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Abstract. The aim of this paper is to apply the mean-variance hedging ap-
proach, originally formulated for risky assets, to interest rate models in pres-
ence of stochastic volatility.
In a HJM framework, we set a finite number of bonds such the volatility matrix
is invertible and provide an explicit formula for the density of the variance-
optimal measure which is independent by the chosen times of maturity.
Finally, we compare the mean-variance hedging approach to the local risk
minimization one in the interest rate case.

1. Introduction

The aim of this paper is to extend the mean-variance hedging approach to in-
terest rate models in presence of stochastic volatility. The interest rate case is
analysed in a Heath-Jarrow-Morton framework, where the forward rate volatility
is supposed to be stochastic. Here a stochastic volatility model is seen as a model
with incomplete information, where volatility is affected by an additional source
of randomness. A perfect replication of a given european option H is not possible
even by using an infinite number of bonds. In order to find an approximation price
and strategy, we choose the mean-variance hedging approach and consider only
self-financing portfolios composed by a finite number of bonds as in the approach
of [6] .
We set T1 < T2 < · · · < Tn times of maturity, greater than the option time of ex-
piration T0, such that the matrix

∫ Tj

T0
σi(t, s)ds is invertible PE-almost everywhere

for every t. We characterize the set of the martingale measures for
p(t, Tj)
p(t, T0)

, t ≤ T0,

j = 1, . . . , n and compute an explicit formula for the density of the variance-optimal

measure for
p(t, Tj)
p(t, T0)

, j = 1, . . . , n, in terms of Doleans Exponential. This expres-

sion is shown to be independent of the chosen Tj .
Finally, we introduce the local risk minimization approach for interest rates and
compare it with the mean-variance hedging one.

2. The Model

In the sequel, all filtrations are supposed to satisfy the so-called “usual hypoth-
esis”.
Our basic model consists of two complete filtered probability spaces denoted by
(Ω,FW ,FW

t , PW ) and by (E, E , Et, P
E). We assume that Wt is a standard n-

dimensional brownian motion on Ω = C([0, T ],R), PW is the Wiener measure and
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FW
t is the PW -augmentation of the filtration generated by Wt. The space E rep-

resents an additional source of randomness which affects the market. The market
is now incomplete as a result of incomplete information: if the evolution of η had
been known the market would be complete.
We suppose that there exists on E a square integrable (eventually d-dimensional)
martingale Mt endowed with the predictable representation property, i.e. for every
square integrable martingale Nt there exists a predictable process Ht such that
Nt = N0 +

∫ t

0
HsdMs.

We analyse the mean-variance hedging criterion in the case of interest rates models.
The assets to be considered on the market are zero coupon bonds with different
maturities. As in [4], we represent the price at time t of a bond maturing at time
T by an optional stochastic process p(t, T ) such that p(t, t) = 1 for all t.
We assume that there exists a frictionless market for T -bonds for every T > 0 and
that for every fixed t, p(t, T ) is almost surely differentiable in the T -variable. The

forward rate f(t, T ) is defined as f(t, T ) = −∂ log p(t, T )
∂T

and the short rate as

rt = f(t, t) .
According to the Heath-Jarrow-Morton approach, we describe the forward rate
dynamics. In this setting, f(t, T ) is represented by a process on the product prob-
ability space (Ω× E,FW

t ⊗ Et, P
W ⊗ PE) such that

df(t, T, ω, η) = α(t, T, ω, η)dt + σ(t, T, ω, η)dWt(ω) (1)
with initial condition f(0, T, η) = f∗(0, T ). We make the following assumptions:

i) The equation (1) admits PE-a.e. a unique strong solution with respect to
the filtration FW

t . For example, it is sufficient that α and σ are PE-a.e.-
bounded.

ii) Heath-Jarrow-Morton condition on the drift: there exists a predictable Rn-
valued process ht such that the integral

∫
hsdWs is well defined and

α(t, T, ω, η) = σ(t, T, ω, η)
∫ T

t

σ(t, s, η)ds− σ(t, T, ω, η)ht(ω, η) (HJM)

for every T ≥ 0. For the sake of simplicity, in the sequel we will omit ω
in the notation.
In the complete market case, this condition guarantees the existence of

the unique equivalent martingale measure for
p(t, T )

Bt
as long as E (∫

hdW
)

is a uniformly integrable martingale, while in this setting of incomplete
information there exists an infinite number of them. Note that it compels
to impose stronger regularity on σ to obtain global solutions for equation
(2). For a further discussion on the integrability conditions to impose on
ht, see [1].

By Proposition 15.5 of [4], we obtain the bond price dynamics:

dp(t, T )
p(t, T )

= (r(t, η) +
1
2
‖S(t, T, η)‖2 + A(t, T, η))dt + S(t, T, η)dWt

where
(1) S(t, T, η) = − ∫ T

t
σ(t, s, η)ds

(2) A(t, T, η) = − ∫ T

t
α(t, s, η)ds
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Neverthless in principle an infinite number of bonds is available for trade, we
consider only portfolios composed by to an arbitrarily large, but finite number of
bonds as in the approach of [6]. Since are traded bonds for every time of maturity
T ∈ R+, one is induced to think that the market is complete in spite of lack of
information. Unfortunately, this is not true. For example, suppose in equation (1)
dim Wt = 1 and let the volatility have a jump at a random time. The market
is incomplete since the random time of jump can not be known neither through
the observation of the entire term structure. For a further discussion, we refer to
Example 2.1 of [1].

3. The Variance-Optimal Measure for Interest Rates

In this framework, we study the problem of hedging a certain European option H
expiring at time T0 by using a self-financing portfolio composed by a finite number
of bonds of convenient maturities and eventually by the money market account
Bt. In the sequel we assume to work with the filtration (Ft)t∈[0,T0]; for the sake of

simplicity we will write
dQ

dP
instead of

dQ

dP

∣∣
FT0

.
Since a perfect replication is not possible, we look for a self-financing portfolio which
solves the following minimization problem:

min E
[
(H − VT0)

2
]

(2)

Usually the money market account Bt = exp
(∫ t

0
r(s, η)ds

)
is used as discounting

factor. Since the spot rate is now stochastic, the minimization problem (2) is
equivalent to

min EB

[
(

H

BT0

− VT0

BT0

)2
]

where EB is the expectation under the equivalent probability PB with density

dPB

dP
=

B2
T0

E
[
B2

T0

]

The computation of the new bond dynamics under PB can be quite complicated
even in very simple cases, as shown in further details in Remark 3.9 of [1].
In order to avoid it, we can choose as numéraire the bond p(t, T0) expiring at time
T0 of maturity of H. We immediately have

dPT0

dP
=

p(T0, T0)2

E [p(T0, T0)2]
= 1

or in other words PT0 ≡ P .
More precisely, we are not simply interested in a self-financing portfolio whose final
value has minimal quadratic distance by H, but, once fixed (n + 1) bonds p(t, Tj),
j = 0, 1, . . . , n, where n is the dimension of Wt, we look for a solution to the
minimization problem:

min
V0∈R
θ∈Θ

E
[
(H − V0 −GT0(θ))

2
]

(3)
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where Gt(θ) =
∫ t

0

θsdXs, Xj
s =

p(s, Tj)
p(s, T0)

and

Θ =
{

θ ∈ L(X) :
∫

θdX ∈ S2

}
(4)

L(X) is the set of integrable processes with respect to Xt and S2 is the space of
square-integrable semimartingale.
We assume a sort of no-arbitrage condition on the underlying financial market:

no-approximate profit condition : 1 /∈ GT0(Θ) (5)

This conditions simply means that the riskless profit 1 can’t be approximate by
using self-financing portfolios with zero initial wealth.
Problem (3) admits a unique solution (V0, θ) for all H ∈ L2 under the hypothesis
that GT0(Θ) is closed (see [9] for the proof). In this case, θ is called the mean-
variance optimal strategy and V0 the approximation price. The drawback of the
nonclosedness of the space GT0(Θ) can be overcome by looking for a mean-variance
optimal strategy in the space ΘGLP of all predictable processes such that the sto-
chastic integral

∫ t

0
θsdXs is a Q-square-integrable martingale for every equivalent

square integrable martingale measure Q (see [9]).
Problem (3) is strictly related to a particular martingale measure for Xt, since the
approximation price and the mean-variance optimal strategy θ can be computed
in terms of P̃ , the variance-optimal measure. We denote as M2

s(T1, . . . , Tn) and
M2

e(T1, . . . , Tn) respectively the set of signed martingale measures and the set of

equivalent martingale measures for
p(t, Tj)
p(t, T0)

,j = 1, . . . , n.

The variance-optimal measure P̃ is the element ofM2
s(T1, . . . , Tn) of minimal norm,

where for every Q ∈M2
s(T1, . . . , Tn)

‖dQ

dP
‖2 = E

[
(
dQ

dP
)2

]

If (2) has solution, in [9] it is shown that Ṽ0 = Ẽ [H]. Moreover, if GT0(Θ) is
closed and there exists at least a martingale measure for Xt, the optimal strategy
θ can be computed by using the density of P̃ , as shown in [9].
Apparently, this definition of P̃ depends on the chosen maturities T1, . . . , Tn. By
imposing the following condition, we will show in the sequel that it is actually
invariant under a change of the times of maturity.

There exist maturities T1, . . . , Tn greater than T0 such that for every t

the matrixes σi(t, Tj) and
∫ Tj

T0

σi(t, s)ds are non-singular PE-a.e (H1)

This assumption is motivated by Proposition 4.3 of [3] and by Proposition 5.5
and Theorem 5.6 by [5]. For a further discussion, see [1].
In order to obtain an explicit formula for the variance-optimal measure, we char-

acterize the set of the martingale measure for
p(t, T )
p(t, T0)

for every T > 0. Note that

we don’t need T ≤ T0 since time t cannot exceed T0 by assumption.
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Lemma 3.1. Let Zt be a local martingale with Z0 = 1. The following conditions
are equivalent:

(1) Zt
p(t, T )
p(t, T0)

is a local martingale for every T > 0

(2) Zt = E (− ∫ ·
0
(hs + S(s, T0, η))dWs

)
t
(1 +

∫ t

0
ksdMs) for some predictable

process ks such that the integral
∫ t

0
ksdMs is a local martingale.

Proof. For the proof, see Lemma 3.4 of [1]. ¤
Lemma 3.1 shows that our condition on the drift guarantees the existence of an

absolutely continuous (eventually signed) martingale measure for
p(t, T )
p(t, T0)

for every

T ≥ 0, t ≤ T0.
Since we assume to invest in an arbitrary, but finite number of bonds, we choose
for our portfolio p(t, T1), . . . , p(t, Tn) where T0 < T1 < · · · < Tn are maturities such
that

∫ Tj

T0
σi(t, s)ds is invertible for PE-almost every η. By the following lemma, we

obtain that the set of martingale measures for
p(t, Tj)
p(t, T0)

, j = 1, . . . , n, coincides with

the set of martingales measures for
p(t, T )
p(t, T0)

, T ≥ 0.

Lemma 3.2. Let Zt be a local martingale with Z0 = 1. The following conditions
are equivalent:

(1) Zt
p(t, Tj)
p(t, T0)

is a local martingale for every j = 1, . . . , n

(2) Zt = E (− ∫ ·
0
(hs + S(s, T0, η))dWs

)
t
(1 +

∫ t

0
ksdMs) for some predictable

process ks such that the integral
∫ t

0
ksdMs is a local martingale.

We remark that this result is independent from the chosen maturities unless for
the fact that

∫ Tj

T0
σi(t, s)ds must be invertible.

Proposition 3.3. (1) If Q ∈M2
s(T1, . . . , Tn), then

dQ

dP
= E

(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs

)

T0

(1 +
∫ T0

0

ksdMs)

for some predictable process kt such that the above expression is square
integrable.

(2) If Q ∈M2
e(T1, . . . , Tn), then

dQ

dP
= E

(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs

)

T0

E
(∫ ·

0

ksdMs

)

T0

for some predictable process kt such that the Doleans Expontial

E
(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs +
∫ ·

0

ksdMs

)

t

is a square-integrable martingale and kt ·∆Mt > −1.

Proof. This proposition directly follows by Lemma 3.2. ¤
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The following Lemma is quite technical, but it allows us to write an explicit
expression for the density of the variance-optimal measure.

Lemma 3.4. Let H,K be two predictable stochastic processes whose stochastic
integrals

∫ t

0
HsdW ∗

s and
∫ t

0
KsdMs are defined. The following conditions are equiv-

alent:

exp

(∫ T

0

‖(hs(η) + S(s, T0, η))‖2ds

)
= c

E (∫ ·
0
HsdW ∗

s

)
T

E (∫ ·
0
KsdMs

)
T

(6)

E
(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs +
∫ ·

0

KsdMs

)

T

=

= c E
(∫ ·

0

(−hs(η)− S(s, T0, η) + Hs)dŴs

)

T

(7)

where c is the same constant in both equations.

Proof. For the proof, see Lemma 3.7 of [1]. ¤

We recall that Xj
t =

p(t, Tj)
p(t, T0)

and denote by At the matrix whose ji-th element is

given by [At]ji =
∫ Tj

T0
σi(t, s)ds. By exploiting Lemma 3.4, we obtain the following

explicit formula for the variance-optimal measure.

Theorem 3.5. Let H, K be two predictable processes such that the exponential mar-
tingale E (∫ ·

0
HsdWs +

∫ ·
0
KsdMs

)
is square-integrable. Then H, K are solutions of

the equation (7) of Lemma 3.4 if and only if

dP̃

dP
= E

(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs +
∫ ·

0

KsdMs

)

T0

or equivalently

dP̃

dP
=

E (− ∫ ·
0
βsdXs

)
T0

E
[
E (− ∫ ·

0
βsdXs

)
T0

]

where βj
s =

p(s, T0)
p(s, Tj)

∑

i

(hi
s(η) + Si(s, T0, η))−Hi

s)[A
−1
s ]ij.

In particular, if σ(t, T, η, ω) = σ(t, T, η), by [1] we obtain that the density of P̃
has the form

dP̃

dP
= E

(
−

∫ ·

0

λsdWs

)

T0

exp
(
− ∫ T

0
‖λs‖2ds

)

E
[
exp

(
− ∫ T

0
‖λs‖2ds

)] (8)

where λt = ht(η) + S(t, T0, η).
We stress that the characterization of P̃ provided by Theorem 3.5 is independent
of the chosen maturities T1, . . . , Tn unless for the fact that matrix At must be
invertible.
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4. Examples

The Heath-Jarrow-Morton condition on the drift allows us to modelize only the
forward rate volatility σ(t, T, η).

Example 4.1. First we consider the case when dim Wt = 1 and

σ(t, T ) = σ0I{t<η,t≤T} + σ1I{t≥η,t≤T}
where σ0, σ1 ∈ R+ and η is a stopping time with a diffuse law on R+. Here

we set E = R+, Et = B([0, t]) ∨ (t,+∞] and a fundamental martingale is given by
Mt = I{t≥η} − at, where at is the compensator of the process I{t≥η} associated to
η.

Example 4.2. More generically, the volatility can be given by a Markov process
in continuous time with a finite set of states I. By following the approach of [8],
we choose E as the space of all right-continuous, left-limited functions from [0,∞)
to I endowed with the filtration E generated by ηt. By Theorem IV.20.6 of [8],
we obtain a set of martingales on E with the predictable representation property
in the following way. Let a, b be states in I such that a 6= b and define M b

t =
Ib(ηt)− Ib(η0)−

∫ t

0
QIb(ηs)ds and Ha

t = Ia(ηt−). The process Uab(t) =
∫ t

0
Ha

s dM b
s

is a martingale by Lemma IV.21.12 of [8] and the family (Uab)a,b∈I,a 6=b has the
predictable representation property.

Example 4.3. If the volatility is given by a multivariate point process ηt, there
exist no finite set of martingales with the predictable representation property. By
[7], we obtain that the compensated integer-valued random measure µ−ν associated
to ηt has the predictable representation property on E endowed with the smallest
filtration under which µ is optional.

Example 4.4. Finally η can be given by a diffusion process

df(t, T ) = α(t, T, ηt)dt + σ(t, T, ηt)dW 1
t

dηt = F (t, T, ηt)dt + G(t, T, ηt)dW 2
t

where W 1
t can be eventually correlated with W 2

t .

5. A comparison with the local risk minimizing approach

An alternative approach for pricing and hedging contingent claims in incomplete
markets is the local risk minimization one. The main difference with respect to
mean-variance hedging is the fact that a local risk minimizing strategy perfectly
replicates the value of a given option, but it is not self-financing. More precisely,
suppose we want to hedge a T0-option H. As in the previous sections, we choose

T1 < · · · < Tn satisfying (H1) holds and consider Xj
t =

p(t, Tj)
p(t, T0)

, j = 1, . . . , n. By

exploiting the approach of [2], we have the following

Definition 5.1. An L2-strategy is a pair (θ, θ0) such that θ ∈ Θ and θ0 is a real
predictable process such that the value process left limit Vt− = θt ·Xt + θ0

t is square
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integrable for 0 ≤ t ≤ T0.
The (cumulative) cost process is defined by Ct = Vt −

∫ t

0
θsdXs, 0 ≤ t ≤ T0 .

By Definition 5.1, we get that the portfolio’s jumps coincide with the jumps in
the cost process.

Definition 5.2. Let H ∈ L2(FT0 , P ) be a contingent claim. An L2-strategy (θ, θ0)
with VT0 = H P − a.s. is called pseudo-locally risk-minimizing or pseudo-optimal
for H if the cost process Ct is a P -martingale and is strongly orthogonal to the
martingale part of X.

By Definition 5.2 follows immediately that a contingent claim H ∈ L2(FT0 , P )
admits a pseudo-optimal strategy if and only if H can be written as

H = H0 +
∫ T0

0

ξudXu + LT0 (9)

where H0 ∈ L2(FT0 , P ), ξ ∈ Θ and L is a square integrable martingale strongly
P -orthogonal to the martingale part of X. Equation (9) is usually addressed in
literature as the Föllmer-Schweizer decomposition of H. This is connected to a
suitably chosen martingale measure, the so-called minimal martingale measure.

Definition 5.3. P̂ 0 ∈ M2
e(T1, . . . , Tn) is the minimal measure (with respect to

p(t, T0) as numéraire) if any locally square integrable local martingale which is or-
thogonal to the martingale part of X under P remains a local martingale under
P̂ 0.

By Definition 5.3 follows immediately that the pseudo-optimal portfolio V̂ (φ) is
a local P̂ -martingale and we get V̂t(φ) = p(t, T0)Ê0 [H| Ft]. By Definition 5.3 and
Theorem 3.5, we obtain that

dP̂ 0

dP
= E

(
−

∫ ·

0

(hs(η) + S(s, T0, η))dWs

)

T0

define the minimal measure’s density as long as the Doleans Exponential E (− ∫ ·
0
(hs(η) + S(s, T0, η))dWs

)
is a uniformly integrable martingale.
We compute now the pseudo-optimal strategy for a T0-call option C = (p(T0, T1)−
K)+. The pseudo-optimal portfolio is given by V̂t(φ) = p(t, T0)Ê0 [C| Ft] and by
exploiting the same argument as in Theorem 5.1 by [2], we obtain that the optimal
strategy components are θ0

t = −KÊ0 [1A| Ft−], θ1
t = Ê1 [1A| Ft−] and θj

t = 0 for
all j = 2, . . . , n. Note that in the local risk minimization case, the pseudo-optimal
strategy depends only on two assets in spite of the dimension of the driving brow-
nian motion. On the contrary, in [1] is shown that the mean-variance optimal
strategy is based on (n + 1) bonds, where n = dim Wt.
We apply these results in order to compute the local risk minimizing strategy

for a caplet H =
R∗

p(T0, T1)
(

1
R∗

− p(T0, T1))+ =
R∗

p(T0, T1)
K, where K is a T0-

put option on p(t, T1). The pseudo-optimal portfolio for the caplet H is given by

V̂t = p(t, T1)Ê1 [H| Ft]. For t ≤ T0, we have V̂t = p(t, T1)Ê1

[
R∗

p(T0, T1)
K

∣∣∣∣Ft

]
=

p(t, T0)Ê0 [K| Ft], since by [2] we have the following change of measure’s formula
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dP̂ 1

dP̂ 0
= p(T0, T1)

p(0, T0)
p(0, T1)

. For t > T0, V̂t = Ê [H| Ft] = H since H is FT0-

measurable. Hence, the local risk-minimization strategies for the T1-option H and
for the T0-option K coincide up to time T0 and we can behave exactly as in the
complete market case. On the contrary, in [1] is shown that mean-variance hedg-
ing strategy for H does not coincide with the one for K. The key is that in this
approach we perfectly replicate the option value in spite of approximating it as in
the mean-variance hedging criterium.
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