQ∗ [

HT

∣∣Gt

]
= EQ∗

[HT |Ht] .

Lemma 4.1. The process M given by the formula

Mt =
1−Ht

1− Ft

, ∀t ∈ R+ , (12)

where Ft is defined in (1), follows a martingale with respect to the filtration
(Ht)t≥0. Moreover, for any t < s, the following equality holds:

EQ∗
[1−Hs|Ht] = (1−Ht)

1− Fs

1− Ft

. (13)

Proof. We refer to Corollary 4.1.2 of [11].

Note that the cumulative distribution function of τ is the same both under
Q∗ and Q since Q∗(τ ≤ t) = ν(τ ≤ t) = Q(τ ≤ t). We apply (13) to get

EQ∗
[HT |Ht] = 1−

(
1−Ht

1− Ft

)
︸ ︷︷ ︸

Mt

(1− FT )

= 1− (1− FT )Mt. (14)
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To complete the computations, we evaluate the conditional expectation c).

c) In view of the Corollary 4.1.3 and the Corollary 5.1.1 of [11], using (8) we
have:

EQ∗
[δ(ω)HT |Gt] = EQ∗

[h(τ ∧ T )HT |Gt]

= h(τ ∧ T )Ht + (1−Ht)e
∫ t
0 λuduEQ∗ [I{τ>t}h(τ ∧ T )HT

]
= h(τ ∧ T )Ht + (1−Ht)e

∫ t
0 λuduEQ∗ [I{t<τ<T}h(τ ∧ T )

]
= h(τ ∧ T )Ht + (1−Ht)

∫ T

t

h(s)λse
−

∫ T
t λududs.

Finally, gathering the results, we obtain the following Proposition.

Proposition 4.2. In the market model outlined in Sections 2 and 3, we
obtain that the discounted value at time t of the replicating portfolio according
to the intensity-based approach is:

St

Bt

= EQ∗
[
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

∣∣∣∣Gt

]
= Pt

[
Hth(τ ∧ T ) + (1−Ht)

(∫ T

t

h(s)λse
−

∫ s
t λududs

)
+ (1− FT )Mt

]
, (15)

where Pt is the hedging portfolio value for a standard put option given in
(10).

Remark 4.3. Since in our market there are non-defaultable primary assets,
finding a self-financing portfolio that replicates our put option perfectly is not
possible (see [9] for further details). Hence, we have restricted our attention
to the pricing problem, according to [11].

5 Local Risk-Minimization
In Section 4 we have computed in Proposition 4.2 the discounted portfolio
value that replicates our defaultable option. The main idea of the intensity-
based approach is to assume that the market is complete. However, due to
the possibility of default, one cannot perfectly hedge a credit derivative in
our model, since only non-defaultable assets are present in our market model.
Then it is interesting to study defaultable markets by the means of hedging
methods for incomplete markets, such as local risk-minimization and mean-
variance hedging. We start with the local risk-minimization approach.

In this section we first provide a short review of the main results of the
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theory of local-risk minimization (see [15], [17], [25]) and then we see an ap-
plication in the case of a default-put. The main feature of this approach is
the fact that one has to work with strategies which are not self-financing.

Problem: in the financial market outlined in Section 2 and 3, we look for
a hedging strategy with minimal cost which replicates the defaultable contin-
gent claim H in (9).

We introduce the basic framework and some definitions. We recall that
the assets prices dynamics are given by (4) and that

Xt :=
St

Bt

denotes the discounted risky asset price.

• We remark that in our model X belongs to the space S2(Q) of semi-
martingales so that it can be decomposed as follows:

Xt = X0 +MX
t + AX

t , t ∈ [0, T ],

where MX is a square-integrable local Q-martingale null at 0 and AX

is a predictable process of finite variation null at 0. Moreover, in our
case Xt is a continuous process.

• In our model we have that the so-called Structure Condition (SC)
is satisfied, i.e. the mean-variance tradeoff

K̂t :=

∫ t

0

θ2sds (16)

is almost surely finite, where θt is the market price of risk defined in
(5), since Xt is continuous and P2

e(X) 6= ∅ by hypothesis (see [24]).
In particular, from now on we assume that K̂t is uniformly bounded in
t and ω, i.e. there exists k such that

K̂t(ω) ≤ k, ∀t ∈ [0, T ], a.s. (17)

We want to find a hedging strategy ϕ with “minimal” cost Ct and value
process

V̄t(ϕ) :=
Vt

Bt

(ϕ) = V0(ϕ) +

∫ t

0

ξsdXs + Ct(ϕ)

such that
V̄T (ϕ) = H Q− a.s.
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In which sense is the cost minimal?
We denote by Θs the space of G-predictable processes ξ on (Ω,G,Gt,Q) such
that

EQ
[∫ T

0

(ξs)
2d〈MX〉s

]
+ EQ

[(∫ T

0

|ξs|d|AX
s |
)2
]
< ∞. (18)

Definition 5.1. An L2-strategy is a pair ϕ = (ξ, η) such that

1. ξ is a G-predictable process belonging to Θs.

2. η is a real-valued G-adapted process such that V̄ (ϕ) = ξ · X + η is
right-continuous and square-integrable.

The cost process is defined by:

Ct = V̄t −
∫ t

0

ξsdXs, 0 ≤ t ≤ T. (19)

Definition 5.2. An L2-strategy ϕ is called mean-self-financing if its cost
process C(ϕ) is a Q-martingale.

Following [25], we introduce an optimal replicating strategy:

Definition 5.3. Let H ∈ L2(GT ,Q). An L2-strategy ϕ with V̄T (ϕ) = H
Q-a.e. is pseudo-locally risk minimizing (plrm) for H if ϕ is mean-self-
financing and the martingale C(ϕ) is strongly orthogonal to M .

For the reader’s convenience we recall that two square-integrable martingales
are said to be strongly orthogonal if their product is a (uniformly integrable)
martingale.
In general how to characterize a pseudo-locally risk-minimizing strategy is
shown in the next result due to Föllmer and Schweizer (see [15]):

Proposition 5.4. A contingent claim H ∈ L2(Q) admits a pseudo-locally
risk-minimizing strategy ϕ if and only if H can be written as

H = H0 +

∫ T

0

ξHs dXs + LH
T Q− a.s. (20)

with H0 ∈ R, ξH ∈ ΘS, LH ∈ M2
0(Q) strongly Q-orthogonal to MX . The

plrm-strategy is given by

ξt = ξHt , 0 ≤ t ≤ T
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with minimal cost

Ct(ϕ) = H0 + LH
t , 0 ≤ t ≤ T.

If (20) holds, the optimal portfolio value is

Vt(ϕ) = Ct(ϕ) +

∫ t

0

ξsdXs = H0 +

∫ t

0

ξHs dXs + LH
t ,

and
ηt = ηHt = Vt(ϕ)− ξHt Xt.

Proof. For the proof, see [15].

Decomposition (20) is well known in literature as the Föllmer-Schweizer
decomposition (in short FS decomposition). In the martingale case it coin-
cides with the Galtchouk-Kunita-Watanabe decomposition. We see now how
one can obtain the FS decomposition by choosing a convenient martingale
measure for X following [15].

Definition 5.5 (The Minimal Martingale Measure). A martingale mea-
sure Q̂ equivalent to Q with square-integrable density is called minimal if
Q̂ ≡ Q on G0 and if any square-integrable Q-local martingale which is
strongly orthogonal to MX under Q remains a local martingale under Q̂.

The minimal measure is the equivalent martingale measure that modifies the
martingale structure as little as possible.

Theorem 5.6. Suppose X is continuous and that it satisfies (SC). Sup-

pose the strictly positive local Q-martingale Ẑt = E(−
∫

θdW )t is a square-

integrable martingale and define the process V̂ H as follows

V̂ H
t := EQ̂[H|Gt], 0 ≤ t ≤ T.

Let

V̂ H
T = EQ̂[H|GT ] = V̂ H

0 +

∫ T

0

ξ̂Hs dXs + L̂H
T (21)

be the GKW decomposition of V̂ H
t with respect to X under Q̂. If either

H admits a FS decomposition or ξ̂H ∈ Θs and L̂H ∈ M2
0(Q), then (21)

gives the FS decomposition of H and ξ̂H gives a plrm strategy for H. A
sufficient condition to guarantee that Ẑ ∈ M2

0(Q) and the existence of a
FS decomposition for H is that the mean-variance tradeoff process K̂t is
uniformly bounded.

Proof. For the proof, see Theorem 3.5 of [25].

We apply these results to the case of defaultable claims.
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5.1 Local-Risk-Minimization for defaultable claims

We focus on the particular case of a default put H defined in (9). For local
risk minimization for a general defaultable claim, we refer to [1]. We wish to
find a portfolio “with minimal cost” that perfectly replicates H according to
the local risk-minimizing criterion.
We remark that we focus on the case of trading strategies adapted to the full
filtration Gt (see [9]). For a further discussion on local risk-minimization with
Ft-adapted strategies, we refer to [2].

Lemma 5.7. The minimal martingale measure for Xt with respect to Gt

exists and coincides with Q∗.

Proof. Since Wt and M̂t defined in (2) have the predictable representation
property for the space of square-integrable local martingale on the product
probability space (Ω,G,Gt,Q) = (Ω̃× Ω̂,FW ⊗H,FW

t ⊗Ht,P⊗ν), the result
follows by Definition 5.5. See also [3] and [20].

Proposition 5.8. Let M̂ be the compensated process defined in (2) and X the
discounted price process. The pair (X, M̂) has the predictable representation
property on (Ω,G,Gt,Q∗), i.e. for every H ∈ L1(Ω,GT ,Q∗), there exists a
pair of G-predictable processes (Φ̃, Ψ̃) such that

H = c+

∫ T

0

Φ̃sdXs +

∫ T

0

Ψ̃sdM̂s (22)

and ∫ T

0

Φ̃2
sd〈X〉s +

∫ T

0

Ψ̃2
sd[M̂ ]s < ∞ a.s.

Proof. Since there exists a unique equivalent martingale measure P∗ for the
continuous asset process Xt on (Ω̃,F,Ft), then by Theorem 40 of Chapter IV
of [21] we have that Xt has the predictable representation property for the
local martingales on (Ω̃,F,Ft,P∗).
By Proposition 4.1 of [4] the compensated default process M̂t has the pre-
dictable representation property for the local martingales on (Ω̂,H,Ht, ν).
Hence, since Xt and M̂t are strongly orthogonal, by Proposition A.2 of [3]
and by using a limiting argument we obtain that (X, M̂) has the predictable
representation property on the product probability space

(Ω,G,Gt,Q∗) = (Ω̃× Ω̂,F ⊗H,Ft ⊗Ht,P∗ ⊗ ν).
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We remark that the market is incomplete even if we trade with Gt-adapted
strategies since M̂ does not represent the value of any tradable asset.
We can apply Proposition 5.8 to obtain the plrm strategy for H ∈ L2(Ω,GT ,Q).

Proposition 5.9. Let H ∈ L2(Ω,GT ,Q) be the value of a defaultable claim.
Then the plrm strategy for H exists and it is given by

Φt = Φ̃t, Ct = c+

∫ t

0

Ψ̃sdM̂s,

where Φ̃t, Ψ̃t are the same as in Proposition 5.8.

Proof. Let H ∈ L2(Ω,GT ,Q). We note that since
dQ̂
dQ

∈ L2(Q), then

L2(Ω,GT ,Q) ⊂ L1(Ω,GT , Q̂). Then H ∈ L1(Q̂) and we can apply Propo-
sition 5.8 to obtain decomposition (22) for H given by

H = c+

∫ T

0

Φ̃sdXs +

∫ T

0

Ψ̃sdM̂s. (23)

The martingale M̂ is strongly orthogonal to the martingale part MX of X,
hence (23) gives the GKW decomposition of H under Q̂. Since by hypothesis
dQ̂
dQ

=
dQ∗

dQ
∈ L2(Q) and Xt is continuous, then by Theorem 3.5 of [15] the

associated density process

Zt = EQ

[
dQ̂
dQ

∣∣∣∣Gt

]
= EQ

[
dQ̂
dQ

∣∣∣∣Ft

]

is a square-integrable martingale. Since hypothesis (17) is in force, we can
apply Theorem 5.6 and conclude that (22) is the FS decomposition of H.

Remark 5.10. It is possible to choose different hypotheses that guarantee
that decomposition (22) gives the FS decomposition. Assumption (17) is
the simplest condition that can be assumed. For a complete survey and a
discussion of the others, we refer to [25].

Under the equivalent martingale probability measure Q̂, the discounted price
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process V̂t of the default put at time t, is given by:

V̂t = EQ̂[H|Gt]

= EQ̂
[
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

∣∣∣∣Gt

]
= EQ̂

[
X1

BT

∣∣∣∣Gt

]
· EQ̂

[
1 + (δ(ω)− 1)HT

∣∣∣∣Gt

]
= EQ̂

[
(K − ST )

+

BT

∣∣∣∣∣Gt

]
︸ ︷︷ ︸

a)

·EQ̂

[
(1 + (δ(ω)− 1)HT )

∣∣∣∣∣Gt

]
︸ ︷︷ ︸

b)

. (24)

We need only to find the Föllmer-Schweizer decomposition of V̂t as illustrated
in (20).

a) By Section 5 of [5] and using the “change of numéraire” technique of
[16], we have

EQ̂
[
X1

BT

∣∣∣∣Gt

]
= EQ̂

[
(K − ST )

+

BT

∣∣∣∣Gt

]

= EQ̂

(K − ST )

BT

I{K ≥ ST}︸ ︷︷ ︸
A

∣∣∣∣Gt


= KEQ̂

[
1

BT

IA
∣∣∣∣Gt

]
− EQ̂

[
ST

BT

IA
∣∣∣∣Gt

]
=

K

BT

EQ̂ [IA∣∣Gt

]
− EQ̂[XT IA|Gt]

=
K

BT

EQ̂ [IA|Gt]−XtE
Q̂X

[IA|Gt] ,

where
dQ̂X

dQ̂
=

XT

X0

is well-defined since XT ∈ L2(Q) by hypothesis and hence XT ∈ L1(Q̂).

In addition by (22) we obtain that EQ̂
[
X1

BT

∣∣∣∣Gt

]
admits the decompo-

sition

EQ̂
[
X1

BT

∣∣∣∣Gt

]
= c+

∫ t

0

ξsdXs. (25)
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Since
EQ̂X

[IA|Gt] = EQ̂X

[IA|Ft]

because IA is independent of τ , by [16] we have that

ξt = EQ̂X

[IA|Ft] . (26)

b) It remains to calculate the term EQ̂
[
1 + (δ(ω)− 1)HT

∣∣∣∣Gt

]
. First we

note that

EQ̂
[
1 + (δ(ω)− 1)HT

∣∣∣∣Gt

]
= 1 + EQ̂[δ(ω)HT |Gt]− EQ̂[HT |Gt]

= 1 + EQ̂[δ(ω)HT |Gt]− (1− (1− FT )Mt)

= EQ̂[δ(ω)HT |Gt] + (1− FT )Mt,

by (14). Since δ(ω)HT = f(τ) for some integrable Borel function f :
R+ → [0, 1], by Proposition 4.3.1 of [11], we have

EQ̂
[
1 + (δ(ω)− 1)HT

∣∣∣∣Gt

]
= ch +

∫ t

0

f̂(s)dM̂s + (1− FT )Mt,

where ch = EQ̂[f(τ)] and the function f̂ : R+ → R is given by the
formula

f̂(t) = f(t)− eΓtEQ̂[I{τ>t}f(τ)]. (27)

Note that
f(x) = h(x ∧ T )I{x<T},

where h is introduced in (8). We only need to find the relationship
between Mt and M̂t.

Lemma 5.11. Let M and M̂ be defined by (2) and (12) respectively.
The following equality holds:

dMt = − 1

1− Ft

dM̂t. (28)

Proof. To obtain (28), it suffices to apply Itô’s formula. For further
details see Section 6.3 of [11].
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Finally, gathering the results we obtain

V̂t = EQ̂[H|Gt]

=

c+

∫ t

0

ξsdXs︸ ︷︷ ︸
Φt

 ·
(
EQ̂[f(τ)] +

∫ t

0

f̂(s)dM̂s + (1− FT )Mt

)

= Φt ·

EQ̂[f(τ)] +

∫ t

0

(
f̂(s)− 1− FT

1− Fs

)
dM̂s︸ ︷︷ ︸

Ψt

 .

Since
d[Φ,Ψ]t = ξt

(
f̂(t)− 1− FT

1− Ft

)
d[X, M̂ ]t = 0,

applying Itô’s formula we get

dV̂t = ΦtdΨt +Ψt−dΦt + d[Φ,Ψ]t

=

(
c+

∫ t

0

ξsdXs

)(
f̂(t)− 1− FT

1− Ft

)
dM̂t +

(
EQ̂[f(τ)] +

∫ t

0

(
f̂(s)+

− 1− FT

1− Fs

)
dM̂s

)
ξtdXt.

(29)

Hence we can conclude that:

Proposition 5.12. In the market model outlined in Sections 2 and 3, under
hypothesis (17) the local risk-minimizing portfolio for H defined in (9) is
given by

V̂t = c1 +

∫ t

0

Φ1
sdXs + L̂t, (30)

where the plrm strategy is

Φ1
t =

(
EQ̂[f(τ)] +

∫ t

0

(
f̂(s)− 1− FT

1− Fs

)
dM̂s

)
ξt (31)

and the minimal cost is

L̂t =

∫ t

0

(
c+

∫ s

0

ξudXu

)(
f̂(s)− 1− FT

1− Fs

)
dM̂s, (32)

where ξt is given by (26), f̂(s) by (27) and Ft by (1).

Proof. Proposition 5.9 guarantees that (29) provides the FS decomposition
for H, i.e. that Φ1

t and L̂t satisfy the required integrability conditions.
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6 Mean-Variance Hedging
Finally we consider the mean-variance hedging approach. We refer to [25]
for an exhaustive survey of relevant results. This method has been already
applied to defaultable markets in [6], [7], [8] and [9]. Here we extend their
results to the case of general coefficients in the dynamics of Xt and random
recovery rate and compute explicitly the mean-variance strategy in the par-
ticular case of a put option.
Again we focus on the case of G-adapted hedging strategy and denote by
L(X) the set of all G-predictable X-integrable processes.

Definition 6.1. An admissible hedging strategy is any pair ϕ = (θ, η), where
θ is a G-predictable process in L(X) and η is a real-valued G-adapted process

such that the discounted value process V̄t(ϕ) :=
Vt

Bt

(ϕ) = ηt+θtXt, 0 ≤ t ≤ T

is right-continuous.

Note that if the discounted value process V̄ (ϕ) is self-financing - that is

V̄t(ϕ) = V0 +

∫ t

0

θsdXs, then η is completely determined by the pair (V0, θ):

ηt = V0 +

∫ t

0

θsdXs − θtXt, 0 ≤ t ≤ T.

Hence we can formulate the mean-variance problem as follows:
Problem: find an admissible strategy (V0, θ) which solves the following mi-
nimization problem:

min
(V0,θ)

E

[(
H − V0 −

∫ T

0

θsdXs

)2
]
,

where θ belongs to

Θ =

{
θ ∈ L(X) :

∫ t

0

θsdXs ∈ S2(Q)

}
.

If such strategy exists, it is called Mean-Variance Optimal Strategy and de-
noted by (Ṽ0, θ̃).
Dual Problem: find an equivalent martingale measure Q̃ such that its den-
sity is square-integrable and its norm:∥∥∥∥∥dQ̃dQ

∥∥∥∥∥
2

= E

(dQ̃
dQ

)2

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is minimal over all the probability measures in P2
e(X). By [13] this probability

measure exists since Xt is continuous and P2
e 6= ∅ and it is called Variance-

Optimal Measure since: ∥∥∥∥∥dQ̃dQ
∥∥∥∥∥
2

= 1 + V ar

[
dQ̃
dQ

]
.

The main result is given by the following Theorem:

Theorem 6.2. Suppose Θ is closed and let X be a continuous process such
that P2

e(X) 6= ∅. Let H ∈ L2(Q) be a contingent claim and write the
Galtchouk-Kunita-Watanabe decomposition of H under Q̃ with respect to X
as

H = EQ̃[H] +

∫ T

0

ξ̃Hu dXu + L̃T = ṼT , (33)

with

Ṽt := EQ̃[H|Gt] = EQ̃[H] +

∫ t

0

ξ̃Hu dXu + L̃t, 0 ≤ t ≤ T. (34)

Then the mean-variance optimal Θ-strategy for H exists and it is given by

Ṽ0 = EQ̃[H]

and

θ̃t = ξ̃Ht − ζ̃t

Z̃t

(
Ṽt− − EQ̃[H]−

∫ t

0

θ̃udXu

)
= ξ̃Ht − ζ̃t

(
Ṽ0 − EQ̃[H]

Z̃0

+

∫ t−

0

1

Z̃u

dL̃u

)
, 0 ≤ t ≤ T,

where

Z̃t = EQ̃

[
dQ̃
dQ

∣∣∣∣Gt

]
= Z̃0 +

∫ t

0

ζ̃udXu, 0 ≤ t ≤ T (35)

Proof. The proof can be found in [23].

Let us now turn to the case of the default put. We can interpret the presence
on the market of a default possibility as a particular case of “incomplete
information”. Hence the results of [3] and [4], where the variance-optimal
measure is characterized as the solution of an equation between Doléans
exponentials, can also be applied in this context to compute Q̃. In particular
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by [3], Theorem 2.16 and Section 3 (α), it follows that the variance-optimal
measure coincides with the minimal one. In this case

Q̃ = Q̂ = Q∗. (36)

First of all we check that the space Θ is closed.
By Proposition 4.2 of [3], we have that Θ is closed if and only if for every
stopping time η, with 0 ≤ η ≤ T , the following condition holds

EQ̄
[
exp

(∫ T

η

θ2sds

) ∣∣∣∣Gη

]
≤ M, (37)

where
dQ̄
dQ

:= E

(
−
∫

2θdW

)
T

. Note that since we are assuming that Q̂

exists and it is square-integrable, then Q̄ also exists and exp
(∫ T

0
θ2t dt

)
is Q̄-

integrable ([3], Section 3(α)). Here we obtain that condition (37) is a verified
for every G-stopping time η such that 0 ≤ η ≤ T as a consequence of our
assumption (17). Then we can use Theorem 6.2 to obtain the mean-variance
optimal Θ-strategy for H.
The process Ṽt at time t, is given by:

Ṽt = EQ̃[H|Gt]

= EQ̃
[
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

∣∣∣∣Gt

]
= EQ̃

[
(K − ST )

+

BT

(
1 + (δ(ω)− 1)I{τ≤T}

) ∣∣∣∣∣Gt

]
.

By Section 3 (α) in [3], we also obtain that

dQ̃
dQ

= E

(
−
∫

βdX

)
T

1

E [(−βdX)]
,

where βt =
θt − ht

σtXt

and ht solves the equation

E

(∫
hdW̄

)
T

=
exp(

∫ T

0
θ2t dt)

Ē
[
exp

(∫ T

0
θ2t dt

)]
with W̄t := Wt + 2

∫ t

0
θsds and dQ̄

dQ = E
(
−
∫
2θdW

)
T
. Hence we have that

Z̃t = EQ̃

[
dQ̃
dQ

∣∣∣∣Ft

]
=

E
(
−
∫
βdX

)
t

E
[
E
(
−
∫
βdX

)
T

] (38)
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and dZ̃t = βtZ̃tdXt. Consequently we can compute decomposition (35) and
obtain

ζ̃t = Z̃tβt. (39)

Since Q̃ = Q̂ = Q∗, we can use (30), (31) and (32), to obtain the mean-
variance optimal Θ-strategy (Ṽ0, θ̃) for H.

Proposition 6.3. In the market model outlined in Sections 2 and 3, under
hypothesis (17) the mean-variance hedging strategy for H defined in (9) is
given by:

• Optimal Price

Ṽ0 = EQ̃[H] = EQ̃
[
X1

BT

I{τ>T} +
X2

BT

I{τ≤T}

]
.

We note that the optimal price for the mean-variance hedging criterion
coincides with the optimal price for the locally risk-minimizing crite-
rion.

• Mean-Variance Optimal Strategy

θ̃t = Φ1
t − ζ̃t

∫ t−

0

1

Z̃u

dL̃u, (40)

where Φ1, Z̃ and ζ̃ are given by (31), (38) and (39) respectively and

dL̃t = dL̂t =

(
c+

∫ t

0

ξsdXs

)(
f̂(t)− 1− FT

1− Ft

)
dM̂t. (41)
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